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Introduction

Content

Mostly an exploration of the results of [CB18]

Also a video presentation of the publication [Ins19] and two blog
posts made by the authors [Bac20a; Chi20]

The focus is on two layer sigmoid neural networks, and all the
theoretical results needed to understand them.

Ideally, a sufficient explanation for a beginner

The doc at this link has the proofs, a wide Appendix section and lots
of references (80 pages)
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Introduction

Boxes I

This is a definition

Here I define something

This is a theorem

Something is gnihtemoS backwards

This is an assumption

assumptions are purple boxes

A remark an observation or an example

for example, I observe or remark that this is an observation
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Introduction

Partial Notation

in Rd scalar products ·, norms | · |
in a Hilbert space F scalar product 〈·, ·〉 and norm ‖·‖
norms of nonlinear operators ‖·‖
differential of f at x as dfx

M(Rd) the set of finite signed Borel measures on Rd

δx a dirac mass at x

P2(Rd) the set of probability measures endowed with Wasserstein
distance:
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Introduction

Symbols and colors instead of proofs

Some parts are advanced, and even the 80 pages document avoids the
discussion. For the sake of the presentation, tecnnical aspects are left
aside, instead we use:

means good for what we want to do

means bad for what we want to do

means difficult, overlooked, taken as granted

orange to highlight things that are connected in the exposition
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Introduction

A motivating example

Consider a dataset of images where Y = {−1, 1} {dogs, cats}. The
sizes usually exceed n, d > 106. A neural network (NN) is implemented.
It could be described as a nonlinear predictor with general form:

h(x , θ) = θTl σ(θTl−1σ(. . . σ(θT2 σ(θT1 x)))

Where l denotes the number of layers before the output and σ is a
nonlinearity (e.g. a sigmoid). Observe that the nonlinearity is in the
parameters in this case.
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Introduction

Cats VS Dogs NN visualized

Figure: Idealized Animation of a simple Neural Network. Source Github

Simone Maria Giancola (UniBocconi) OT for Neural Networks Real Analysis II, Jan 2023 9 / 114

https://github.com/ReiCHU31/Cat-Dog-Classification-Flask-App


Introduction

Solving Cats VS Dogs

Assume our data sample is a collection of pairs D = {(xi , yi )}ni=1 where
xi ∈ X ⊂ Rd−2 and yi ∈ Y ⊂ R. The two signals come from an unknown
distribution ρ(x , y). We aim to build a prediction function
h : Rd−2 × Rd−1 → R parametrized by θ ∈ Rd−1. Such function h(·, θ) is
fitted against:

Regularized Empirical Risk Minimization

θ∗ = arg min
θ∈Rd−1

1

n

n∑
i=1

`(yi , h(xi , θ)) + λΞ(θ) (1)

Where:

` : R× R→ R+ is a convex loss function

Ξ : Rd−1 → R+ is an (optional) regularization function

λ (optional) is a Lagrange coefficient

Simone Maria Giancola (UniBocconi) OT for Neural Networks Real Analysis II, Jan 2023 10 / 114



Introduction

Mimicking the ”world” of Cats VS Dogs

Since we observe a sample D of the underlying distribution ρ(x , y) what
we actually wish to mimic is a minimization of the test error wrt θ.

Expected Risk

R : F → R+ R(h) = Eρ(x ,y)

[
`(y , h(x , θ))

]
(2)

which is in most reasonable cases convex by the convexity of `. Here, F
is a Hilbert spacea

aComplete wrt to the distance induced by an inner product

This problem is convex in the function but non convex in the parameters!
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Introduction

Linear VS nonlinear

A plethora of research questions have been solved when considering linear
models of the form h(x , θ) = θTΦ(x)

Theory and practice meld together beautifully

Gradient Descent and faster techniques lead to satisfactory results

This is not happening in nonlinear parametric optimization, where the
optimization is non convex. Gradient descent suffers from many issues,
including but not limited to:

stationary points

local minima

plateaux

bad initialization
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Introduction

Results in the nonlinear setting

There are local guarantees [Jin+18; Lee+], but global efficient
convergence is impossible to prove a priori. Some results up to very
strong assumptions are:

Most local minima are equivalent [Cho+15]

no spurrious local minima [SJL22]

other results up to different assumptions [JK17]
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Introduction

Why and What in one slide

Neural Networks proved to be instrumental for hard tasks where linear
models do not perform well, and open the door to higher flexibility in
terms of model design.

A theoretical work on one of the simplest models will be analyzed.
We will see how two layer sigmoid neural networks of the form

φ(θ) = σ

(
d−2∑
i=1

θixi + θd−1

)

fall under the umbrella of a much broader class of optimization
problems which has global optimization guarantees up to conditions
to be specified.

Such results are achieved thanks to techniques involving Wasserstein
Gradient Flows, a byproduct of Optimal Transport [CB18].
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Introduction

Recap

The problem of (1)

θ∗ = arg min
θ∈Rd−1

1

n

n∑
i=1

`(yi , h(xi , θ)) + λΞ(θ)

seen as the empirical version for a sample D from a distribution ρ as (2):

R : F → R+ R(h) = Eρ(x ,y)

[
`(y , h(x , θ))

]
(5)

is difficult but interesting for nonlinear parametric functions such as

Sigmoid NNs φ(θ) = σ
(∑d−2

i=1 θixi + θd−1

)
but:

we need to understand how [CB18] describes them and under which
principles

we do not now why this holds

Simone Maria Giancola (UniBocconi) OT for Neural Networks Real Analysis II, Jan 2023 17 / 114



Introduction

Recap

The problem of (1)

θ∗ = arg min
θ∈Rd−1

1

n

n∑
i=1

`(yi , h(xi , θ)) + λΞ(θ)

seen as the empirical version for a sample D from a distribution ρ as (2):

R : F → R+ R(h) = Eρ(x ,y)

[
`(y , h(x , θ))

]
(5)

is difficult but interesting for nonlinear parametric functions such as

Sigmoid NNs φ(θ) = σ
(∑d−2

i=1 θixi + θd−1

)
but:

we need to understand how [CB18] describes them and under which
principles

we do not now why this holds

Simone Maria Giancola (UniBocconi) OT for Neural Networks Real Analysis II, Jan 2023 17 / 114



Formulation

Lecture Path

1 Introduction

2 Formulation

3 Methods
Gradient Flows
Optimization

4 Application

5 Takeaways

Simone Maria Giancola (UniBocconi) OT for Neural Networks Real Analysis II, Jan 2023 18 / 114



Formulation

Functional Optimization Perspective

We save our discussion on Neural Networks for the last section and focus
on a functional optimization problem. Informally:

Instead of minimizing in terms of parameters, we minimize in terms of
functions arising from parameters using R : F → R+

A solution will be a combination of elements from the parametric
space {φ(θ)}θ∈Θ ⊂ F.

Later we will show why this is reasonable.

On the form of φ

Assume that φ parametrized by θ ∈ Θ lives in the Hilbert space F and is
differentiable.
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Formulation

Optimizing by means of Choosing

Think about finding the optimal choice of θ in the Rd space as to
minimize the functional loss. Endowing Θ = Rd−1 with a measure
µ ∈M(Θ) it is possible to restate the task.

Measure Optimization Problem

µ∗ = arg min
µ∈M(Θ)

J(µ) J(µ) := R

(∫
φdµ

)
+ G (µ) (6)

Where:

G (µ) : M(Θ)→ R is the regularizer of the functional J, just like
λΞ(θ). Usually, the total variation norm for sparse solutions.

|Θ| = d − 1, features + bias
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Formulation

Interpretation

We look among all possible
allocations of choices of the
parameters for the best combination
to obtain a function that attains
minimal risk/maximum fit with the
dataset D.

The problem is:

linear in terms of µ

convex

infinite dimensional

Figure: A convex landscape. Source[link]
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Formulation

Some Methods mentioned in [CB18]

Frank-Wolfe Algorithm: greedy
approach of adding neurons at every
iteration.

connections with Conditional
Gradient and Boosting [BSR15;
Wan+15]

decision problem of finding
the optimal particle in general
NP-Hard [BP13; Jag13; Bac16]

not practical

Semidefinite hierarchy: based on
expressing the measure in terms of
its moments.

belongs to larger class of
generalized moment problems
[Las09]

asymptotic global
convergence (nonquantitative)

Only specific instances are
covered [CDP17]

increasing the dimension
growth is exponential.

not practical
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Formulation

Particle Gradient Descent (GD)

What is actually used in practice is Gradient Descent, allowed by the
differentiability of φ. The measure µ is discretized to a finite set of
particles against which backpropagation is performed.

µ =
1

m

m∑
i=1

wi︸︷︷︸
weight

δθi︸︷︷︸
position

positions affect choices in the space of parameters

weights represent degree of importance in determining the function
to feed into R and G .
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Formulation

Particle GD objective function

The problem is then discretized as:

Discretized Measure Optimization Problem

µ∗ = arg min
w∈Rm θ∈θm

Jm(w,θ) Jm(w,θ) := J

(
1

m

m∑
i=1

wiδθi

)
(8)

There are m particles (later, hidden neurons) for which we have:

weights wi

positions θi ∈ Rd−1.

Discrete measures weakly approximate any measure, where by weakly we
mean when measuring an integral with respect to a measure of continuous
and bounded functions.

Simone Maria Giancola (UniBocconi) OT for Neural Networks Real Analysis II, Jan 2023 25 / 114



Formulation

Particle GD objective function

The problem is then discretized as:

Discretized Measure Optimization Problem

µ∗ = arg min
w∈Rm θ∈θm

Jm(w,θ) Jm(w,θ) := J

(
1

m

m∑
i=1

wiδθi

)
(8)

There are m particles (later, hidden neurons) for which we have:

weights wi

positions θi ∈ Rd−1.

Discrete measures weakly approximate any measure, where by weakly we
mean when measuring an integral with respect to a measure of continuous
and bounded functions.

Simone Maria Giancola (UniBocconi) OT for Neural Networks Real Analysis II, Jan 2023 25 / 114



Formulation

Pros, Cons

Easy to implement

no a priori guarantees that
Jm is convex

convergence is, in most cases,
at a local minima.

Figure: A nonconvex landscape.
Source[StackOverflow]
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Formulation

Overview of Results

The results shown are mostly centered around two questions:

evaluating the algorithmic limit as m→∞, known to be equivalent
to a Wasserstein Gradient Flow [NS17]

assessing Global Convergence to the optimal measure µ∗, subject to a
generic ideal dynamics that one can only hope to approximate [CB18]

We obtain:

a link discretization-original convex problem at the divergent limit of
the number of particles

a non quantitative asymptotic convergence result subject to a criterion

Remark

Namely, if criterion holds, then discrete measures converge to the optimal
one from some m∗ onwards. Unfortunately, no knowledge of a ε-bound on
the loss in terms of m.
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Formulation

Idealized but also principled and practical

SGD finds a global minimizer
under very restrictive
assumptions [LY17; SH17;
VBB20; SJL22].

discretization as a child also
present in [NS17] but not
explored in search of global
optimality conditions.

connection gradient flows and
Gradient Descent is also
extended to SGD [KY03](Thm.
2.1) and Accelerated gradient
descent [Sci+17].

Figure: Animated GD vs gradient flow.
Source [Bac20b]
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Formulation

A more general problem

consider the problem over non negative finite measures on Ω ⊂ Rd of
finding:

Lifted Problem

F ∗ = min
µ∈M+(Ω)

F (µ) F (µ) = R

(∫
Φdµ

)
+

∫
Vdµ (9)

What changed?

Recall |Θ| = d − 1 < d = |Ω|. Imagine we changed φ Φ and Ṽ  V
both with one additional dimension.
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Formulation

Main Assumptions (MAs)

We do not stress too much on their formulation but the MAs are
important throughout the presentation.

Main Assumptions (MAs)

Require the Hilbert space F to be separable and Ω ⊂ Rd to be the closure
of a convex open set. On top of this, establish that:

1 (smooth loss) R : F → R+ is differentiable and its differential dR is
Lipschitz on bounded sets and bounded on sublevel sets

2 (basic regularity) the function Φ : Ω→ F is Fréchet differentiable,
V : Ω→ R+ is semiconvex
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Formulation

Main Assumptions (MAs)

continuation

3 (sublinear growth and locally Lipschitz derivatives) there exists a
sequence (Qr )r≥0 of nested non empty closed convex subsets of Ω
such that:

a a kind of matryoshka property

{u ∈ Ω ; dist(u,Qr ) ≤ r ′} ⊂ Qr+r ′ ∀r , r ′ > 0

b Φ and V are bounded and dΦ is Lipschitz on each Qr
c denoting as ‖∂V (u)‖ the maximal norm of an element in ∂V (u), the

growth of the problem is sublinearly bounded as:

∃C1,C2 > 0 : sup
u∈Qr

{
‖dΦu‖+ ‖∂V (u)‖

}
≤ C1 + C2r ∀r > 0
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Formulation

Main Assumptions, forcing

Add that:

(forcing in matryoshka) by convention, we set F (µ) =∞ if µ is not
concentrated on Ω.

(forcing in Hilbert Space ) the integral involving Φ is assumed to
be a Bochner integral. In simple words, it maps to F whenever:

Φ is measurable
∫ ‖φ‖ d |µ| <∞

Else F (µ) =∞

Why?

avoid results in which part of the parameters are assigned outside of
the region of optimization

proper domain of R
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Formulation

Technical vs Reasonable points

Infinite matryoshkas

Qr can be unbounded so 3-(c) is not only for local Lipschitzness and
sublinear growth, but also as a technical requirement for the gradient
flow analysis to be stable. Instrumental in proofs derived from [AGS05]

Technical but not unreasonable

All the remaining are in line with common models such as:

Sigmoid NNs (here)

ReLu NNs

Sparse Spikes Deconvolution

Low Rank Tensor Decomposition

See original paper [CB18] for the others.
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Formulation

Homogeneous Lifting & Tools

Partially 1-homogeneous functions

For continuous functions:

φ : Θ→ F Ṽ : Θ→ R+

assign Ω := R×Θ ⊂ Rd , Φ(w , θ) = w · φ(θ) and V (w , θ) = |w |Ṽ (θ).
Notice that Φ and V are 1-homogeneous in the first entry i.e.
f (λw , θ) = λf (w , θ)∀w > 0.

Use the projection operator for B ⊂ Θ measurable:

h1 : M+(Ω)→M(Θ) h1(µ)(B) =

∫
R
wµ(dw ,B) ∀µ ∈ P(Ω)

On the pushforward lifted measure:

ν = f︸︷︷︸
∈L1(σ)

σ︸︷︷︸
∈P(Θ)

µ := (f × id)#σ = σ ◦ (f × id)−1 ∈ P(Ω)
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Formulation

Notation

Alert slide

To avoid potential confusion, we use the following notation:

smaller space Θ bigger space Ω
dimension d − 1 d
measures ν µ

functions φ, Ṽ Φ,V
risk functional J F

Both have R and G as cost and regularizer.
Takes time to digest as there are many objects at the same time.
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Formulation

Results

Lifted problem is equivalent

1 (normalization) ∃µnorm ∈ P(Ω) : F (µnorm) = F (µ) ∀µ ∈M+(Ω)
i.e. we can use probability measures

2 (surjectivity of h1) h1(P(Ω)) ⊃M(Θ) i.e. we cover all ν

3 (equality condition) for appropriate Θ-regularizers G (ν), ν ∈M(Θ)
minimizing J:

∃µ ∈ P(Ω) : µ = arg min
µ∈M+(Ω)

F (µ) (10)

4 (Total Variation is included) V (w , θ) = |w |, µ ∈ P(Ω) pushlifted as
before =⇒ |h1(µ)| =

∫
Vdµ is appropriate as per #3

Proof Strategy. Construction. 3
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Formulation

Addenda & OT view

To avoid confusion, we recap below the symbols:

P(Ω) 3 µ h1(·)
 ν ∈M(Θ)∫

φdν
·w
 
∫

Φdµ G (ν) =

∫
Ṽ (θ)dν

·|w |
 
∫

V (w , θ)dµ = G (µ)

We also need this side result:

F continuity

Under (MAs) F is continuous for the Wasserstein Metric below:

W2(µ1, µ2) =

√
inf

γ∈Π(µ1,µ2)

∫
Ω×Ω
|y − x |2dγ(x , y)

Proof Strategy. (MAs) and F form. 3
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Formulation

Recap

we can see the problem from a measure choice perspective as in (6):

ν∗ = arg min
ν∈M(Θ)

J(ν) J(ν) := R

(∫
φdν

)
+ G (ν)

this is lifted to the equivalent version (9)

F ∗ = min
µ∈M+(Ω)

F (µ) F (µ) = R

(∫
Φdµ

)
+

∫
Vdµ

for a reasonable choice of regularizer

The discretized version (8) becomes:

Fm(u) := F

(
1

m

m∑
i=1

δui

)
= R

(
1

m

m∑
i=1

Φ(ui )

)
+

1

m

m∑
i=1

V (ui ). (11)

where µ encapsulates weights wi and positions θi in the same dirac of
u = (wi ,θi ).
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Formulation

Alert slide

Differentiated notation stop

From now onwards, ν and µ will not be restricted to the notation we used
in the lifting. This may be confusing.
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Formulation

What now?

We have that:

the problem is feasible in practice (GD)

µ ∈ P(Ω) is a probability measure =⇒ we will see that we can use
Wasserstein Gradient Flows (wide results)

Gradient Flow and GD have analogies

weights and positions are not decoupled, both under δu

F is continuous under the (MAs)

still non convex
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Formulation

What now?

We have that:

the problem is feasible in practice (GD)

µ ∈ P(Ω) is a probability measure =⇒ we will see that we can use
Wasserstein Gradient Flows (wide results)

Gradient Flow and GD have analogies

weights and positions are not decoupled, both under δu

F is continuous under the (MAs)

still non convex

is not drastically bad

At this point, we obtained a well posed problem. Now, we use the Theory
of Wasserstein Gradient Flows to tackle the issue.
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Methods

Lecture Path

1 Introduction

2 Formulation

3 Methods
Gradient Flows
Optimization

4 Application

5 Takeaways
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Methods

Overview

main theoretical results presented from an intuitive point of View.

first subsection: dynamics on the parameters can be seen in terms of
a probability measure over the parameters that moves according to a
Wasserstein Gradient Flow (Wgf)

second subsection : Wgfs are instrumental to design a criterion on
the starting measure to escape local minima
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Methods Gradient Flows

Intuition [Bac20b]

1 GD as discrete update of
parameters of a differentiable
function
un+1 = un − ε∇Fm(un) ε > 0

2 See un as
X : R+ → Ω un = X (nε).

3 GF as ODE for tε = n, ε→ 0:

X ′(t) = −∇Fm(X (t))

Up to verified regularity
assumptions.

Figure: Gradient flows, Source [Bac20b]
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Methods Gradient Flows

Flow properties and specifications

Function decreases along the
trajectory (chain rule):

d
dtFm(X (t)) = −‖∇Fm(X (t))‖2

2

if convergence, it is necessarily
at a stationary point s.t.
∇Fm(X (t)) = 0.

Remark

convergence specifics later

construction for Wgfs more
elaborate, doc has refs. Figure: Animation of previous image.

Source [Bac20b]
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Methods Gradient Flows

On parameters

Particle Gradient flow

A dynamics for Fm:

u : R+ → Ωm t → u(t) ∈ Ωm

is a particle gradient flow if:

1 absolute continuity

2 rescaled gradient flow equation

u′(t) = −m∂Fm(u(t)) a.e. t ≥ 0
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Methods Gradient Flows

On parameters

Particle Gradient flow

A dynamics for Fm:
u : R+ → Ωm t → u(t) ∈ Ωm is a
particle gradient flow if:

1 absolute continuity

2 rescaled gradient flow equation
u′(t) = −m∂Fm(u(t))
a.e. t ≥ 0

Remarks

Notice that in #2 we have:

a.e. conditions by the
absolute continuity
requirement #1

subdifferentials by potential
non differentiability of V
(only semiconvex)

rescaling by m for
convenience at limit, each
atom has 1

m mass
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Methods Gradient Flows

On parameters

Particle flow in Fm properties

1 existance and uniqueness for any
initialization

2 for a.e. t > 0
d
dsFm(u(s))|s=t = − 1

m |u
′(t)|2

3 particle velocity vt(u) is

ṽt(u)− proj∂V (u)(ṽt(u)) (12)

for a general particle u

Remarks

recognize that:

expressions below, basically
chain rule

R ′(f ) denotes the gradient
of R at f ∈ F

∂jΦ ∈ F differential dΦ(u)
applied to the j th vector of
the canonical basis of Rd .

[ṽt(ui )]mi=1 = −∇R

(
1

m

m∑
i=1

Φ(ui )

)
ṽt(u) = [〈R ′(∫ Φdµm,t), ∂jΦ(u)〉]dj=1
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Methods Gradient Flows

On parameters

Particle flow in Fm properties

1 existance and uniqueness for any
initialization

2 for a.e. t > 0
d
dsFm(u(s))|s=t = − 1

m |u
′(t)|2

3 particle velocity vt(u) is

ṽt(u)− proj∂V (u)(ṽt(u))

for a general particle u

Remarks

recognize that:

expressions below, basically
chain rule

R ′(f ) denotes the gradient
of R at f ∈ F

∂jΦ ∈ F differential dΦ(u)
applied to the j th vector of
the canonical basis of Rd .

proj by regularization

[ṽt(ui )]mi=1 = −∇R

(
1

m

m∑
i=1

Φ(ui )

)
ṽt(u) = [〈R ′(∫ Φdµm,t), ∂jΦ(u)〉]dj=1
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Methods Gradient Flows

On measures

Wasserstein Gradient Flow

For the functional F and an interval [0,T ) a Wasserstein gradient flow is a
path t → µt on [0,T ) such that:

1 it is absolutely continuous

2 (µt)t∈[0,T ) ∈ P2(Ω)

3 for [0,T )× Ωd satisfies the continuity equation:

∂tµt = −div(vtµt) vt ∈ ∂F ′(µt) (13)
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Methods Gradient Flows

On measures

Wasserstein Gradient Flow

For the functional F and an interval [0,T ) a Wasserstein gradient flow is a
path t → µt on [0,T ) such that:

1 it is absolutely continuous

2 (µt)t∈[0,T ) ∈ P2(Ω)

3 for [0,T )× Ωd satisfies the continuity equation:

∂tµt = −div(vtµt) vt ∈ ∂F ′(µt)

Remark

In a distributional sense since densities are not necessarily smooth. A
broader presentation is given in the Appendix.
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Methods Gradient Flows

Particles flow as discrete measures

Link gradient flow and atomic
Wasserstein gradient flow

For a gradient flow u : R+ → Ωm of
Fm the map:

t → µm,t :=
1

m

m∑
i=1

δui (t)

is a Wasserstein gradient flow for the
non particle version of Fm, denoted
as F .

Proof Strategy. show continuity
equation satisfied distributionally 3

Remarks

dynamics are in t at m fixed

if F does not admit an
m-atomic minimizer, µm,t
converges to a measure that
does not minimize F .

still not covering diffuse
measures theory
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Methods Gradient Flows

On measures, general properties

Existance and uniqueness of Wgf for F

Under (MAs), if µ0 ∈ P2(Ω) is concentrated on Qr0 ⊂ Ω:

∃!(µt)t≥0 Wgf : velocities as (12)

Proof Strategy. Detour on matryoshka concentrated F (r) from [AGS05]
with many subproofs. Details in publication [CB18] and doc. 3

Interpretation

For any starting point concentrated on a matryoshka we always identify
unambiguously the Wgf.
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Methods Gradient Flows

Particles flowing to measures

Many-particle limit

Under (MAs), consider a sequence in
m of gradient flows for Fm
(t → um(t))m∈N initialized at µm,0
concentrated in Qr0 ⊂ Ω. If

lim
m→∞

‖µm,0 − µ0‖W2
= 0

with µ0 ∈ P2(Ω) Then :

(µm,t)t≥0

m→∞
⇒
W2

(µt)t≥0

Proof Strategy. find limit curve,
show it is Wgf by subsequences 3

Remarks

Where:

(µt)t≥0 is the unique (and
existent) Wgf of F which
starts at µ0

Namely, if our discrete
starting point converges to
µ0 ∈ P2(Ω) then the whole
discrete sequence converges
to the continuous version of
the same problem
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Methods Gradient Flows

Practical Example

Empirical Measure

As an example, consider a measure µ0 ∈ P2(Qr0). If we want to build a
sequence converging in W2 to it we can simply choose a flow in the
parameters governed by the size m:

um(0) = (u1, . . . , um) ui
iid∼ µ0 ∀i = 1, . . . ,m

Namely, parameters picked at random from the diffuse measure µ0. Then
by the CLT the sequence:

µm,0 =
1

m

m∑
i=1

δui µm,0
a.s.→
W2

µ0
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Methods Gradient Flows

Recap

We outlined:

main properties of particle gradient flows over parameters

main properties of Wasserstein gradient flows over probability
measures

We link the two whenever:

(MAs) hold

the discrete measure at the start W2-converges to a measure
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Methods Optimization

Overview

Need:

Suited Assumptions (SAs), more
technical, where
(SAs) =⇒ (MAs), so all
previous results are inherited.

Φ and V need to have a
homogeneity direction

sptµ0 for the initial measure of
the Wgf has to satisfy a
separation property, which is
preserved along the path.
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Methods Optimization

Overview

Need:

Suited Assumptions (SAs), more
technical, where
(SAs) =⇒ (MAs), so all
previous results are inherited.

Φ and V need to have a
homogeneity direction

sptµ0 for the initial measure of
the Wgf has to satisfy a
separation property, which is
preserved along the path.

Show:

difference stationary - optimal
measures

criteria to escape stationary
points

convergence implies null
dynamics

condition for the starting
measure to be always capable of
escaping across dynamics

Assuming convergence, we craft a
discrete measure that, after some
m∗, escapes all local minimas!
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Methods Optimization

Minimizers (general property)

Minimizers with convexity
characterization

Assume R is convex, µ is a minimizer
if and only if:

1 F ′(µ) ≥ 0

2 F ′(µ)(u) = 0 for µ-a.e. u ∈ Ω

Figure: µ is not a minimizer if it does
not sat #2. Source [Chi21]
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Remarks

We solve the PDE

intuition: no abstract direction
of improvement
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particle as backpropagation
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Methods Optimization

Flows over Homogeneous functions

imaginary Level sets of
F ′(µ)

Ω = R2 and weights on
vertical axis

a Wgf flows over them
but the landscape
dependends on µ

minimizers are
nonnegative and null on
the support

by homogeneity, only the
dotted lines are studied

Figure: Source [CB18]
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Methods Optimization

Escaping condition

Criteria to escape local minima

Under (SAs) a Wgf which gets
ε-‖·‖BL close in h1-projection to a
local minima escapes at a later time
if µt(A) > 0 for
A = (R+ × K+) ∪ (R− × K−)
Where:

K+ is the −η sublevel set of
θ → F ′(µ)(1, θ)

K− is the −η sublevel set of
θ → F ′(µ)(−1, θ)

With η > 0 arbitrarily small.

Remark

The objective is finding a
condition at the start that
preserves the escaping criteria
across dynamics.
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Methods Optimization

Stability

Separation property

A a closed set K ⊂ [−r , r ]×Θ that
separates (continuous paths across
it) {−r} ×Θ and {r} ×Θ for some
r > 0.

Stability of the separation property

Under (SAs), let (µt)t be a Wgf for
F . If sptµ0 satisfies the separation
property, then sptµt does ∀t > 0.

Remark

Reached with a detour on
topological degree theory. [CB18]

Remark

We have a condition on the
support satisfied for all t in a
Wgf, we will use it later
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Methods Optimization

A Projection result

Nullity at convergence

Under (SAs), consider a Wgf (µt)t
for F . Then:

h1(µt)
w→ ν =⇒ F ′(ν) = 0 ν-a.e.

Where ν ∈M+(Θ)

Remark

The flow imposes that we always
improve fit, if we converge, it
must be at a measure at which
we cannot decrease F .
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Methods Optimization

Main Results: Convergence

General case

Under (SAs), for some r0 > 0 let:

(concentration) sptµ0 ⊂ [−r0, r0]×Θ.

(separation) (µt)t be a Wgf of F such that sptµ0 separates
{−r0} ×Θ and {r0} ×Θ

Then:

h1(µt)
w→ ν =⇒ F (µt)

t→∞→ F ∗ = min
M+(Ω)

F

lim
t→∞

F (µt) = F ∗
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Under (SAs), for some r0 > 0 let:
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sptµ0 ⊂ [−r0, r0]×Θ.

(separation) (µt)t be a Wgf of
F such that sptµ0 separates
{−r0} ×Θ and {r0} ×Θ

Then if h1(µt)
w→ ν:

F (µt)
t→∞→ F ∗ = min

M+(Ω)
F

lim
t→∞

F (µt) = F ∗

Proof Strategy. The separation is
satisfied throughout (§Stability).
3
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sptµ0 ⊂ [−r0, r0]×Θ.

(separation) (µt)t be a Wgf of
F such that sptµ0 separates
{−r0} ×Θ and {r0} ×Θ

Then if h1(µt)
w→ ν:

F (µt)
t→∞→ F ∗ = min

M+(Ω)
F

lim
t→∞

F (µt) = F ∗

Proof Strategy. The separation is
satisfied throughout (§Stability),
convergence ensures that we
reach a point where we have
F ′(ν) = 0 (§Projection result).
Assume we reach a local minima
by contradiction. With additional
notions from [CB18], it is
possible to show that the flow
satisfies the escaping criteria
throughout (§Escaping
condition), so given convergence,
it must be at a global minima.
3
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Methods Optimization

Main Results: Order

Limit order is not important

Under (MAs), if:

(µt)t : µ0 is concentrated on

Qr0 and F (µt)
t→∞→ F ∗

(µ0,m)m concentrated on

Qr0 : µm
W2→

m→∞
µ0

Then, limits can be exchanged:

F ∗ = lim
m,t→∞

F (µm,t)

Limit switch is fundamental

The divergent indexes m, t do
not influence each other in the
convergence to F ∗.
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Methods Optimization

Graphically escaping, 1-homogeneous case

ν is non optimal, F ′(ν) < 0 at
some particles

imagine a Wgf (µt) which gets
ε-close in BL-norm to it

to escape it should give positive
weight to the red region

part below, F ′(ν) negative, use
escaping criteria

part above, F ′(ν) positive, more
technical [CB18](Lem. C.18).

Theorem uses both technical
condition and 2-homogeneous
notions

Figure: Level sets view of F ′(µ), Ω = R2.
Vertical direction is w . Measure ν has
support on the red dots. Source [CB18]
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Methods Optimization

Use Case as a Corollary

Global Minimization Sufficient Conditions

Under (SAs) add that (µt)t is a Wgf of F which for some r0 > 0 satisfies

(concentration) sptµ0 ⊂ [−r0, r0]×Θ.

(separation) (µt)t a Wgf of F such that sptµ0 separates {−r0} ×Θ
and {r0} ×Θ

Then:

1 (µt)t
W2→ µ∞ =⇒ F (µt)

t→∞→ F ∗ = arg minM+(Ω) F

2 for a given (parameter) classical Gradient flow (um(t))m∈N,t∈R+ which
is initialized at its Wgf in [−r0, r0]×Θ:

µm,0
W2→

m→∞
µ0 =⇒ lim

t,m→∞
F (µm,t) = min

µ∈M+(Ω)
F (µ)
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Methods Optimization

Use Case as a Corollary

Global Minimization Sufficient Conditions

Under (SAs) add that (µt)t is a Wgf of F which for some r0 > 0 satisfies

(concentration) sptµ0 ⊂ [−r0, r0]×Θ.

(separation) (µt)t a Wgf of F such that sptµ0 separates {−r0} ×Θ
and {r0} ×Θ

Then:

1 (µt)t
W2→ µ∞ =⇒ F (µt)

t→∞→ F ∗ = arg minM+(Ω) F

2 for a given (parameter) classical Gradient flow (um(t))m∈N,t∈R+ which
is initialized at its Wgf in [−r0, r0]×Θ:

µm,0
W2→

m→∞
µ0 =⇒ lim

t,m→∞
F (µm,t) = min

µ∈M+(Ω)
F (µ)

via #1 & (§Many-particle limit)
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Methods Optimization

Recap

In the optimization setting we devised a condition on the starting measure:

kept throughout dynamics

always able to escape local minima

Using the results of the gradient flow - Wgf correspondence we can
recover the behavior with the particle version, after some unquantified m∗

large enough.
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Methods Optimization

Weakenesses, comments

Convergence hypothesis

General case: weak convergence of projection, difficult to check

Use case: W2 convergence, difficult to hold

Nature of the Assumptions

instrumental: homogeneity, separation

technical : Sard-type regularity (SAs), difficult to check

reasonable : convex smooth loss and classic regularity assumptions

Result

Non quantitative, only a limit, no ε-bound on F .
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Application

Lecture Path

1 Introduction

2 Formulation

3 Methods
Gradient Flows
Optimization

4 Application

5 Takeaways
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Application

Overview

Recall the discussion on NNs from the first Section. With the results in
hand we show:

1 a quite general optimization task falls under the family of problems
considered

2 two layer sigmoid NNs trained with GD satisfying can be embedded in
it

Conclusion:

Sigmoid NNs with two hidden layers with a proper initialization,
converge to the global minima of their loss if they meet a some

conditions

Experiments

Promising results shown at the very end on synthetic data.
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Application

Loss level requirements

Loss structure

Choose as Hilbert space F = L2(ρ)
for ρ : X→ R a probability measure
with X ⊂ Rd

R(f ) =

∫
r(x , f (x))dρ(x) r : X×R→ R+

Sufficient Loss conditions

If:

1 r convex in the second
variable

2 ∃∂2r Lipschitz uniformly in
the first variable

3 ∂2r ≤ C1r + C2 C1,C2 > 0

Then R is convex, ∃dR Lipschitz,
bounded on sublevel sets

Remark

we meet (SAs)#1.
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Application

From Optimization to Optimization as Learning

We need a learning problem to embed NNs into the framework, for this we
specify:

ρ(x , y) = labels y and features x , ρ ∈ P(Rd−2 × R) where
ρx ∈ P(Rd−2), via disintegration [AGS05](Thm. 5.3.1)
ρ(dx ⊗ dy) = ρ(dy |x)ρx(dx) where (ρ(·|x))x∈X = {p.m. on Y}.

as loss, we use the expected risk:

R(f ) =

∫
X×Y

`(f (x), y)dρ(x , y)

` : R× R→ R+ a convex loss function, either square or logistic loss

as r function (slightly misleading order):

r(x , p) =

∫
R
`(p, y)ρ(dy |x) p : X→ R

Where p stands for ”predictor” and we are integrating out y ∈ Y.
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Application

Reconciliation with Original problem

ML functional Loss

In the framework of the previous slide, we split the integrals:

R : L2(ρx)→ R R(f ) =

∫
X

∫
R
`(f (x), y)ρ(dy |x)ρx(dx)

Meeting SA#1

For ` as stated, the function r coupled with the optional Ṽ = 1 satisfies
the previous sufficient conditions.
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Application

One Layer Sigmoid Neural Networks, premise

features are in Rd−2 but we add a bias term so z = (1, x) ∼ ρx , and
the positions θ will be in Rd−1 = Θ

focus on Neural Networks with one hidden layer

the functions we saw at the beginning is then

φ(θ) : X→ R x → σ(z · θ) = σ

( d−2∑
i=1

θixi + θd−1︸︷︷︸
bias

)
Ṽ = 1

the hidden layer particles implement this function

σ is a sigmoid
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Application

One Layer Sigmoid Neural Networks in a nuthsell

Simplifying the dependence on u = (w , θ) which
is implicitly present:

h(x) = wTσ(θT x)) =
m∑
i=1

wi ·σ(θ(·, i)T x) (14)

Where:

m is the number of hidden neurons

wi is the outgoing weight of the i th neuron

θ(·, i) are the ingoing weights of the i th

neuron.

Remark, on the one
hidden layer structure

Formulation of Eqn.
(14) interesting since:

there is total
independence of
contributions, a
linear
combination of
hidden neurons

more layers do
not have this
peculiarity
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Application

One Sigmoid Layer Neural Networks graphically

x0

x1

...

xd−2

a1

...

am

y

θ0,1

θ1,1

θ1,m

θd−2,m

w1

wm

input layer

hidden layer

Figure: The diagram shows an intuitive representation of a two layer neural
network. The inputs are d − 2 dimensional, with an added bias. They are passed
to activations ai of the form ai (x) = σ(θ(·, i)T x). The final output is then
determined by a weighted sum of activations.
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Application

Particle function level requirements

Aim

To embed Sigmoid NNs into (SAs),
φ and ρx need to have a structure.

Remark

(SAs)#3-a boundary regularity
assumed a priori as it is difficult to
check

Sufficient φ conditions

1 (SAs)#1 if ρ has finite 4th

moment then φ is
differentiable with dφθ
Lipschitz (and known)

2 (SAs)#2 regularity condition
if ρ has finite moments of
order 2d − 2
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Application

One layer Sigmoid NNs Framework

Setting

Data: D = {(xi , yi )}ni=1, xi ∈ X ⊂ Rd−2, yi ∈ Y ⊂ R, unknown
distribution ρ(x , y).
Problem: in the form of (6)

µ∗ = arg min
µ∈M(Θ)

J(µ) J(µ) := R

(∫
φdµ

)
+ G (µ)
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φ(θ) : X→ R x → σ(
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i=1 xiθi + θd−1)

R, risk of quadratic or logistic loss ` with functional loss sufficient
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G , total variation norm G (µ) = |µ|(Θ)
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Application

One layer Sigmoid NNs convergence to Global Minimizers

Meta-Theorem, Wgf

Assume:

(function (SAs)) ρx ∈ P(Rd−2) has moments that are finite up to
max{4, 2d − 2}
(separation) sptµ0 = {0} ×Θ

(boundary Sard) the condition of (SAs) #3-(a) is verified

Then a Wgf for the Problem (µt)t∈R+ is such that:

µt
W2→ µ∞ =⇒ µ∞ = arg minF
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Application

One layer Sigmoid NNs convergence to Global Minimizers

Meta-Theorem, particle gradient descent

Measure ν ∈M(Θ) corresponding to µ ∈ P(Ω) finite particle dynamics:

lim
m,t→∞

J(µm,t) = J∗ µm,t =
1

m

m∑
i=1

w
(m)
i (t)δ

θ
(m)
i (t)

are guaranteed to converge at some non-identified m∗ to the global
minima of J. The convergence is independent of the order of m, t, and we
could simply increase the number of particles and let them flow in t until
convergence

Theorem in words

For a sigmoid NN learning task, gradient descent, feasible in practice &
widely used, converges to the global minima
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Application

Fixed number of particles dynamics

d = 2

dotted lines are global minimizer

m fixed

θ(0) Gaussian satisfies
separation asymptotically
[CB18] and is the de facto
choice in practice [Bac20a]

Figure: Sigmoid Dynamics. For more
context, see the original source [CB18]
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Application

Performance

Figure: Particle-complexity, excess loss. For more context, see the original
publication source [CB18].

Non quantitative results, but better performance VS the näıve convex
optimization method.
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Takeaways

Recap

Results in [CB18] make use of:

Wasserstein Gradient Flows

analogy to Mean-field limit

thougthful general problem
construction

to show:

that Sigmoid Neural Networks
fall under the umbrella of
problems that can be tuned to
reach a global minimizer.

good experimental results

that the framework covers other
cases (see [CB18]).

Pros

gradient descent

theoretical results

mostly reasonable
assumptions
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Takeaways

Recap

Weaknesses

non quantitative convergence

Boundary Sard assumed

Wgf convergence assumed

Additional/important refs:

gradient flows on metric spaces
book [AGS05]

another NNs theory paper
[MMN18]

blog and paper (by authors)
[Chi20; COB20].

Open Problems

Promising results for Wgf
convergence [BSR15; HM19]

bigger networks adaptation

quantitative result [MMM19]
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Takeaways

Concluding

Any question/discussion, let
me know!

Thank you!
simonegiancola09@gmail.com

personal webpage
Figure: Source blog post
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