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Unsupervised Restricted Bolzmann Machine on MNIST

RBMs are well suited for learning distributions of data. Take N visible binary units v = (v1, . . . , vN )
and M hidden units h = (h1, . . . , hM ) with ReLu activations.

Figure 1. MNIST trained RBM. Source [1]

After training, weights of hidden unitswµ are strokes on the grid (a), combined to generate repre-

sentations of numbers (b). There is a small (resp. large) number of strongly activated (silent) hidden

units (c). Sparsity p̂ and high inverse temperature W2 are induced by likelihood maximization, and

not forced a priori (d). Representative power is high: many local minima are at low distance from

starting configuration (e).

Results

Empirical Simulations and Theoretical Analysis suggest that:

Structural Changes on p̂, W2 generalize to any RBM training dynamics to reach

a Compositional Phase (in contrast with Glassy & Ferromagnetic),

where generated samples are combinations of strongly activated units

Additionally a Random RBM ensemble thermodynamically favours Compositionality

AWord about Phases

Dominating hidden configurations at end of training can be:

Ferromagnetic, all weakly activated units but one, no variability

Glassy, all weakly activated units, no representative power

Compositional, enough strongly activated units, that access different low energy visible

configurations

Training & Sampling

Assume reasonable approximate Likelihood training, well designedMCMC sampling techniques

and high computational power.

R-RBM Ensemble

Weights wiµ are quenched random variables wp
(pi

2 , 1 − pi,
pi
2
)
and values

{
− 1√

N
, 0, 1√

N

}
, uni-

form visible field and hidden activations gi ≡ g, Uµ ≡ URelu with threshold θ. Set α = M
N ∈ O(1)

and M, N → ∞. Strongly activated hidden units will scale as m
√

N to be larger than their in-

puts Iµ = wµ · v. In the analysis of a subsequent work [2] we find that the ground state energy

is:

EGS = f (order params) = f (m, L, r, q, B, C) (1)

to optimize averaging over quenched weights.

R-RBM Compositional Phase

Letting p → 0, the typical ground state energy presents a critical (α, θ) unbounded relation to

have L magnetized hidden units without entering the Glassy Phase, upon adjusting θ.

Figure 2. Compositional R-RBM & MCMC Simulation. Source [3]

Below the critical lines L hidden units can be strongly magnetized (a). MCMC simulations (yel-

low-green scale) of RBM are in great accordance when aligned at the start and the number of

hidden units is as theorized (b). Normalized magnetization is non null and in accordance with

R-RBM prediction in red (b).

R-RBMs Energy and Hidden at high sparsity

Strongly activated hidden units scale as L ∼ `
p > 0, and normalized energy is e` = EGS

p is non-

monotonic function of ` (can beminimized). Non-magnetized hidden units shut down by choosing

θ ∼ √
p ∼

√
r avoiding cross talk.

Figure 3. Compositional R-RBM & MCMC Simulation. Source [3]

RBMs Spectrum

Sparsity & Participation Ratios

RBMs at different sparsity obtained by adding a regularization onweights∝
∑

µ(
∑

i |wiµ|)x; x ≥
1. To avoid using a threshold for estimating null activities, use Participation Ratios with clever

exponents (see [3], Supp. Material).

Parameters

Control: α, p, g, θ, order: L, m, r, q, B, C .

RBM and R-RBM scaling

Simulate at equilibrium and average result to get L̂, p̂ scaling to confrontwithL ∼ `
p theoretical (b).

Normalized magnetization vs `, predicted to be such that decreasing linearly in p̂, i.e. decreasing
in ` = L̂ × p̂, (c).

Figure 4. Behavior in accordance with expectations. Source [3]

Difference quantitatively by heterogeneity of number of neighbors of pixels, which justifies using a

Heterogeneous model with pi sparsities fitted from MNIST-trained RBMs. Heterogeneous model

is even more in line with simulations.

General Recipe

A Compositional Phase for RBMs appears to exist if weights are sparse, escaping the other two

phases, and justifying the generative power of the model.
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