Bocconi

Unsupervised Restricted Bolzmann Machine on MNIST

RBMs are well suited for learning distributions of data. Take N visible binary units $\mathbf{v} = (v_1, \dots, v_N)$ and M hidden units $\mathbf{h} = (h_1, \dots, h_M)$ with **ReLu** activations.

Figure 1. MNIST trained RBM. Source [1]

After training, weights of hidden units \mathbf{w}_{μ} are strokes on the grid (a), combined to generate representations of numbers (b). There is a small (resp. large) number of strongly activated (silent) hidden units (c). Sparsity \hat{p} and high inverse temperature W_2 are induced by likelihood maximization, and not forced a priori (d). Representative power is high: many local minima are at low distance from starting configuration (e).

Results

Empirical Simulations and Theoretical Analysis suggest that:

- Structural Changes on \hat{p}, W_2 generalize to any RBM training dynamics to reach
- a Compositional Phase (in contrast with Glassy & Ferromagnetic),
- where **generated samples** are combinations of strongly activated units
- Additionally a **Random RBM ensemble** thermodynamically favours Compositionality

A Word about Phases

Dominating hidden configurations at end of training can be:

- Ferromagnetic, all weakly activated units but one, no variability
- **Glassy**, all weakly activated units, no representative power
- **Compositional**, enough strongly activated units, that access different low energy visible configurations

Training & Sampling

Assume reasonable approximate Likelihood training, well designed MCMC sampling techniques and high computational power.

Compositional RBMs, a Bird's Eye view (based on the work of J. Tubiana and R. Monasson [3])

Simone Maria Giancola¹

¹Bocconi University

R-RBM Ensemble

Weights $w_{i\mu}$ are **quenched** random variables wp $\left(\frac{p_i}{2}, 1 - p_i, \frac{p_i}{2}\right)$ and values $\left\{-\frac{1}{\sqrt{N}}, 0, \frac{1}{\sqrt{N}}\right\}$, uniform visible field and hidden activations $g_i \equiv g, \mathcal{U}_\mu \equiv \mathcal{U}^{\text{Relu}}$ with threshold θ . Set $\alpha = \frac{M}{N} \in \mathcal{O}(1)$ and $M, N \to \infty$. Strongly activated hidden units will scale as $m\sqrt{N}$ to be larger than their inputs $I_{\mu} = \mathbf{w}_{\mu} \cdot \mathbf{v}$. In the analysis of a subsequent work [2] we find that the ground state energy

 $E_{GS} = f(\text{order params}) = f(m, L, r, q, B, C)$

to optimize averaging over quenched weights.

R-RBM Compositional Phase

Letting $p \to 0$, the typical ground state energy presents a critical (α, θ) unbounded relation to have L magnetized hidden units without entering the Glassy Phase, upon adjusting θ .

Figure 2. Compositional R-RBM & MCMC Simulation. Source [3]

Below the critical lines L hidden units can be strongly magnetized (a). MCMC simulations (yellow-green scale) of RBM are in great accordance when aligned at the start and the number of hidden units is as theorized (b). Normalized magnetization is non-null and in accordance with R-RBM prediction in red (b).

R-RBMs Energy and Hidden at high sparsity

Strongly activated hidden units scale as $L \sim \frac{\ell}{p} > 0$, and normalized energy is $e_{\ell} = \frac{E_{GS}}{p}$ is nonmonotonic function of ℓ (can be minimized). Non-magnetized hidden units shut down by choosing $\theta \sim \sqrt{p} \sim \sqrt{r}$ avoiding cross talk.

Figure 3. Compositional R-RBM & MCMC Simulation. Source [3]

Sparsity & Participation Ratios

exponents (see [3], Supp. Material).

Parameters

Control: α, p, g, θ , order: L, m, r, q, B, C.

in $\ell = \widehat{L} \times \widehat{p}$, (c).

Figure 4. Behavior in accordance with expectations. Source [3]

Difference quantitatively by heterogeneity of number of neighbors of pixels, which justifies using a Heterogeneous model with p_i sparsities fitted from MNIST-trained RBMs. Heterogeneous model is even more in line with simulations.

A **Compositional Phase** for RBMs appears to exist if weights are sparse, escaping the other two phases, and justifying the generative power of the model.

[1] Simona Cocco, Rémi Monasson, Lorenzo Posani, Sophie Rosay, and Jérôme Tubiana. Statistical Physics and Representations in Real and Artificial Neural Networks. Physica A: Statistical Mechanics and its Applications, 504:45–76, August 2018.

[2] Jérôme Tubiana. Restricted Boltzmann Machines : From Compositional Representations to Protein Sequence Analysis. These de doctorat, Paris Sciences et Lettres (ComUE), November 2018.

[3] Jérôme Tubiana and Rémi Monasson. Emergence of Compositional Representations in Restricted Boltzmann Machines. Physical Review Letters, 118(13):138301, March 2017.

RBMs Spectrum

RBMs at different sparsity obtained by adding a regularization on weights $\propto \sum_{\mu} (\sum_{i} |w_{i\mu}|)^{x}; x \geq 1$ 1. To avoid using a threshold for estimating null activities, use Participation Ratios with clever

RBM and R-RBM scaling

Simulate at equilibrium and average result to get \widehat{L}, \widehat{p} scaling to confront with $L \sim \frac{\ell}{p}$ theoretical (b). Normalized magnetization vs ℓ , predicted to be such that decreasing linearly in \hat{p} , i.e. decreasing

General Recipe

References