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Abstract

The following document is an exploration of the results of [CB18], written to understand
better the content of the claims. The presentation is at this link. It is not an extension but
rather an expansion of some of the elements needed for a less experienced reader. As this
production is done in fulfillment of a semester exam for an Optimal Transport course, it
does not cover all of the content, and was produced in more or less a month. The focus is
on two layer sigmoid neural networks, and all the theoretical results needed to understand
them. I also took inspiration from a video presentation of the publication [Ins19] and two
blog posts by the authors [Bac20a; Chi20]. Works cited are in line with those of the authors,
with some additional resources that I found helpful. Given the breadth of the subject, some
of the content is left for future studies, but nothing less than the original publication is
presented. I personally see this as a depth project, going very far into theoretical results to
see the potential of Theory of neural networks. It is by no means an exposition of skills that
I have 100% stored.
Section 1 paves the way for the research work proposed in a broad sense, introducing para-
metric optimization and the problem that will be studied, as well as a version of it that
can be implemented. Section 2 shows how the formalism of Wasserstein Gradient Flows is
instrumental to connect the two versions of the problem. Section 3 is the final theoretical
contribution, with a characterization of the conditions thanks to which a global optimiza-
tion is attained with the method considered. Lastly, in Section 4, it is shown that sigmoid
neural networks can benefit from the results and be tuned to reach globally optimizing
configurations, with satisfactory experimental results.
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1 Introduction

In this section we start by introducing some notation and providing a concise motivation for the
subject of the document through brief examples. Moving to the content of the paper, we state the
problem, its discretized version, and the assumptions. In order to proceed with the framework
of Gradient Flows, it is also shown that it belongs to a wider class of functional optimization
tasks by means of a lifting operation. This allows to reconciliate the particle problem presented
with a wide collection of results.

Notation

The following is a broad summary of the notation used:

• in Rd scalar products ·, norms | · |
• in a Hilbert space F scalar product ⟨·, ·⟩ and norm ∥·∥
• norms of non-linear operators ∥·∥
• differential of f at x as dfx
• M(Rd) the set of finite signed Borel measures on Rd

• δx a dirac mass at x
• P2(Rd) the set of probability measures with finite second moments endowed with Wasser-

stein distance (to see its construction and some properties, refer to Appendix A)

1.1 Parametric Supervised ML Optimization

Setting Assume our data sample is a finite size n collection of pairs D = {(xi, yi)}ni=1 where
xi ∈ X ⊂ Rd−2 and yi ∈ Y ⊂ R. The two signals come from an unknown distribution ρ(x, y).
We aim to build a prediction function h : Rd−2 × Rd−1 → R parametrized by θ ∈ Rd−1. Such
function h(·, θ) is fitted against regularized empirical risk minimization:

θ∗ = argmin
θ∈Rd−1

1

n

n∑
i=1

ℓ(yi, h(xi, θ)) + λΞ(θ) (1.1)

where:

• ℓ : R× R→ R+ is a loss function
• Ξ : Rd−1 → R+ is an (optional) regularization function
• λ (optional) is a Lagrange coefficient controlling for the impact of regularization

Since we observe a sample D of the underlying distribution ρ(x, y) what we actually wish to
mimic is a minimization of the test error wrt θ:

R : F → R+ R(h) = Eρ(x,y)
[
ℓ(y, h(x, θ))

]
(1.2)

which is in most reasonable cases convex by the convexity of ℓ. Here, F is a Hilbert space
(Def. A.15). We call this expected risk.

In this primordial analysis, we will focus on linear and non linear predictors, under which all
parametric methods fall. Two trivial examples follow.
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Example 1.3 (Advertising). In practice, we may want to understand which ad maximizes rev-
enues. Datasets in this context have n > 109. What is commonly implemented is a linear
predictor of the form:

h(x, θ) = θTΦ(x)

where Φ(x) ∈ {0, 1}d−1 is a vector that stores information about navigation history and previous
ads for a user. Here d > 109 as well, and Φ(·) could be non-linear. The importance is linearity
in the parameters.

Example 1.4 (Binary Image classification). Consider a dataset of images where Y = {−1, 1}⇝
{dogs, cats}. The sizes usually exceed n, d > 106. A neural network is implemented. It could be
described as a non linear predictor with general form:

h(x, θ) = θTl σ(θ
T
l−1σ(. . . σ(θ

T
2 σ(θ

T
1 x)))

Where l denotes the number of layers before the output and σ is a nonlinearity. Observe that
the non-linearity is in the parameters in this case.

1.2 Why and What in few lines

A plethora of research questions have been solved when considering linear models of the form
h(x, θ) = θTΦ(x). Theory and practice meld together beautifully: both worlds are able to
interact and draw inspiration from each other. Gradient Descent and faster techinques lead to
satisfactory results.
On the contrary, this is not happening in deep learning/non linear parametric optimization,
where the optimization is non convex. Gradient descent suffers from many issues, including but
not limited to:

• stationary points
• local minima
• plateaux
• bad initialization

In this more complicated setting, there are local guarantees [Jin+18; Lee+], but global efficient
convergence is impossible to prove a priori. A line of work that tried to solve this last issue
by describing good local minima has led to the establishment of important results given very
strong assumptions:

• Most local minima are equivalent [Cho+15]
• no spurrious local minima [SJL22]
• other results up to different assumptions [JK17]

Despite the lack of a complete understanding on the theoretical side, neural networks prove to
be instrumental for hard tasks where linear models do not perform well, and open the door to
higher flexibility in terms of model design. These reasons justify the huge amount of production
in the field. A theoretical work on one of the simplest models will be analyzed in the next
Sections. In particular, we will see how two-layer sigmoid neural networks of the form ϕ(θ) =

σ
(∑d−2

i=1 θixi + θd−1

)
fall under the umbrella of a much broader class of optimization problems

which has global optimization guarantees up to conditions to be specified. Such results are
achieved thanks to techniques involving Wasserstein Gradient Flows.
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1.3 Problem Formulation

We now focus on the space of functional optimization, where we simply decide that our functions
of choice are parametrized by θ and live in a Hilbert space F. Instead of minimizing in terms
of parameters, we minimize in terms of functions arising from parameters. To do so, the loss
function R : F → R+ is chosen. A solution will be a combination of elements from the parametric
space {ϕ(θ)}θ∈Θ ⊂ F. We treat this as a formal but reasonable assumption for practical
purposes.

Assumption 1.5 (On the form of ϕ). Assume that ϕ parametrized by θ ∈ Θ lives in the Hilbert
space F and is differentiable.

Measure perspective The minimization problem of Equation 1.1 could be treated as finding
the optimal choice of θ in the Rd space to minimize the functional loss of a linear combination of
functions ϕ(θ). Endowing Θ = Rd−1 with a measure µ in the set M(Θ) it is possible to restate
the task as:

µ∗ = argmin
µ∈M(Θ)

J(µ) J(µ) := R

(∫
ϕdµ

)
+G(µ) (1.6)

where:

• G(µ) : M(Θ) → R is the regularizer of the functional J , just like λΞ(θ) in Eqn. 1.1.
Usually, the total variation norm (Def. A.51) is used when we do not want weights to
concentrate1 on specific θ ∈ Θ

• |Θ| = d− 1

• M(Θ) are all possible measures over the set Θ

In simple words, we look among all possible allocations of choices of the parameters to find the
best combination that obtain a function2 that attains minimal risk/maximum fit. The problem
is linear in terms of µ. We give more justification of why we can inspect this form in Section 4.

Optimization practises Aiming to solve Eqn. 1.6 requires searching the ∞ dimensional
space of measures on Rd for a convex problem. The latter is good, the former is bad, and
makes the problem hard. The authors discuss references for two choices, which are difficult to
implement in practice[CB18]:

• Frank-Wolfe Algorithm: greedy approach of adding neurons at every iteration. The deci-
sion problem of finding the optimal particle is in general NP-Hard [BP13; Jag13; Bac16].
It has connections with Conditional Gradient and Boosting [BSR15; Wan+15].

• Semidefinite hierarchy: based on expressing the measure in terms of its moments. De-
spite asymptotic global convergence and inheriting results from the larger class of gener-
alized moment problems [Las09], it has its drawbacks. Only specific instances are covered
[CDP17] and increasing the dimension growth is exponential.

What is actually used in practice is Gradient Descent, allowed by the differentiability of ϕ
(Assumption 1.5). In the context of Equation 1.6, the measure µ is discretized to a finite set

1note that giving more "voting rights" does not generalize well
2as a linear combination of the ϕ
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of particles against which backpropagation is performed.

µ =
1

m

m∑
i=1

wi︸︷︷︸
weight

δθi︸︷︷︸
position

Thanks to this discretization, a new object comes into play. While positions affect choices in
the space of parameters, weights represent degree of importance in determining the function
to feed into R and G.
The problem is then discretized as:

µ∗ = argmin
w∈Rm θ∈θm

Jm(w,θ) Jm(w,θ) := J

(
1

m

m∑
i=1

wiδθi

)
(1.7)

Observation 1.8 (Comments on Equation 1.7). Observe that there are m particles (hidden
neurons) for which we have weights wi and positions θi ∈ Rd−1.
By using discrete measures, we can weakly approximate any measure, where by weakly we mean
when measuring an integral with respect to a measure of continuous and bounded functions.

Despite the absence of problems in implementations, there are no a priori guarantees that
Jm is convex, implying that convergence is, in most cases, at a local minima. The results shown
are mostly centered on two questions:

• evaluating the algorithmic limit as m → ∞, known to be equivalent to a Wasserstein
Gradient Flow [NS17]

• assessing Global Convergence to the optimal measure µ∗, subject to a generic ideal dy-
namics that one can only hope to approximate [CB18]

Such results are obtained by building an approach that links the discretization with the original
convex problem at the divergent limit of the number of particles.

In the context of analyzing Equation 1.7 some related works claimed that Stochastic Gradi-
ent Descent finds a global minimizer under very restrictive assumptions [LY17; SH17; VBB20;
SJL22]. Interpreting the discretization as a child of Equation 1.6 was also present in [NS17] but
not explored in search of global optimality conditions.

A non-quantitative condition is characterized for global convergence of Gradient Flows. It is
stressed that this is only a starting point, as there is no indication of the criterion for such
convergence to take place3. The connection between gradient flows and Gradient Descent (its
discretized version, see Appendix B.1) is also extended to SGD [KY03](Thm. 2.1) and Acceler-
ated gradient descent [Sci+17].

1.4 A more general problem

In this Subsection it is shown how, up to a certain set of assumptions, it is possible to lift the
formulation of the easier problem into that of Equation 1.6. This is done thanks to a homogeneity
property, which was also used in other optimization works [Jou+10; HV17].

3e.g. at what number of particles do we see a ϵ-bound on the error distance?
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Lifted Optimization Version Consider the problem over non negative finite measures
on Ω ⊂ Rd of finding:

F ∗ = min
µ∈M+(Ω)

F (µ) F (µ) = R

(∫
Φdµ

)
+

∫
V dµ (1.9)

Notice that we have changed both the normalization and the inner function.

Assumption 1.10. Require the Hilbert space F to be separable (Def. A.14) and Ω ⊂ Rd to be
the closure of a convex open set. On top of this, establish that:

1. (smooth loss) R : F → R+ is differentiable and its differential dR is Lipschitz (Def. A.22)
on bounded sets and bounded on sublevel sets (Def. A.10)

2. (basic regularity) the function Φ : Ω → F is Fréchet differentiable, V : Ω → R+ is semi-
convex (Def. A.17)

3. (sublinear growth and locally Lipschitz derivatives) there exists a sequence (Qr)r≥0 of nested
non-empty closed convex subsets of Ω:

(Qr)r≥0 : Qr ⊂ Ω, Qr ⊂ Qr′ , Qr ̸= ∅, convex ∀r, r′, r′ > r

such that:
(a) a kind of matryoshka property

{u ∈ Ω ; dist(u,Qr) ≤ r′} ⊂ Qr+r′ ∀r, r′ > 0

(b) Φ and V are bounded and dΦ is Lipschitz on each Qr
(c) denoting as ∥∂V (u)∥ the maximal norm of an element in ∂V (u), the growth of the

problem is sublinearly bounded as:

∃C1, C2 > 0 : sup
u∈Qr

{
∥dΦu∥+ ∥∂V (u)∥

}
≤ C1 + C2r ∀r > 0

Remark. Given that Qr can be unbounded (not necessarily balls of radius r), the result of point
3-(c) is not only that we have local Lipschitzness and sublinear growth, but also serves as a
technical requirement for the gradient flow analysis to be stable.
By convention, we set F (µ) =∞ if µ is not concentrated on Ω, i.e. if there are non-zero measure
sets A such that A ∩ Ω = ∅. Basically, we force the nature of our measure inside the set we
consider. This is done to avoid results in which part of the parameters are assigned outside the
region of optimization.
The integral involving Φ is assumed to be a Bochner integral. In simple words, it maps to F

whenever:

• Φ is measurable
• ∫ ∥ϕ∥ d|µ| <∞

If these conditions are not verified, it also happens that F (µ) = ∞. We need such a form of
integral to allow the result of the operation to map to a Hilbert space.

The authors provide an explanation for pursuing an optimization of Equation 1.9 instead of
Equation 1.6. The properties that allow to move from arbitrary measures over Θ ⊂ Rd−1 to
probability4 measures over Ω ⊂ Rd are not trivial at all.

4finite, but we can normalize
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Partially 1-homogeneous functions For continuous functions:

ϕ : Θ→ F Ṽ : Θ→ R+

assign Ω := R × Θ ⊂ Rd, Φ(w, θ) = w · ϕ(θ) and V (w, θ) = |w|Ṽ (θ). Notice that Φ and V are
1-homogeneous (Def. A.19) in the first entry. We refer to this as partial 1-homogeneity.
As a first step, we make use of homogeneity to characterize the minimization over M+(Ω)

equivalently in P(Ω).

Proposition 1.11 (Normalization of measure).

∃ν ∈ P(Ω) : F (ν) = F (µ) ∀µ ∈M+(Ω)

Proof. (no mass case) If |µ|(Ω) = 0 (i.e. recall Def. A.51, this means that there is no negative
or positive mass), then F (µ) = 0. For this reason, choose ν = δ(0,θ0) for arbitrary θ0 ∈ Θ.
Clearly ν ∈ P(Ω) and also F (δ(0,θ0)) = 0.
(non zero mass case) Let, |µ|(Ω) > 0. Define the map and the pushforward:

T : (w, θ)→ (|µ|(Ω) · w, θ) ν := T#

(
µ

|µ|(Ω)

)
=

1

|µ|(Ω)
µ ◦ T−1 ∈ P(Ω)

According to Definition A.52. By |µ|(Ω) > 0 this is allowed and we also get that the new
measure is normalized ν ∈ P(Ω). To conclude, we briefly check that it satisfies the requirement
by Proposition A.54. In fact, the hypothesis holds since Φ ◦ T = (w · ϕ) ◦ T is µ-integrable and
V ◦ T = (|ω|Ṽ ) ◦ T is µ-integrable. The constant |µ|(Ω) is taken out of the measure, and we get
back the usual µ in the differential. The added terms w and |w| are both integrable and do not
impact the operation.

Making use of Proposition 1.11 we introduce a projection operator specifically crafted for the
1-homogeneous case:

h1 : M+(Ω)→M(Θ) h1(µ)(B) =

∫
R
wµ(dw,B) ∀µ ∈ P(Ω), B ⊂ Θ measurable (1.12)

Intuitively, we integrate out the w ∈ R added part and obtain a measure over Θ.
We can equivalently characterize it as:∫

Θ
φ(θ)dh1(µ)(θ) =

∫
R×Θ

wφ(θ)dµ(w, θ) ∀φ : Θ→ R continuous bounded (1.13)

Which is well defined whenever (w, θ)→ w is µ-integrable. Usually the latter is easier to check
than the former.

Proposition 1.14 (Equivalence under lifting). we derive three important conclusions:

1. the projection h1 is such that:

M(Θ) ⊂ h1(P(Ω)) = h1(M+(Ω))

2. Regularizers5 on M(Θ) of the form:

G(ν) = inf
ν∈h−1(µ)

∫
Ω
V dµ

5note that the dependence is on the Ω measure, but we are working on the functional for Θ. This is done to
bridge the two formulations
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are such that:
inf

ν∈M(Θ)
J(ν) = inf

µ∈M+(Ω)
F (µ)

3. If G(·) attains the infimum and ν ∈M(Θ) minimizes J :

∃µ ∈ h−1(ν) : µ = argmin
M+(Ω)

F

Notice that by Claim #1 we write in Claim #3 that µ ∈ h−1(ν) since h1 maps to a space that
includes M(Θ).
To avoid confusion, we recapitulate the operations as follows:

P(Ω) ∋ µ h1(·)
⇝ ν ∈M(Θ)∫

ϕdν
·w
⇝

∫
Φdµ

G(ν) =

∫
Ṽ (θ)dν

·|w|
⇝ G(µ) =

∫
V (w, θ)dµ

Proof. (Claim #1) The equivalence h1(P(Ω)) = h1(M+(Ω)) follows by Proposition 1.11. Tak-
ing into account ν ∈ M(Θ), recognize that any finite measure is decomposed by Proposition
A.61:

ν = fσ σ ∈ P(Θ), f : Θ→ R ∈ L1(σ)

Namely ν is taken to be a σ-integrable function times a probability measure. For σ, we could
take the normalized variation of µ whenever it is positive. Then, the measure obtained by the
extension is the pushforward of σ:

µ := (f × id)#σ = σ ◦ (f × id)−1 ∈ P(Ω) (1.15)

Using the projection map characterization (Eqn. 1.13) we can say that for φ : Θ→ R continuous
and bounded:∫

Θ
φ(θ)dh1(µ)(θ) =

∫
Ω
wφ(θ)dµ(w, θ) Eqn. 1.13

=

∫
Ω
wφ(θ)︸ ︷︷ ︸
g:Ω→R

d(σ ◦ (f × id︸ ︷︷ ︸
T

)−1)(w, θ) µ = T#σ, T (f) = f × id

=

∫
Θ
[wφ(θ)]︸ ︷︷ ︸

g

◦(f × id︸ ︷︷ ︸
T

)dσ(θ) Prop. A.54

=

∫
Θ
φ(θ)f(θ)dσ(θ)

=

∫
Θ
φ(θ)dν(θ) ν = fσ

By the arbitrariness of φ, we can state h1(µ) = ν, thus proving that for each ν ∈ M(Θ) in the
reduced space there ∃µ ∈ P(Ω) from the higher dimensional space. This is the very definition
of surjectivity, namely h1(P(Ω)) ⊃M(Θ).
(Claim #2) By the definition of h1 in Equation 1.13 we have that:∫

Φdµ =

∫
(w · ϕ)dµ

=

∫
ϕdν
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By the very assignment of G as inf of the regularization in Ω we have the following:

F (µ) ≥ J(ν)

But equal at infimums.
(Claim 3) assuming that G(ν) = minν∈h−1(µ)

∫
Ω V dν and that ν = argminM(Θ) J we have

that µ certainly minimizes J as it cannot do better than the min and the Bochner integrals are
equal.

Proposition 1.16 (Total variation is included in regularizers). Let V (w, θ) = |w|:

Then:
µ ∈M+(Ω) =⇒

∫
V dµ ≥ |h1(µ)|(Θ)

With equality if µ is as in 1.15. If this is the case, we satisfy Claims #2, #3 of the previous
Proposition.

Proof. Let µ ∈ P(Ω) and ν = h1(µ). Define:

ν̃+ :=

∫
R+

wµ(dw, ·) ν̃− := −
∫
R−

wµ(dw, ·)

We have by construction of h1 (Eqn. 1.12) that ν = ν̃+ − ν̃− and recalling the concept of total
variation (Def. A.51):

|ν|(Θ) = |ν+|(Θ) + |ν−|(Θ) Jordan decomposition (Thm. A.49)

≤ |ν̃+|(Θ) + |ν̃−|(Θ) Cor. A.50

=

∫
V dµ by V (w, θ) = |w|

Using [Coh13] (Cor. 4.1.6) we can further say that equality holds whenever:

|ν|
(
{spt ν̃+ ∩ spt ν̃−}

)
= 0

Which is verified in the case of Equation 1.15 [CB18].

This last result allows us to reconcile weights of the neurons wi and positions of the neurons
θ inside the parameter space Ω. From now onwards, we mostly work on Ω, where the our two
objects of interest can be treated jointly.
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2 Gradient Flows

We move on to describe the evolutionary process of the parameters in terms of a gradient flow
equation. Such a formalization is commented on and proved to be well defined. What follows is a
presentation of Wasserstein Gradient flows, which describe the evolution of a probability measure
over the parameters. The dynamics, viewed from this Optimal Transport perspective, have nicer
properties that are outlined. Furthermore, the construction is completely characterized in the
context of the main Assumptions. To justify the need to showcase Wasserstein Gradient Flows,
a statement about the limit of the particle measure having this form is provided at the end. It
is concluded that it is equivalent to work over probability measures, with the possibility of using
all the results they come with.

2.1 Particle Gradient Flow

Other authors have studied the so-called many-particle limit of Neural Networks with two layers
and quadratic R, focusing on the performance of SGD. For more results in this direction, some
references are reported [MMN18; RV19; SS19]. The main difference is that they are based on
statistical properties of the problems, while this study is focused on the homogeneous structure
chosen.

While in the general framework we would minimize Equation 1.6, by the arguments of Section
1.3 we end up considering a discretized version:

Fm(u) := F

(
1

m

m∑
i=1

δui

)
= R

(
1

m

m∑
i=1

Φ(ui)
)
+

1

m

m∑
i=1

V (ui) (2.1)

For m ∈ N and ui = (wi, θi)∀i,u ∈ Ωm encoding weights and positions.
Our aim is to build a gradient flow to analyze the extreme dynamics of minimization of such
object. This is derived as the limit of a differential step of gradient descent using the Euler
technique (see Appendix, Subsection B.1). In our context, given that in Assumption 1.10 we do
not have that V is differentiable, we may only conclude that the flow will be a subgradient flow
(Def. A.25). Figure 1 is an example of the dynamics over the landscape of a function.

Definition 2.2 (Particle Gradient flow). A dynamics for Fm:

u : R+ → Ωm t→ u(t) ∈ Ωm

is a particle gradient flow when the following conditions hold:

1. absolute continuity (Def. A.70)
2. rescaled gradient flow equation u′(t) = −m∂Fm(u(t)) a.e. t ≥ 0

Notice that in #2 we have:

• almost everywhere conditions by the absolute continuity requirement #1

• subdifferentials as argued by the potential non-differentiability of V which is only semicon-
vex

• rescaling by m for convenience at divergent size m → ∞. Formally it is the particle
gradient flow of a (Rd)m = (R × Θ)m scalar product rescaled with each atom having 1

m

mass. This does not hurt the dynamics.

12



Figure 1: Animated GD vs GF. Source: [Bac20b]
Gradient descent vs. gradient flow on the same time scale for a logistic regression problem.

We first provide a characterization.

Proposition 2.3 (Existance and uniqueness of gradient flow). There exists a unique gradient
flow for any initialization of dynamics in Fm.

∀u(0) ∈ Ωm ∃! u : R+ → Ωm

Additionally, for almost every t > 0 it holds:

d

ds
Fm(u(s))

∣∣∣∣
s=t

= − 1

m
|u′(t)|2

Namely, the derivative of the evolution of the risk in terms of time is equal to the opposite of
the square norm of the gradient flow dynamics.
While considering the velocity of a single particle given by u′

i(t) = vt(ui(t)), simplifying for
u ∈ Ω a particle-position pair, and µm,t := 1

m

∑m
i=1 δui(t) we have:

vt(u) = ṽt(u)− proj∂V (u)(ṽt(u)) ṽt(u) = −
[〈
R′

(∫
Φdµm,t

)
, ∂jΦ(u)

〉]d
j=1

(2.4)

Where R′(f) denotes the gradient of R at f ∈ F and ∂jΦ ∈ F is the differential dΦ(u) applied
to the jth vector of the canonical basis of Rd, namely the jth entry of the differential of Φ for
u ∈ Rd.

Proof. (existance and uniqueness on finite intervals) By Proposition A.21 Fm is locally
semiconvex. Existance and uniqueness of a gradient flow on [0, T ) is granted in [San17](Sec.
2.1).
(closed form) the expression for the velocity of single particles is obviously updated over
time and requires a projection since it selects subgradients of pointwise minimal norm [San15].

13



Precisely, for almost every t ∈ R+, u ∈ Ω the derivative of u at each particle (i.e. vt(u)) is minus
the subgradient of minimal norm.

vt(u) = argmin

{
|v|2 ; ṽt(u)− v ∈ ∂V (u)

}
for ṽt(u) = −

[〈
R′

(∫
Φdµm,t

)
, ∂jΦ(u)

〉]d
j=1

= argmin

{
|v|2 ; z ∈ ∂V (u)

}
z = ṽt(u)− v

= ṽt(u)− argmin

{
|ṽt(u)− z|2 ; z ∈ ∂V (u)

}
(2.5)

= ṽt(u)− proj∂V (u)ṽt(u) (2.6)

where:

• in Equation 2.5 we move the minimization taking out ṽt(u), keeping the same constraint,
but updating the norm to be a minimization of the correct remaining part.

• in Equation 2.6 we use the definition of the proj operator

(globality) If the function Fm is lower bounded, there are procedures to evaluate u(T ) at
T =∞, even if Fm is not globally semiconvex, which is something we do not require. ∀t > 0 it
holds that:

Fm(u(0))− Fm(u(t)) = −
∫ t

0

d

ds
Fm(u(s))ds

=
1

m

∫ t

0
|u′(s)|2ds

≥ t

m

(∫ t

0
|u′(s)|ds

)2

Jensen’s, see below

So Fm is lower bounded, and we get that also the flow’s legnth is bounded ∀[0, t] by the differ-
ence of Fm at start and at t. By compactness, if T < ∞ then ∃u(T ), and we contradict the
maximality6 of the difference above. Hence, the best result is necessarily obtained at T = ∞
and the flow is globally defined.
Concerning the application of Jensen’s inequality we have:∫ t

0
|u′(s)|2ds = t2

∫ t

0

(
1

t
|u′(s)|

)2

ds

≥ t2 1
t

(∫ t

0
u′(s)ds

)2

= t

(∫ t

0
u′(s)ds

)2

Which follows the unnormalized case of Jensen’s application by Hölder’s inequality (Prop. A.74).
A reference is [CG21](Prop. 2.71, Rem. 2.72).

Observation 2.7 (Facts about the proposition). recognize that:

• [ṽt(ui)]mi=1 = −∇R
(

1

m

∑m
i=1Φ(ui)

)
, which is the first term of Equation 2.1

6enforced by the differential equation being always decreasing, and thus always increasing with a − in front
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• recalling the differential vs subdifferential discussion for V :
– V differentiable =⇒ vt(u) = ṽt(u)−∇V (u), the classical gradient of Equation 2.1
– V non differentiable =⇒ vt(u) is the continuous-time version of the forward-

backward minimization algorithm ([GBC16] for more information)

2.2 Wasserstein Gradient Flow (Wgf)

By the result of Proposition 2.3 we are interested in understanding if the same happens with
dynamics over probability measures, and if the discrete particle case has ties with its limit.

It is quite easy to recover the differential of F evaluated at a measure µ ∈M(Ω):

F ′(µ) : Ω→ R F ′(µ)(u) :=

〈
R′

(∫
Φdµ

)
, Φ(u)

〉
+ V (u) (2.8)

we notice that again by Proposition 2.3 we stated that vt(u) is a field in −∂F ′(µm,t), since vt
is the derivative of the evolution of the gradient (somehow we could say the subgradient of the
derivative of F ).

Definition 2.9 (Wasserstein Gradient Flow). For the functional F and an interval [0, T ) a
Wasserstein gradient flow is a path t→ µt on [0, T ) such that:

1. it is absolutely continuous (Def. A.70)
2. (µt)t∈[0,T ) ∈ P2(Ω)

3. for [0, T )× Ωd satisfies (distributionally) the continuity equation:

∂tµt = −div(vtµt) vt ∈ ∂F ′(µt) (2.10)

In the next claim it is shown that Definition 2.9 is a proper generalization of Definition 2.2.
Observe that the way we define the former is justified in a distributional sense by the fact that
densities are not necessarily smooth. A broader presentation is given in the Appendix A.5 and
B.2.

Proposition 2.11 (Link gradient flow and atomic Wasserstein gradient flow). For a gradient
flow u : R+ → Ωm of Fm the map:

t→ µm,t :=
1

m

m∑
i=1

δui(t)

is a Wasserstein gradient flow for the non particle version of Fm, denoted as F .

Proof. Assign to vt(u) the resulting velocity of the vector field u from Proposition 2.3.
(△ absolute continuity) relative to W2 (Def. A.63) the path t→ µm,t is absolutely continuous
(Def. A.70). This holds intuitively by the fact that we can bound the evolution of parameters in
their euclidean norm by the time expired, using the closed form velocity derived in Proposition
2.3.
(□ distributional continuity equation) let φ : (0,∞) × Rd → R be smooth with sptφ
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compact. Then:

0 =
1

m

m∑
i=1

∫
R+

d

dt
φt(ui(t))dt

=
1

m

m∑
i=1

∫
R+

(
∂tφt(ui(t)) +∇uφt(ui(t)) · vt(ui)

)
dt

=

∫
R+

∫
Ω

(
∂tφt(u) +∇uφt(u) · vt(u)

)
dµm,tdt

Where we used smoothness to conclude that it vanishes at the extreme boundaries of R+ (thus
the first zero), the chain rule to derive the second equality, and the definition of discrete measure
for the third.
Being equivalent to the definition in distributional sense of the continuity equation (Eqn. 2.10)
means that (µm,t)t≥0 is a distributional solution to it.

Observation 2.12 (Comments on the result). notice that the dynamics are in t at m fixed.
Thus, if F does not admit an atomic minimizer with m atoms, µm,t converges to a measure that
does not minimize F .

By the result of Proposition 2.11 when referring to the whole ∂F ′ we call it Wasserstein sub-
differential. The link of the two different perspectives allows us to think of the dynamics over
parameters as a discrete measure. However, we do not have information about the uniqueness
and/or existance of a closed form of a Wasserstein Gradient Flow for arbitrary starting measures
µ0. We answer this question in the subsection below.

2.2.1 Properties of the Wasserstein gradient flow

This Subsubsection mostly refers to [AGS05].

Setting The authors start from a collection of intermediate Wgfs to replace the lifted
problem of Equation 1.9. These are specified by:

F (r) : P2(Ω)→ R, r > 0 F (r)(µ) =

{
F (µ) µ(Qr) = 1

∞ otherwise

Recalling that (Qr)r>0 is presented in Assumption 1.10 we further add that the function γ :

P(Ω× Ω) is an admissible transport plan for r > 0 if:

• π1#γ, π
2
#γ are concentrated (Def. A.48) on Qr

• π1#γ, π
2
#γ have finite second moments7

To an admissible transport plan, we assign the transport cost:

Cp(γ) :=

(∫
|y − x|pdγ(x, y)

) 1
p

p ≥ 1 (2.13)

7i.e. they have an expectation and a variance, or equivalently they are in P2(Ω).

16



to simplify calculations given the bounded set8

Fr :=

{∫
Φdµ ; µ ∈ P2(Ω), µ(Qr) = 1

}
we also pre-assign the following symbols:

∥dΦ∥∞,r = sup
u∈Qr

∥dΦu∥ LdΦ = sup

{
∥dΦũ − dΦu∥
|ũ− u|

; u, ũ ∈ Qr, u ̸= ũ

}
(2.14)

∥dR∥∞,r = sup
f∈Fr

∥dRf∥ LdR = sup

{
∥dRf − dRg∥
∥f − g∥

; f, g ∈ Fr, f ̸= g

}
(2.15)

Proposition 2.16 (Finiteness of symbols). The quantities in Equations 2.14 and 2.15 are finite
under Assumptions 1.10.

Proof. This is a direct implication of the assumptions.

Observation 2.17 (V is famous in literature). The quantity V from Equations 1.9 under an
integral and alone in 2.8 is well studied in the literature. For a reference of its description, see
[AGS05],(Prop. 10.4.2). We set it to V = 0 in the next Lemma to focus on the first term. To
understand how V and R eventually meld, see Lemma 2.25.

Lemma 2.18 (Properties of F (r)). Let:

• Assumptions 1.10 hold
• V = 0

Then, ∀r > 0:

1. F (r) is proper9 and continuous on its closed domain {µ ∈ P2(Ω) ; µ(Qr) = 1}
2. ∃λr > 0 such that ∀γ admissible transport plans the function:

t→ F (µγt ) µγt := ((1− t)π1 + tπ2)#γ

is differentiable with a derivative that is λrC2
2 (γ)-Lipschitz (Def. A.22), where C2 is the

transport cost.
3. for µ concentrated on Qr a field v ∈ L2(µ,Rd) is such that for any admissible transport

plan such that π1#γ = µ the functional for the second marginal is bounded below by:

F (π2#γ) ≥ F (µ) +
∫
v(u) · (ũ− u)dγ(u, ũ) + O(C2(γ)) ⇐⇒ v(u) ∈ ∂(F ′(µ) + ιQr)(u) a.e. u ∈ Ω

ιQr(u) =

{
0 u ∈ Qr
∞ u /∈ Qr

Where ι is a convex function.
8bounded by the construction of the Qr. The functions arising as integrals effectively assign parameters from

a Qr subset of the domain. We basically state ∃M : ∥∫ Φdµ∥ ≤ M∀ ∫ Φdµ ∈ Fr. This holds by classical bounds
on the integral and Assumption 1.10 and the construction of Fr.

9i.e. finite in at least one point
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Proof. (Claim #1)(♢ properness) the closed domain {µ ∈ P2(Ω) ; µ(Qr) = 1} makes F
proper since we are restricting it to the ball where all the mass is concentrated ∀r > 0. Inside
such a ball, ∀u0 ∈ Qr it holds that F (r)(u0) = R(Φ(u0)) <∞.
(□ continuity) Additionally, by the result of Lemma A.69 we have that F (r) is continuous in
the closed domain stated.
(Claim #2)(△ differentiability) denoted h(t) := F (r)(µγt ), we wish to inspect the dynamics.
By Assumption 1.10 #1,#3 dR and dΦ are Lipschitz, we have that:

h′(t) =
d

dt
F (r)(µγt ) =

d

dt

(
R

(∫
Φdµγt

))
=

d

dt

(
R

(∫
Φ(u)d((1− t)π1 + tπ2)#γ(x, y)

))
=

d

dt

(
R

(∫
Φ((1− t)x+ ty)dγ(x, y)

))
where:

• dΦ is uniformly bounded (being Lipschitz10) in Qr
• the Bochner integral admits a dominated convergence theorem (i.e. we can integrate

bounded functions and bring the differentiation inside to get dΦ) [Coh13](Thm. E6)

which together mean that we can differentiate h(t) to obtain by the chain rule:

h′(t) =

〈
R′

(∫
Φdµγt

)
,
d

dt

∫
Φ((1− t)x+ ty)dγ(x, y)

〉
=

〈
R′

(∫
Φdµγt

)
,

∫
d

dt
(Φ((1− t)x+ ty)) dγ(x, y)

〉
bring

d

dt
inside

=

〈
R′

(∫
Φdµγt

)
,

∫
dΦ(1−t)x+ty(y − x)dγ(x, y)

〉
again chain rule

(⃝ Lipschitz derivative) letting 0 ≤ t1 < t2 < 1 we have that:

|h′(t2)− h′(t1)| =
∣∣∣∣⟨R′(∫ Φdµγt2), ∫ dΦ(1−t2)x+t2y(y − x)dγ(x, y)⟩

− ⟨R′(∫ Φdµγt1), ∫ dΦ(1−t1)x+t1y(y − x)dγ(x, y)⟩
∣∣∣∣

=

∣∣∣∣ ⟨a, b⟩ − ⟨c, d⟩ ∣∣∣∣
=

∣∣∣∣ ⟨a, b⟩ − ⟨c, b⟩+ ⟨c, b⟩ − ⟨c, d⟩ ∣∣∣∣
=

∣∣∣∣ ⟨a− c, b⟩+ ⟨c, b− d⟩ ∣∣∣∣
≤

∣∣∣∣ ⟨a− c, b⟩ ∣∣∣∣+ ∣∣∣∣ ⟨c, b− d⟩ ∣∣∣∣
=: |(I)|+ |(II)| (2.19)

Which is just a manipulation of the inner product using linearity and the triangle inequality.
Inspecting the two quantities with the predefined symbols of Equation 2.14, 2.15 in hand, we

10trivially Def.A.22 for Lipschitz functions is a precise formulation of uniform boundedness, namely Def. A.34
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find that we can decompose the two terms by taking the norms out, obtaining the inequalities:

(I) =

∣∣∣∣ 〈R′(∫ Φdµt2)−R′(∫ Φdµt1), ∫ dΦ(1−t)x+ty(y − x)dγ(x, y)
〉 ∣∣∣∣

≤
∥∥R′(∫ Φdµt2)−R′(∫ Φdµt1)

∥∥× ∥∥∫ dΦ(1−t)x+ty(y − x)dγ(x, y)
∥∥ Cauchy-Schwarz

≤
∣∣∣∣LdR ∥dΦ∥∞,r ∫(y − x)dγ(x, y)︸ ︷︷ ︸

=C1(γ)

|t2 − t1|
∣∣∣∣

× ∥dΦ∥∞,r ∫(y − x)dγ(x, y)

= LdR ∥dΦ∥2∞,r C
2
1 (γ)|t2 − t1|

≤ LdR ∥dΦ∥2∞,r C
2
2 (γ)|t2 − t1| inequality

Where the inequality is an application of Hölder’s inequality for costs (C2
1 (γ) ≤ C2

2 (γ), see
Subsec. B.3), and × is used to highlight the product but is just scalar multiplication. Similarly:

(II) =

∣∣∣∣ 〈R′(∫ Φdµt1), ∫ [dΦ(1−t2)x+t2y − dΦ(1−t1)x+t1y](y − x)dγ(x, y)
〉 ∣∣∣∣

≤
∥∥R′(∫ Φdµt1)

∥∥× ∥∥[∫ dΦ(1−t2)x+t2y − dΦ(1−t1)x+t1y](y − x)dγ(x, y)
∥∥

≤ ∥dR∥∞,r C1(γ)× LdΦC1(γ)|t2 − t1|

≤ LdΦ ∥dR∥∞,r C
2
2 (γ)|t2 − t1|

And recollecting the results in Equation 2.19 we eventually get that for 0 ≤ t1 < t2 ≤ 1:

|h′(t2)− h′(t1)| ≤ (I) + (II)

≤ LdR ∥dΦ∥2∞,r C
2
1 (γ)|t2 − t1|+ LdΦ ∥dR∥∞,r C

2
2 (γ)|t2 − t1|

= [LdR ∥dΦ∥2∞,r + LdΦ ∥dR∥∞,r]C
2
2 (γ)|t2 − t1|

= λrC
2
2 (γ)|t2 − t1| λr = LdR ∥dΦ∥2∞,r + LdΦ ∥dR∥∞,r

which is in accordance with the definition of λrC2
2 (γ)-Lipschitzness.

(Claim #3)(♠ locality means Taylor) a velocity field involves that we have to inspect
infinitesimal variations over time of our objects. Letting u, ũ ∈ Qr and f, g ∈ Fr for r > 0:

Φ(ũ) = Φ(u) + dΦu(ũ− u) +M(u, ũ) parameter expansion (2.20)

R(g) = R(f) +
〈
R′(f), f − g

〉
+N(f, g) loss expansion (2.21)

Obviously, the remainders are bounded since LdΦ and LdR bound second derivatives (we prove
this in general in Prop. A.23):

M(u, ũ) ≤ 1

2
Φ′′
u|ũ− u|2

=⇒ ∥M(u, ũ)∥ ≤ 1

2

∥∥Φ′′
u

∥∥ |ũ− u|2
≤ 1

2
LdΦ|ũ− u|2

N(f, g) ≤ 1

2
(f − g)TR′′(f)(f − g)

=⇒ ∥N(f, g)∥ ≤ 1

2

∥∥R′′(f)
∥∥ ∥f − g∥2

≤ 1

2
LdR ∥f − g∥2
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with these in hand we can eventually expand around F .
(♡ loss and parameter expansion) Denoting µ = π1#γ, ν = π2#γ, up to being both concen-
trated on Qr we further specify that in the next expression we will use:

• f =
∫
Φdµ so that R(f) = R(∫ ϕdµ)

• g =
∫
Φdν so that R(g) = R(∫ Φdν)

With this notation, we first perform a loss expansion and then a parameter expansion, slightly
tweaked after noticing that:

Φ(ũ) = Φ(u) + dΦu(ũ− u) +M(u, ũ) ⇐⇒ Φ(ũ)− Φ(u) = dΦu(ũ− u) +M(u, ũ)

Which we could express under an integral equivalently as:∫
Φ(ũ)− Φ(u)dγ(u, ũ) =

∫
dΦu(ũ− u) +M(u, ũ)dγ(u, ũ)

Performing a Taylor expansion11 of the end measure ν in terms of the starting measure µ, we
have that ũ and ũ basically decouple, and the integral in dγ can be expressed in terms of its
expression. Namely:∫

Φ(ũ)− Φ(u)dγ(u, ũ) =

∫
Φ(ũ)dγ(u, ũ)−

∫
Φ(u)dγ(u, ũ)

=

∫
Φ(ũ)dπ2#γ(u, ũ)−

∫
Φ(u)dπ1#γ(u, ũ)

=

∫
Φ(ũ)dν −

∫
Φ(u)dµ =

∫
dΦu(ũ− u) +M(u, ũ)dγ(u, ũ) above result

Eventually:

F (r)(ν) = R

∫
Φdν︸ ︷︷ ︸
=g



= R


∫

Φdµ︸ ︷︷ ︸
=f

+

〈
R′

(∫
Φdµ

)
,

∫
Φdν −

∫
Φdµ

〉
+N

(∫
Φdν,

∫
Φdµ

)
︸ ︷︷ ︸

:=(I)

loss expansion

= F (r)(µ) +

〈
R′

(∫
Φdµ

)
,

∫
dΦu(ũ− u) +M(u, ũ)dγ(u, ũ)

〉
+ (I)

parameter expansion

= F (r)(µ) +

〈
R′

(∫
Φdµ

)
,

∫
dΦu(ũ− u)dγ(u, ũ)

〉
+

〈
R′

(∫
Φdµ

)
,

∫
M(u, ũ)dγ(u, ũ)

〉
︸ ︷︷ ︸

:=(II)

+(I)

= F (r)(µ) +

〈
R′

(∫
Φdµ

)
,

∫
dΦu(ũ− u)dγ(u, ũ)

〉
+ (II) + (I) (2.22)

11this is very similar to a classical interpolation
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(♢ inequalities) Recall that we consider a highly localized viewpoint, so that ν ≈ µ in some
sense. Clearly then C2(γ) → 0, and much faster than C1(γ) for example. In addition to this,
we have also proved that h′ is Lipschitz in ⃝. With these facts at disposal:

|(I)| =
∣∣∣∣ 〈R′(∫ Φdµ), ∫M(u, ũ)dγ(u, ũ)

〉 ∣∣∣∣
≤

∥∥R′(∫ Φdµ)
∥∥ ∥∫M(u, ũ)dγ(u, ũ)∥

≤ ∥dR∥∞,r C1(γ)

∫
∥M(u, ũ)∥ dγ(u, ũ)

≤ ∥dR∥∞,r C1(γ)

∫
1

2
LdΦ|ũ− u|2dγ(u, ũ)

=
1

2
∥dR∥∞,r C1(γ)LdΦ

∫
|ũ− u|2dγ(u, ũ)︸ ︷︷ ︸

≤C2
2 (γ)

= O(C2(γ)) discarding the rest as C2(γ)→ 0

and similarly:

|(II)| =
∣∣∣∣N(∫ Φdµ, ∫ Φdν)

∣∣∣∣
≤ 1

2
LdR ∥∫ Φdν − ∫ Φdµ∥2 last term is ∥g − f∥2

=
1

2
LdR ∥∫ dΦu(ũ− u)dγ(u, ũ) + ∫M(u, ũ)dγ(u, ũ)∥2 as before

≤ 1

2
LdR

[
∥dΦ∥∞,r C1(γ) +

1

2
LdΦC

2
2 (γ)

]2
= O(C2(γ)) discarding the rest

Where we reused an implication of Hölder’s inequality (again C2
1 (γ) ≤ C2

2 (γ), see Subsec. B.3).
(♣ interior and boundary velocity field) Eventually, with a little trick we take the integral
in dγ out of the inner product of Equation 2.22 and see that:

F (r)(ν) = F (r)(µ) +

∫ 〈
R′

(∫
Φdµ

)
, dΦu(ũ− u)

〉
dγ(u, ũ) + O(C2(γ)) (2.23)

Recalling that in Proposition 2.3 we showed:

∇F ′(µ) : Ω→ F u→
[〈
R′(∫ Φdµ), dΦu(ej)

〉]d
j=1

The above result means that in the interior of Qr the velocity is characterized by Claim #3.
Going to the boundary of Qr, the authors claim that by the fact that π2#γ = ν is restricted to
be localized in Qr, a point u in the boundary of Qr is such that the difference between the two
characterizations:

v(u)−∇F ′(µ)(u)

can live in the normal cone of Qr at u. Such normal cone is in our claim ∂ιQr(u).
In a general setting, we can safely say that v(u) ∈ ∂(F ′(µ) + ιQr)(u) where the second element
is influential only at the boundary.

Observation 2.24 (About the lemma). We specify that:
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• µγt is the projection of gamma over an interpolation of the starting set and the arrival set.
We call this transport interpolation. It is such that:

– at t = 0 the measure µγt is a projection from the starting set (hence the 1 as apex of
π)

– at t = 1 equivalently it is the result of a projection from the arrival set
• the Lipschitz bound of Claim #2 λr depends on the radius r:

– may explode if the measure were not concentrated on the ball Qr, thus the technical
requirement in Assumption 1.10

– in literature, it is also referred to as −λr geodesical semiconvexity [AGS05]

Already proved results in the theory of Wasserstein gradient flows guarantee that a gradient
flow for Equation 1.9 as in Definition 2.9 is well defined.

Lemma 2.25 (Existance and uniqueness of Wgf for F (r)). Under Assumptions 1.10:

∃!(µ(r)t )t≥0 ∀µ0 ∈ P2(Ω), continuous

Which is a Wgf for F (r), thus such that:

∂tµ
(r)
t = −div(v(r)t µ

(r)
t ) continuity Eqn. 2.10

v
(r)
t (u) ∈ ∂(F ′(µ

(r)
t )(u) + ιQr(u)), ∀t > 0, µ

(r)
t a.e. u ∈ Ω Lemma 2.18#3

Proof. (△ adding V ) by Assumptions 1.10#2 V is semiconvex (say λV -semiconvex, according
to Def. A.17). Then, it holds that its integral wrt to a measure µ → ∫ V dµ is λV -semiconvex
along generalized geodesics [AGS05](Def. 9.2.4, Prop. 10.4.2). By Lemma 2.18, it is rather easy
to see that the semiconvexity of the base case and V results in F (r) being (λV −λr)-semiconvex
along generalized geodesics.
(□ Wasserstein subdifferentials) the result of Lemma 2.18#3 holds with an added V , and
we get that F (r) has strong Wasserstein subdifferentials as in the claim.
(⃝ existance and uniqueness) by the results of △,□ existance and uniqueness of (µ(r)t )t≥0

with the properties claimed (i.e. the first is the exact Definition 2.9, the second is □) is guaran-
teed by [AGS05](Thm. 11.2.1).

Up to now, we have concentrated on F (r) and proved that there is a unique Wgf under a
concentration condition of the flow inside a ball. Namely, if ∃r0 such that µ(2r0)t is concentrated
on Qr0 ∀t ∈ [0, T ] then all the F (r) : r > r0 have identic Wgfs. We set a 2 coefficient to make
the r of the gradient flow bigger than its existance condition and aim to make the support grow
slower, ensuring existance for the whole interval [0, T ).

Proposition 2.26 (Existance and uniqueness of Wgf for F ). Under Assumptions 1.10, we have
that if µ0 ∈ P2(Ω) is concentrated on Qr0 ⊂ Ω:

∃!(µt)t≥0 Wgf :

vt(u) = ṽt(u)− proj∂V (u)(ṽt(u)) ṽt(u) = −
[〈
R′

(∫
Φdµt

)
, ∂jΦ(u)

〉]d
j=1

Where the last Equation is that of Proposition 2.3 according to the connection made in Prop.
2.11, ignoring the m discretization, since we are working in the continuous case to be more
general.
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Proof. (△ the discrete case) in Proposition 2.3, we worked with an m parametrization. A
such, the concentration requirement we impose here, is automatically satisfied by the finite
discrete support of µm,0 ∀m up to large enough r. Thus, we ignore this special case and work
without m.
(□ bridging F (r) and F ) let r0 : µ0(Qr0) = 1. Using Lemma 2.25 ∀r > r0∃!(µ(r)t )t≥0 of F (r).
For all larger radii r > r0 the exit time from the ball Qr denoted as tr is formalized as:

tr := inf

{
t > 0 ; µ

(2r)
t (Qr) < 1

}
In other words, the first time that increasing the radius the measure is not anymore concentrated
in the ball. Notice that in such assignment, the 2 is superfluous and just chosen as reference.
Indeed, by Lemma 2.25 we have existance and uniqueness up to the condition r > r0 so ∀r > r0 it
holds (µ(r)t )t≥0 ≡ (µ

(2r)
t )t≥0 on the interval [0, tr] where the Wgf is in accordance with Definition

2.9.
For this reason, if:

lim
r→∞

tr =∞ (⋆)

Then the original F , obtained as a limit of the restriction F (r), has a globally defined Wasser-
stein Gradient Flow.
(⃝ proving ⋆) In the interval 0 ≤ t ≤ tr we are not exceeding the ball Qr. Then, by Lemma
2.18#3 we have that vt ∈ ∂(F ′(µ

(r)
t ) + ιQr) in the space L2(µ

(r)
t , Rd) but ιQr = 0 in Qr so that

vt ∈ ∂F ′(µ
(r)
t ).

By Assumption 1.10#3-(c) and dR being bounded on sublevel sets (Ass. 1.10#1) we get from
the latter an inequality and from the former a ∀t statement:

|v(r)t (u)| ≤ C1 + C2r ∀0 ≤ t ≤ tr where C1, C2 ⊥⊥ u, r, t (2.27)

Using Gronwall’s Lemma (Lem. A.31) on the representation of the Wasserstein Gradient Flow
of Lemma A.71 we have a linear bound on the velocity of the particles that translates to an
exponential bound of the distance from the starting configuration:

Eqn.2.27
Lem.A.71
=⇒

Lem.A.31
dist(u,Qr0) ≤

(
r0 +

C1

C2

)
etC2 ∀0 ≤ t ≤ tr

Which is just solving the differential equation on the easy exponential bound for a linear growth
function. Thus, µ(r)t is concentrated on{

u ∈ Ω ; dist(u,Qr0) ≤
(
r0 +

C1

C2

)
etC2

}
∀0 ≤ t ≤ tr

By this fact, ∀T > 0∃r > 0 : tr > T . Indeed, as r →∞ the bounds get more and more relaxed
and we can informally reach any point from Qr0 at an arbitrary big T ending time, without
losing the existance and uniqueness condition guaranteed by being below the exit time.
We have built a dynamical system that always guarantees a well behaved Wasserstein Gradient
flow, and by Proposition 2.11 this brings back to the claimed form of dynamics in terms of the
parameters.

Now that we have information about arbitrary measures and correspondent Wasserstein gradient
flows, we eventually explore the situation in which a flow in time t of the parameters of m
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Figure 2: Homogeneous function. Source [CB18]
Partial 1-homogeneous F derivative level sets, where in the vertical axis for Ω = R2 makes the

landscape of F ′(µ) look like this, subject to a dependence on µt itself at each time step. A
Wasserstein Gradient Flow would follow down these curves, given that we impose an update of

the form −∂F ′(µt). In Section 3 we will see that a minimizing measure is characterized by
positivity of F ′(µ) in the domain and nullity over the support of µ. The Homogeneous

structure makes vertical directions non-influent for inferring properties. It is sufficient to focus
on the behavior at the two dotted lines, which cover the positive and negative weight case.

particles12 has some convergent (in m) behavior to a diffuse measure µ. Does this convergence
extend if it is only at t = 0? How could we ensure that it holds for any t? In other words, is it
possible to take a parameter Gradient Flow convergent at the start, and interpret it as m→∞
as a Wasserstein gradient flow for a continuous measure? Does the convergence break over time?

2.3 Conciliating particles and diffuse optimization: the many-particle limit

So far we have treated F (Eqn. 1.9) and Fm (Eqn. 2.1) separately, the aim of the next results is
to highlight that the limit of the discretized version corresponds to the continuous one. This is
a very deep result in practice, since the feasible architectures described by such construction
can only have finite particles (see our final application in Section 4 for an idea). Nevertheless,
an equivalence at the limit guarantees that simulations have a nice behavior at large enough m.

Theorem 2.28 (Many-particle limit). Under Assumptions 1.10, consider a sequence in m of
gradient flows (Def. 2.2) for Fm of the form:

(t→ um(t))m∈N

which are initialized at µm,0 concentrated in Qr0 ⊂ Ω. Then:

lim
m→∞

∥µm,0 − µ0∥W2
= 0 µ0 ∈ P2(Ω) =⇒ (µm,t)t≥0

m→∞
⇒
W2

(µt)t≥0

Where (µt)t≥0 is the unique (and existent) Wgf of F that starts at µ0. Namely, if our dis-
crete starting point converges in µ0 ∈ P2(Ω), then the whole discrete sequence converges to the
continuous version of the same problem.

12represented as a measure by Prop. 2.11
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Proof. (classic proof) The authors point out how there are results in the literature that ensure
this through a discretization in time [AGS05](Thm. 11.2.1).

Proof. (△ direct proof approach) another possibility is performing a discretization in space.
(□ exit time lower bound) the aim is to identify an interval for the discrete paths to be
contained in Qr for r > r0. The exit time in this case is:

tr := inf

{
t > 0 ; ∃m ∈ N, µm,t(Qr) < 1

}
To have an interval [0, tr] it must be the case that tr > 0. The evolution of the measure is
uniquely determined by the velocities before tr, that have the form of Proposition 2.3, Equation
2.4. In this setting, we let:

• LV,r be the Lipschitz constant of V in Qr
• r − r0 the minimum travel distance

• velocities ṽt(u) = −
[
⟨R′(∫ Φdµm,t), ∂jΦ(u)⟩

]d
j=1

; vt(u) = ṽt(u)− proj∂V (u)ṽt(u)

Then, the exit time is clearly bounded by minspace/|maxvelocity| which means:

tr ≥
r − r0
|vt(u)|

=
r − r0

|ṽt(u)− proj∂V (u)ṽt(u)|

≥ r − r0
|ṽt(u)|+ | − proj∂V (u)ṽt(u)|

use Lip. on bounded sets assumption

=
r − r0

∥dΦ∥∞,r ∥dR∥∞,r + LV,r

> 0 Prop. 2.16, and LV,r > 0

(⃝ limit curve in interval) by △ we can work on an interval, and aim to show that a
discretized flow converges in P2(Ω) to a limit t→ µt.
For two subsequent time points 0 ≤ t1 < t2 ≤ tr, we have that the distance between the two
measures is:

W2(µm,t1 , µm,t2)
2 = min

γ∈Π(µm,t1 ,µm,t2 )

∫
|ũ− u|2dγ(u, ũ) Def. A.63 for p = 2

≤ 1

m

m∑
i=1

|um,i(t2)− um,i(t1)|2 see below

=
t2 − t1
m

m∑
i=1

∫ t2

t1

|u′
m,i(s)|2ds u is diff by 2.3 & Jensen’s

≤ t2 − t1
m

∫ t2

t1

m∑
i=1

|u′
m,i(s)|2ds linearity

Where the first passage follows by matching each particle at t1 to its future position at t2.
Clearly, the inequality has a greater since it is less precise than the minimization over measures
of the same quantity. The application of Jensen’s inequality also follows the unnormalized
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version explained in Proposition 2.3.
By the result of Proposition 2.3 we can further state that:

W2(µm,t1 , µm,t2) ≤

√√√√ t2 − t1
m

∫ t2

t1

m∑
i=1

|u′
m,i(s)|2ds

=
√
t2 − t1

√∫ t2

t1

− d

ds
F (µm,s)ds Prop. 2.3, − 1

m

m∑
i=1

|u′
m,i(t)|2 =

d

dt
F (µm,t)

≤
√
t2 − t1

√
sup
m
F (µm,0)− inf

µ∈P(Rd)
F (µ)

Where the last passage is a very rough bound concerning the supremum possible of Fm13, and
the infimum possible value of F over any measure. We cannot have an improvement greater
than this for obvious reasons.
By the sup over m and the dependence on 0 ≤ t1 < t2 ≤ tr we have that the family of flows
indexed by m:

(t→ µm,t)m

is equicontinuous (same convergence ⊥⊥ m) in W2 over [0, tr] (as t2 → t1 =⇒ ∥·∥W2
→ 0).

In addition to this, the collection is constructed inside a W2 ball, which is weakly precompact
(Def. A.39) but not a piori compact [CB18].
Since the weak topology (i.e. the weakest topology) is weaker than the topology induced by W2

we can apply Arzelà–Ascoli14 to extract a subsequence k → m(k) such that:(
(µm(k),t)k∈N

)
t≥0

w→
k→∞

(µt)t≥0

preserving in the weak topology continuity and concentration on Qr∀t ∈ [0, tr].
Additionally, by the result of Prop. A.58 we have the convergence in ∥·∥BL (Def. A.57) which
metrizes15 weak convergence in P2(Ω) and we can use this.
From now on, we denote the (weakly) converging subsequence as (µm)m∈N
(♢ continuity equation at the limit) as of now, by ⃝ we have that discrete measures
converge, what about the velocities? Let (vt)t≥0 be the limit of (vm,t)t≥0. What we actually
need is that the continuity equation 2.10 characterizing Definition 2.9 is satisfied as m → ∞,
making the flow a Wgf at divergent number of particles. For this reason, we define momenta of
the flow as:

(Em)m∈N Em : [0, tr]× Ω→ R Em := vm,tµm,tdt

Where we know that ∀r > 0 such quantities are concentrated on Qr by construction. What we
need to show is that:

Em
w→

m→∞
E := vtµtdt

Indeed, weak convergence would guarantee that in the limit we will get the unique Wgf of the
diffuse case that naturally satisfies the continuity equation (Prop. 2.26). Using weak convergence
(Def. A.56) we inspect integrals of bounded and continuous functions of the form:

φ : [0, tr]× Rd → Rd

13i.e. its biggest start
14Thm. A.37 for an intuition, Thm. A.40 for slightly more than what we need
15namely, it inherits all the metric properties, properly, Proposition A.58
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for which we say:∣∣∣∣ ∫ φdEm −
∫
φdE

∣∣∣∣ = ∣∣∣∣ ∫ φ · d(Em − E)

∣∣∣∣
=

∣∣∣∣ ∫ φ · d(vm,tµm,tdt− vtµtdt)
∣∣∣∣

=

∣∣∣∣ ∫ φ · (vm,t(u)− vt(u))dµm,tdt+
∫
φ · vtd(µm,t − µt)dt

∣∣∣∣
≤

∣∣∣∣ ∫ φ · (vm,t(u)− vt(u))dµm,tdt
∣∣∣∣+ ∣∣∣∣ ∫ φ · vtd(µm,t − µt)dt

∣∣∣∣
≤

∫ ∣∣∣∣φ · (vm,t(u)− vt(u))∣∣∣∣dµm,tdt+ ∣∣∣∣ ∫ φ · vtd(µm,t − µt)dt
∣∣∣∣

≤ ∥φ∥∞
∫ ∣∣∣∣vm,t(u)− vt(u)∣∣∣∣dµm,tdt+ ∣∣∣∣ ∫ φ · vtd(µm,t − µt)dt

∣∣∣∣
We show separately that the red and the blue terms are null.
(♣ red is zero) we know that (µm,t)m,t are concentrated on Qr, so for the first integral it is
sufficient to show that the velocities inside the modulus converge uniformly in m in the time
interval , namely:

wts (t, u)→ vm,t(u)
m
⇒ vt(u)← (t, u) ∀(t, u) ∈ [0, tr]× Ω

In this setting, by the fact that the projection on a convex (∂V (u) is by Prop. A.27) set is
1-Lipschitz (Prop. A.24) we have that:

|vm,t(u)− vt(u)| = |ṽm,t(u)− proj∂V (u)ṽm,t(u)− ṽt(u) + proj∂V (u)ṽt(u)|

≤ |ṽm,t(u)− ṽt(u)|+ | − proj∂V (u)ṽm,t(u) + proj∂V (u)ṽt(u)|

≤ |ṽm,t(u)− ṽt(u)|+ |ṽm,t(u)− ṽt(u)| Prop. A.24

= 2|ṽm,t(u)− ṽt(u)|
= 2|[

〈
R′(∫ Φdµm,t), ∂jΦ(u)

〉
]dj=1 − [

〈
R′(∫ Φdµt), ∂jΦ(u)

〉
]dj=1|

= 2|[
〈
R′(∫ Φdµm,t)−R′(∫ Φdµt), ∂jΦ(u)

〉
]dj=1

≤ 2 ∥dΦ∥∞,r

∥∥R′(∫ Φdµm,t)−R′(∫ Φdµt)
∥∥

Where the second term in the specific interval [0, tr] derived in □ is such that∥∥R′(∫ Φdµm,t)−R′(∫ Φdµt)
∥∥ ≤ ∥dR∥∞,r ∥∫ Φdµm,t − ∫ Φdµt∥

≤ ∥dR∥∞,r sup
f∈F,∥f∥≤1

∫ ⟨f,Φ(u)⟩ d(µm,t − µt) (2.29)

≤ ∥dR∥∞,rmax

{
∥Φ∥r,∞ , ∥dΦ∥r,∞

}
∥µm,t − µt∥BL

Where in Equation 2.29 we used two tricks:

• the norm of an element in a Hilbert space is bounded by the sup of an inner product (Prop.
A.16 with ≤ instead)

∥z∥ ≤ sup
f∈F,∥f∥≤1

⟨z, f⟩ ∀z ∈ F
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• we make a slightly informal switch for an arbitrary measure in the infinite dimensional
Hilbert space. If for a moment we think of F as a k dimensional space, we could write:

⟨f, ∫ Φdσ⟩ =


∫
Φ1dσ
...∫

Φkdσ

 ·
f1...
fk

 =

k∑
i=1

fk

∫
Φkdσ =

∫ k∑
i=1

fkΦkdσ =

∫
⟨f,Φ⟩ dσ

in the real case of a Hilbert space, this would require the infinite sum to be exchangeable
with the integral. In our setting, given that we find a finite bound, it is feasible by Fubini-
Tonelli Theorem.

so that:

∥∫ Φdµ1 − ∫ Φdµ2∥ = ∥∫ Φd(µ1 − µ2)∥

≤ sup
f∈F,∥f∥≤1

〈
f,

∫
Φd(µ1 − µ2)

〉
= sup

f∈F,∥f∥≤1
∫ ⟨f,Φ(u)⟩ d(µm,t − µt)(u)

Coming back to our inequality:∥∥R′(∫ Φdµm,t)−R′(∫ Φdµt)
∥∥ ≤ ∥dR∥∞,rmax

{
∥Φ∥r,∞ , ∥dΦ∥r,∞

}
∥µm,t − µt∥BL

the first two terms are finite by previous discussions.
By the uniform in BL norm convergence of measures of the form (t→ µm,t)m∈N discussed in ⃝
we get that the red term is zero at the limit.
(♠ blue is zero) for similar reasons by:

• µm,t
w→ µt

• the map (t, u)→ φ(t, u)vt(u) being continuous and bounded. To see this, recall that φ is
a test function and the discussion of ⃝,♢.

It is quick to realize that the blue term:∣∣∣∣ ∫ φ · vtd(µm,t − µt)dt
∣∣∣∣ m→∞→ 0

By the results of ♣,♠ we finally proved ♢ and get Em
w→ E, with the limiting measure being

the one that satisfies the continuity equation.
(▽ integrability) A technical missing fact is that of the integrability condition of the continuity
equation (namely, Eqn. B.3). This is trivially valid by the boundedness of the sequence (vt)t≥0

in a ball Qr, uniformly in time (see the ⃝ part of this proof and the beginning of ♢), ensuring
that: ∫ tr

0

∫
Ω
|vt(u)|2dµt(u)dt <∞

Which, implies absolute continuity in W2, a requirement of Definition 2.9. For more context
(but not too much), see Appendix B.2.
(♡ globality) summarizing, we have convergence up to a subsequence (⃝) to a Wgf (♢) in the
interval [0, tr] (□). To ensure global convergence, we are left to show that:

lim
r→∞

tr =∞
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In the interval [0, tr] we have: {
F (µm,0)

m→∞→ F (µ0)

F ((µm,t)t∈[0,tr])↘ F (µm,tr)

which implies that the dynamics lie in the F (µm,0) subset of R. Again, by Assumption 1.10#1
dR is bounded. By the very form of the velocity (available in Prop. 2.3) it follows that there is
a uniform bound on the velocity linear in r. Again as in Proposition 2.26 we have the same
form of a bound and can apply Gronwall’s inequality (Lem. A.31) to show limr→∞ tr =∞.
Given the unique Wgf by Proposition 2.26, the subsequence forces the sequence to converge to
it, and we have proved all of the claims without ambiguity.

Observation 2.30 (Comments about the theorem). We have provided two existance proofs of
a valid Wgf in Proposition 2.26, and Theorem 2.28.

As an example, consider a measure µ0 ∈ P2(Qr0). If we want to build a sequence converging in
W2 to it, we can simply choose a flow in the parameters governed by the size m:

um(0) = (u1, . . . , um) ui
iid∼ µ0 ∀i = 1, . . . ,m

Namely, parameters picked at random from the diffuse measure µ0. Then by the CLT the
sequence:

µm,0 =
1

m

m∑
i=1

δui µm,0
a.s.-W2→
w

µ0

Where the convergence is almost surely forW2, the norm of the underlying complete space P2(Ω))

(Prop. A.65 states this). For more precise statement, we have that the empirical measure is a.s.
weakly convergent [Dud02](Thm. 11.4.1), since the space (P2(Rd)) is separable and complete
[Bol08]. Apart from the technicalities, what we care about is that we will be able to approximate
integrals with respect to µ such as those in F by using its discrete approximation.
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3 Convergence to Global Minimizers

In this Section, we conclude the theoretical notions needed to describe the application. The first
step is a brief discussion on the difference of measures that are functional-stationary and mea-
sures which are also optimal. Having characterized our target, the problem is that a trivial flow
of measures would get stuck at local minima. To overcome this issue, a finer set of Assumptions
is provided, under which, subject to a condition on the measure given to a specific set A at a
point in which the flow is close to a local minima, it is possible to escape from this ϵ-closeness
at a finite time future point.
The problem is then reformulated as finding a condition on the starting measure such that this
weight assignment is verified at any t, allowing the measure to always escape local minima. This
result is reached through a topology detour that returns the final requirement for the starting
measure, bound to be preserved throughout the dynamics. We call this separation, and it is
a condition entirely satisfied by the support of µ0. All the properties together under the new
Assumptions are the aspects of the final Theorem. A properly setup Wasserstein Gradient Flow
will reach the global minimum of F .
As a side note, what remains as a problem is the actual convergence of the flow. Indeed, a
global minima is reached assuming that (µt)t stops. In this context, some references for future
directions are mentioned at the end.

NB this Section in the original paper [CB18] is very technical. For this reason, I explored it
less than the other three, and some parts are very similar to those of the publication16. The
result we need for partial 1-homogeneity requires conclusions from the 2-homogeneous case, and
some passages of the proofs are at a level of expertise which is higher than mine.

3.1 Stationary vs optimal points

A stationary point for a Wgf is clearly a measure µ ∈ P2(Ω). The term stationary could be
described further in simple terms as a measure that, if encountered along the path t → µt,
makes it constant in that configuration. A characterizing condition arising from Definition 2.9
can be derived by noting that a stationary distribution is equivalent to zero velocity. Thus:

µ stationary at t∗ ⇐⇒ vt(u) = 0 µ-a.e. u ∈ Ω, ∀t ≥ t∗ ⇐⇒ 0 ∈ ∂F ′(µ)(u) µ-a.e. u ∈ Ω

(3.1)
Namely, to have zero velocity it must be that the Wasserstein subgradient of the dynamics ac-
tually includes the option for zero velocity.
Such stationary points are not always global minimizers of Equation 1.9, even adding the as-
sumption of convexity of R. The problem is that even though R is convex, we are building a
Wasserstein gradient flow, and not a Gradient Flow based on total variation [Bac20a]. Intu-
itively, in the finite case a Wgf is simply backpropagation on the problem, which is known not
to guarantee global convergence a priori. The correct characterization is given below.

Observation 3.2 (About F and stationary vs optimal points). the authors make two important
remarks:

16in particular, Proposition 3.6, Lemma 3.14, Theorem 3.18.
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• a stationary measure µ could be optimal over probabilities that have smaller support [NS17]
• Using a Taylor expansion approach for µ, σ ∈ M(Ω) with F (µ), F (σ) < ∞, given that

Fréchet differentiability holds we can see in the first order the functional derivative is well
defined17, so that F ′(µ) ∈ L1(σ). Further, recalling that F ′(µ) : u → ⟨R′(∫ Φdµ),Φ(u)⟩ +
V (u) we get by the same reasoning that led to Equation 2.23 that:

d

dϵ
F (µ+ ϵσ)

∣∣∣∣
ϵ=0

=
d

dϵ

{
F (µ) +

(∫
F ′(µ)dσ

)
ϵ+ O(ϵ)

} ∣∣∣∣
ϵ=0

=

∫
F ′(µ)dσ

=

∫ 〈
R′(∫ Φdµ),Φ

〉
+ V dσ

Proposition 3.3 (Minimizers with convexity characterization). Assume R is convex. Then:

µ ∈M+(Ω), F (µ) <∞, µ = argmin
M+(Ω)

F ⇐⇒

{
F ′(µ) ≥ 0

F ′(µ)(u) = 0 for µ-a.e. u ∈ Ω

The former condition broadly means that there is no room for decreasing the function, while
the latter means that the measure is a stationary point of the PDE we impose (the continuity
equation, Eqn. 2.10). An intuition is given in Figure 3.

Proof. (△ strategy) just like classic minimality proofs, we aim to start from an argument of
the function (in this case a measure and a functional), perturb it, and see what happens at the
neighborhood of it.
(□ perturbation decomposition) Let µ, ν ∈ M+(Ω) both satisfying F (µ) < ∞, F (ν) < ∞
sot that they are valid candidate minimizers. Consider their "distance measure" σ = µ − ν,
which by Lebesgue decomposition (Thm. A.62) can be expressed in terms of µ as:

σ = fµ+ µ⊥ f ∈ L1(µ), µ⊥ ∈M+(Ω),

With fµ≪ µ and µ⊥ ⊥ µ according to Definition A.60.
( =⇒ direction) this holds by the Taylor expansion we made in the previous paragraph. The
hypothesis µ = argminM+(Ω) F =⇒ F ′(µ) ≥ 0 otherwise we could improve it along some
direction, with clearly the optimality condition that F ′(µ)(u) = 0 for µ-a.e. u ∈ Ω.
(⇐= direction) The convexity assumption ensures that the Taylor expansion is:

d

dt
F (µ+ tσ)

∣∣∣∣
t=0

=

∫
F ′(µ)dσ by above Obs.

= 0 by hyp of F (µ) = 0 for µ-a.e. u ∈ Ω

≤ d

dt
((1− t)F (µ) + tF (ν))

∣∣∣∣
t=0

convexity assumption, σ as in □

= F (ν)− F (µ) t vanished in
d

dt
so |t=0 is ignored

From which we summarize the result we need: F (ν)−F (µ) ≥ 0, namely µ attains a lower value.
By the arbitrariness of ν, µ is the minimizer of F in M+(Ω).

17i.e.
∫
|F ′(µ)|dσ < ∞
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Figure 3: Abstract particle measures space. Source [Chi21]
µ is not a stationary point if it puts weight on the set where F ′(µ) < 0. We will show that a

flow µt can escape from µ

There is a clear difference between the measure stationarity description in terms of F ′ (Eqn.
3.1) and the the globally optimal measure description of Proposition 3.3. The discussion of
this section makes use of the specific structure we implemented when the problem was lifted
(Subsection 1.4), especially its partial 1-homogeneity, and of a proper initialization. In practice,
to ensure that Wgfs are allowed to18 converge to a global minimizer:

• Φ and V need to have a homogeneity direction
• sptµ0 for the initial measure of the Wgf has to satisfy a separation property, which is

preserved along the path.

Intuitively, like in the simplest case possible, stationarity is not a synonym of global minimal-
ity, even with the added assumption of convexity. The dynamics at any point, despite being
constructed as to decrease the value of the functional, are guaranteed to stop at the first zero
velocity measure. In order to escape such local minima traps, stronger assumptions are needed.
Step by step, the bold items in the above list will be unrolled and commented.

3.2 Escaping non-optimal stationary points

We briefly introduce a common piece of notation and the technical details of the results that
will be proved.

Remark. When referring to Sd−2 we mean the unit sphere of a space Rd−1. Namely:

Sd−2 :=

{
θ ∈ Rd−1 ; |θ| = 1

}
18convergence is not guaranteed, we look for conditions to avoid the issue of the dynamics stopping at local

minima, which turns out to be solvable, but it is not the only issed. It could still be the case that the flow does
not converge. More discussion is carried out at the end of the Section.
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Assumption 3.4 (Partial 1-homogeneity suited assumptions). For a domain Ω = R×Θ where
Θ ⊂ Rd−1 the functions of Equation 1.9 take the form:

Φ(w, θ) = w · ϕ(θ) V (w, θ) = |w| · Ṽ (θ)

Where both Φ and V are bounded, differentiable, with Lipschitz differential. Moreover:

1. (smooth convex loss) R is convex, differentiable, dR is Lipschitz on bounded sets and
bounded on sublevel sets

2. (Sard-type regularity) ∀f ∈ F (the domain of R) the set of regular values (Def. A.41) of
the function

gf : Θ→ R θ → gf (θ) = ⟨f, ϕ(θ)⟩+ Ṽ (θ)

is dense in the range of gf itself19

3. (boundary conditions) ϕ : θ → F behaves nicely at ∂Θ (the boundary of Ω. In particular,
either of the following are true:
(a) Θ = Rd−1 and ∀f ∈ F, ∀θ ∈ Sd−2 the function gf of the regular values is such that:

lim
r→∞

gf (rθ)
C2(Sd−2)

⇒ g∗f sat.#2

where it may be useful to precise that ⇒ is uniform convergence (Def. A.36) in the
space mentioned and g∗f is meant to satisfy the Sard-type regularity in #2.

(b) Θ is the closure of an (open) bounded convex set and ∀f ∈ F the function gf satisfies
the Neumann boundary conditions:

d(gf )θ(n⃗θ) = 0 ∀θ ∈ ∂Θ

with n⃗θ ∈ Rd−1 the normal to ∂Θ at θ.

Remark. The assumptions #3 are quite abstract. The former is in a nutshell a refinement of
Sard-type regularity in terms of an expanding sphere that goes at the infinite limit of the space
Θ = Rd−1, which is enforced to be uniform.
The latter is even more technical as it achieves the same but in subsets of R, not necessarily
finite, but with a boundary that can be described (since they are bounded). For the purpose of
this document, it is reported for completeness only, as our application in Section 4 will have
Θ = Rd−1, which is #3-(a). At some points, the discussion will be less developed for the same
reasons.

Proposition 3.5 (Linking old and new Assumptions). For nested sets of the form Qr := [−r, r]×
Θ with r ∈ R+ Assumptions 3.4 imply Assumptions 1.10. That is, the previous results still hold
in the new setting.

Proof. We recognize that both statements have a setting and 3 points. To distinguish them, we
will use the subscripts old and new, assuming that settingsnew,#1new,#2new,#3new hold.
(settingsold) clearly Ω ⊂ Rd being the closure of a convex open set is cleared by our construction
in both #3-(a) and #3-(b) (#1old) in #1new we have only added convexity of R, which is also
a safe assumption.

19in other words, the regular values of gf , a function defined in terms of the f considered, can approximate
any value of gf with arbitrary precision
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(#2old, intuitively) the density of regular values ensures that the space of functions generated
is separable (i.e. it contains a dense countable subset). For the rest of the claims, we refer to
the authors statement [CB18].

To avoid going back and forth, we rewrite the projection map we used in Subsection 1.4 at
Equation 1.12:

h1 : M+(Ω)→M(Θ) h1(µ)(B) =

∫
R
wµ(dw,B) ∀µ ∈ P(Ω), B ⊂ Θ measurable

Proposition 3.6 (Criteria to escape local minima). Let Assumptions 3.4 hold. Then:

µ ∈M(Ω) : F ′(µ) < 0 =⇒ ∃ϵ > 0, A ⊂ Ω

such that if:

(µt)t Wgf sat
∥∥h1(µ)− h1(µt0)∥∥BL < ϵ for t0 ≥ 0, µt0(A) > 0 =⇒ ∃t1 > t0 :

∥∥h1(µ)− h1(µt1)∥∥BL ≥ ϵ
Namely, for a non global minima to which the Wgf gets ϵ-close, the Assumptions allow the flow
to escape at some positive future time point. The set A is:

A = (R+ ×K+) ∪ (R− ×K−)

where:

• K+ is the −η-sublevel set of the map θ → F ′(µ)(1, θ)

• K− is the −η-sublevel set of the map θ → F ′(µ)(−1, θ)

With η > 0 arbitrarily small.

Proof. (△ setting) suppose that F ′(µ) takes a negative value on R+ ×Θ, the opposite case is
worked out similarly.
Introduce the restriction of F ′(µ) to the domain {1}×Θ. Recalling that Φ = w ·ϕ and V = |w|·Ṽ
we call this restriction gµ and write it explicitly:

gµ : Θ→ R gµ(θ) = F ′(µ(1, θ)) =

〈
R′

(∫
Φdµ

)
, ϕ(θ)

〉
+ Ṽ (θ)

(□ the regular values) let −η < 0 be a negative regular value (Def. A.41) of the function
g. Such a regular value is guaranteed to exist (Ass. 3.4#2). As per the claim, couple −η with
K+ ⊂ Θ its sublevel set. By the regular value Theorem (Thm. A.44) the boundary:

∂K+ = g−1
µ (−η)

is a differentiable orientable20 manifold of dimension d−1−1 = d−2, orthogonal to the gradient
field (a vector field) of gµ. Now, we distinguish between the scenarios of Assumption 3.4#3:

• Θ bounded =⇒ ∂K+ compact 21 =⇒ ∃β > 0 : infθ∈∂K+ |dgµ(θ)| ≥ β, since on a
compact set we have an inf by Weierstrass Thm. and such inf is necessarily > 0 by the
definition of regular values that we work on.

20Differentiability comes from smoothness. We do not care much about the orientability, but trivially any
Euclidean space is orientable since we can define coordinates on it with a homeomorphism to the space itself.

21K+ is a sublevel set, so it is bounded since the function F ′ is bounded on sublevel sets by Assumption. The
boundary is always closed (Prop. A.4, and it is additionally bounded since it is the boundary of a closed set.
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• Θ = Rd−1 and the (−η)-sublevel set of K+ is unbounded, we implement the construction
of Assumption 3.4#3-(a). To do so, we force the η to be a regular value of the function
g∗µ on the limiting sphere such that gµ ⇒ g∗µ. By imposing such further requirement:

∃β > 0 : inf
θ∈∂K+

|dgµ(θ)| ≥ β =⇒

{
gµ ≤ −η θ ∈ K+

∇gµ(θ) · n⃗θ ≤ −β θ ∈ ∂K+

where the first implication is actually the requirement for sublevel sets, and the second is
a bound on the normal growth.

this is a Lemma included in the flow of the proof to avoid losing the flow of the exposition.
Its purpose is that of showing that the properties of the set K+ are true also for the gν of a
measure close enough to µ. For simplicity, we denote:

∥f∥C1 := max

{
∥f∥∞ , ∥∇f∥∞

}
i.e. the max of the sup-norm of function and gradient.

Lemma 3.7 (A bound on the norm of regular values for close measures). ∀C0 > 0∃α > 0

such that ∀µ, ν ∈M+(Ω) with
∥∥h1(µ)∥∥

BL
< C0,

∥∥h1(ν)∥∥
BL

< C0 it holds:

∥gν − gµ∥C1 ≤ α ∥ϕ∥2C1 ·
∥∥h1(µ)− h1(ν)∥∥

BL

Proof. The set {∫ Φdµ ; µ ∈ P(Rd) ; h1(µ) < C0} is bounded in F by the fact that we
impose a bound on the projection. Such boundedness, by Assumption 3.4 means that dR is
Lipschitz, with a positive constant that we call α. Then:

∥gν − gµ∥C1 =
∥∥∥⟨R′(∫ Φdν), ϕ(θ)⟩+ Ṽ (θ)− ⟨R′(∫ Φdµ), ϕ(θ)⟩ − Ṽ (θ)

∥∥∥
=

∥∥⟨R′(∫ Φdν)−R′(∫ Φdµ), ϕ(θ)⟩
∥∥

≤
∥∥R′(∫ Φdν)−R′(∫ Φdµ)

∥∥ ∥ϕ∥
≤ α ∥∫ Φdν − ∫ Φdµ∥ ∥ϕ∥ Lipschitz R

≤ α ∥∫ Φdν − ∫ Φdµ∥ ∥ϕ∥C1

≤ α
∥∥∫ ϕdh1(ν)− ∫ ϕdh1(µ)∥∥ ∥ϕ∥C1 Prop. A.54

≤ α ∥ϕ∥C1 sup
f∈F,∥f∥≤1

∫
⟨f, ϕ⟩ d(h1(ν)− h1(µ)) Like for Eqn. 2.29

≤ α ∥ϕ∥C1 ∥ϕ∥C1

∥∥h1(ν)− h1(µ)∥∥
BL

Where the last passage holds since the map u → ⟨f, ϕ(u)⟩ is ∥ϕ∥C1-Lipschitz and upper
bounded in norm by ∥ϕ∥C1 whenever ∥f∥ ≤ 1 as the sup claimed

(⃝ the updated setting) With the result of the above box, fix C0 > 0. For ν :
∥∥h1(ν)∥∥

BL
≤

C0. Set

ϵ =
min{η, β}
4αM2

M is unclear here

Where the α is from Lemma 3.7, β, η are from □. If
∥∥h1(ν)− h1(µ)∥∥

BL
< ϵ then:

• gν ≤ −η
2 on K+
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• ∇gν · n⃗θ ≤ −β
2 on ∂K+

Which is just a workout of the updated bounds given those of gµ,∇gµ considering that by
Lemma 3.7 ϵ-close measures in their projection satisfy an inequality.
(▽ Wgfs and time flows) for the function F consider a Wgf (µt)t with starting measure µ0
concentrated on [−r0, r0]×Θ, additionally, the BL distance with the measure µ presented in △
is

∥∥h1(µ0)− h1(µ)∥∥BL < ϵ, where µ is from △. We are basically setting the start point ϵ-close
in projection to a stationary measure. We are in the context of Lemma 3.7 and can also state
that

∥∥h1(µt)∥∥BL < C0. We denote t1 as the first, possibly divergent time, at which this last
condition does not hold. Again, with the representation X of Lemma A.71:

• by construction of K+ a flow t→ X(t, (wt, θt)) starting in (w0, θ0) ∈ R+×K+ stays inside
for t ≤ t1

• by the homogeneity of F ′(µt) which is 0-homogeneous (Prop. A.20) the velocity field
component of w is lower bounded by

η

2
so that:

wt ≥ w0 + t
η

2

• additionally, by the fact that no path enters R−×Θ and that F ′(−1, ·) ≥ F ′(1, ·) we have:

wt ≥ w0 + t
η

2
in R− ×K+

• for such interval of time with 0 ≤ t < t1:

h1(µt)(K
+) ≥

(
t
η

2

)
· µ0(R+ ×K+) + min

{
0, t

η

2
− r0

}
· µ0(R− ×K+) (3.8)

For a starting measure that places positive weight on the target set (i.e. µ0(R+ ×K+) > 0 the
growth of the projection is at least linear.
(♢ cases distinction) again, we have to distinguish between two cases for Θ.
If Θ = K+, then we can choose f ≡ 1 in Def. A.57 for ∥·∥BL and get that the time t1 is < ∞
in Equation 3.8.
Contarily, if Θ ⊂ K+, it is sufficient to check that the growth is still bounded at ∂K+. For
this purpose, denote a new sublevel set of gµ with regular value in the interval η̃ ∈ (−η, 0) and
symbol K̃+, where K̃+ ⊂ Θ in this case.
We know gµ is Lipschitz, so there exists ∆ ∈ [0, 1] such that:

• the distance between K+ and Θ \ K̃+ is bounded above by ∆

• for ϵ > 0 a small radius, it holds that either t1 < 2r0
η̃ or ∃t̃ > t0 such that h1(µt) ≥ 0∀t ∈

[t̃, t1) on K+

Now, a test function of Def. A.57 for the BL norm such as the distance to the set Θ \ K̃ clipped
to 1 namely satisfying [CB18]:

φ : Rd → R, Lip(φ) ≤ 1, ∥φ∥∞ ≤ 1

is such that: ∥∥h1(µt)∥∥BL ≥ ∆h1(µt)(K
+) ∀t ∈ [t̃, t1)

Which also grows linearly in t, making h1(µt) leave any ∥·∥BL-ball in finite time, meaning that
t1 is necessarily finite.
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Lemma 3.9 (General property in projection of stationary points, nullity at convergence). Under
Assumptions 3.4, consider a Wgf (µt)t for F . Then:

h1(µt)
w→ ν ∈M+(Θ) =⇒ F ′(ν) = 0 ν-a.e.

Namely, if we converge in the projection, the derivative of the functional is stationary, and no
direction of improvement is available.

Proof. For u = (1, θ) ∈ Ω we can recover the velocity field with the 2-Lipschitz map (as per
Prop. 2.26) through the map gµ defined in Proposition 3.6, for the current µt. Namely:

(id− proj∂V ((1,θ)))(ṽt(u)) = (id− proj∂V ((1,θ)))

[
gµt(θ)︸ ︷︷ ︸

weights∈R

∣∣∣∣ ∇gµt(θ)︸ ︷︷ ︸
positions∈Rd−1

]

Thus, by Lemma 3.7 it holds that vµt ⇒ vν in the space {1} × Θ. The arguments similar to
those of Proposition 3.6, we briefly outline the key points of the proof:

• use uniform convergence of gµt ⇒ gν
• if gν(θ0) > 0 for θ0 ∈ Θ build a set R+ ×K with θ0 ∈ intK such that:

– for some t0 > 0 the dynamics of Xt never enters such a set for t > t0
– the velocity of the weights w, namely, gµt ≤ −

gν(θ)
2 ≤ η

2
• by µt0 concentrated on Qr0 this implies that µt0(R∗

+ ×K) vanishes in finite time and, in
particular, ν(K) = 0.

• thus, we have shown that F ′(ν) is nonpositive ν-a.e.
• Also it can be deduced by Proposition 3.6, that F ′(ν) is nonnegative ν-a.e. So F ′(ν)

vanishes ν -a.e.

We will use this property in the main result, to establish a contradiction, subject to the escaping
criterion being satisfied throughout the dynamics. This last matter is solved in the following
Subsection.

3.3 Stability

This Subsection is mostly based on topological degree theory, a tool that allows the treatment
of cases in which V is non differentiable22. Allowing a differentiable structure for V , these
facts follow by µt being the pushforward of µ0 by a homeomorphism (last implication of the
representation of Lemma A.71). These properties are crucial for the development of the main
Theorems presented later.

Definition 3.10 (Topological degree). Let f : Rd → Rd be continuous, A ⊂ Rd bounded and
open, y /∈ f(∂A). The topological degree is denoted as deg(f,A, y). It satisfies:

1. deg(f,A, y) ̸= 0 =⇒ ∃x ∈ A : f(x) = y

y ∈ A =⇒ deg(id, A, y) = 1

22recall that we are working with subgradients, Wasserstein subdifferentials and semiconvex V . One could
also think of non-differentiable regularizers, as the simple modulus |w| of the weights in the basic regularized
Optimization setting.
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2. A1, A2 open, A1 ∩ A2 = ∅, y /∈ f(A \ (A1 ∪ A2)) =⇒ deg(f,A, y) = deg(f,A1, y) +

deg(f,A2, y)

3. X : [0, 1]×Rd → Rd continuous, y : [0, 1]→ Rd a continuous curve s.t. y(t) /∈ Xt(∂A) ∀t ∈
[0, 1] =⇒ deg(Xt, A, yt) ≡ kost ∀t ∈ [0, 1]

Such Definition is a full characterization of a map from triplets (f,A, y) to Z [Bro83](Thm. 1-2).
It serves as a signed algebraic counter of solutions f(x) = y for x ∈ A. The term algebraic
refers to the fact that a solution x counts as +1 if f preserves its orientation, and −1 otherwise,
the sign is of no use for us, but ideally indicates the sign of the determinant of the derivative at
the inverse map. In this context, the definition is just an adaptation of the classical one.

Lemma 3.11 (A property of continuous maps and measures).

f : Rd → Rd continuous, µ ∈M+(Rd) =⇒ spt(f#µ) = f(sptµ)

Namely, the support of a measure and the pushforward of the support by a continuous map are
almost commutative, with almost meaning that they commute if the map is closed (Def. A.29).

Proof. (△ first inclusion) let y ∈ f(sptµ). Consider a neighborhood of y, denoted as N . By
(topological) continuity of f , we have that f−1(N ) is a neighborhood of sptµ. Being inside
the support, we can say that it has positive measure, so that:

µ(f−1(N )) > 0 µ(f−1(N )) = f#µ(N )

Where the second statement is just the definition of pushforward (Def. A.52). From this we can
state that y ∈ spt(f#µ) since we are stating that its neighborhood N has positive measure.
By the arbitrariness of y:

f(sptµ) ⊂ spt(f#µ)

(□ second inclusion) let y ∈ (f(sptµ))c, let N be a neighborhood of y such that N ∩
f(sptµ) = ∅, we can do so by continuity. Again, by (topological) continuity f−1(N ) ⊂ (sptµ)c,
which can be derived by basic reasoning on closures and inverses. Hence:

f#µ(N ) = µ(f−1(N )) ≤ µ((sptµ)c) = 0

Where the first equality is again the definition of pushforward, the inequality follows from
monotonicity of measures, and the nullity of the last equation is clear. In conclusion, we derive
that y ∈ (spt f#µ)c since it is part of a neighborhood with zero measure. By the arbitrariness
of y:

(f(sptµ))c ⊂ (spt f#µ)c =⇒ spt f#µ ⊂ f(sptµ)

Which trivially holds by negating the complements.
Combining the results of △,□, we have:

A ⊂ B B ⊂ A

Hence, if B is closed, we are done, as we basically prove B ⊃ A for the right quantities. In our
context B = spt(f# µ), which is closed by Definition of support (Def. A.47).

Definition 3.12 (Separation of sets induced by a set). A set C in an ambient space Ω separates
two sets B,A if any continuous path in Ω with endpoints in B,A has a point in C.
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We state the separation property in the partially 1-homogeneous setting considered. It will be
shown that as in the abstract setting, it comes with nice properties for the problem we are
considering.

A a closed set K ⊂ [−r, r]×Θ satisfies the separation property if it separates {−r}×Θ and
{r} ×Θ for some r > 0.

Proposition 3.13 (Set separation, boxes, abstract). Let Θ ⊂ Rd be the closure of a bounded,
connected, open set. For some T > 0, let X : [0, T ]× (R×Θ)→ R×Θ (recall the representation
of Lemma A.71) be a continuous map such that:

• X(0, ·) = id

• Xt(R× ∂Θ) ⊂ R× ∂Θ ∀t ∈ [0, T ]

If K satifies the separation property, then Xt(K) does so ∀t ∈ [0, T ]

Proof. Let 0 < ϵ < α < β be such that:

• Xt(K) ⊂ (−α− ϵ, α+ ϵ)×Θ ∀t ∈ [0, T ]

• [−α, α]×Θ ⊂ Xt((−β − ϵ, β + ϵ)×Θ) ∀t ∈ [0, T ]

Intuitively, these conditions make sense since we allow arbitrary variables to include or be
included in the sets (they are just a construction). Let A be the intersection of:

• (−β, β)×Θ

• the connected component (Def. A.5) of {α}×Θ in (R×Θ)\K, unique by the connectedness
of Θ and R×Θ itself

A is bounded and open in R×Rd−1. Since β > α and we are imposing an intersection of bounded
sets.
Consider the function X̃ : (t, x) → (t,Xt(x)) and the compact set S = X̃([0, T ] × ∂A) of
[0, T ]× (R×Θ). S is compact since it is the result of a closed and bounded times the boundary
of a bounded set that is bounded and closed (Prop. A.4).
For Sc, connected components are path-connected (Obs. A.9), so that the map:

(t, (w, θ))→ deg(Xt, A, (w, θ))

is constant on each connected component of Sc (Def. 3.10#3). Diving further by the separation
induced by K:

• deg(Xt, A, (w, θ)) = 1 for [0, T ]× ({α} ×Θ)

• deg(Xt, A, (w, θ)) = 0 for [0, T ]× ({ −α} ×Θ)

For fixed t ∈ [0, T ] any path joining {−α} ×Θ and {α} ×Θ must intersect Xt(∂A). Paths that
are contained in [−α, α]× intΘ are of this kind.
Eventually, combining the assumption on X with the fact that:

∂A ⊂ K ∪ (R× ∂Θ) ∪ ({β} ×Θ)

we have that:
Xt(∂A) ∩ ([−α, α]× intΘ) ⊂ Xt(K)

Which proves that Xt separates {−α} ×Θ from {α} ×Θ in the space R× intΘ.
By Xt(K) being closed, the last claim holds also in R×Θ.
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The following is a Lemma that transfers the above result to the field of Wasserstein Gradient
flows.

Lemma 3.14 (Stability of the separation property). Under Assumptions 3.4, let (µt)t be a Wgf
for F . If sptµ0 satisfies the separation property, then sptµt does ∀t > 0.

Proof. (△ construction) Recall the representation of the velocities of a Wgf of Lemma A.71.
It is continuous and satisfies the pushforward property that µt = (Xt)#µ0.
X0 = id is clear, and Xt is coercive (Def. A.28) and closed by Proposition A.30.
We are left to check the two cases of Assumption 3.4#3.
(Θ bounded case) By Lemma 3.11, we can just check the assumptions of Proposition 3.13. In
the context of △, it suffices to check that:

Xt(R× ∂Ω) ⊂ R× ∂Ω

Which is guaranteed by the Neumann boundary conditions of Assumption 3.4#3-(b) [CB18].
(Θ = Rd case) the aim is recapturing the problem under the bounded case by means of the
diffeomorphism:

ψ : R× Rd → R× intB(0, 1) ψ(w, θ) =


(
w,

θ

|θ|
· tanh |θ|

)
θ ̸= 0

(w, 0) θ = 0

Let Yt = ψ ◦Xt ◦ ψ−1. Such a map moves the positions θ to the open unit ball centered at zero
intB(0, 1). It is also the flow of the velocity field:

ṽt(y) = dψψ−1(y)(vt ◦ ψ−1(y)) on R× intB(0, 1)

Which can be extendend by continuity to R× Sd−2 by means of the Sard-regular limit function
g∞(θ) of Assumption 3.4#3-(a) as23:

(g∞(θ) · sgnw, 0) on R× Sd−2

The velocity flow Yt satisfies the requirements of Proposition 3.13, so the claim holds for:

ψ(sptµt) = ψ ◦Xt(sptµ0)

By the fact that ψ is a diffeomorphism, it keeps topological properties such as connectedness
invariant, making the claim true (i.e., we can remove ψ with its inverse).

Having found a condition on the support of a measure to be satisfied for any time point of the
flow, we could simply design a support that is both stable in the sense of this Subsection and
able to escape in the sense of the previous one. Apart from further technical conditions, this
is the spirit of the results we will present next.

23the convention is sgn 0 = 0
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3.4 Main result of the Section, and a generalization

The first fact outlined, apart from being instrumental for the main Theorem, is also individually
interesting, as it draws a connection between convergence of a Wgf and asymptotic properties
of Gradient flows.
The Lemma could have been stated before, as we declare the previous set of Assumptions. For
clarity, it is reported here, but it is more general. We will use it to establish the convergence of
the particles to a global optima.

Lemma 3.15 (Limit order is not important). Under Assumptions 1.10, assume that there is:

• (µt)t a Wgf for F such that µ0 is concentrated on Qr0 and F (µt)
t→∞→ F ∗

• (µ0,m)m concentrated on Qr0 and such that µm,0
W2→

m→∞
µ0

Then, the limits can be exchanged in the process to find the optimal risk configuration:

F ∗ = lim
t→∞

lim
m→∞

F (µm,t) = lim
m→∞

lim
t→∞

F (µm,t)

Proof. (m first) By Theorem 2.28, we have µm,0 → µ0 ∈ P2(Rd) the unique Wgf starting from
µ0 of F (Prop. 2.26). By Lemma A.69, we have continuity of F , so that F (µm)→ F (µ) and the
limit makes sense. Imposing the subdifferential equation, we have necessarily that the dynamics
will stop at least at a local minima F .
(t first) Recall that again, by the construction of the dynamics, F (µt) is monotonic along Wgfs,
whatever the m. We have the following:

∀ϵ > 0 ∃t0 ∈ R+ | F (µt0) < F ∗ +
ϵ

2
(3.16)

Now, by Theorem 2.28:

∃m0 ∈ N | ∀m ≥ m0 F (µm,t0) < F (µt0) +
ϵ

2
(3.17)

because we tend to that µt0 at divergent m.
Eventually, combining the two, by the map t → F (µm,t) being decreasing and lower bounded
independently of m (i.e. ∀m) we have:

∀m ≥ m0 lim
t→∞

F (µm,t) ≤ F (µm,t0)

< F (µt0) +
ϵ

2
Eqn. 3.17

< F ∗ +
ϵ

2
+
ϵ

2

= F ∗ + ϵ

Notice that this is the Definition of limit for m of the quantity limt→∞ F (µm,t).

Lastly, the tools derived allow to state a general fact about convergence to a global minima,
followed by a second statement, which is a Corollary, but presented as the main result of the
Section by the authors for clarity.

Theorem 3.18 (Global minimization of projection, general). Under Assumptions 3.4, for some
r0 > 0 let:
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• (concentration) sptµ0 ⊂ [−r0, r0]×Θ.
• (separation) (µt)t be a Wgf of F such that sptµ0 separates {−r0} ×Θ and {r0} ×Θ

Then:

h1(µt)
w→ ν =⇒ F (µt)

t→∞→ F ∗ = min
M+(Ω)

F

lim
t→∞

F (µt) = F ∗

Proof. Let h1(µt)
w→ ν ∈ M(Θ). A nice perspective is interpreting such limit as a measure on

{1} ×Θ, where the one does not matter in terms of computations. By Lemma 3.9 we have:

h1(µt)
w→ ν =⇒ F ′(ν) = 0 ν-a.e.

(△ strategy) we proceed by contradiction, assuming that ν is not a minimizer of F over M+(Ω),
interpreting it as a measure in the enlarged space, which by the characterization of Proposition
3.3 means that we assume F (ν) to be not nonnegative.
(□ highlights of the proof) the authors make use of results from the 2-homogeneous case,
which are not covered in this document. For this reason, we reroute the reader to the original
publication [CB18]. We also need an application of [CB18](Lem. C.18).

Theorem 3.19 (Global minimization, use case). Under Assumptions 3.4 add that (µt)t is a
Wgf of F which for some r0 > 0 satisfies

• (concentration) sptµ0 ⊂ [−r0, r0]×Θ.
• (separation) (µt)t be a Wgf of F such that sptµ0 separates {−r0} ×Θ and {r0} ×Θ

Then:

1. (µt)t
W2→ µ∞ =⇒ F (µt)

t→∞→ F ∗ = argminM+(Ω) F

2. for a given (parameter) classical Gradient flow (um(t))m∈N,t∈R+ which is initialized at its
Wgf in [−r0, r0]×Θ:

µm,0
W2→

m→∞
µ0 =⇒ lim

t,m→∞
F (µm,t) = min

µ∈M+(Ω)
F (µ)

Proof. (Claim #1) Direct implication of Thm. 3.18, after noting that the convergence in W2

means that the projected measures converge weakly (Prop. A.66) and the conditions are all
satisfied. Also, notice that the hypothesis of the general case is thus stronger.
(Claim #2) we showed the link gradient flow-Wgf in Proposition 2.11. Such Wgf is unique and
the correspondence is non ambiguous (Prop. 2.26). Convergence of the particles is granted by
Theorem 2.28. We can exchange the limits by Lemma 3.15, thus writing t,m in the subscript.
All of these facts, together with Claim #1, allow for the final statement.
Some comments are reported in the description of Figure 4.

Observation 3.20 (Differences use case VS general case). The hypothesis, as pointed out in
the proof of Claim #1 above, is weaker in the general case, as only a projection of the measures
needs to converge (weakly). The latter is presented since the former might be hard to check.
The former is presented since the latter might be hard to hold. This is also stressed in the final
comments as it is important, where more discussion on convergence in W2 is carried out.

42



Observation 3.21 (On the limit exchange). Being able to exchange limits is fundamental. The
divergent indices m, t do not influence each other in the convergence to F ∗.

Observation 3.22 (On the Assumptions). The authors stress the fact that while the structural
homogeneity and initialization assumptions are instrumental, Sard-type regularity is purely tech-
nical [CB18]. Nevertheless, it was not possible to remove it due to its hardness in principle
(see some more discussion in Subsection A.2.2). A mentioned artificial counter example of this
regularity condition is the Cantor function [Whi35].

Observation 3.23 (Final comments). Below are some important observations made by the
authors [CB18].

• Theorem 3.19 assumes that the Wasserstein gradient flow converges in W2. The authors
stress that this is not always guaranteed and, in most of the cases, requires:

1. compactness of trajectories
2. a Łojasiewicz inequality24

• compactness in W2 is a strong assumption, the topology of convergence was relaxed to the
weak setting in Theorem 3.18

• even if compactness holds, there is no guarantee of convergence of gradient flows, a counter-
example is found in [AMA05]. It is acknowledged that no general result exists for non-
geodesically convex R, i.e. R interpreted with the Wasserstein distance instead of total
variation. Some improvements in this directions are explored in [BSR15; HM19].

• Proposition 3.6 is qualitative, it does not provide bounds of convergence, but only states that
a sufficient condition to escape local minima is having a particle belonging to the 0-sublevel
set of F ′(µ). One could think of ways other than using the many-particle limit to approach
the measure, or calculating the size of such sublevel sets, to extract a measure of complexity
of reaching global minima via particle gradient descent. In [MMM19] a quantification is
given.

24Informally: a bound on the extent to which a function is flat around its critical points. The original publication
is S. Łojasiewicz, "Sur les trajectoires du gradient d’une fonction analytique", Seminari di Geometria, Bologna
(1982/83), Universita’ degli Studi di Bologna, Bologna (1984), pp. 115–117
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Figure 4: Homogeneous landscape strucure, [CB18]
Again, plotting a view of F ′(µ), we are now in the position to comment further. The red dots
identify the support of a measure ν which is a non optimal stationary point. It is non optimal
since F ′(ν) is negative at some points, meaning that it does not satisfy Proposition 3.3. We

could then imagine a Wgf (µt) which gets ϵ-close in BL-norm to it. To escape getting trapped,
it should give positive weight to the red region. The part below the horizontal line has F ′(ν)

negative. There Proposition 3.6 can be used. On the contrary, the part above where F ′(ν) is
positive is required as well but needs more technical conditions. These are largely discussed by
the authors [CB18](Lem. C.18). Theorem 3.18 uses both the technical result and the fact that
the separation property satisfies the criteria to escape throughout the dynamics and conclude

that a global minima will be reached.
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4 One layer Neural Networks

Having outlined the general framework, we now apply them to a very important setting. The
general properties of the loss function are inspected at the functional level. We then connect
the discussion of Subsection 1.1, recalling that we lifted the problem to a more general class
of problems in Subsection 1.4. The focus is on sigmoid neural networks, for which sufficient
conditions are given for the theoretical results to be applied. Lastly, a Theorem resumes all of
the work done in order, with some brief practical considerations on the implementation and the
empirical results.

4.1 Loss

We first give necessary conditions on the loss structure to be in line with our results. The Hilbert
space we consider is F = L2(ρ) for ρ : X→ R a probability measure with X ⊂ Rd. A functional
loss takes the form:

R(f) =

∫
r(x, f(x))dρ(x) r : X× R→ R+

Where the probability distribution is not to be seen in the sense of dependent and independent
variables yet. We are just inspecting the properties of the functional with respect to a measure.

Lemma 4.1 (Sufficient conditions for functional loss). The following hold:

1. r convex in the second variable =⇒ R convex
2. ∃∂2r Lipschitz uniformly in the first variable =⇒ ∃dR and dR is Lipschitz
3. ∂2r ≤ C1r + C2 C1, C2 > 0 =⇒ dR bounded on sublevel sets

Proof. (Claim #1) We have by hypothesis:

∀x ∈ X, ∀f, h ∈ L2(ρ),∀α ∈ [0, 1] r(x, αf(x)+(1−α)h(x)) ≤ αr(x, f(x))+(1−α)r(x, h(x))

so that trivially ∀f, h ∈ L2(ρ),∀α ∈ [0, 1]:

R(αf + (1− α)h) =
∫
r(x, αf(x) + (1− α)h(x))dρ(x)

≤
∫
αr(x, f(x)) + (1− α)r(x, h(x))dρ(x) by ≤ ∀x convexity of r

= α

∫
r(x, f(x))dρ(x) + (1− α)

∫
r(x, h(x))dρ(x)

= αR(f) + (1− α)R(h)

(Claim #2)(△ differentiability) To show differentiability, we aim to find a linear operator
with a Taylor expansion for which we have a O(∥∥L2(ρ)) bound, being that we are in the Hilbert
space L2(ρ). Knowing that r is differentiable we can expand it inside R. By the uniformity in
the first variable assumption, we avoid writing f(x), h(x) every time.

∀f, h ∈ F R(f + h) =

∫
r(x, f + h)dρ

=

∫
r(x, f) + r′(x, f) · h+ O(|h|)dρ
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Which plugged into the outer expansion for R suggests that a good candidate is:

dRf : F → R h→
∫
r′(x, f(x))h(x)dρ(x) ∀h ∈ F

Indeed for L the uniform Lipschitz constant of r:∣∣∣∣R(f + h)−R(f)− dRf
∣∣∣∣ = ∣∣∣∣R(f) + dRf +

∫
O(|h|2)dρ(x)−R(f)− dRf

∣∣∣∣
=

∫
O(|h|2)dρ(x) O(|h|2) = 1

2
r′′(f)O(|h|)

≤
∫

1

2
L|h|2dρ Prop. A.23

=
L

2
∥h∥

= O(∥h∥)

(□ Lipschitzness) we aim to show:

∃C ∈ R : ∥dRf − dRg∥ ≤ C ∥f − g∥ ∀f, g ∈ F

With a similar application of Proposition A.23:

∥dRf − dRg∥ =
∥∥∫ r′(x, f)dρ− ∫ r′(x, g)dρ∥∥

=
∥∥∫ r′(x, f)− r′(x, g)dρ∥∥

≤ C ∥f − g∥

(Claim #3) We have:

∥dRf∥2 =
∫
|∂2r(x, f(x))|2dρ(x)

≤
∫
C1r(x, f(x)) + C2dρ(x)

= C1

∫
r(x, f(x))dρ︸ ︷︷ ︸

=R(f)

+C2

∫
dρ(x)︸ ︷︷ ︸
=1

= C1R(f) + C2

=⇒ ∥dRf∥ =
√
C1R(f) + C2

So that in the sublevel sets dR is bounded.

4.2 A Machine Learning Application

Before getting to Neural Networks, we formulate the task in the classical way.

4.3 From an Optimization Problem to a Learning Problem

Consider a distribution of labels and features ρ ∈ P(Rd−2 × R) where ρx ∈ P(Rd−2) is the
marginal of the features. We can treat such problem via a conditional probability expression
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[AGS05](Thm. 5.3.1):

ρ(dx⊗ dy) = ρ(dy|x)ρx(dx) (ρ(·|x))x∈X = {p.m. on Y}

This disintegration is required as in principle we do not have access to the joint law over the
space X×Y, and hypothesize that there is a hierarchical relation such that x somehow influences
y through something we would like to estimate up to reasonable precision. As loss, we use the
expected risk:

R : L2(ρ)→ R R(f) =

∫
X×Y

ℓ(f(x), y)dρ(x, y)

In the previous Subsection, we analyzed such functional loss in terms of x only. To reconcile
these two perspectives and exploit the conclusions of Lemma 4.1, we choose:

• ℓ : R× R→ R+ a convex loss function, either:
– square loss

ℓ(f(x), y) = (f(x)− y)2

– logistic loss
ℓ(f(x), y) = [f(x)]y[1− f(x)]1−y

• as separable Hilbert space F = L2(ρx)

• as r function25:
r(x, p) =

∫
R
ℓ(p, y)ρ(dy|x) p : X→ R

where p stands for "predictor" and we are integrating out y ∈ Y.

This reparametrization splits the integrals of the functional loss:

R : L2(ρx)→ R R(f) =

∫
X

∫
R
ℓ(f(x), y)ρ(dy|x)ρx(dx)

For ℓ as stated, the function r coupled with the optional Ṽ = 1 satisfies the requirements for
Lemma 4.1 to apply, namely:

• r is convex in the second variable
• r is differentiable in the second variable
• ∂2r is Lipschitz uniformly in the first variable
• |∂2r|2 ≤ C1r + C2 C1, C2 > 0

Now, we have features in Rd−2 but wish to add a bias term, so the positions θ will be in
Rd−1 = Θ. To simplify calculations, we denote:

z = (x, 1) ∈ Rd−1 ∼ ρz = ρx × id

which is just an extension.

4.4 Sigmoid Neural Networks

Neural Networks are a context in which our theory works well. Two very common choices
for nonlinear activation functions are sigmoid and ReLu [Hay99; GBC16]. The specific results

25notice that the order of inputs is slightly misleading
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hidden layer
Figure 5: The diagram shows an in-
tuitive representation of a two-layer
neural network. The inputs are d−2
dimensional, with an added bias.
They are passed to activations ai of
the form ai(x) = σ(θ(·, i)Tx). The
final output is then determined by
a weighted sum of activations.

reported here are sufficient to examine the former architecture. The latter is also analyzed by
the authors extensively, together with sparse spikes deconvolution [CB18]. The main difference
between the three cases is the domain Θ and the type of homogeneity they generate.

We focus on Neural Networks with one hidden layer. Simplifying the dependence on u = (w, θ)

which is implicitly present:

h(x) = wTσ(θTx)) =

m∑
i=1

wi · σ(θ(·, i)Tx) (4.2)

Where m is the number of hidden neurons, wi is the outgoing weight of the ith neuron, θ(·, i)
are the ingoing weights of the ith neuron.
The single hidden layer structure allows for the formulation of Eqn. 4.2 which is quite peculiar
since:

• there is total independence of contributions for the hidden layers to the output. More than
one hidden layer would have led to interactions.

• it is a linear combination of hidden neurons

The functions of the first original optimization problem, (expressed in terms of the inputs x,
with specified positions θ) are then:

ϕ(θ) : X→ R x→ σ(z · θ) = σ

( d−2∑
i=1

θixi + θd−1︸︷︷︸
bias

)
Ṽ = 1

Where σ is a sigmoid26.

With this in mind, we show that the settings of Assumption 3.4 are verified. Notice that if we
see ϕ in two different interplaying ways:

• as a simple application of the θ · z product for the realization of the functional loss R

ϕ(θ) : X→ R
26the classical sigmoid σ(s) =

1

1 + e−s

48



• as a function reproducing functions27. To be tuned correctly in terms of θ to be in
line with the assumptions and make R behave as wanted:

ϕ : Θ→ F Θ = Rd−1

Lemma 4.3 (ϕ for Sigmoid NN). Order 4 finite moments of the features distribution ρx:

x : E[|x|4] <∞ ⇐⇒
∫
|x|4dρx(x) <∞

imply that:

1. ϕ : Θ→ F is differentiable
2. the differential of ϕ is:

dϕθ(h) : x→ (h · z)σ′(z · θ) z = (x, 1) ∈ Θ

3. dϕθ is Lipschitz

Proof. As a side note, recognize that:

• finite 4th moment for ρx means that also ρz has finite 4th moment.
• by the fact that z = (x, 1) we can safely say E[|x|n] = E[|z|n] ∀n ≤ 4

• the sigmoid function has Lipschitz derivative. Denote as L its constant.
• the sigmoid function has a finite sup norm ∃ ∥σ′∥∞

(Claim #1, #2) we prove together that there is a linearization bounded in the norm.
Firstly, we precompute the Taylor expansion of ϕ in the weight direction h:

ϕ(θ+ h) = σ(z · (θ+ h)) = σ(z · θ+ z · h) = σ(z · θ) + σ′(z · θ)(z · h) + 1

2
σ′′(z · h)(z · h)2 + O(|h|2)

To ease out the process, check directly the differential form claimed:

∆(h)2 := ∥ϕ(θ + h)− ϕ(θ)− dϕθ(h)∥2 square norm

=

∫
X

∣∣∣∣O(1

2
σ′′(z · θ)(z · h)2

) ∣∣∣∣2dρz(z)
≤ L2

4

∫
X

∣∣∣∣(h · z)∣∣∣∣4dρz(z) Prop. A.23

=⇒ ∆(h) ≤
L
√

E[|z4|]
2

|h|2 = O(|h|)

27wordy
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(Claim #3) we have a differential, now we want a uniform Lipschitz bound.
(△ boundedness)observe that:

∥dϕθ∥2 ≤ sup
x∈X,∥x∥≤1,z=(x,1)

∥(h · z)σ′(z · θ)∥2

|h|2

= sup
x∈X,∥x∥≤1,z=(x,1)

∫
X
|(h · z)σ′(z · θ)|2dρz(z)

|h|2
where ∃

∥∥σ′∥∥∞
=

∥∥σ′∥∥2∞ sup
x∈X,∥x∥≤1,z=(x,1)

∫
X
|(h · z)|2dρz(z)
|h|2

=
∥∥σ′∥∥2∞ sup

x∈X,∥x∥≤1,z=(x,1)

∫
X

|z|2dρz(z)

=
∥∥σ′∥∥2∞ E[|z|2]

=⇒ ∥dϕθ∥ ≤
∥∥σ′∥∥∞√

E[|z|2] <∞

(□ Lipschitzness) we work on the displacement for θ, θ̃ ∈ Rd−1:

∥∥dϕθ − dϕθ̃∥∥2 ≤ sup
x∈X,∥x∥≤1,z=(x,1)

∥∥∥(h · z)σ′(z · θ)− (h · z)σ′(z · θ̃)
∥∥∥2

|h|2

= sup
x∈X,∥x∥≤1,z=(x,1)

∥∥∥∥∥∥∥∥(h · z)
≤L|z(θ−θ̃)|︷ ︸︸ ︷

(σ′(z · θ)− σ′(z · θ̃))

∥∥∥∥∥∥∥∥
2

|h|2
σ′ is L-Lipschitz

= L2|θ − θ̃|2
∥∥z2∥∥2 cancel h

≤ L2|θ − θ̃|2E[|z|4]

=⇒
∥∥dϕθ − dϕθ̃∥∥ ≤ L√E[|z|4]|θ − θ̃|

which means that dϕ is Lipschitz in Θ.

The next Lemma is used to inspect regularity properties of our construction.

Lemma 4.4 (Sigmoid Sard-type regularity). In our functional space F it holds that the function:

∀f ∈ F θ → ⟨f, ϕ(θ)⟩ =
∫
X

f(x)σ((x, 1) · θ)dρx(x)

Has regular values (Def. A.41) that are dense in the range of the map θ → ⟨f, ϕ(θ)⟩ if it has
bounded moments up to order 2d− 2.

Proof. (△ base case) if the function is constantly c ∈ R we have that:

• the range is {c}
• any point of the domain is a critical point
• regular values are dense in the range since we can choose any point which is not {c} and

get the empty inverse image, which is by convention a regular value.
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(□ general case) if the function is not identically constant, the range is a subset of the real
line R. We report below a calculation which is useful but should not break the course of the
reasoning. Since we want to use Morse-Sard (Lem. A.45), we need the map to be smooth in Rd,
which means d− 1 differentiable.
(⃝ moments and differentiability connection) denote the map θ → ⟨f, ϕ(θ)⟩ as gf (θ).
Then, differentiability can be checked:

∥gf (θ + h)− gf (θ)∥2 =
∥∥∥∥∫

X

f(x)σ((θ + h) · z)dρx(z)−
∫
X

f(x)σ(θ · z)dρx(x)
∥∥∥∥2

≤
∫
X

∣∣∣∣f(x)[σ((θ + h) · z)− σ(θ · z)]
∣∣∣∣2dρx(x)

=

∫
X

∣∣∣∣f(x)(σ′(θ · z)(z · h) + O(|h|))
∣∣∣∣2dρx(x) Taylor σ

So, if we chose as differential f(x)σ′(θ · z)(z · h) we could have had a O(|h|) (i.e. apply again
Prop. A.23) term where the norm is in L2(ρx) and thus requires bounded second moments for
the first derivative to exist.
It can be shown that this procedure iterated becomes:

E[|x|2d−2] <∞ =⇒ ∃dd−1gf (θ)

(▽ back to regular values) with this fact in mind, we use ⃝ to state that the function will
be smooth (d− 1 differentiable) whenever moments are bounded up to order 2d− 2. Recalling
the notions of Subsection A.2.2, such smoothness ensures by Morse-Sard (Lem. A.45) that the
critical points have measure zero in their realization, so that the regular values are dense in the
range of the function.

We have now proved the settings and #1,#2 of Assumption 3.4. To check the regularity at the
boundary of #3-(a)(b), the discussion is carried out without much detail in the Appendix B.4.
In the context of the our final result, it will be taken for granted.
On top of this, we reparametrize the equation to highlight the dependence on single hidden
neurons w1, . . . , wm via a family of functions:

h =
1

m

m∑
i=1

Φ(ui) Φ(ui)(x) = mwi · σ(θ(·, i)Tx) ui = (wi,θ(·, i)) ∈ Rd

So, h is now an average of the predictions of each of the hidden neurons. This formulation
allows to highlight nice properties, especially at the divergent limit of m. Important results
in this setting suggest that an overparametrized model (m > nd) with infinite hidden neurons
(m → ∞) is approximately equal to evaluating the integral of a dirac measure on the neurons
[Bar93](with further studies in [KS01; Ben+05; Ros+07]):

h
m→∞
≈

∫
U

Φ(u)dµ(u) µ(w) =
1

m

m∑
i=1

δui

Which is linear in dµ. Namely, in the limit we replace the empirical measure with the integral
of the empirical measure of neurons. This is exactly the 1-homogeneous lifting procedure that
we performed in Section 1.4.

Φ(w, θ) = wϕ(θ) x→ wσ

( d−2∑
i=1

θixi + θd−1

)
V (w, θ) = |w|Ṽ = |w|
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where the regularization term is a simple weight penalization. Namely, weight of the m particles
times a sigmoid of the positions plus a bias term. The construction is partially 1-homogeneous
in the sense of Definition A.19.

The final result is rather trivial, but is reported here for the sake of summarizing what we found.

Theorem 4.5 (Sigmoid Neural Network global minima convergence). The information is a
data sample, consisting of a collection of tuples D = {(xi, yi)}ni=1 where xi ∈ X ⊂ Rd−2 and
yi ∈ Y ⊂ R with unknown distribution ρ(x, y). A structural assumption suggests finding the
best model that expresses y as a function of x. The choice of the function is a sigmoid neural
network.
To estimate it, we are given a general minimization problem of the form of Equation 1.6, namely:

µ∗ = argmin
µ∈M(Θ)

J(µ) J(µ) := R

(∫
ϕdµ

)
+G(µ)

Where:

• Θ = Rd−1

• ϕ(θ) : X→ R x→ σ(
∑d−2

i=1 xiθi + θd−1)

• R is the risk of the quadratic or logistic loss, with the sufficient conditions of Lem. 4.1
• G is the total variation norm G(µ) = |µ|(Θ)

Basically, our objective is to find the best possible allocation of positions in the space Θ = Rd−1

of a measure so that the error with respect to the real data distribution is minimized.
Assume:

• ρx ∈ P(Rd−2) has moments that are finite up to max{4, 2d− 2}
• sptµ0 = {0} ×Θ

• the condition of Assumption 3.4#3-(a) is verified

Then a Wgf for the problem (µt)t∈R+ is such that:

µt
W2→ µ∞ =⇒ µ∞ = argminF

Where we can easily recover the measure ν ∈ M(Θ) corresponding to µ ∈ P(Ω) Additionally,
such Wgf can be obtained by performing particle gradient descent on a discretized version of our
functional optimization problem that can be performed in practice.

Proof. We go by the order of exposition of the various discussions we had, except that we start
from the results of this Section, which guarantees that the assumptions are met. The results
allow to:

• recollect facts that prove how the setting of sigmoid neural networks is in line with the
results of the previous Sections (§Sec. 4)

• lift the optimization problem to a higher dimensional space, including the weights w inside
the parameters of optimization, and work with measures on P2(Ω) Ω = Rd (§Sec. 1,
Prop. 1.14, projection map Eqn. 1.12)

• formulate the discretized minimization problem and examine the gradient flow of its pa-
rameters (§Sec. 2, Prop. 2.3)
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Figure 6: Animated Sigmoid NN particle dynamics. Source
https://lchizat.github.io/PGF.html

Weights wi(t) are represented by the size of the particle. Colors are red for positive weights
and blue for negative weights. The generators of the labels (i.e. the ground truth) are the big

disks.

• reconcile it with the notion of Wasserstein gradient flow at the particle limit m→∞ (§Sec.
2, Prop. 2.11)

• move on to the actual convergence analysis, where up to the initialization condition, it is
guaranteed that the local minima will be escaped (§Sec. 3, Prop. 3.6, Subsec. 3.3)

• given guaranteed convergence at m → ∞, simply choose a large enough m∗ so that the
behavior is met (§Sec. 3, especially Thm. 3.19, Lem. 3.15)

We can eventually say that the dynamics:

lim
m,t→∞

J(µm,t) = J∗ µm,t =
1

m

m∑
i=1

w
(m)
i (t)δ

θ
(m)
i (t)

are guaranteed to converge at some non-identifiedm∗ to the global minima of J . The convergence
is independent of the order of m, t, and we could simply increase the number of particles and
let them flow in t until convergence (this is by Lemma 3.15).

4.5 A brief note on experimental results

In our final discussion, the global minimizer is always constructed to be zero.

Fixed number of particles dynamics

We work in dimension d = 2, and the directions on the plane at which the minimizer is attained
are dotted in Figure 6. To obtain the separation condition on the support of the starting measure,
the choice is using SGD with no regularization coupled with an initialization at finite m, and
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Figure 7: Empirical particle complexity of naive optimization vs particle gradient flow. Source
[CB18]

Here m0 is the minimum number of particles to have a minimizer.

θ gaussian distributed over Θ. The authors claim that this satisfies the separation condition as
m→∞ [CB18]. Intuitively, adding more and more neurons around {0} ×Θ we will eventually
separate the sets needed to escape local minima. It is also stressed that it is the de facto choice
in practice [Bac20a]. Figure 6 is an animation of the particles moving towards the minimizing
directions.

Performance

The results of this production are non-quantitative in the overparametrization required to at-
tain reasonable performances. For this reason, the authors showed how simpler models lead
to less satisfactory results and how the number of particles required is slightly above the over-
parametrization regime. The naïve optimization method used for comparison is based on the
convex problem of the following rough routine:

• given m, sample m positions in Θ

• optimize {wi}mi=1 over the randomly chosen candidates

Fixing the dimension at d = 100, the data is distributed on a sphere, and the labels are gen-
erated by a NN with 20 neurons and random normal weights. The performance in excess loss
(i.e. comparison with the optimal Bayes regressor) is reasonably better with particle gradient
descent28, especially at m > m0, where we identify the overparametrization regime. The lines
plotted are the geometric averages over different runs at the same number of particles. For more
context, see the original publication [CB18].

4.6 Summary, Weaknesses and further directions

In this document, further context was given to the very interesting piece of research titled:

On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal
Transport - Chizat, Bach (2018)

28again SGD and no regularization
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Through the use of Wasserstein Gradient Flows, it was shown how a precise interpretation
of the dynamics of two-layer neural networks can be tuned to reach global optimality. The
approach is analogous to the mean-field limit of a family of functions. Experimental results are
more favourable than easier optimization routines and give further support to the motivation to
expand this direction of study.
Problems open in this context are quantifying the convergence rate and using the same formalism
for larger networks.

Additional References

After having explored this work, I plan to strengthen my theoretical knowledge ([AGS05] is a
good starting point, but there are other works) and read other Neural Networks Theory works
widely cited in related literature such as [MMN18]. A quantitative result is proved in [MMM19].
The authors have continued on this line of research with a blog post and a publication [Chi20;
COB20], but I am sure there is more.
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Appendix

We report in the Appendix some facts not directly related to the results but needed for their
understanding. In Appendix A the tools used throughout the literature are mentioned. In B
more paper-specific notions are explained. As a disclaimer, the derivation of the continuity
equation in the distributional sense is not self-contained, but hopefully the references will help.

A Required Notions

A.1 Set Theory

There are plenty of equivalent definitions for the next three objects, which are used throughout
the paper extensively.

Definition A.1 (Closure of a set A). The closure of a set A, denoted as A is the smallest closed
set containing A.

Definition A.2 (Interior of a set int (A)). The interior of a set A, denoted as intA is the
largest open set contained in A.

Definition A.3 (Boundary of a set ∂A). We use the notation ∂A := A \ int (A).

Proposition A.4 (Boundary is a closed set). The boundary ∂A is closed.

Proof. Trivially ∂A = A \ int (A) = A ∩ (int (A))c where int (A) is open and has a closed
complement. The intersection of closed sets is closed.

Definition A.5 (Connectedness). A topological space (X,T) is connected if it cannot be rep-
resented as the union of two disjoint nonempty open sets. Similarly, we could have subspaces
which are connected.
We say a subset of X is a connected component if making it bigger implies losing connectedness.

Proposition A.6 (Closure of connected set is connected).

A connected =⇒ A connected

Proof. Assume by contradiction that A is connected but A is not. Then, A is the union of (at
least two) disjoint nonempty open sets. By being open, it holds that:

A = B ∪ C, B ∩ C = ∅ =⇒ B ⊂ A,C ⊂ A =⇒ A = (A ∩B) ∪ (A ∩ C)

which contradicts the assumption that A is connected.

Proposition A.7 (Connected components are closed). For a topological space (X,T), if A ⊂ X

is a connected component, A is closed.

Proof. We have for free that A ⊂ A, and need to show the opposite. By Proposition A.6, for A
connected A is. By A being a connected component, it is the largest possible, so that A ⊃ A.
Eventually A = A and A is closed.
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Definition A.8 (Path-connectedness). Two points x, x′ in a topological space (X,T) are path-
connected if there exists a curve:

∃γ : [0, 1]→ X continuous γ(0) = x, γ(1) = x′

Clearly, such formalism allows to split the topological space into equivalence classes (i.e. collec-
tions of path connected points).

Observation A.9 (Connectedness notions). The existance of a connection curve is not equiv-
alent to the concept of connected component. Path connectedness implies connectedness, this is
easily proved by contradiction. The opposite is generally not true, but will hold in our application
since we are in Rn. This is proved in [SS05](Prop. 6.4.2).

A.2 Analysis

Definition A.10 (Sublevel sets). For a real valued function f : Rd → R the sublevel sets for a
given value c are clearly: {

x ∈ Rd ; f(x) ≤ c
}

Definition A.11 (Supremum norm ∥·∥∞). For functions defined on a set X the supremum norm
is:

∥f∥∞ = sup

{
|f(x)| : x ∈ X

}
Definition A.12 (Cauchy sequence). A sequence (fn) in a metric space (F, ∥·∥) is Cauchy
when:

∀n,m > N ∃ϵ ∥fn − fm∥ < ϵ

Definition A.13 (Complete space). A space F is complete with respect to a distance ∥·∥ if each
Cauchy sequence is convergent to an element of F.

Definition A.14 (Separable space). A topological space is separable if it contains a countably
dense subset. Namely, a sequence such that every non-empty open set of the topology contains
at least one element of the sequence.

Definition A.15 (Hilbert space). A F is a Hilbert space when it is paired with a valid inner
product, complete with respect to the distance induced by the inner product.
In the context of this paper, F is endowed with an inner product ⟨·, ·⟩ and a norm ∥·∥ by As-
sumptions 1.10.

Proposition A.16 (Norm is sup of inner products). For a normed space (X, ∥·∥) with an inner
product it holds:

∥x∥ = sup
x′∈X,∥x′∥=1

〈
x, x′

〉
And enlarging the space of functions over which we take the sup we get the trivial inequality:

∥x∥ ≤ sup
x′∈X,∥x′∥≤1

〈
x, x′

〉
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Proof. By Cauchy Schwarz and ∥x′∥ = 1:∥∥〈x, x′〉∥∥ ≤ ∥x∥ ∥∥x′∥∥ = ∥x∥

For the reverse inequality observe that:

∥x∥2 = ⟨x, x⟩ = ∥x∥
〈
x,

x

∥x∥

〉 ∥∥∥∥ x

∥x∥

∥∥∥∥ = 1

≤ ∥x∥ sup
{〈
x, x′

〉
:
∥∥x′∥∥ = 1

}
=⇒ ∥x∥ ≤ sup

{〈
x, x′

〉
:
∥∥x′∥∥ = 1

}

Definition A.17 (Semiconvexity or λ convexity). A function f : Rd → R such that for some
λ ∈ R the function f + λ| · |2 is convex

Proposition A.18 (Semiconvexity of smooth functions over compact domain).

f : X compact→ R smooth =⇒ f semiconvex

Definition A.19 (Positive p-homogeneity). for vector spaces X,Y a function f : X → Y is
positively p-homogeneous whenever:

f(λx) = λpf(x) ∀λ > 0, ∀x > 0

Proposition A.20 (Properties of homogeneous functions). Consider a positively p-homogeneous
function f . Then:

1. the (sub)derivative is positive (p− 1)-homogeneous
2. for f differentiable (neglect u = 0) it holds:

u · ∇f(u) = pf(u) u ̸= 0

Proposition A.21 (Local semiconvexity via sum of differentiable homogeneous and semicon-
vex). Consider two functions f and g. For f continuous, differentiable, 1-homogeneous, and g
semiconvex (Def. A.17) it holds that:

h = f + g semiconvex (locally)

meaning that ∀x0 there is a neighborhood that is semiconvex.

Proof. Without loss of generality we work in R.
From the hypothesis, f is differentiable and continuous and h is such that for λ ∈ R the map
x→ g(x) + λ|x|2 is convex, namely for all α ∈ (0, 1) and x, x′:

g(αx+ (1− α)x′) + λ|αx+ (1− α)x′)|2 ≤ α
(
g(x) + λ|x|2

)
+ (1− α)

(
g(x′) + λ|x′|2

)
Consider h evaluated at a point x0. Then interpolating with a factor α and another arbitrary
point x we conclude that for the same coefficient λ ∈ R:

h(αx0 + (1− α)x) + λ|αx0 + (1− α)x|2 = f(αx0 + (1− α)x) + g(αx0 + (1− αx))
+ λ|αx0 + (1− α)x|2

≤ f(αx0 + (1− α)x) + α

(
g(x0) + λ|x0|2

)
+ (1− α)

(
g(x) + λ|x|2

)
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Where we used the semiconvexity of g. We now concentrate on the f part and use continuity and
differentiability to perform a Taylor expansion around αx0 to obtain an affine function. Doing
so, since we aim to prove local subconvexity, we impose that the convex combination belongs to
a neighborhood of x0, in the sense:

αx0 + (1− α)x ≈ x : α→ 1

f(αx0 + (1− α)x) = f(αx0) +∇f
∣∣∣∣
αx0

(1− α)x+ O(|(1− α)x|) Taylor

= αf(x0) +∇f
∣∣∣∣
αx0

(1− α)x+ O(|(1− α)x|) homogeneity of f

= αf(x0)α
0∇f

∣∣∣∣
x0

(1− α)x+ O(|(1− α)x|) Prop. A.20#1

Where by Proposition A.20#1 we also derive that ∇f is constant (0-homogeneous) so that
∇f(x0) ≈ ∇f(x) and we conclude that in a neighborhood of x0 where the O correction is
neglected:

f(αx0 + (1− α)x) = αf(x) + (1− α)x∇f(x)
= αf(x) + (1− α)f(x) Prop. A.20#2

Which concludes the initial computation on h, proving it is semiconvex locally for the same
λ.

Definition A.22 (Lipschitz function). A function f such that:∥∥f(x)− f(x′)∥∥ ≤ C ∥∥x− x′∥∥ ∀x, y ∈ X× X for some C ∈ R

Namely the growth is bounded by the norm.

Proposition A.23 (Lipschitz derivative bounds Taylor expansions in norm). For a C2 function
f : X → Y with L-Lipschitz derivative it holds that the norm of the remainder of a first order
expansion is bounded:

∥f(x+ h)− f(x)− dfx(h)∥Y ≤
L

2
∥h∥2X

Proof. Doing a first order Taylor expansion by continuity:

f(x+ h) = f(x) + dfx · h+

∫ 1

0
(dfx+th − dfx)h dt

And clearly:

∥f(x+ h)− f(x)− dfx · h∥Y =

∥∥∥∥∫ 1

0
(dfx+th − dfx)h dt

∥∥∥∥
Y

≤
∫ 1

0
∥(dfx+th − dfx)h∥X dt

≤
∫ 1

0
L ∥th∥X ∥h∥X dt Lipschitz derivative

=
L

2
∥h∥2X
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Proposition A.24 (Projection onto convex set is Lipschitz). Let K ⊂ X be closed and convex
and X is normed, then: ∥∥projK(x)− projK(x′)

∥∥ ≤ ∥∥x− x′∥∥
Proof. By closedness of K it is possible to attain the minimization. By convexity:

∥x− projK(x)∥2 ≤ ∥x− [λk + (1− λ)projK(x)]∥2

= ∥x− projK(x)− λ(k − projK(x))∥2 ∀k ∈ K,∀λ ∈ (0, 1)

using the inner product and letting λ→ 0 we derive:

⟨x− projK(x), k − projK(x)⟩ ≤ 0 ∀k ∈ K

The same holds for x′: 〈
x′ − projK(x′), k − projK(x′)

〉
≤ 0 ∀k ∈ K

Using the particular solution for k = projK(x′) in the former and k = projK(x) in the latter
we get: 〈

x− y + [projK(x′)− projK(x)], projK(x′)− projK(x)
〉
≤ 0

from which we conclude that:∥∥projK(x′)− projK(x)
∥∥2 ≤ 〈

x− x′, projK(x′)− projK(x)
〉
≤

∥∥x′ − x∥∥∥∥projK(x′)− projK(x)
∥∥

and simplyfying the equation we get the claim.

Definition A.25 (Subgradient). For function f : Rd → R and a point u0 ∈ Rd a subgradient is
defined as:

p ∈ Rd : f(u) ≥ f(u0) + p · (u− u0) + O(u− u0) ∀u ∈ Rd

Definition A.26 (Subdifferential of a function at a point ∂f(u)). For a function f : Rd → R
and a point u ∈ Rd the set of subgradients is denoted as ∂f(u)

Proposition A.27 (Subdifferential structure). ∂f(u) is closed and convex ∀u.

Proof. [Roc70].

Definition A.28 (Coercive map). A linear and continuous map f : X→ Y, where X is Banach
and Y is Hilbert is coercive if:

∃c > 0 : ∥f(x)∥Y ≥ c ∥x∥X ∀x ∈ X

Definition A.29 (Closed map). A map f : X→ Y between Banach spaces such that for xn → x

in X and f(xn) → y in Y it holds f(x) = y. Here convergence is in the norm of the Banach
space.

Proposition A.30 (Characterization of Coercive maps). A continuous map f between two
Banach spaces X,Y is coercive then it is closed.

∃c > 0 : ∀x ∈ X ∥f(x)∥Y ≥ c ∥x∥X =⇒ f closed
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Proof. let (yn) ⊂ f(X) ⊂ Y. Since Y is Banach we know (yn) → y ∈ Y, and by assumption we
also have:

(xn) ⊂ X f(xn) = yn, (xn)→ x ∈ X

Clearly then:

0 ≤ ∥yn − f(x)∥ = ∥f(xn)− f(x)∥

And by continuity if ∥xn − x∥ → 0 so does the function application. We then force the value to
be between the continuity bound above and the coercivity bound below. By squeezing, it holds:

∥y − f(xn)∥Y → 0 =⇒ f(xn) = yn → y ∈ Y

Which is in line with the definition of closedness (Def. A.29).

Lemma A.31 (Grownwall’s Lemma). For f be a real valued continuous function on an interval
I, differentiable on the interior I0 of I. We say the interior is (a, b). Let β be continuous and
real valued on I as well. Then:

f ′(t) ≤ β(t)f(t) =⇒ f(t) ≤ f(a) exp
{∫ t

a
β(s)ds

}
∀t ∈ I

Definition A.32 (Vector field). A vector field is simply a vector valued function on a space.

In out case, the velocity is exactly a vector field.

Definition A.33 (Divergence operator div). For a smooth vector field E = (Ei)
d
i=1 : Rd → Rd

we define the divergence as:

div(E) =

d∑
i=1

∂Ei
∂xi

for any given point in Rd, it can be seen as the density of the outward flux at the limit.

A.2.1 Arzelà–Ascoli Theorem

Definition A.34 (Uniformly bounded family). A collection of continuous functions (fn)n∈N is
uniformly bounded on I = [a, b] when:

|fn(x)| ≤M ∀x ∈ [a, b],∀n

Definition A.35 (Uniform equicontinuity). A sequence of functions (fn)n∈N is uniformly equicon-
tinuous if each function shares the same limiting constants. Namely:

∀ϵ > 0∃δ(ϵ) := δ > 0 : |x− x′| < δ =⇒ |fn(x)− fn(x′)| < ϵ ∀n

Definition A.36 (Uniform convergence ⇒). A sequence (fn)n∈N such that fn : E → R is
uniformly convergent to f : E → R if:

∀ϵ > 0∃N ∈ N such that ∀n ≥ N, ∀x ∈ E |fn(x)− f(x)| < ϵ

Namely, there is a common bound on the distance after sufficiently large n. It is often written
as fn ⇒ f .
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In our setting we work with Topologies, but it is important to get the idea of the Theorem we
will need.

Theorem A.37 (Arzelà–Ascoli Theorem). We provide a weaker result. If a sequence of func-
tions (fn)n∈N continuous and real valued defined on I = [a, b] ⊂ R is such that equicontinuity and
boundedness hold uniformly over an interval I (Defs. A.34, A.35) then ∃k → n(k) subsequence
(fn(k))k∈N which is uniformly convergent to some f over I.

Definition A.38 (Topology of compact convergence). For a topological space (X,T) and a
metric space (Y, dY ) a sequence of functions (fn)n∈N where fn : X → Y ∀n converges compactly
to f : X → Y when:

∀K ⊆ X : compact fn(x)⇒ f(x)∀x ∈ K

Or in other words:
lim
n→∞

sup
x∈K

dY (fn(x), f(x)) = 0

Which is another classical definition of uniform convergence (Def. A.36) for metric spaces. .

Definition A.39 (Relative compactness or precompactness). For a topological space X a subset
K ⊂ X is precompact when its closure K is compact.

Theorem A.40 (Topological Arzelà–Ascoli Theorem). A sequence of functions fn such that
f : X → Y where:

• X is topological
• Y is Hausdorff uniform

collected in the bigger family F(X,Y ) of functions, belonging to the space of continuous functions
C(X,Y ) together with the topology of compact convergence (Def. A.38) is such that if H ⊂
C(X,Y ) is a set of equicontinuous functions then

H(x) precompact in Y (Def.A.39) ∀x ∈ X =⇒ H precompact in C(X,Y )

Proof. [Bou98](Chap. X, Num. 2, nr. 5).

A.2.2 Comments about Sard-type regularity

This formulation is sufficient for the context of our application. Note that when referring to
points we mean elements of the domain, while values are elements of the codomain of a function.
A good introductory reference with proofs of the two results is [Du16].

Definition A.41 (Regular values of a function). For g : Θ→ R a regular value α ∈ R satisfies:

• (part of range) ∃θ : g(θ) = α

• (regularity) g−1(α) ⊂ Agood ⊆ Θ where Agood is such that:
– it is open
– for θ ∈ Agood g is differentiable
– for θ ∈ Agood dg ̸= 0

If the inverse image is null, by convention α is a regular value.
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Definition A.42 (Critical points of a function). For a function g, a point θ for which there
are no associated regular values in the codomain is said to be a critical point. Intuitively, it is
a point in which the derivative is 0 or singular (null or inexistent in a neighborhood). For a
euclidean function f : Rn → Rm as in our case, this means that the Jacobian has rank < m.

Definition A.43 (Measure zero set). A set A ⊂ Rm has measure zero if:

∀ϵ > 0∃(Un)n∈N, Un open ∀n
⋃
n

Un ⊃ A,
∑
n

|Un| < ϵ

Namely, there is an arbitrary small in volume (norm) countable collection of sets that covers the
whole set A. This idea originates from the fact that sets of this kind have the peculiarity that
their realization is negligible.

Theorem A.44 (Regular value Theorem). Let g : Rn → Rm be smooth and α ∈ Rm be a regular
value of g. Then g−1(α) is a submanifold of dimension n−m.

Lemma A.45 (Morse-Sard Lemma). Consider a function f : Rn → Rm. Let the set C ⊂ Rn be
the collection of all critical points (Def. A.42) of the function f . Then, f(C) ⊂ Rm has measure
zero in the sense of Definition A.43.

A.3 Measure Theory

A good reference from the statistics side is the first two chapters of [Çin11].

Definition A.46 (Set of measures M(Θ) setting). With the symbol M(Θ) the authors refer to
finite (i.e. µ(Θ) < ∞) signed measures on Rd, endowed with the borel sigma algebra B(Θ),
concentrated on X ⊂ Rd.

Definition A.47 (Support spt ·). For support of a measure we mean the complement of the
largest open set of measure zero. Equivalently, it could be the closed set of points that have non
zero measure neighborhoods.

Definition A.48 (Concentrated measure). We say a measure is concentrated on X ⊂ Rd when
Sc ⊂ N : µ(N) = 0. Clearly then µ is concentrated on sptµ

Theorem A.49 (Jordan Decomposition Theorem). For any µ ∈ M(Rd) there is a decomposi-
tion:

µ = µ+ − µ−, µ+, µ− ∈M+(Rd)

Proof. [Coh13](Cor. 4.1.6), [Fis12].

Corollary A.50 (Minimality property of Jordan decomposition). If a measure µ has a Jordan
decomposition, then:

µ = µ+ − µ− µ+, µ− ∈M+(Rd)

It holds:
µ+(B) = sup

A∈B(Rd),A⊂B
µ(A) µ−(B) = − inf

A∈B(Rd),A⊂B
µ(A)

And for any other decomposition of µ into finite non-negative measures on Rd it holds:

µ = ν+ − ν− =⇒ ν+ ≥ µ+ ν− ≥ µ−

Namely, the Jordan decomposition is the minimal decomposition of µ into non negative measures.
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Proof. [Fis12].

Definition A.51 (Variation and total variation norm). Upon choosing µ+, µ− with minimal
total mass (µ+(Rd) minimal and similar), which we can choose since the measures are assumed
to be finite (Def. A.46), define:

• Variation |µ| = µ+ + µ−, a measure
• total variation norm |µ|(Rd)

Definition A.52 (Pushforward T#µ). Let X,Y be measurable sets, and T : X → Y a measur-
able map. Then for any measure µ ∈M(X) there corresponds a measure T#µ ∈M(Y ) which is
the pushforward of µ by T . In particular

T#µ : Y → R+ T#µ(B) = µ(T−1(B)) ∀B ⊂ Y,B measurable

Definition A.53 (Integrability with respect to a measure). We say a function φ is integrable
with respect to a measure µ whenever: ∫

|φ(x)|dµ <∞

Or say that such function is µ-integrable.

Proposition A.54 (Change of variable formula). A pushforward map and a measurable function
φ : Y → R such that φ ◦ T is µ-integrable satisfy:∫

Y
φd(T#µ) =

∫
X
φ ◦ Tdµ

Proof. [Coh13](Prop. 2.6.8).

Definition A.55 (Marginal πi#·). We denote as marginal of a measure the projection into a
single dimension of the underlying space through the map:

πi : (x1, . . .)→ xi

which is the pushforward πi#µ

Definition A.56 (Weak convergence or narrow convergence). A sequence of measures (µn) ∈
M(Rd) is weakly convergence to µ when:∫

φdµn →
∫
φdµ ∀φ : Rd → R bounded countinuous

Definition A.57 (Bounded Lipschitz Norm). For a measure µ ∈M(Rd) the bounded Lipschitz
norm is:

∥µ∥BL := sup

{∫
φdµ ; φ : Rd → R, Lip(φ) ≤ 1, ∥φ∥∞ ≤ 1

}
Where Lip(φ) is the smallest Lipschitz constant for φ and ∥·∥∞ is the supremum norm.

Proposition A.58 (Equivalence of weak and bounded Lipschitz norm convergence). Consider
a sequence (µn) such that it is bounded in total variation. Then:

weak convergence ⇐⇒ lim
n→∞

∥µn∥BL = ∥µ∥BL
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Proof. [Bog07](Sec. 8.3).

Definition A.59 (σ-finite measure). A measure is σ-finite if a partition of its space gives finite
measure to all subsets.

µ ∈M(Ω) ∃(An) ⊂ Ω, µ(An) <∞∀n,
⋃
n

An = Ω

Definition A.60 (Singular measures, absolutely continuous measures). We briefly recall useful
relations between measures. let µ, ν ∈M(Ω):

• singularity µ ⊥ ν ⇐⇒ sptµ ∩ sptµ = ∅ sptµ ∪ spt = Ω

• absolute continuity µ≪ ν when ν(B) = 0 =⇒ µ(B) = 0∀B ∈ sptµ

The latter is also used, with the additional assumption of σ-finiteness, as an hypothesis for the
Radon Nykodym theorem, which states the a.e. unique existance of the function f :

∫
A dµ =∫

A fdν for all plausible A.

Proposition A.61 (Finite measure expression). Any finite measure µ ∈ M(Ω) can be decom-
posed into a probability measure and a function integrable by the latter.

µ finite =⇒ ∃σ ∈ P(Ω), f ∈ L1(σ) µ = fσ

Proof. For |µ|(Ω) = 0 any probability measure and f ≡ 0 satisfy the claim.
For |µ|(Ω) ̸= 0 we could say:

µ(A) =

∫
A
dµ

=

∫
A
|µ|(Ω)︸ ︷︷ ︸
:=f

d

 dµ

|µ|(Ω)︸ ︷︷ ︸
:=σ


=

∫
A
fdσ f ∈ L1(σ), σ ∈ P(Ω) ∀A

Theorem A.62 (Lebesgue decomposition). Let µ, ν be σ-finite on a measurable space. Then:

∃µ∗, µ⊥ : ν = µ∗ + µ⊥

Where µ∗ = fµ ≪ µ, f ∈ L1(µ) (absolutely continuous part) and µ⊥ is singular wrt µ (inde-
pendent part).

Proof. [Coh13](Thm. 4.3.2)

A.4 Optimal Transport

Definition A.63 (p-Wasserstein metric for measures). Let µ, ν ∈ P(Rd) and Π(µ, ν) ⊂ P(Rd ×
Rd) be the space of measures of which marginals coincide with µ on the first factor and ν on the
second. Then:

Wp(µ, ν) :=

(
min

γ∈Π(µ,ν)

∫
|y − x|pdγ(x, y)

) 1
p
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Definition A.64 (Notation for P2(Rd)). We denote:

P2(Rd) :=
({

µ ∈ P(Rd) |
∫
|x|2dµ <∞

}
, W2(µ, ν)

)
Meaning the tuple of probability measures with finite second moments and the W2 distance.

Proposition A.65 (Completeness of P2(Rd)). The tuple P2(Rd) is complete in the sense of
Definition A.13.

Proof. [Vil09](Thm. 6.18), but also Section 6 in general.

Proposition A.66 (Convergence equivalence). A sequence (µm) ∈ P2(Rd) is such that:

lim
m→∞

µm = µ ∈ P2(Rd) ⇐⇒ lim
m→∞

(∫
φdµm

)
=

∫
φdµ ∀φ : Rd → R continuous, subquadratic

Where by subquadratic we mean that the functions φ have at most quadratic growth.
Note that requiring subquadratic growth it could still be the case that limx→∞ φ(x) =∞, mak-
ing it possibly unbounded. Then, this result is stronger than weak convergence.

Proof. [AGS05](Prop. 7.1.5).

Definition A.67 (Duality Formula for W1). This is the definition of [San15], (Eqn. 3.1).
For a distance cost function such as our case it holds:

W1(µ, ν) = min
γ

∫
Ω×Ω
|y− x|dγ(x, y) = max

Lip(u)≤1

∫
Ω
ud(µ− ν) = max

Lip(f−g)≤1

∫
Ω
f(x)dµ−

∫
Ω
g(y)dν

Proposition A.68 (Order of norms). Using the duality formula of W1 and Jensen’s inequality:

∥µ− ν∥BL ≤W1(µ, ν) ≤W2(µ, ν)

Here by Jensen’s inequality we mean:

ρ

(∫
xdµ)

)
≤

∫
ρ(x)fdµ

For ρ a convex function. Then we basically prove in general Wp ≤Wq for p ≤ q.
In terms of duality, intuitively, it is a switch of sup and min to make W1 comparable with the
BL norm.

Lemma A.69 (Wasserstein continuity of F ). Under Assumptions 1.10 the function F of Equa-
tion 1.9 is continuous for the metric W2(·, ·). Namely:

∀ϵ > 0∃δ > 0 s.t. W2(µ, ν) < δ =⇒ |F (µ)− F (ν)| < ϵ

This is not common for Wasserstein Gradient Flows.
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Proof. The statement is equivalent to:

(µm) ⊂ P2(Ω), µ ∈ P2(Ω), (µm)
W2→ µ =⇒ F (µm)

|·|→ F (µ) (♢)

We will prove ♢.
Consider the hypothesis. Then, by Assumption 1.10-3.(c) the norms ∥Φ∥ and |V | have at most
quadratic growth. Indeed we bound the sup of their differentials to be sublinear. Then:

•
∫
V dµm →

∫
V dµ (by Prop. A.66)

• By the properties of Bochner Integrals [Coh13](Prop. E5) also:

∥∫ Φdµm − ∫ Φdµ∥ ≤
∫
∥Φ∥ d(µm − µ)

Which implies that strongly in F:∫
Φdµm →

∫
Φdµ =⇒ R

(∫
Φdµm

)
|·|→ R

(∫
Φdµ

)
since R is just a loss between functions and the arguments converge in their functional
norm ∥·∥.

So that for µm → µ it holds:

|F (µm)− F (µ)| =
∣∣∣∣R(∫

Φdµm

)
+

∫
V dµm −R

(∫
Φdµ

)
−
∫
V dµ

∣∣∣∣
≤

∣∣∣∣R(∫
Φdµm

)
−R

(∫
Φdµ

)∣∣∣∣+ ∣∣∣∣∫ V dµm −
∫
V dµ

∣∣∣∣
|·|→ 0

which proves the claim.

Definition A.70 (Absolutely continuous function). (easy case)A function f : R → Rd such
that:

1. f is a.e. differentiable, meaning ∃ ddtf ∀t excluding those with measure zero
2. f(t)− f(s) =

∫ t
s f

′(r)dr ∀s < t

(almost general case) for a metric space (X, d) a function f : I → X where I ⊂ R is
absolutely continuous if ∀ϵ > 0∃δ > 0 such that for a disjoint finite collection of subintervals
{[tk, t′k]}nk=1 ⊂ I it holds:

n∑
k=1

|t′k − tk| < δ =⇒
n∑
k=1

d(f(t′k), f(tk)) < ϵ

The former is rather the Lebesgue type definition of absolute continuity, a result of additional
reasonings. We briefly list them for the sake of understanding the objects in place:

1. almost general case =⇒ bounded variation
2. apply Jordan decomposition (Thm. A.49) by bounded variation
3. Jordan decomposition holds a.s. and we split the function into two
4. use Lebesgue differentiation theorem to both, both are differentiable a.e.
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5. the sum of differentiable a.e. functions is differentiable a.e.
6. absolutely continuous functions arise as Lebesgue integrals of those derivatives

Also the notion requires a finite collection of intervals since it is easily recovered for an countably
infinite case as well. The trick is just setting a ϵ

2 bound on the finite sum on the LHS and sum
over n.

We show next that the Wasserstein Gradient flow in our setting is just the pushforward of
the intial measure dragged by the velocity fields. Namely, if it exists, then it has a specific
relationship with the velocity.

Lemma A.71 (A classical Wgf representation). Consider the setting or Proposition 2.26.
Namely:

• Assumptions 1.10 hold
• the starting measure µ0 ∈ P2(Ω) is concentrated on Qr0 ⊂ Ω where r0 > 0

Then a Wgf (µt)t≥0 with velocity fields (vt)t≥0 is such that a flow of the form29

X : R+ × Ω→ Ω X(0, u) = u ∂tX(t, u) = vt(X(t, u)) a.e. t ≥ 0

is:

• uniquely well-defined
• continuous
• X(t, ·) is Lipschitz on Qr, uniformly on compact time intervals ∀r > 0

• such that the homeomorphism µt = (Xt)#µ0 holds

Proof. In [AGS05] it is shown how the velocity field vt on Qr satisfies a Lipschitz uniform on
compact time intervals bound (Lem. 8.1.4).
The pushforward identity is a property of the continuity equation [AGS05](Prop. 8.1.8).

A.5 Distribution Theory

The following subsection aims to explain the intution behind distributional solutions for Differ-
ential Equations. It is mostly a rewrite of [CG21](Sec. 2.7), and other sources, mentioned by the
authors [WZ77; Bre11; Rud13]. It serves as an introduction to the tools needed for Subsection
B.2. We denote the space of linear and continous functionals (i.e. the dual space) of Lp(Ω) as
(Lp(Ω))′.

Proposition A.72 (Subsequence a.s. convergence by convergence in norm). Consider Ω ⊆ Rd

measurable and p ∈ [1,∞]. For (fm) ⊂ Lp(Ω), f ∈ Lp(Ω) it holds:

fm
Lp

→ f =⇒ ∃k → m(k) fm(k)
a.s.→ f

Namely, there is a subsequence which tends to f for almost every x ∈ Ω. For p =∞, the whole
sequence converges.

Definition A.73 (Hölder conjugates). Two numbers p, q ∈ [1,∞] such that 1
p +

1
q = 1.

29this is a description of how the parameters evolve according to the velocity
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Proposition A.74 (Hölder’s Inequality). In a measure space (S,Σ, µ) let p, q ∈ [1,∞] be
Hölder’s conjugates (Def. A.73). Then for all Borel functions f, g defined on S it holds:

∥fg∥L1(µ) ≤ ∥f∥Lp(µ) ∥g∥Lq(µ)

Theorem A.75 (Riesz Representation for Dual spaces). For Ω ⊂ Rd measurable and p ∈ [1,∞),
q ∈ (1,∞] its Hölder conjugate (Def. A.73) it holds:

∀φ ∈ (Lp(Ω))′
{
∃!u ∈ Lq(Ω) : ⟨φ, f⟩ =

∫
Ω uf ∀f ∈ Lp(Ω)

∥u∥Lq = ∥φ∥(Lp)′

That is, we can identify the space of linear and continuous functionals of Lp with Lq where q
is Hölder conjugate with p. Notice however that this does not hold for p = ∞, where we should
provide further care.

We are now in the position to recover a different perspective on weak convergence in Lp.

Definition A.76 (Weak convergence in integrable functions space). We refine the notions of
convergence for Ω ⊂ Rd measurable, p ∈ [1,∞], q its Hölder conjugate:

• p ∈ [1,∞), (fm) ⊂ Lp(Ω), f ∈ Lp(Ω):∫
Ω
fmφ→

∫
Ω
fφ ∀φ ∈ Lq(Ω) =⇒ fm

w→ f

• p =∞, (fm) ⊂ Lp(Ω), f ∈ Lp(Ω):∫
Ω
fmφ→

∫
Ω
fφ ∀φ ∈ L1(Ω) =⇒ fm

w∗→ f

Thanks to this updated notion of weak and weak* convergence, we can enlarge our perspective.
Define, for Ω ⊂ Rd open the space:

D(Ω) := {f ∈ C∞(Ω) : spt f compact in Ω}

Which means infinitely smooth functions vanishing at the boundary of the domain. Such func-
tions have a very nice property.

Proposition A.77 (Compactly supported functions are dense in good integrable spaces). For
Ω ⊂ Rd measurable and p ∈ [1,∞) the set D(Ω) is dense in Lp(Ω). Notice that we are leaving
out the special case p =∞.

Definition A.78 (Locally integrable space Lploc(Ω)). For Ω ⊆ Rd open , p ∈ [1,∞] we give a
symbol to the space:

Lploc(Ω) := {f ∈ L
p(K),∀K ⊂ Ω, K compact}

Namely, well-behaved functions except at the boundary of Ω.

Definition A.79 (Local norm convergence). The natural modification to Lp convergence for
elements in Lploc for (um) ⊂ Lploc(Ω), u ∈ L

p
loc(Ω) is:

um
Lp(K)→ u ∀K compact =⇒ um

Lp
loc→ u
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Lemma A.80 (Fundamental Lemma of Calculus of variations). We have two statements:

1. Ω ⊆ Rd open, f ∈ L1
loc(Ω):∫

Ω
fφ = 0 ∀φ ∈ D(Ω) =⇒ f

a.s.
= 0

2. For (a, b) ⊂ R and g, h ∈ C0[a, b]∫ b

a
(g(t)v(t) + h(t)v̇(t)) dt = 0 ∀v ∈ C1[a, b] : v(a) = 0, v(b) = 0 =⇒ h ∈ C1[a, b], ḣ = g

The second statement is also used to derive the famous Euler-Lagrange Equation for Calculus
of Variations. If it is verified, it might be easier to read it as:∫ b

a
ḣ(t)v(t) dt = −

∫ b

a
h(t)v̇(t) dt

or by highlighting the integration by parts we may perform:∫ b

a
ḣ(t)v(t) dt+

∫ b

a
h(t)v̇(t) dt =

∫ b

a
h(t)v(t) dt = 0

Now, we refer to multi-index as vectors α ∈ Nd with |α| =
∑d

i=1 αi. This notation allows us
to define convergence D(Ω).

Definition A.81 (Convergence in smooth compactly supported functions). Denote the α ∈ Nd

derivative as:

Dαφ =
∂|α|φ

∂xα1
1 · ∂x

αn
n

Then for (φk) ⊂ D(Ω), φ ∈ D(Ω) we say the sequence converges to φ and write φk
D(Ω)→ φ if the

following hold:

• the sequence is concentrated on a compact subset of the domain, namely ∃K ⊂ Ω compact
such that sptφk ⊂ K∀k ∈ N

• all the derivatives converge uniformly (Def. A.36), namely:

Dαφk ⇒ Dαφ ∀α ∈ Nd

Given a convergence notion, we can identify the space of distributions, as linear and continuous
functionals on compactly supported smooth functions.

Definition A.82 (Space of distributions D′(Ω)). The set of functionals which are linear and
continuous and emerge from convergence of smooth differentiable functions:

D′(Ω) :=

{
Λ(φ) : D(Ω)→ R, Λ(φk)→ Λ(φ) ∀(φk) : φk

D(Ω)→ φ

}
We denote the application of the functional Λ ∈ D′(Ω) to the function φ ∈ D(Ω) as ⟨Λ, φ⟩ :=
Λ(φ).
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Definition A.83 (Convergence of distributions). For a sequence of distributions (functionals)
(uk) ⊂ D′(Ω) and u ∈ D′(Ω) we define convergence in the sense of distributions:

⟨uk, φ⟩ → ⟨u, φ⟩ ∀φ ∈ D(Ω)

and denote it as uk
D′(Ω)→ u.

Definition A.84 (Distributional derivative). Let u ∈ D′(Ω) and α ∈ Nd. The α-derivative of
the distribution Dαu is a distribution defined as:

⟨Dαu, φ⟩ := (−1)α ⟨u,Dαφ⟩ ∀φ ∈ D(Ω)

A.5.1 Intuition for distributional derivatives

We are basically defining the derivative of something which might not be differentiable in terms
of a duality with the space of functions that are smooth, differentiable, and vanishing at the
boundary (on a compact support). This is inspired from integration by parts. To give a mo-
tivating example without much detail consider the sufficiently regular case30 in which we do a
first derivation: ∫

Ω
u′φ =

∫
Ω
uφ−

∫
Ω
uφ′

Where we hope for the first term to be null.
For a real valued function and a vector field, namely u,V we could apply the algebra of divergence

div(uV) = u∇V + Vdiv(u)

and by the divergence theorem:∫
∂Ω
uV · n⃗ =

∫
Ω
div(uV) =

∫
Ω
u∇V +

∫
Ω

Vdiv(u) (A.85)

Where we recognize on the RHS the decomposition of integration by parts of the two derivatives
alternated, and on the LHS a boundary integral. The latter is null since φ ∈ D(Ω), and the
support does not reach the boundary ∂Ω.

B Auxiliary Results

B.1 Gradient Flow

For more references on Gradient Flows we refer to [AGS05]. This is basically a rewrite of a
useful blog post [Bac20b].
Gradient descent implements a discrete update for differentiable functions of the form Fm(u):

un+1 = un − ϵ∇Fm(un) ϵ > 0

30Smooth boundary and u ∈ C1(Ω), φ ∈ D(Ω)
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Figure 8: Gradient Flow static, Source [Bac20b]
Trajectories start at green points and end at black points. Below a GIF version of the

dynamics.

We will see that this is a discretization of the dynamics on a space Ω described by:

u′(t) = V(u(t)) =

 vt(u1(t))
...

vt(um(t))

 = −∇Fm(u(t))

Where V is interpreted as the velocity of evolution.
Indeed, we can interpret the update as a function:

X : R+ → Ω un = X(nϵ)

Where ϵ is the step size. By the differentiability of Fm, the expression is also seen by a Taylor
expansion:

t = nϵ X(t+ ϵ) = un+1 = un − ϵ∇Fm(un) = X(t)− ϵ∇Fm(X(t))

which is a piecewise affine interpolation obtained by discarding the remainder O(ϵ). Which for
stepsize ϵ→ 0 is an ODE:

lim
ϵ→0

X(t+ ϵ)−X(t)

ϵ
= X ′(t) = −∇Fm(X(t))

Up to regularity assumptions which are verified in our case, see Proposition 2.3. Although we
established an ODE for X(t), it is evident that by X(t) = unϵ we are defining a gradient flow
of u with steps in the whole R+. A very interesting property is that the underlying function
decreases along the trajectory:

d

dt
Fm(X(t)) = ∇Fm(X(t))T

d

dt
X(t) = ∇Fm(X(t))T (−∇Fm(X(t))) = −∥∇Fm(X(t))∥22 ≤ 0
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Figure 9: Animated version of Figure 8, Source [Bac20b]
Convergence to different local minima.

And if convergence holds, it is necessarily at a stationary point with ∇Fm(X(t)) = 0, otherwise
the dynamics would not stop. A different viewpoint is to question whether the dynamics converge
or oscillate indefinitely. This is discussed at the proper time in the document.
Concerning Wasserstein Gradient Flows for probability measures, the construction of Definition
2.9 is much more elaborate. To grasp an intuition, a classical reference is [AGS05], while a review
is [San17]. For examples of different formulations, it is also possible to consider this publication
[Fan+22] and two interesting blogs discussing the topic [Rot20; Ans20].

B.2 Continuity Equation

This Section is more intuition based, for a rigorous treatment, see [Amb03](Prop. 16.3), [AGS05](Thm.
8.3.1), [AG13](Thm. 2.29), [San15](Sec. 4.2). There, the specific integrability condition is
proved, as well as more comments are made on the space of test functions and the various for-
mulations that can be done depending on the assumptions.
We inspect the dynamics of a measure µ ∈M(Ω) expressed as (µt) being under the influence of
a field (vt).

Continuity equation the authors claim that arguments from fluid mechanics suggest that
the relationship between vector field and mass satisfies the continuity equation:

∂tµt = −div(vtµt) in (0,∞)× Ω (B.1)

Yet we are not restricted to smooth densities in our setting, and need to resort to a distributional
description of the identity.
We now recognize that the continuity equation B.1 can be interpreted in the distribution sense
as per Definition A.84. In particular, a measure µ induces a distribution via Definition A.83:

⟨µ, φ⟩ =
∫
φdµ φ ∈ D((0,∞)× Ω)
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So that we work on (0, T )×Ω where the measure is indexed by time µ : (0, T )→ P2(Rd). We are
now in the position to give more context to the statement. Indeed for all compactly supported
test functions φ the distributional derivatives are:

⟨∂tµt, φ⟩ = −⟨µt, ∂tφ⟩

Regarding the vector field, we could perform the following switch:

⟨µtvt, φ⟩ = ⟨µt, vtφ⟩ =
〈
µt, (v

(1)
t , . . . , v

(d)
t )φ

〉
=

(〈
µt, v

(1)
t φ

〉
, . . . ,

〈
µt, v

(d)
t φ

〉)
= ⟨µt, vt · φ⟩

from which we infer for E = µtvt a vector field:

⟨div(E), φ⟩ = −⟨E,∇uφ⟩ See Subsec. A.5.1

= −⟨µt, vt∇uφ⟩ switch above

Therefore an adaptation of Lemma A.80 eventually gives us the definition stated by the authors
[CB18]:

0 = ⟨φ, ∂tµt + div(µtvt)⟩ = −
〈
µt,

d

dt
φ+ v · ∇uφ

〉
=⇒

∫ ∞

0

∫
Ω
(∂tφt(u) +∇uφt(u) · vt(u)) dµt(u)dt = 0

Which holds for all φ ∈ D((0, T )× Ω).
Namely ∀φ : (0,∞)× Rd test functions over the optimization space and time such that:

• φ is smooth
• spt φ is compact

It holds that∫ ∞

0

∫
Rd

(
∂tφt(u) +∇uφt(u) · vt(u)

)
dµt(u)dt = 0 distributional version of B.1 (B.2)∫ t0

0

∫
Rd

|vt(u)|dµ(u)dt <∞ ∀t0 < T integrability condition holds (B.3)

Where the integrability condition is a requirement we do not comment on. A reference is
[AGS05](Thm. 8.1.3).
The continuity equation can be seen as a conservation of mass constraint. The integrability
condition is that guaranteeing absolute continuity in W2. For more context, the references at
the beginning of this subsection should be satisfactory.

B.3 Applying Hölder’s inequality to the transport cost

We provide a result which is sufficient for the proofs of the document. In our context, the
transportation cost defined in Equation 2.13 benefits from Hölder’s inequality (Prop. A.74). We
briefly recall the expression:

Cp(γ) :=

(∫
|y − x|pdγ(x, y)

) 1
p

p ≥ 1

And aim to show that in the probability space (Ω×Ω,B(Ω×Ω, γ) where Ω is a Euclidean space
we have:

C2
1 (γ) ≤ C2

2 (γ)
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To do so, we simply use the fact that p = 2 is Hölder conjugate with itself, so that the inequality
reads:∫

Ω×Ω
|fg|dγ(x, y) = ∥fg∥L1(γ) ≤ ∥f∥L2(γ) ∥g∥L2(γ) =

(∫
Ω×Ω
|f |pdγ(x, y)

)(∫
Ω×Ω
|g|qdγ(x, y)

)
which for an appropriate choice of Borel functions f = y − x and g ≡ 1, after squaring, is
equivalent to the result we look for. Indeed:

C2
1 (γ) =

(∫
|y − x|dγ(x, y)

)2

= ∥fg∥2L1(γ) f = y − x, g ≡ 1

≤
(
∥f∥L2(γ) ∥g∥L2(γ)

)2

=

(∫
|f |2dγ(x, y)

)2(∫
|g|2dγ(x, y)

)2

=


∫
|y − x|2dγ(x, y)︸ ︷︷ ︸

=C2(γ)


2∫

|1|2dγ(x, y)︸ ︷︷ ︸
=1


2

γ is a probability measure

= C2
2 (γ)

B.4 Neural Networks regularity check

In the statement of Theorem 4.5 it is assumed that the boundary conditions (Ass. 3.4#3-(a))
hold. Below we briefly touch upon why this is required for a self-contained result. Consider the
easiest possible functional loss with respect to the optimal Bayes regressor31:

R(f) = ∥f − f∗∥2F
Recall the notion of regular value (Def. A.41), for a candidate function:

F ∋ f = R′
(∫

Φdµ

)
=

∫
Φdµ− f∗ µ ∈ P2(Ω)

and the construction of the function of regular values (Lem. 4.4):

gf (rθ) := ⟨f, ϕ(rθ)⟩ =
∫
f(x)σ(rθ · (x, 1))dρx(x)

r→∞
⇒

∫
θ·(x,1)≥0

f(x)dρx(x) = gf (θ)

Where the limiting function is continuously differentiable on Sd−2 if:

• ρx ∈ C0(Rd−2)

• f is bounded continuous (this holds by the construction of f =
∫
Φdµ− f∗)

If these two hold then gf (r·) → gf is in C1. The problem is that the requirement for f is
not restricted. The function is not guaranteed to have d − 1 derivatives, which require d − 1

µ-bounded moments since they are inside the integral in dµ. The measure µ only belongs to
P2(Ω). For this reason, Morse Sard (Lem. A.45) is not applicable.

31A regressor that minimizes the probability of making a mistake. It is safe to assume it is smooth. In principle
one could also assume that the true underlying function or generative model is smooth and reason equivalently.
We just need f to be nice.
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