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Foreword
The following is a redaction of lectures held at the Les Houches Summer School on Statistical
Physics and Machine Learning, in July 2022. The page of the event is here. The videos are at this
link.
While I was writing them up, the instructors published an expanded version on ArXiv [MM23].
Their document is clearly of higher quality (they are also authors of many papers explored here
and there). There, a full set of references in an independent section is also present.
To give a brief comment on the differences, their work is thematic, and merges different advanced
sets of lectures they taught. The focus for each chapter is on topics that build up sequentially.
Differently, this work is smaller and is merely a write up of their lectures from someone that saw
them on YouTube. The idea is not to compare them in terms of quality since there is a clear
mismatch. Despite this, maybe reading twice about the overlapping matters might be helpful for
inexperienced readers like myself. This last fact motivates making the work available.

For similar reasons, this document might be vague or incorrect in some passages. Hopefully,
it will be fixed with time. In particular, I am quite not satisfied with not having found some
references. As my reading list gets exhausted, these will be sorted out. The main idea behind this
write up is exactly getting an introduction for future readings.

The results are very recent and nice. Open problems stated by the lecturer (Prof. Montanari)
were mentioned in between explanations. Some might be solved as of now.
For any remark, typo or suggestion, I am more than happy to chat1.

Versioning This is a first version, I expect to correct mistakes and adjust it with time. I stress
that there might be errors.

How to use this? I would suggest reading [MM23] to see how the lecturers envisioned the re-
sults, and if needed take this as an accompanying version.

1my email is simonegiancola 09 at gmail dot com.
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Notation By i ∈ [n] we mean i = 1, . . . , n. Emphasis on random variables is placed with capital
letters, e.g. X . A vector is bold italic, a matrix is bold and capital. So, x is a vector, X is a random
vector and X is a matrix. The rest is standard and understandable from context. Various objects
are introduced during the arguments but are well specified.

1 Setting and Phenomenology

The setting we will consider is the classical one. Assume we are given some data {xi, yi}ni=1 where
∀i the pair (xi, yi) ∈ Rd × R was sampled iid from a distribution P. The task is finding a function
f : Rd → R that achieves minimum square error. We aim to minimize:

R(f) ≡ E
[
(Y − f(X))2

]
(X, Y ) ∼ P ∈ P(Rd × R),

which is the square loss. We will exchangeably use the term test error and risk. If P was available,
the optimal choice would be the conditional expectation, which under mild conditions achieves the
minimum test error:

f∗(x) = E [Y |X] R(f∗) ≤ R(f) ∀f.

Clearly this is somewhat a loose definition of a learning task. Especially, we are not specifying the
sense of optimality2 and the expectation is not available since we cannot really sample from the

2For all f in which space?
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distribution P which is unknown. To overcome this issue, we will use the so called Empirical Risk
Minimization (ERM) principle. Mathematically, for a specified loss function ℓ : R×R → R+ and
space of functions F , we hope to achieve a good performance on the optimization:

f∗ = argmin
f∈F

R(f) R(f) = E [ℓ(f(X, Y )]

by optimizing over the empirical risk

f̂ = argmin
f∈F

R̂n(f) R̂n(f) ≡
1

n

n∑
i=1

ℓ(f(Xi), Yi)

Remark 1.1. Optimizing over F is reasonable. It provides the option to choose which space it is,
and avoids the trivial case in which the empirical risk is minimized by a function that replicates
the data. In some sense it reflects the power of estimation that is available.

Remark 1.2. Any assumption on P is in practice not appropriate. Yet, it helps to build an estimator
f̂ . To obtain theoretical results it is reasonable to allow for assumptions on P.

We focus on results about parameter optimization. This means that F = {f(·;θ)|θ ∈ Rp}. In
particular we are interested in two regimes:

• overparametrized, when p≫ n

• non-parametric, when p = ∞.

In many cases, we will implicitly assume that in an overparametrized model the train loss is zero.

Why are we interested in these parameter settings?

Neural Networks are parametric models, often overparametrized. Many older-fashioned
models are of this type as well.

{ex:cubic spline}
Example 1.3 (Cubic Splines). For simplicity let (xi, yi) ∈ R × R. Seek an optimization of the
form:

f̂ = argmin

{
R̂n(f) + λ

∫
f ′′(x) dx

}
⇐⇒ f̂ = argmin R̂n(f) s.t.

∫
f ′′(x) dx ≤ ρ.

Consider the case in which λ = 0, or equivalently ρ ↑ ρ∗ such that R̂n(f∗) = 0. This is a
perfect interpolator of the data.
If the data generating process was a linear model yi = β∗xi + ϵi, this is not great idea. A visu-
alization is shown in Figure 1. The result is a third order polynomial with continuous derivatives
that overfits the model. Any prediction will be mistaken by σ units where σ is the variance of the
noise ϵ (assuming the classical symmetric noise model, such as Gaussian). Indeed, regularization
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Figure 1: Spline interpolator {fig:spline interpolator}

is useful in this case, and λ ̸= 0 makes fitting more flexible. Recently, a suboptimality proof was
given in [RZ18].

Despite this, we informally present our motivation to study perfect interpolators.

Phenomenology of Perfect Interpolators

Overparametrized models with no regularization achieve a test error that is much greater
than the train error but still satisfactory.

In practical applications this is highly beneficial. At the cost of losing theoretical guarantees,
applications gain in tractability, as non-regularized models are friendly. The cost of this is over-
parametrizing sufficiently the model, and current technology allows for this smoothly.
The main interest is having a model specification that is well suited for optimization with Gradient
Descent (GD) or Stochastic Gradient Descent (SGD). In particular, the latter converges quickly
with overparametrization.

Mathematically, the simplest justification is as follows. In the parameter space Rp there is a
manifold of perfect interpolators, expressed concisely as

MERM0 ≡ {θ : f(xi;θ) = yi ∀i ∈ [n]}

which is very big. Here by big, we roughly mean that for any θ0 of initialization, there is a close
point θ∗ ∈ M . A depiction in R2 is presented in Figure 2.

A formal justification validating this idea is available in a class of examples. We refer to these
as the linear/lazy/neural tangent regime. In this precise group, the validation is assessed by proving
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Figure 2: Convergence to the manifold MERM0 {fig:manifold convergence}

that:
R(f) ≈ R∗(f),

i.e. that the test error is approximately the optimal test error. The peculiar aspect is that in low-
dimensional models such as the cubic spline this does not work, while in high-dimensions it does.
To give more context, when referring to the optimal test error we will exchangeably mean the
original object and the excess test error. The two differ by a constant. In mathematical terms, the
risk-excess risk relationship for a noisy model with square loss is:

R(f) = Exnew

[
Eϵ

[
(f(xnew)− ynew)

2
]]

= Exnew

[
Eϵ

[
(f(xnew)− β⊤

∗ xnew − ϵi)
2
]]

= Rexcess(f)+σ
2.

Previously, in Example 1.3, the test error was σ for any sample size n.

1.1 Linear and Lazy Regime
We aim to answer the possible question.

Closeness

Under which conditions is an initialization θ0 close to some θ ∈ MERM0?
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Introduce the compact notation

fn(θ) =

f(x1;θ)
...

f(xn;θ)

 ,
the question is rephrased as solving y = fn(θ) for y = [y1, . . . , yn]

⊤. This is an overdetermined
set of linear equations. For θ ≈ θ0 and θt ≡ θ0 + t(θ − θ0), a Taylor expansion gives:

ỹ ≡ y − fn(θ0) = fn(θ)− fn(θ0)

≈ Dfn(θ0)(θ − θ0) +

∫ 1

0

(Dfn(θt)−Dfn(θ0))(θ − θ0)︸ ︷︷ ︸
=

dfn(θt)
dt

dt

= Φ(θ − θ0) + E(θ)

where Φ ∈ Rn×p is the Jacobian matrix.

Remark 1.4. The Taylor expansion has this form:

g(x) = g(0) + g′(0)x+

∫ x

0

g′(u)− g′(0) du,

and if the function was on more than one dimension the last term would have been
∫ 1

0
(∂tg(t · x)− ∂tg(0))·

x dt.

The aim is bounding E(θ). To do so, we introduce a Lipschitz condition.
{ass:lipschitz condition}

Assumption 1 (Lipschitz Condition). For a function fn, it holds:

Ln ≡ sup
θ∈Rp

∥Dfn(θ)−Dfn(θ0)∥p
∥θ − θ0∥2

<∞.

which in particular implies that ∥E(θ)∥2 ≤ Ln ∥θ − θ0∥2 <∞.

Coming back to our problem, the solution of the equation ŷ = Φ(θ − θ0) + E(θ) is given by
the inversion formula:

θ = θ0 +Φ†ŷ −Φ†E(θ)︸ ︷︷ ︸
≡δ

where to invert Φ we have used the pseudoinverse, which also ensures that θ will be the smallest
possible L2 norm vector to θ0. The nonlinearity in the correction error term is solved by a Fixed
point equation of the map:

δ = Φ†E(θ0 +Φ†ŷ − δ) ≡ F (δ).
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If F maps balls into smaller balls, namely F (Bp(0, r)) = Bp(0, r′) with r′ < r, then it has a fixed
point with ∥δ∥2 < r′. To derive it, it suffices to bound the norm:

r′ = r′(r) = ∥F (δ)∥ ≤
∥∥Φ†∥∥

op
Ln

∥∥Φ†ŷ − δ
∥∥2
2
≤
∥∥Φ†∥∥

op
Ln

(∥∥Φ†ŷ
∥∥
2
+ r
)2

where in the last passage we have used the triangular inequality. Notice also that the first norm is
just the largest singular value of the matrix. We have now rephrased the problem into showing that
r′(r) < r, where r′(r) = a(b+ r)2 for some r > 0. This is easily solved by the condition

Ln

∥∥Φ†∥∥
op

∥∥Φ†ỹ
∥∥
op

≤ 1

4
,

by which we state a Proposition just below.
{prop:chizat bach lazy training}

Proposition 1.5 ([COB20]). We have

Ln

∥∥Φ†∥∥2
op
∥ỹ∥2 ≤

1

4
⇐⇒ Ln ∥ỹ∥2 ≤

(σmin(Φ))2

4
, (1) {eqn:sufficient condition for contraction map}{eqn:sufficient condition for contraction map}

since the largest singular value of Φ† is 1
σmin(Φ)

.

In words, we want the non-linearity of the model Ln to be small, and the Jacobian Φ to be
non-singular. If the latter case did not verify, then a linear approximation would not have been
reasonable from the start.

It turns out that one can say something more in this setting. It is indeed possible to bound
∥θ − θ0∥2 and it makes sense that GD converges quickly.

{thm:du et al training and generalization}
Theorem 1.6 ([ALS19; Du+19; Zou+18; OS19b; LZB21] in the formulation of [OS19a] and
[COB20]). Assume that λ0 ≡ (σmin(Φ))2

4
and that Eqn. 1 holds. Then for a gradient flow θt:

1. the training error converges exponentially to zero, i.e. θt goes exponentially fast into MERM0:

R̂n(θt) ≤ e−λ0tR̂n(θ0).

2. (sloppy) the generalization error is approximately that of a linear model:

R(f(·;θt)) = R(flin(·;θ(t)
lin)) + err

for err small. A formal statement is found in this review [BMR21, Thm. 5.1].

The morale of Thm. 1.6 is that one can compute the test error of a much simpler linear model,
and that there exists a ball Bp(r) around the initialization such that some θ∗ ∈ Bp(r) is also in
MERM0 . An idealistic visualization of this phenomenon is Figure 3.

Remark 1.7. Notice that nothing explicitly requires that θ∗ will be the closest point in norm to the
start.
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Figure 3: Closeness of MERM0 to starting point {fig:manifold ball}
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We will try to give more details of the statement in the next paragraphs. First of all, the idea is
that in this linearized (also [COB20]) regime the model will approximate the ERM procedure with
a quadratic function, i.e. gradient flow on a quadratic function. This is guaranteed to converge. In
some sense, the induction bias is L2 in the coefficients.
The particular form of the linear model is:

flin(x;θ) = f(x;θ0) + ⟨θ − θ0,∇θf(x;θ0)⟩

which is the first order Taylor expansion in θ. The Gradient Flow (GF), is with respect to the risk
for this model. Namely:

R̂n(flin(x;θ)) =
1

n

n∑
i=1

(yi − f(xi;θ))
2 =

1

n
∥ỹ −Dfn(θ0)(θ − θ0)∥22

which indeed is quadratic in θ! Our parameter θ
(t)
lin will run GF on this risk. To draw precise

conclusions in generalization terms we now turn to studying a specific model. We will consider a
2-layers Neural Network, which has function:

f(x;θ) =
1√
N

N∑
i=1

ai · σ(⟨wi,x⟩) σ : R → R

where σ is an element-wise nonlinearity. Further, we set the weights of the last layer to be sym-
metric, namely a1 = · · · = aN

2
= 1 and aN

2
+1 = · · · = aN = −1, and aim to only fit the weights

w1, . . . ,wN . Thus we set θ = (w1, . . . ,wN), and θ ∈ Rp, p = Nd. The initialization of interest
is spherical, i.e. wi,t=0 ∼ Unif(Sp−1).
For simplicity, we neglect the term fn(θ0) which is just random and independent of data. This
choice is without loss of generality, and amounts to replacing labels with values y′ = y−f(X;θ0),
or setting directly fn(·;θ0) = 0 with a choice of weights wi,t=0 iid and wi+N

2
,t=0 = −wi,t=0 for

i ∈ [N
2
]. This last technique is often named symmetric initialization.

Since we want to understand the linear regime generalization of this model, it is crucial to
observe the gradient at initialization. In general, the gradient has form:

∇θf(x;θ) =
1√
N

(
a1σ

′(⟨w1,x⟩)x⊤, . . . , anσ
′(⟨wN ,x⟩)x⊤)

and in a linearized model, using the shortcut b ≡ θ − θ0, the function of Theorem 1.6 is

flin(x; b) =
1√
N

N∑
i=1

ai ⟨bi,x⟩ σ′(⟨wi,x⟩),

to which we add a 1√
d

factor and absorb3 the ai into b. Eventually, we work out a more compact
expression that is:

flin(x; b) = ⟨b, φ(x)⟩ φ(x) =
1√
Nd

(
σ′(⟨w1,x⟩)x⊤, . . .

)
,

3Notice that ai ∈ {±1}
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for which we want to evaluate the interpolator

b̂ = argmin
{
∥b∥2 | ⟨b, φ(xi)⟩ = yi ∀i ∈ [n]

}
.

In the general setting, one would ask if Proposition 1.5 holds for this class of problems.

Proposition 1.8 ([OS19a]). For x ∼ N (0, Id) and yi ∈ O (1) Eqn. 1 holds w.h.p. if Nd ≥ Cn2

Remark 1.9 (On the meaning of Lazy). In [COB20] it is shown that for a large class of linear
models, namely those satisfying a mild homogeneity condition, if the function is strecthed by a
constant α, i.e.

f(x;θ) =
α√
N

N∑
i=1

aiσ(⟨wi,x⟩

then the condition becomes:

αLn ∥ỹ∥22 ≤
(σmin(Φ))2α2

4
.

In other words, despite being invariant under θ the condition is not invariant under scaling of f ,
and for p ≫ d,Nd ≥ CN2

α
with α large enough the linear regime is attained. Another important

requirement is that f(x;θ0) = 0, allowing for the condition ỹ = y, which is somehow equivalent
to requiring that the function is not only affine but exactly linear. One could also interpret it as the
condition that allows for lazy training, i.e. that ỹ will not depend on the scaling of α.
Additionally, α does not affect the training error R̂n in the linear regime since it is reabsorbed into
b.

2 Three Models
We will deal with the following layers of abstraction:

1. a simple Ridge regression with random features

2. kernel regression

3. Neural Tangent Kernel regression

2.1 Linear (Ridge) Regression
As previously discussed, we want to do min-norm regression. In particular, consider:

b̂λ = argmin
Rp

{
1

n
∥y − Zb∥22 + λ ∥b∥22

}
Z ∈ Rn×p (2) {eqn:ridge optimization}{eqn:ridge optimization}

and its associated min norm intepolator b̂ ≡ b̂0+ = limλ→0+ b̂λ. Also, we ideally have a data
matrix of random features zi = φ(xi) for all i ∈ [n].
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For a Ridge regression such as the one above, the solution is explicitly found

b̂λ =
1

n
Z⊤
(
λIn +

1

n
ZZ⊤

)−1

y (3) {eqn:ridge estimator}{eqn:ridge estimator}

and if we take yi = b⊤∗ zi + ϵi with E [ϵi] = 0 and Σ ≡ E
[
ziz

⊤
i

]
then the error is classically

decomposed into a bias and a variance term as:

R(Z;λ) =
∥∥∥f − f̂

∥∥∥2
2
=
∥∥∥f − E

[
f̂
]∥∥∥2

2
+
∥∥∥f̂ − E

[
f̂
]∥∥∥2

2
.

We briefly sketch the argument for completeness below. The test error reads

R(Z;λ) = Eznew

[
Eϵ

[(〈
b̂λ, znew

〉
− ⟨b∗, znew⟩

)2]]
where we added the expectation over the noise in training vector ϵ to simplify but one could show
that it is not necessary, at the cost of a more complicated formula. As before, we inspect the excess
risk. Notice also that b̂λ is a function of Z and so is R. Namely, both are functions of the training
data.
Writing ∥v∥Σ ≡ ⟨v,Σv⟩, we express this as:

R(Z;λ) = Eϵ

[∥∥∥b̂λ − b∗

∥∥∥2
Σ

]
=
∥∥∥b∗ − Eϵ

[
b̂
]∥∥∥2

Σ
+ Eϵ

[∥∥∥b̂λ − Eϵ

[
b̂λ

]∥∥∥2
Σ

]
= Bias(Z;λ) + Variance(Z;λ).

plugging in Eqn. 3 and with a little algebra the bias and variance expression can be found:

Bias(Z;λ) = λ2 ⟨b∗,SλΣSλb∗⟩ Sλ = (λIp + Σ̂)−1

Variance(Z;λ) =
σ2

n
Tr
(
ΣΣ̂Sλ

)
Σ̂ =

1

n
ZZ⊤ =

1

n

n∑
i=1

zizi (4) {eqn:ridge variance}{eqn:ridge variance}

where Σ̂ is the empirical covariance.
Given the closed form expression of these random matrices, we wish to compute them with Ran-
dom Matrix Theory (RMT) tools.

Remark 2.1. Not only eigenvalues will be important. Since the bias has some vector terms, also
eigenvectors will matter.

Remark 2.2. Subject to some conditions, we claimed in Theorem 1.6 that there exists a close
interpolator in the manifold MERM0 and that SGD reaches it, but provided some evidence only for
the first statement. The second (i.e. SGD ends up in MERM0) is argued starting from establishing
an inequality:

dR̂n

dt
≤ −λ0R̂n,

and controlling the LHS by the minimum singular value of the Jacobian to continue.

End of Lecture 1
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2.1.1 Sharp Characterization of proportional regime

We have convinced ourselves to look at Ridge regression (Eqns. 2-4). Also, we have derived an
expression for the risk in terms of Σ norms with a bias-variance decomposition. We will now
provide a sharp characterization in the proportional regime by [Has+20].
Without loss of generality4, assume that the rows of the data matrix are such that zi = Σui,
independent and identically distributed, with standard moments and a bound on higher moments:

E [ui] = 0, E
[
u2

i

]
= 1, E

[
u8

i

]
≤ C, C ∈ R.

Additionally, assume the variance matrix satisfies for λ(Σ) an eigenvalue:

λmax(Σ) ≤ C,
1

p

p∑
i=1

λ−1
i (Σ) ≤ C, C ∈ R,

where the last condition is verified if the minimum eigenvalue is bounded away from zero.
We state the result in the vanishing regularization regime λ = 0+, with proportionality

C−1 ≤ n

p
≤ C, C ∈ R.

Let λ⋆ be the unique solution to the equation:

n = Tr
(
Σ (Σ+ λI)−1) ≡ F (λ)

of which we see a plot in Figure 4. Additionally, define:

Bth
n :=

λ2⋆ ⟨b∗, (Σ+ λ⋆I)
−2Σb∗⟩

1− 1
n
Tr (Σ2(Σ+ λ⋆I)−2)

(5) {eqn:Bnth hastie}{eqn:Bnth hastie}

V th
n :=

σ2

n

Tr (Σ2(Σ+ λ⋆I)
−1)

1− 1
n
Tr (Σ2(Σ+ λ⋆I)−2)

. (6) {eqn:Vnth hastie}{eqn:Vnth hastie}

recall that the bias and variance terms admit expressions Bias(Z;λ) = λ2 ⟨b∗,SλΣSλb∗⟩ and

Variance(Z;λ) =
σ2

n
Tr
(
ΣΣ̂Sλ

)
. We claim that Bth

n , V
th
n will be their predictions. In [Has+20],

the following result was shown.
{thm:Hastie et al ridge theorem}

Theorem 2.3 ([Has+20]). Let λ = 0. With the above assumptions, there exists C = C(C) such
that with high probability:

|Bias(Z;λ)− Bth
n | ≤ Cn− 1

6 |Variance(Z;λ)− V th
n | ≤ Cn− 1

6 .

For λ > 0, the exponent gives a tighter result.

4we can always reorient the matrix
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Figure 4: The F (λ) function {fig:F lambda map}

In other words, if there exists a C such that the assumptions holds, then the bias and the
variance are well approximated by the theoretical predictions. The proof is a combination of RMT
and anisotropic local laws, especially a non-asymptotic one proved in [KY16]. In simple words,
such laws are statements about the asymptotics of ⟨v,Sλv⟩. Typically in RMT one studies the
trace of the resolvant Sλ, which is also the Steltjes transform of the distribution of eigenvalues, but
this latter result is more advanced and well suited for the bias, which can be seen as a sandwiching
of the a matrix in between b∗ vectors.
Rather than spending time on the proof, we focus on providing a nice interpretation.
As a first remark, even though the bias is proportional to λ2, we send λ → 0+. We will argue that
nevertheless λ⋆ ̸= 0 when it is the solution of F (λ). Indeed, as λ→ 0+, it is also the solution of:

n

(
1− λ

λ⋆

)
= Tr

(
Σ(Σ+ λ⋆I)

−1
)
,

where the previous equation was for λ = 0. Looking at the curve in Figure 4, we can conclude that
λ⋆ → 0+ but that it is nonzero as λ→ 0+, a fact that is guaranteed by the condition p > n.

The power of the result lies in the fact that we get rid of the empirical covariances Σ̂, so that
the matrices are deterministic. Making Σ diagonal by a change of orientation, both Bth

n , V
th
n can

be written in terms of eigenvectors and thus become sums instead of matrices. Letting dimensions
diverge, we eventually get the distribution of the eigenvalues.

Example 2.4. By the above discussion:

V th
n =

p∑
i=1

σ2
i

σi + λ⋆
,
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so that for p→ ∞ it holds that:

1

p
V th
n

p→∞→
∫

σ2

σ + λ⋆
φ(dσ).

The last expression is the asymptotic distribution of eigenvalues, and it admits a nice formula if
φ(dσ) has simple form.

We now turn to an interpretation of the formulas. Assume the denominator in Eqns. 5, 6 is
such that

1

n
Tr
(
Σ2(Σ+ λ⋆I)

−2
)
≤ 1

n
Tr
(
Σ2(Σ+ λ⋆I)

−1
)
≤ 1

c0
,

where the first bound is trivial. Notice that for λ⋆ = 0 the term above is exactly 1. Then:

Bth
n ≤ c0λ

2
⋆

〈
b∗, (Σ+ λ⋆I)

−2Σb∗
〉

V th
n ≤ c0

σ2

n
Tr
(
Σ2(Σ+ λ⋆I)

−1
)
,

which are basically the original bias and variance apart from constants and the difference λ, λ⋆,Σ, Σ̂.
We also claim that they are the bias and variance for the following sequence model:

y(s) = Σ
1
2b∗ +

σ√
n
w b̂s = argmin

b

{∥∥∥y2
(s) −Σ

1
2b
∥∥∥2
2
+ λ⋆ ∥b∥22

}
,

which is a simpler Ridge regression with as design matrix the proportional covariance and λ⋆ reg-
ularization. With some manipulations, from a random Z and null regularization we are obtaining
approximate equivalence to a deterministic well suited problem. The term sequence stems from
the fact that setting Σ to be diagonal one obtains even simpler equations:

y(s),1 = σ
1
2
1 b1 +

σ2

√
n
wi,

where σ1 is the first eigenvalue of the matrix and σ2 is the noise variance.

Remark 2.5. Notice that we only get an upper bound by assumption, but wer have that the de-
nominator is always positive by assumption. So the result is true up to constants in the interval
(0, 1− 1

c0
).

The behavior of λ⋆ From Figure 4, we would expect that as n→ ∞ we have λ⋆ → 0+. Heuris-
tically, say it is small. Take a covariance Σ in which the eigenvalues decay to zero:

σ1 ≥ · · · ≥ σl ↓ 0.

Then, one can find a k such that:
σk ≥ λ⋆ ≥ σk+1,
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with very small difference, as to assume λ⋆ ≈ σk. The equation fo F (λ) becomes:

n =
∞∑
l=1

σl
σl + λ⋆

≈
k∑

l=1

σl
σl + λ⋆︸ ︷︷ ︸

≈1

+
∑
l≥k

σl
σk

since σl ≫ σk

≍ k +
1

σk

∞∑
k+1

σl := k + r
(1)
k ,

where we have defined the effective rank. If the eigenvalues after σk are either approximately σk
or zero the ratio is the number of nonzero eigenvalues after k, thus the name.

Example 2.6. Say σk ≍ k−α for α > 1 to make it summable. Then:

r
(1)
k ≍ 1

k−α

∫ ∞

k

x−αdx ≍ k,

so that n ≍ 2k ≍ k. The effective regularization is some order of the nth eigenvalue of Σ, i.e.
λ⋆ ≍ σn.

Example 2.7. Similarly, let σk = k−1(log k)−β where β > 1. Then:

r
(1)
k ≍ k log k =⇒ n ≍ k + k log k ≍ k log k =⇒ k ≍ n

n log n
.

We do the same procedure of splitting between larger and smaller eigenvalues for V th
n . What

is found is that:

V th
n ≍ σ2

n
Tr
(
Σ2(Σ+ λ⋆I)

−2
)
≍ σ2

n

k +
1

σ2
k

∑
l>k

σ2
l︸ ︷︷ ︸

r
(2)
k

 ≍ k
σ2

n

where in general r(2)k ≪ r
(1)
k , and the last asymptotic is roughly but not always true. The variance is

the same as that of Linear Regression with k parameters, and k is the effective degrees of freedom5

in the regression problem we set. Similarly, for the bias:

Bth
n ≍ λ2⋆

〈
b∗,Σ(Σ+ λ⋆I)

−2b∗
〉
≍ σ2

k

[∑
l≤k

b
2

l

σl
+
∑
l≥k

b
2

l

σl
σ2
k

]
in the basis of the eigenvectors of Σ

≍
∑
l≤k

σ2
k

σl
b
2

l +
∑
l>k

σlb
2

l ,

5indeed, if the variance is identity, V th
n is approximately p as λ → 0+, so k is the dof!
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where the first term in the second asymptotics is the coefficient of b∗ at the lth entry in the basis
of eigenvectors of Σ, namely ⟨vl, b∗⟩ for vl the lth eigenvector of Σ. The second term is also
interesting. We are not fitting at all the projection of b∗ onto the eigenvectors after the kth. It is the
same as:

⟨b∗,P>kΣP>kb∗⟩ = ∥P>kb∗∥2Σ .
In general, we could always have written:

R̂n =
∥∥∥b̂λ − b∗

∥∥∥2
Σ
=
∥∥∥P≤k(b̂λ − b∗)

∥∥∥2
Σ
+
∥∥∥P>k(b̂λ − b∗)

∥∥∥2
Σ
,

which in our case means that b̂λ is zero in the second projection, and non trivial in the first projec-
tion, since σk < σl.

What we learn from this is that one can have both V th
n , Bth

n → 0, if for example k
n
→ 0, which

holds when b∗ is concentrated onto the top k eigenvectors of Σ (i.e. second term in last equation
being null nevertheless), and something more to make the first term vanish. This phenomenon
is established for λ = 0, and was named benign overfitting, to underline that in contrast with
expectations, overfitting is beneficial at high dimensions [Bar+20].

Remark 2.8. For the rate k ≍ n
logn

the speed is 1
logn

, so it could in principle be very slow. The
technique is not optimal.

We now turn to justify further why λ⋆ should be different than zero. We start with a simple
example: the Noise in covariates model. Let for δ small:

Z = Z0 + δW Wij ∼ N (0, 1).

A Ridge regression finds the estimator of Eqn. 3. We recall it below:

b̂λ =
1

n
Z⊤

λIn + 1

n
ZZ⊤︸ ︷︷ ︸
:=Kn


−1

y,

where 1
n
ZZ⊤ is a kernel matrix. Indeed

(Kn)ij =
1

n
⟨zi, zj⟩

Kn =
1

n
Z0Z

⊤
0︸ ︷︷ ︸

:=Kn,0

+
δ2

n
WW⊤ modulo ignored some cross terms.

The the second term is also expressed as:

δ2

n
WW⊤ =

δ2

n
pI+

δ2

n

√
pWW⊤ − pI︸︷︷︸

E[WW⊤]

 .
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Figure 5: Risk behavior as a function of γ {fig:risk behavior}

The matrix inside the parenthesis is in Rn × Rn, it is symmetric with zero mean and entries with
norm ±√

p being products of Gaussians, like a Wigner matrix. It is easy to prove then that the
operator norm of the matrix is

√
np. Then we rewrite it as:

δ2

n
WW⊤ =

δ2

n
pI+ δ2

√
p

n
G,

where G is a Wishart matrix. For p≫ n we get that:

Kn = Kn,0 +
p

n
δ2I+ h.o.t.,

and in practice λ′ = λ + pδ2

n
. The presence of noise in the covariates adds regularization to the

model. It is one of the oldest examples of regularization via noise. Something almost equivalent
was found in [Bis95], or recently and more in detail by [KLS20].

We can now look at specific examples, which turn into choices of (Σ, b⋆).

Example 2.9. Let Σ = I; b⋆ be isotropic (rotationally invariant). For λ = 0+, p
n
→ γ the behavior

of the risk is as in Figure 5. We see a divergence at γ = 1 since the Z matrix coincides with the
divergence of the condition number. As γ → ∞ the function changes, so this is not a conceptual
model for overparametrization. The number of parameters increases, but the function to learn
changes. Despite the double descent phenomenon we should ignore it. This was first pointed out
in [AS17].

Example 2.10 (Latent space model). Construct the following observations:

yi = θ⊤
∗ gi + ξi; zij = w⊤

j gi + uij,

17



Figure 6: Risk behavior as a function of γ, different regularizations
The Risk goes to zero as γ → ∞, differently from before, so over-parametrization induces null
risk. Turning on some regularization the divergence disappears and we get the blue curve, the

optimal regularizer is the yellow curve, which is monotone. In red we plot the norm of b̂λ, which
has a qualitatively similar behavior to the risk at no regularization. {fig:multiple risk behaviors}

where we have sampled independently gi ∼ N (0, Id), ξi ∼ N (0, σ2
ξ ), uij ∼ N (0, 1) for d ≪ p.

This is equivalent to providing (Σ, b⋆), but underlines that there is a d-dimensional latent space
with the true repsonse and the covariates being linear functions of the latent space. Notice that
Z ∼ N (0,WW⊤ + I) so Σ is well specified and y is jointly Gaussian with Z. This ensures that
there exists a b⋆ solution.
In this setting, we can vary the overparametrization while keeping the d-dimensional latent space
fixed. This is done by projecting the covariates in different directions. The model is a conceptually
good toy model.
Assume that p

n
→ γ, d

n
→ 1

100
or any other constant. We report in Figure 6 the risk-γ plot.

In the previous example, we find benign overfitting as before. The covariance Σ is approx-
imately low-rank (since d ≪ p) so that the eigenvalues decay and b̂λ is aligned with the top
eigenvectors.

2.2 Kernel Ridge Regression
The interest for Kernel Ridge Regression (KRR) stems from two observations:

• it is non-parametric p→ ∞

18



• is is the limit of Neural Networks in the linear regime, as we will see in the next sections.

For background, we remind the optimization problem that is sought in KRR:

f̂λ = argmin

{
1

n

n∑
i=1

(yi − f(xi))
2 + λ ∥f∥2K

}
,

where ∥·∥K is the RHKS6 norm in terms of the kernel K. By Kernel, we mean a map that is also
positive semi-definite (psd). Mathematically:

K : Rd × Rd → R, (K(xi,xj))i,j∈[n] ⪰ 0.

To the kernel, we associate a linear operator:

K : L2(P) → L2(P) K(g(x)) ≡
∫
K(x,x′)g(x′)P(dx′),

where P is the data distribution on Rd. We can decompose the Kernel into eigenvalues and eigen-
functions in an orthonormal set:

K(x1,x2) =
∞∑
l=1

λlφl(x1)φx(x2) {λl, φl}∞l=1.

Remark 2.11. Taking K a continuous function, we can bound its trace operator from above, and
from below by the eigendecomposition. This makes the sum of the eigenvalues finite since

C ≥ Tr (K(id)) =

∫
K(x,x)P(dx) =

∞∑
l=1

λ2l ,

and in particular we can order the eigenvalues:

∞ > λ21 > · · · > 0 λl ↓ 0.

The above construction allows us to define the norm of a function with respect to the kernel,
which takes form:

⟨f,Kf⟩ := ∥f∥2K =
∞∑
l=1

1

λ2l
⟨φl, f⟩L2

where to define the last object we have ignored null eigenvalues.

Example 2.12. The simplest example is for P[dx] = Unif(0, 2π). Say f : [0, 2π] → C and the
eigenfunctions are the Fourier period functions φl(x) = eikx for k ∈ Z. To make the eigenvalues
summable, we explicitly construct them as:

λ2l = (1 + |l|2s)−1 s >
1

2
.

6Reproducing Kernel Hilbert Space
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Given the eigenpairs {(λl, φl)} we obtain the kernel K(x1, x2) =
∑∞

l=1 λ
2
lφl(x1)φl(x2) as before.

The Kernel norm of a function will then be:

∥f∥2K =
∑
q∈Z

(1 + |q|2s) ⟨φq, f⟩2L2

=
1

2π

∫ 2π

0

(
|f(x)|2 + |f (s)(x)|2

)
dx if s ∈ N,

where the last passage follows by Parceval’s identity, and we find a Sobolev norm.

To extend the last example, it can be shown that RHKS generalize some subsets of Sobolev
spaces, and most importantly they can encode the smoothness of a function.

We will find that the optimal estimator f̂λ is the solution of an infinite dimensional problem
with a finite dimensional description. The way we derive this is one of the many. It makes use of
the Representer Theorem. Expand f in the basis of eigenvectors:

f =
∞∑
l=1

alφl Φ ≡


φ1(x1) φ2(x1) · · ·
φ1(x1) φ2(x2) · · ·

...
...

...
φ1(xn) φ2(xn) · · ·

 ∈ Rn×∞.

The construction of the matrix Φ highlights that to optimize f with KRR we are eventually doing
Ridge Regression on the matrix of data Φ, which has infinite parameters. To invert the relation and
find a we apply the usual formula:

âλ = argmin
{
∥y −Φa∥2 + λ

〈
a,D−1a

〉}
,D = diag(λ21, λ

2
2, . . .).

Remark 2.13. Notice that f = Φa and in the basis of the eigenvectors of K the matrix norm is
just the diagonal of eigenvalues and ∥f∥2K = ⟨a,D−1a⟩ effectively. We are just rewriting the usual
optimization with the new norm.

The result of the optimization is a vector:

âλ = DΦ⊤ (λIn +ΦDΦ⊤)−1
y,

where the matrix Kn = ΦDΦ⊤ has entries:

(Kn)ij =
∞∑
l=1

λ2lφl(xi)φl(xj),

which is the same formula of plain Ridge Regression in all its passages. Having âλ we eventually
compute the estimator function:

f̂λ(x) =
∞∑
l=1

âλ,lφl(x) = K(x, ·)⊤(λIn +Kn)
−1y, Kn ∈ Rn×n, K(x, ·) =

K(x,x1)
...

Kn(x,xn)


End of Lecture 2
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3 Neural Networks
We found that the Kernel Ridge Regression (KRR) has an explicit solutions in terms of Kn, K. We
report it below to recap:

f̂λ = argmin

{
n∑

i=1

(yi − f(xi))
2 + λ ∥f∥2K

}
= K(x, ·)⊤ (λIn +Kn)

−1 y.

Our results will rely heavily on this.

Open Problem #1

Redo the following for other losses ℓ.

Kernel choice

Which kernel we should choose to make contact with linearized 2-layer Neural Networks?

We briefly recap the expression for N hidden neurons which we derived before:

flin(x, b) = ⟨b, φ(x)⟩ φ(x) =
1√
Nd

(
σ′(w⊤

1 x)x
⊤, . . . , σ′(w⊤

Nx)x
⊤)⊤︸ ︷︷ ︸

∈RNd

.

The Ridge regression with feature map φ is equivalent to the KRR with (finite dimensional equiv-
alent) kernel:

KN(x1,x2) = ⟨φ(x1), φ(x2)⟩

=
1

Nd
⟨x1,x2⟩

N∑
i=1

σ′(w⊤
i x1)σ

′(w⊤
i x2)

N→∞→ K(x1,x2) =
1

d
⟨x1,x2⟩Ew

[
σ′(w⊤x1)σ

′(w⊤x2)
]
,

where φ was computed some lectures ago. If wi ∼ Unif(Sd−1) the expectation is rotationally
invariant and for ∥xi∥2 =

√
d one gets:

K(x1,x2) = hd

(
⟨x1,x2⟩

d

)
,

so the limit kernel in the linear regime is an inner product kernel.
We claim that the dependence on the dimension is roughly null, namely:

hd(q)
d→∞→ h(q),
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which is reasonable since the interpolation-benign overfitting effects are typically at d≫ 1.
We will be a little sloppy. Notice that:

K(x1,x2) ≈
⟨x1,x2⟩

d
E

w∼N (0,
Id
d

[
σ′(w⊤x1)σ

′(w⊤x2)
]

=
⟨x1,x2⟩

d
EG1,G2 [σ

′(G1)σ
′(G2)] G1,G2 ∼ N

(
0,

[
1 ⟨x1,x2⟩

d
⟨x1,x2⟩

d
1

])

= h

(
⟨x1,x2⟩

d

)
.

We then see that:

h(q) = qEG1,G2 [σ
′(G1)σ

′(G2)] G1,G2 ∼ N
(
0,

[
1 q
q 1

])
.

The only way in which d enters into the picture is in terms of the input q.

Remark 3.1. All of the above is a heuristic procedure to arrive at an expression for the kernel. In
the next lecture, we will provide details on the speed of convergence when N → ∞.

We now state a technical assumption.
{ass:taylor niceness}

Assumption 2 (Taylor niceness). The map hq has expansion

hd(x) =
∞∑
l=1

cl(d)

l!
xl cl(d) ≥ 0, ∀l, d.

Additionally, assume that cl(∞) ≥ 0 for all l, which makes the activation function generic.

Example 3.2. The first part of Ass. 2 is true if σ′ ∈ L2 the second if σ is the shifted ReLu.

Remark 3.3. Consider the L layer MLP expressed as usual by:

f(x) = σ ◦W1 ◦W2 ◦ · · · ◦WL(x),

with standard initialization (Wl)ij ∼ N (0, τ 2l ) the NTK kernel is also an inner product kernel.
Namely:

K(x1,x2) = h

(
⟨x1,x2⟩

d

)
.

This should be obvious without computations. The linearization is rotation invariant. Any function
of two arguments which is rotation invariant depends on the norms of the inputs and the inner
product. The norms are fixed, and dependence is only one the inner product. This holds for any
rotationally invariant distribution.
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Remark 3.4. The reasoning above does not apply to any architecture since the kernel changes.
Consider a Convolutional Neural Network (CNN) with two layers and average pooling. We wish
the kernel to be translationally invariant. Let x ∈ Rd. The CNN is invariant under translations,
so we inspect:

T l(x) = (xl, xl+1, . . . , xl−1),

for T l a member of the group of translations (the cyclic group). The classic example is an image
translation, but we keep the x ∈ Rd for simplicity, like a one-dimensional image. The Kernel will
be:

K(x1,x2) =
1

d

d−1∑
l=0

h

(〈
x1, T

lx2

〉
d

)
,

which is the average of the previous kernel over the translations of the group.

Remark 3.5. The linearization of the MLP follows by the linearization of the case we saw at the
beginning for a 2-layer net.

3.1 More about previous problems
The results we state now hold for any infinite width kernel of 2-layer NNs and was explored in a
series of works. We focus on [MMM21] for the moment. There are also extensions to CNNs. As
a starting point, notice that the dependence on dimension d is inside the input, namely:

hd

(
⟨x1,x2⟩

d

)
= h

(
⟨x1,x2⟩

d

)
∥x∥ =

√
d.

Open Problems #2

We want to analyze the following:

1. the risk of the KRR for given kernel K

2. when is N is large enough so that the risk of the finite width kernel is close to the risk
of the infinite width version?

3. when are NNs better than kernels?

Problems #1, #2 have been done to some extent for inner product kernels and convolutional
kernels, while for #3 there are only special cases.

We now state an important Theorem. The setting is as follows. Consider an inner product
kernel for which Ass. 2 holds. Let x1, . . . ,xn

iid∼ Unif(Sd−1(
√
d)) and:

yi = f∗(xi) + ϵi E [ϵ] = 0, E
[
ϵ2
]
= τ 2.

To make the risk E [(f∗ − f)2] computable, assume also that E [f 2
∗ ] = ∥f∗∥2L2 <∞.
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{thm:mei monta theo theorem}
Theorem 3.6 (Mei, Monta, THeo [MMM21]). With the setting above and d → ∞, n → ∞, there
exists λ0 > 0 such that for all7 λ ∈ [0, λ0] the following holds: if dl+δ ≤ n ≤ dl+1−δ for some
δ > 0 then

R(f∗, λ) = E
[(
f̂λ(xnew)− f∗(xnew)

)2]
= ∥P>lf∗∥2L2 + od(1)(∥f∗∥2L2 + τ 2)

= min
p∈poly(l)

E
[
(f∗(x)− p(x))2

]
+ od(1)(∥f∗∥2L2 + τ 2),

where P>l is the projection to polynomials of degree greater than l.
Further, no RKHS method with inner product kernel can achieve lower risk changing λ or the
training loss function and same test error with square loss.

We now turn to interpreting the result. The condition on the number of samples n is roughly
translated as data is able to fit an l degree polynomial but not marginally more than that. Addi-
tionally, rotational invariance would imply that if one l + 1 degree polynomial is fitted then all of
them can be, leading to a contradiction. In this case, rotational invariance can be seen as a curse of
dimensionality.

Remark 3.7. For conditional kernels with f∗ rotationally invariant (e.g.
∑d

i=1 xixi+1) the same
result holds with a power of d less. Namely, dl−1 points are needed to fit a degree l polynomial.
For other groups, there is an abstract theorem [MMM21].

A generalization for other high-dimensional isotropic distributions (e.g. Rademacher ±1 at d
dimensions) was also derived.

Open Problem #3

What happens with distributions with a latent low-dimensional structure?

The motivation for Open Problem #3 is that classes of inputs (e.g. images) often lie on a lower
dimensional manifold. This idea was studied in a special case which is now briefly explained. It
was first presented in [Gho+19; Gho+20; Gho+21]. Take:

x = Ux1 +U⊥x2, U ∈ Rd×k,U⊥ ∈ Rd×(d−k), [U.U⊥] ∈ O(d),

where O(d) is the group of orthogonal matrices and U.U⊥ ∈ Rd×d is obtained by stacking the
columns of the two matrices. A visualization in R2 is Figure 7. Assuming further that x1 ∼
Unif(Sk

ρ1
),x2 ∼ Unif(Sd−k

ρ2
) with ρ1 > ρ2 the points lie on an ellipsoid, also depicted in Figure

7. In particular, let k = dα and ρ1
ρ2

= dβ . This choice of polynomial dimensions makes the previous
results hold for an effective dimension in place of dl.

Remark 3.8. While this low dimensional construction may seem not intuitive, one can think of an
image in the Fourier domain: low frequency components have larger variance and are collected
in U, while the others are collected in U⊥.

7at λ = 0 we get the minimum-norm interpolator
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Figure 7: The ellipsoid of the synthetic example {fig:ellipsoid}

We come back to the interpretation of Thm. 3.6. The error can always be decomposed as:∥∥∥f̂ − f∗

∥∥∥2
L2

=
∥∥∥P<l(f̂ − f∗)

∥∥∥2
L2

+
∥∥∥P>l(f̂ − f∗)

∥∥∥2
L2
.

From the result, we see that the first element of the RHS is null and the second is not impacted,
namely f̂ ≈ P≤lf∗. We then get that interpolation is optimal, precisely in the sense that λ = 0 is
the best up to vanishing od(1) corrections. The setting of Thm. 3.6 is then a second example of
benign overfitting.
In particular if ∥P>lf∗∥L2

l→∞→ 0 then the excess risk goes to zero. A depiction is Figure 8, where
the abscissa is logn

log d
∼ l by the scaling of the Theorem. The risk is flat between integers and jumps

when an additional degree is added. One can further think of the estimator as a decomposition:

f̂ = fsmooth + fspiky, fsmooth = P<lf∗, fspiky(x) = f∗(x)− P>lf∗(x) ∀x, ∥fspiky∥L2 = o(1).

The above equation is understood as follows. The fitting process returns a smooth component and
a spiky part that is very small in L2 norm in high dimensions8 (see Figure 9 blue is smooth, red is
spiky).

Open Problem #4

What is the structure/geometry of these spikes? Knowing this would provide results on the
risk of test points at perturbations of training points.

8Notably, large spikes in high dimension have small norm
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Figure 8: Staircase risk behavior {fig:staircase risk behavior}

Figure 9: Estimator as a smooth(blue)+spiky (red) combination. {fig:spiky plus smooth}
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Figure 10: Staircase with bumps {fig:staircase with bumps}

Remark 3.9 (Another perspective on Thm. 3.6). Mathematically, the risk in this setting is the
same of a polynomial regression of degree l, but the function fitted in the latter case misses the
spiky components.

A question that might come to mind at this point is what happens at the boundaries of the
staircase of Figure 8? This has been studied recently for the case of the sphere and the hypercube
distribution of the signals [Mis22; LY23; TAP21]. What happens is that every polynomial in l
term is fitted, anything that is degree > l + 2 is seen as noise9. All that matters is the component
of degree 2 of the kernel and of the function. The design matrix of degree 2 polynomial behaves
roughly as a Wishart matrix for any transition. There is a universal formula that gives the shape
of these spikes, since the phenomenon is always related to this degree 2 Wishart matrix. Basically
one can describe the aspect of the multiple descents in a nice way. A depiction is Figure 10.

The mathematical intuition for why this happens is worth exploring. The setting is Random
Matrix Theory models with large aspect ratio or polynomial dependence between entries, which
are slightly different from canonical research areas in RMT. The main aspect we will see is the
structure of the empirical kernel Kn = (K(xi,xj))i,j≤n. Since K is an inner product kernel , it
diagonalizes in the basis of spherical harmonics, which we denote as:

Yl(x) =
[
Yl,1(x), . . . , Yl,D(l)(x)

]
, l ∈ N ∪ {0}, x ∈ Sd−1(

√
d).

The functions {Yl,j}j≤D(l) are l degree homogeneous harmonic polynomials restricted to the
√
d

radius sphere. They can be made orthonormal, namely such that ⟨Yl,k, Yl′,k′⟩ = δkk′δll′ , so that

9think of a polynomial of l = 3 degree sampled at n2 sample points, like a high frequency cosine in the unit
interval: it appears as noise.
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together they form an orthonormal basis of square integrable functions on the sphere. The degen-
eracy (# dimensions) is roughly10 dl, by permutation invariance it is dl

l!
. For simplicity, we will

state this as D(l) ≍ dl.
Obviously, rotating x the span of Y functions is the same since it is invariant. For this reason it
diagonalizes an invariant kernel K in such space.
Consider a set of orthonormal functions {φi}i≤D. In general the projection onto the span V =
span{φi}i≤D satisfies:

(PV )(x1,x2) =

dim(V )∑
i=1

φi(x1)φi(x2)
⊤.

So the projector onto l-degree polynomials seen as a kernel (an integral operator) reads:

Pl(x1,x2) =

D(l)∑
j=1

Yl,j(x1)Yl,j(x2) = Y ⊤
l (x1)Yl(x2).

Now the inner product kernel diagonalizes and is invariant so we write it in terms of spherical
harmonics as:

K(x1,x2) =
∞∑
l=0

λ2lY
⊤
l (x1)Yl(x2) ⪰ 0.

The typical size of these eigenvalues is:

Tr (K(Id)) =

∫
Sd−1(

√
d)

K(x,x)µ(dx) =
∞∑
l=1

λ2lD(l),

where µ(dx) is the uniform measure over the sphere, and letting σ′ < ∞ the trace is bounded.
Boundedness ensures that the RHS argument is summable and we derive:

λ2l ≲ D(l)−1 ≲ d−l. (7) {eqn:asymptotic inequalities chain}{eqn:asymptotic inequalities chain}
{ex: form of inner product kernel by assumption}

Example 3.10. Under our Assumption λ2l =
cl
dl

, where the cl come from Ass. 2, we have:

h(q) =
∞∑
l=1

cl
dl
ql,

with hd

(
⟨x1,x2⟩

d

)
= K(x1,x2).

Open Problem #4

Assume cl ≥ 0 for all l. Then:
λ2l =

cl
dl
(1 + o(1)).

and the chain of inequalities of Eqn. 7 is tight.

10the number of degree l independent polynomials
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Unfortunately, while the formalism of harmonic analysis on the sphere or on the hypercube is
easy, the calculations get complicated for product measures and conditional kernels.
Now that we know the population kernel, what is the empirical kernel? We already know Kn =
((K(xi,xj))i,j≤n. Then:

Kn =
l∑

m=0

λ2mŶmŶ
⊤
m +

∞∑
m=l+1

λ2mŶmŶ
⊤
m Ŷm =

Ym(x1)
...

Ym(xn)

 ∈ Rn×D(m), ∀m. (8) {eqn:kernel decomposition}{eqn:kernel decomposition}

The empirical kernel is composed of a low degree K≤l
n and a high degree part K>l

n . This is made
explicit since the two have a completely different behavior. Indeed, for m ≤ l the matrix Ŷm is
skinny and low rank since n ≫ D(m), while for m > l the matrix is fat and full rank. When
n ∝ dl the lth term has constant aspect ratio in K≤l

n , and it will drive the dynamics. In the skinny
case when m ≤ l an application of the matrix Bernstein Inequality gives:

1

n
Ŷ⊤

mŶm =
1

n

n∑
i=1

Ym(xi)Ym(xi)
⊤︸ ︷︷ ︸

∈RD(m)×D(m)

n→∞
≈ Ex

[
Ym(x)Ym(x)

⊤] , (9) {eqn:first application of Bernstein inequality}{eqn:first application of Bernstein inequality}

which is expected since it is an average of many matrices. However, we can say more, since by the
use of spherical harmonics we also have that:

Ex

[
Ym(x)Ym(x)

⊤] = ID(l),

since it is the matrix of inner products of spherical harmonics. Then, the matrix Ŷm ≈
√
nÛm

where Ûm is basically orthogonal and:

K≤l
n

n→∞
≈

l∑
m=0

cm
m!︸︷︷︸
λm

n

dm
ÛmÛ

⊤
m.

By this result, this matrix has eigenvalues that scale as n, n
d
, n
d2
, . . ., with multiplicities 1, d, d2, . . ..

At the (dl)th term the series stops.
Instead, one can prove that the high degree part satisfies:

K>l
n

n→∞
≈ κIn κ ∈ R,

so that the other eigenvalues are of constant order O(1) with multiplicity n.
Having established the pattern of eigenvalues, we conclude that doing KRR with regularization

λ is basically equivalent to doing polynomial RR with added regularization λ+κ for some degree l
coming from Thm. 3.6. The effective regularization is increasing as in the case of simple features.

Remark 3.11. Recall h(q) =
∑∞

l=0
cl
l!
ql, where the cl are for 2-layes NNs related to the Hermite

polynomials.
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{rem:KRR PRR equivalence}
Remark 3.12. KRR and Polynomial RR are essentially equivalent in the L2 sense but the latter is
missing the spiking components! The spiky part depends indeed on the high rank component.

Eventually, we conclude that the KRR estimator:

f̂λ(x) = K(x, ·)⊤ (λI+Kn)
−1 y

is such that:
λI+Kn = (λ+ κ)I+K≤l

n ,

for a shifted regularization polynomial regression. If λ≪ 1, since K≤l
n has eigenvalues n

dl
≫ 1 the

regularization is useless. When n ∝ dl some eigenvalues become O(1) and regularization starts to
be impactful.

Remark 3.13. The equivalence holds in the L2 sense, namely establishing it by vicinity in expected

norm E
[∥∥∥f̂KRR − f̂PRR

∥∥∥2
L2

]
= o(1).

End of Lecture 3

4 NTK and Risk analysis
We go back to min-norm regression in the Neural Tangent regime of a 2-layer Neural Network.
The feature map in this case is:

φ(x) =
1√
Nd

[
σ′(⟨w1,x⟩)x⊤, . . . , σ′(⟨wN ,x⟩)x⊤] , (10)

with associated linear model fNT(x; b) = ⟨b, φ(x)⟩. The optimal parameters are found by solving
the optimization problem:

b̂λ = argmin
b

{
n∑

i=1

(yi − ⟨b, φ(xi)⟩)2 + λ ∥b∥22

}
, (11)

which is equivalent to a KRR with kernel Kij = ⟨φ(xi), φ(xj)⟩ and optimal function found via
the optimization problem:

f̂λ = argmin
f

{
n∑

i=1

(yi − f(xi))
2 + λ ∥f∥2L2

}
. (12)

TODO probably norm is in K
Here, as the number of neurons diverges (N → ∞) it holds that the empirical kernel becomes an
inner product kernel KN(x1,x2) → K(x1,x2) = hd

(
⟨x1,x2⟩

d

)
, and we studied its risk.
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We now turn to study the convergence speed of this result for xi ∼ Unif(Sd−1(
√
d)) and

yi = f∗(xi) + ϵi where f∗ ∈ L2(Sd−1(
√
d)) and E [ϵi] = τ 2 have equal variance for all i ∈ [n]. In

particular, we will compare the following risks which are always wrt a reference function f∗:

RNT(λ) = E
[(
f∗(xnew)−

〈
b̂λ, φ(xnew)

〉)2]
(13)

RKRR(λ) infinite width kernel (14)

R(l)
PRR(λ) Risk of RR and l degree polynomial (15)

where the last has roughly dl parameters as we discussed earlier. Another previous results was that
PRR is equivalent to an l-truncated KRR which in general has kernel:

K(x1,x2) =
∞∑

m=0

λ2mYm(x1)
⊤Ym(x2), (16)

and we take the first l terms to have equivalence. Recall that the mth term in this sum is a polyno-
mial of degree m.

Assumption 3. To state our results, we require the following:

(A1) separation: for some l ≥ 2 and big c≫ 1 it holds that dl(log d)c ≤ n ≤ dl+1

(log d)c
.

In particular, for l = 1, it suffices to require that d
c0

≤ n ≤ d2

(log 2)c
for some c, c0.

(A2) activation niceness: the function σ observes a criterion that will be made precise in the next
statement (Thm. 4.2).

Remark 4.1. Recall that the NTK term appears in the Kernel summands. Indeed:

KN(x1,x2) =
1

Nd

N∑
i=1

⟨x1,x2⟩ σ′(⟨wi,x1⟩)σ′(⟨wi,x2⟩). (17)

In this expression, we are neglecting the terms from the second layer. If we added them, there
would be an additional factor often termed Random Feature (RF) Kernel. It admits an expression:

1

N

N∑
i=1

σ(⟨wi,x1⟩ σ(⟨wi,x2⟩), (18)

but having rankN with the NTK part having rankNd≫ N , it is neglected. We are effectively only
considering the first layer expansion. In Multi-Layer Perceptrons, this term would be important,
since higher order interactions take place.

{thm:Mi zhong}
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Theorem 4.2 ([MZ22]). Let σ be weakly differentiable11 and satisfy for some B the inequality
|σ′(x)| ≤ B(1 + |x|)B. Assume further that Nd ≥ n(logNd)c0 for some c0, and define the
shortcut:

v∗(σ) ≡
∑
k≥1

⟨Hlk, σ
′⟩2L2 (N (0, 1)) = min

p∈poly(l−1)
EG∼N (0,1)

[
(σ′(G)− p(G))2

]
> 0 (19)

where Hlk are Hermite polynomials. Then:

RNT(λ) = RKRR(λ) +O

τ 2+ +

√
n(logNd)c

′

Nd

 , τ 2+ = τ 2E
[
f 2
∗
]
, (20)

with c′ ∈ R depending on all previous constants.

Remark 4.3. The quickest interpretation is as follows. For Nd ≥ n(logNd)c0 and Nd ≫ n it
holds that NTK ≈ KRR, and an overparametrized Neural Tangent Kernel is basically KR, which is
a similar result when compared to the one of the previous lecture 12 of self-induced regularization
in PRR. Indeed we can state that NTK is equivalent to:

R(l)
KRR(λ+ v∗(σ)) + O

(
τ 2+

√
n

Nd
(logNd)c

)
+O

(
τ 2+

√
n(log n)c

dl+1

)
, (Op formally) (21)

whereO
(
τ 2+
√

n
Nd

(logNd)c
)

is the finite-width error and the second term tells us that the polynomial-
to-kernel approximation error is small for n≪ dl+1.

Remark 4.4. The norm of y plays a role. Recall that

R(λ) = Eϵ,Xnew

[
(f̂ − f∗)

2
]
= BIAS+ VARIANCE, (22)

and being that on the RHS we have random quantities over which we expect the asymptotic terms
are wrt to the randomness, namely they should have an explicit Op in their form, as we are not
expecting wrt their distribution. Expanding the above expression we find:

BIAS+ VARIANCE = EXnew

[
(f∗ − Eϵ

[
f̂
]
)2
]

︸ ︷︷ ︸
∝∥f∗∥2L2

+EXnew

[
(f̂ − Eϵ

[
f̂
]
)2
]

︸ ︷︷ ︸
⊥⊥f∗,∝τ2

(23)

= ∥f∗∥2L2 B
normalized + τ 2V normalized (24)

Open Problem #5

The potential improvements are twofold:

• Get rid of the spurious log factors in the scaling assumption

• repeat the process or find something similar for Networks with 2 hidden layers.

11almost everywhere differentiable with continuous derivative
12see Rem. 3.12 and the discussion there
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Figure 11: Kernel Ridge Regression Risk {fig:KRR risk}

Concerning the second point, we already know that with 2 hidden layers the NTK regime
allows for an inner product kernel with a precise characterization, so it would suffice to describe
the risk of the NTK against the risk of the KRR. In this case, the aspect ratio of the network13 is
important. Additionally, the kernel is not anymore a sum of independent terms.

In Figure 11 we can see the result of Theorem 4.2 in action. The solution f∗ is not of low degree
and we have a scaling for which dl ≪ n ≪ dl+1. When the plots are above the regime (logNd)c

the regularized curve and the interpolating curve match. In particular, benign KRR overfitting
transfers as a result to NTK.

4.1 Phase diagram

We now explain in detail Figure 12. The limit depends on the parameter scaling logn
log d

, which de-
termines the degree of the polynomial RR that is effectively performed. The lower triangular part
represents the phase in which it is possible to interpolate data, the upper triangular phase does not
admit this. The red phases are blocks of constant degree l, and so they identify regimes in which the
risk is kept constant until the next jump. The blue phases are the result of a symmetry in behavior
that was only proved for the Random Features model (see [meiLearningInvariancesRandom2021]).
Namely, as N grows, it was shown that the RF kernel gets to the same limits of its lower triangular
counterpart.

13i.e. the scaling of the ratio of hidden layers in the first and second layer
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Figure 12: Phase Diagram of Kernel Regression {fig:phase diag}

In short, the red regions represent different data limited14 phases, while the blue regions are ap-
proximation limited15, and we hope to operate in the data limited setting using all the parameters.

Open Problem #6

What happens above the diagonal for the Neural Tangent model?

If the distribution is known, it is possible to take the kernel directly and diagonalize it, to later
do PRR on the top eigenfunctions and approximate KRR. Unfortunately, the true distribution is
unknown and this is not a priori feasible for the objective we gave at the beginning.

Remark 4.5. Any kernel is a sum of eigenfunctions. It is always possible to analyze it as an oper-
ator over the data distribution and diagonalize it. Then, a finite approximation by truncating at a
regime such that l ≫ n, where l is the degree of truncation is valid. The true problem is diagonal-
izing, since the operator is self-adjoint and in Rd where d ≫ 1, so this is an expensive task. Even
if this were feasible, the regression obtained would be still complex due to high dimensionality.
Computations are not simplified.

14statistical error dominates
15approximation error dominates
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Another approach to solving this complication is as follows. Any kernel can be seen as:

K(x1,x2) = Eϑ [σ(x1;ϑ)σ(x2;ϑ)] , (25)

for some σ, p(ϑ), where we are represting the kernel as a RF kernel for some activation function
and distribution. In principle, the complexity for prediction is N2, and one can approximate the
above expression with:

K(x1,x2) ≈
1

N

N∑
i=1

σ(x1;ϑi)σ(x2;ϑi), (26)

which is an idea by Rahimi Recht [RR07], termed Randomized KRR Methods.

Open Problem #7

Vaguely, the kernel works well, but how fast does a Kernel replicate ERM of NNs in RKHS?

The plot of Figure 12 however says that optimality is for N ≍ n, so this approach fails, but
maybe the framework is valid.

Remark 4.6. It seems that the RF model is similar to the NT model, but the RF model above is such
thatNd = pd at prediction time, with p controlling the generalization error. Instead, the NT model
is at prediction time (matrix multiplication dominates) Nd = p, so p drives the generalization
dynamics in both models. The error in the RF model is more complex. In some sense, at equal risk
the NT model requires less complexity.

4.2 Techniques
The rest of the lecture is focused on showcasing some techniques of the proof. In particular, we
will deal with the characterization of the kernel matrix. We have that the finite width version is
KN,n = (KN(xi,xj))i,j≤n while the infinite width version is Kn ∈ Rn×n.

{thm:theorem for speed of concentration of empirical kernel and kernel}
Theorem 4.7. For deterministric x1, . . . ,xn, assume that16:

1. λmin(Kn) ≥ v(σ)
2

2. Rn×d ∋ ∥X∥op ≤ 2(
√
n+

√
d), where the bigger term is the maximum singular value

Then w.h.p. wrt w1, . . . ,wN ∼ Unif(Sd−1(
√
d) it holds:∥∥∥K− 1

2
n KN,nK

− 1
2

n − In

∥∥∥
op

≤ c

√
n logNd

Nd
, (27)

where the log is believed to be spurious.

16we enforce these to have a well-defined behavior of the larged and smallest singular value. For random vectors,
this is verified w.h.p.
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A sensible question is reported below.

Distance Measure

Why is this projection norm the best way to measure the distance between Kn,KN,n?

The naive distance would be ∥KN,n −Kn∥op, the maximum eigenvalue of the difference. How-
ever, this is not nice to deal with, since the eigenvalues can get very large. As we saw previously
17, the eigenvalues of Kn are of order O (n) with multiplicity 1 and of order O

(
n
dk

)
with multiplic-

ity dk until they become O (1). The typical empirical covariance matrices do not have a bounded
condition number. We immediately get a Corollary of this statement.

Corollary 4.8 (Existance of interpolator). Under the same assumptions if Nd ≥ Cn log n then for
all yi there exists a b such that f(xi; b) = yi for all i ∈ [n].

This result is understood as follows. Consider a sufficient number of parameters and the linear
equations Φb = y with Kn,N = ΦΦ⊤. The Theorem says that the minimum eigenvalue is bounded
away from zero, and one can find a full rank (invertible) matrix Φ.

Open Problem #7

Prove that Nd = n is sufficient, precisely that Nd ≥ (1 + ε)n suffices for arbitrarily small
ε.

The proof of Theorem 4.7 makes use of a very important Matrix inequality which we already
evoked before (see Eqn. 9).

{prop:matrix bernstein inequality}
Proposition 4.9 (Matrix Bernstein Inequality). Say the matrices (Xi)i≤N are iid and symmetric.
Define the following variance and max proxyes:

σ2 :=
∥∥∥∑E [Xi]

∥∥∥
op

M := ess supmax
l≤N

∥Xl∥op , (28)

where ess sup is to be intended as the essential supremum18. Then it holds:

P

∥∥∥∥∥
N∑
i=1

Xi − E [Xi]

∥∥∥∥∥
op

≥ t

 ≤ 2d exp

{
− t2

2σ2 + 2
3
Mt

}
, (29)

where in the exponential we recnognize an expression that is ≤ min
{

t2

σ2 ,
t
M

}
.

The result is an asymptotic inequality:∥∥∥∥∥
N∑
i=1

Xi − E [Xi]

∥∥∥∥∥
op

≲ σ
√

log d ∨M log d ≲ σ ∨M. (30)

17see after Ex. 3.10 and the discussion before it for context
18for a rancom variable Z the essential supremum is the smallest deterministic number such that almost sure in-

equality holds, namely M such tht P
[
maxl ∥Xl∥op ≤ M

]
= 1
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Remark 4.10. The classic Bernstein inequality does not have a factor log d since d, the dimension
of the matrix, is 1 in vectors.

We are now ready to dive into the proof.

Proof. Of Thm. 4.7. For simplicity drop the common lowercase n from now onwards. Observe
that:

(KN)ij =
1

Nd

N∑
l=1

⟨xi,xj⟩ σ′(w⊤
l x1)σ

′(w⊤
l xj), (31)

and in a slightly nicer matrix form:

KN =
1

Nd

N∑
l=1

DlXX⊤Dl Dl = diag(σ′(w⊤
l xi) | i ≤ N). (32)

Inspecting K− 1
2 , one finds:

K− 1
2KNK

− 1
2 =

1

N

N∑
l=1

1

d
K− 1

2DlXX⊤DlK
− 1

2 =
1

N

N∑
l=1

Hl, (33)

where each Hl is iid since we are fixing x and the weights wi are iid. We would like to bound this.
In expectation, it holds:

E [Hl] = K− 1
2E
[
DlXX⊤Dl

]
K− 1

2 = K− 1
2KK− 1

2 = In (34) {eqn:H1 is identity in expectation}{eqn:H1 is identity in expectation}

Remark 4.11. For NNs with up to two layers, the product XX⊤ is made of independent vectors.

Further References

A good result was found by Yizhe Zhu [ALS19]for Nd ≥ n2 or something like this. Also
Rudy Ahlswede and Winther [AW01] found results starting from Quantum Information The-
ory problems. Matrix concentration has relevant statements in the work of David Gross
[Gro11]. Eventually, Tropp proved this statement, and later provided a very nice introduc-
tion to RMT [Tro12b; Tro12a]. A high degree bound for the previous lecture result (the ≥ l
part in Eqn. 8 and the surrounding discussions) was later found by Oliveira and generalized
by Tropp.

In general, we would like to lose the log d factor. Being a sum of independent variables, we
have a crude bound: ∥∥∥K− 1

2KNK
− 1

2 − In

∥∥∥
op

≲ 1

N

[
M log n ∨ σ

√
log n

]
, (35)

which is an non-explicit application of Prop. 4.9. To close the asymptotic bound, we seek nice
expressions of M,σ. Notice that right away:

∥Hl∥op ≲
1

d

1

σmin(K)
∥Dl∥2op ∥X∥2op . (36)
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Assuming for simplicity19 that |σ′| <∞ and n ≥ cd this becomes:

∥Hl∥op ≲
1

d
(
√
n+

√
d)2 ≲ nd =M. (37)

While for the variance by the iid assumption:

σ2 =

∥∥∥∥∥
N∑
l=1

E
[
H2

l

]∥∥∥∥∥
op

= N
∥∥E [H2

1

]∥∥
op
, (38)

and in particular:

E
[
H2

1

]
=

1

d2
Ew1

[
K− 1

2D1XX⊤D1K
− 1

2K− 1
2D1XX⊤D1K

− 1
2

]
. (39)

Then, by the bounded derivative of the activation assumption and the minimum singular value of
K being positive we directly get that ∥D1K

−1D1∥op ≤ C in the middle.

Remark 4.12. We would like to use the general inequality:∥∥AM⊤A
∥∥
op

≤
∥∥AA⊤∥∥

op
∥M∥op , (40)

but this turns out to be slightly incorrect. The right statement is in the line of AMA⊤ ⪯ AA⊤,
i.e. for any vector v we have

〈
v,AMA⊤v

〉
≤
〈
v,AA⊤v

〉
, which holds whenever M ⪯ cIn for

some c ∈ R deterministically. The proof is straightforward and requires inspecting v′ = A⊤v.
Being that the inequality is a.s., one gets:〈

v,E
[
AMA⊤]v〉 ≤ 〈v,E [AA⊤]v〉 . (41)

we reach the following asymptotic variance bound:

E
[
H2

1

]
≲ 1

d2
K− 1

2Ew1

D1XX⊤X︸ ︷︷ ︸
≲n

X⊤D1

K− 1
2 ≲ n

d2
K− 1

2Ew1

[
D1XX⊤D1

]
K− 1

2 (42)

So far, we are only deriving crude asymptotic bound, but these expressions highlight that we can
use Bernstein’s inequality (Prop. 4.9) also for H1, which by definition and the fact that it is identity
in expectation (Eqn. 34) we get:

E [H1] ≲
n

d
=⇒ E

[
H2

1

]
≲ n

d2
d ≲ Nn

d
. (43)

Eventually, w.h.p. we obtain:∥∥∥K− 1
2KNK

− 1
2 − In

∥∥∥
op

≲ n

Nd
log n ∨

√
n

Nd
log n ≲

√
n

Nd
log n, (44)

in the worst case.
19this is not in the paper, where there is a more general statement. It should be in [MZ22].
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Remark 4.13. Recall that the inequality λmin(K) ≤ v(σ)
2

was proved w.h.p. in Theorem 4.7.
Namely, there exists a set K such that P [X ∈ K ] = 1.

In the previous lecture, we also proved that 1
n
Y ⊤

m Ym ≈ In, the smooth part of the kernel
approximation. The steps for the result are similar to those above. Instead, for the high frequency
part, one must resort to the martingale version of the inequality.

End of Lecture 4

5 Limitations
Now that we saw the linear theory of 2-layer NNs, we can check its uses and connections to other
results.

It is indeed possible to derive easily separation results between kernels and Neural Networks.
With kernels, we mean both NT and other general forms. The simplest example is very instructive
and will be detailed below.

5.1 Ridge functions Learning
{ex:ridge function kernel learning}

Example 5.1 (Ridge Function Kernel learning). Let xi ∼ Unif(Sd−1(
√
d)), with model yi =

f∗(xi) + ϵi, where the true function is a so-called Ridge function, i.e. a single neuron:

f∗(x) = σ(⟨u∗,x⟩). (45)

Recall that xi sampled this way all have square norm d and entries with variance of order constant.
The risk of this model, being an inner product kernel, is available. Namely, for n ≥ dl+1−ϵ, where
ϵ > 0 is arbitrarily small, it holds:

R(f∗;λ) = ∥P>lf∗∥2L2 + o (1) , (46)

which is true since for 2-layer NNs the condition is Nd ≫ n. If we decompose f∗ into spherical
harmonics, we need invariance wrt u∗ to have a good result. We claim that for any degree there is
a unique polynomial that achieves this. Namely:

∀m ≤ l∃!qm : ∥qm∥2 = 1, qm ∈ Vm = span(Ym,j)j≤D(m), s.t. qm(x) = qm(Sx) (47)

for any rotation S (i.e. objects such that Su∗ = u∗). Such polynomial is obtained in uniqueness
and existance as the average of spherical harmonics over the rotation. Then:

qm(x) = Pdeg=m,d(⟨u∗,x⟩), (48)

by invariance under rotation on the spheres, with ∥u∗∥2 = 1. We get wlog that ⟨qm, qm′⟩ = δm,m′ .
This implies that the integral representation is a one dimensional integral:∫

Pdeg=m,d(z)Pdeg=m′,d(z)τd(dz) = δm,m′ , (49) {eqn:integral representation Ridge functions}{eqn:integral representation Ridge functions}
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where τd is the probability measure of ⟨u∗,x⟩ for x distributed uniformly on the sphere. Substi-
tuting Eqn. 49 into the Dirac of inner products of qm, qm′ we simplified the general expression for
the Dirac-inner product:∫

qm(x)qm′(x)µ(dx), µ = Unif(Sd−1(
√
d)), (50)

which would have been an integral on the sphere. We now only care about low-dimensional pro-
jections of high-dimensional spheres, which are approximately Gaussian, so that τd

d→∞→ γ(d) =

N (0, 1). Then if Pm,d
d→∞→ Pm,∞, we have that:∫

Pm,∞(x)Pm′,∞(z)γ(dz) = δm,m′ , (51)

which are orthonormal polynomials wrt the Gaussian measure, commonly known as Hermite Poly-
nomials. Seen in terms of the target function, we obtain the expression:

f∗(x) =
∞∑
l=0

σ̂l,dPl,d(⟨u∗,x⟩), σ̂l,∞ = E [σ(G)Hl,m(G)] , (52)

where the latter is seen as a projection onto Hermite polynomials. Going to the risk, we get the
expression:

∥P>lf∗∥L2(Sd−1(
√
d))

d→∞→
∞∑

m=l+1

⟨σ,Hl,m⟩ > 0, (53)

assumed to be non-zero to avoid trivialities, where by trivialities we mean that σ is not a degree l
polynomial.

Example 5.2. Assume σ is not polynomial and for all l ∈ N the conditions n ≤ dl+1 and having
an inner product kernel hold. Then any risk (NT, KRR, PRR) behaves as R(f∗, λ) = cl + o (1).
As a consequence, we need a nonpolynomial number of samples to draw from a simple Ridge
function.

Some early versions of this result appeared in [YS22]. While this is a bit disappointing since
we need too many parameters, on the other hand the dependence is only on d in principle. With
the right inductive bias, it should be possible to learn in O (d) samples. A 1 neuron NN is able to
do this task. Let the empirical risk be:

R̂n(θ) =
1

n

n∑
i=1

(yi − σ(θ⊤xi))
2, θ̂ = argmin

Rd

R̂n(θ), (54)

then we can state the following, which is a consequence of a more general Theorem found in
[MBM17].
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{prop:Bai Mei Montanari 2018}
Proposition 5.3 ([MBM17]). If σ′ ≥ C−1 > 0 and ∥σ′′′∥ < l with high probability Gradient
Descent on the empirical risk will converge globally to θ̂n such that:∥∥∥θ̂n − u∗

∥∥∥2 ≤ C ′

√
d log n

n
. (55)

In particular, GD has a unique fixed point at u∗ and the gradient flow attains it if n ≫ d (modulo
a logarithmic factor which is spurious).

Combining Example 5.1 and Proposition 5.3, we get a reasonable separation of Kernels and
Neural Networks in terms of performance.

Open Problem #8

Generalize for a model yi = φ(u⊤
∗ xi) + ϵi. Notice that for high degree φ(·) the Hermite

polynomials do not generalize. However, from the Theorem conditions and proof, it ap-
pears that this could not matter much, and one just needs to inspect the population error at
initialization.

Again concerning Problem #8, monotone functions φ(·) are such that an easy trick makes them
learnable. Without restricting ourselves to GD, one could think of an alignment process as follows.
Initialize θ̂0 =

1
n

∑n
i=1 yixi and for n≫ d log d it will be that

θ̂0 ≈ E [YX] = E [φ(⟨u∗,X⟩)X] = cu∗. (56)

where the last passage holds if X is isotropic in distribution, while the initialization is essentially
a gradient. The result is already close to the target vector, a proper normalization would then just
require to localize the problem again at the next step and iterate.

There are countless other separation examples, but this is interesting. An isotropic (inner prod-
uct) kernel is not good with low dimensional projections of data such as images, which live on a
smaller manifold.

5.2 Another Separation example and the importance of scaling

We stick to f∗(x) = σ(⟨u∗,x⟩) and a 2 layer function f(x;w) = 1√
N

∑N
i=1 aiσ(⟨wi,x⟩) with

ai = ±1 not trained. We already know the risk looks like Figure 13 for n≫ d, n≪ dC . Theorem
TODO previous one gives us the result at N = 1, while we know that for N > n

d
(modulo loga-

rithmic factors) the NTK risk converges to ∥P>lf∗∥2. If Nd > Cn2, results in [OS19b; BMR21]
guarantee that NNs Risk is approximately like the NTK risk. In lecture 3-4 we also proved that
the NTK risk is approximately ∥P>lf∗∥2 = RPRR, while in this lecture we proved under which
conditions it is strictly positive. At arbitrary number of neurons N , it could instead be that the risk
behaves non monotonically, and we cannot say anything. A natural question arises.
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Figure 13: NTK and NN risk {fig:NTK NN risk}

Width

Is this a problem of width?

The quickest answer is no, since the 1√
N

scaling is inherently wrong. The right function should
be:

f(x;w) =
1

N

N∑
i=1

aiσ(⟨wi,x⟩), (57)

which we will term Mean-Field scaling.
We now present a simple trick to get zero error. There is one initialization for which GD attains

zero risk. Without training, a choice ai ≡ a,wi ≡ w, where w possibly is 0 at initialization is
interesting. Ispecting the empirical risk:

R̂n(W) =
1

n

n∑
i=1

(σ(⟨u∗,xi⟩)− σ(⟨w,xi⟩))2, (58)

we notice that the weights will move together by symmetry for the whole dynamics. Then R̂(W)
n,d→∞→

0. One might then wonder what happens with wi sampled randomly in the GD/SGD training dy-
namics. The MF scaling parired with w

(t=0)
i ∼ N (0, Id) and any a taken iid is an average over

a,W. The function will then be:

f(x) =

∫
R×Rd

aσ(⟨w,x⟩)ρ̂0(da, dw), (59)
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where ρ̂0 is the empirical distribution over (a,W), namely:

ρ̂0 =
1

N

n∑
i=1

δ(ai,wi). (60)

We recognize that at initialization (ai,wi) ∼ ρ0 and in the Mean Field limit ρ̂0
N→∞→ ρ0. The

question now becomes if ρ̂t converges to a measure ρt as N → ∞. We claim that the answer is yes
and will provide a heuristic argument for it. For any finite N online SGD on the parameter vector
θ
(t)
i = (ai,wi; t) ∈ Rd+1 where t = i ∈ [n] is such that in the limit of small learning rate γ → 0+

dynamics converge to the Gradient Flow on the Population Error. Namely:

θ
(t)
i

γ→0+→ −∇θRN(θ) = −∇θE(Y,X)

1
2

(
Y − 1

N

N∑
i=1

aiσ(⟨wi,X⟩)

)2
 . (61)

In reality, we will obviously have a noisy term added to the dynamics, that accounts for the fact
that we can only perform finite stepsize updates. We express this in general as:

θ
(t)
i = −∇θRN(θ) + ϵ. (62)

This notion is termed convergence to the fluid limit [Kur71]. In Statistical Physics, it was explored
by Saad and Solla [SS95a; SS95b; SS95c]. In other words, consider the update of SGD at the kth

step, denoted as θSGD,(k)
i and the continuous GF limit θ(t)i . Under suitable assumptions, one can

establish that with high probability:

1

N

N∑
i=1

∥∥∥∥θSGD,(⌊ t
γ
⌋)

i − θ
(t)
i

∥∥∥∥2 ≤√γd, (63)

and for small learning rate γ the dynamics are essentially equivalent. The risk can then be ex-
pressed as:

RN(θ) = cst+
1

N

N∑
i=1

V (θi) +
1

2N2

N∑
i=1

U(θi, θj) (64)

V (θi) = −E [f∗(x)aiσ(⟨wi,x⟩)] (65)
U(θi, θj) = E [aiσ(⟨wi,x⟩)ajσ(⟨wj,x⟩)] , (66)

where we recognize that V, U are respectively a correlation potential and a pairwise interaction
term. The GF limit for finite N can be written concisely in terms of these two objects as:

θ̇
(t)
i = −∇θi

(
V (θ

(t)
i ) +

∫
U(θ

(t)
i , θ)ρ̂

N
t (dθ)

)
, (67)

with the interpretation that θ(t)i is a particle, the potential V encodes the tendency to align, and
the pairwise interaction encodes repulsion among neuron particles. As before ρ̂Nt is the empirical
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distribution of particles. It is intuitive to think that in the Mean Field limit N → ∞, we can write
the one particle/neuron potential as:

ψ(θ, φt) := V (θ) +

∫
U(θ, θ′)φ(dθ′), φ̂N

t
N→∞→ φt. (68)

Moving to a Physics-based analysis, we might wonder what is the evolution of φt in the limit.
The fact that neurons move locally imposes a local conservation constraint, known in literature as
continuity equation:

∂tφt −∇θ · Jt(θ) = 0. (69)

We briefly explain it as follows. ∇θ · Jt(θ) is a divergence term, for a current Jt(θ) that is yet to
find, where the current is roughly a density of particles times a speed. Having a nice form of the
potential ψ(θ;φt), we express it simply as:

Jt(θ) = φt(θ)(−∇θψ(θ;φt)). (70)

Then, the PDE reads:
∂tφt +∇θ · (φt∇θψ(θ;φt)) , (71)

known in literature as Mckean-Vlosov Equation, found initially by Debrushin, with many Optimal
Transport applications. In particular, it brings nice interpretations as a gradient flow on probability
measures with the Wasserstein metric.

Theorem 5.4. Under regularity assumptions on σ, f∗, V, U (see below for a Remark) for k = ⌊ t
n
⌋

we have that:

sup
t≤T

∣∣∣∣RN(θ
SGD,k
i )−R∞(φt)

∣∣∣∣ ≤ C
√
d

(
√
γ +

1√
N

)
e−ct3 . (72)

Namely, for any finite time the absolute distance goes to zero for N or γ small.

Remark 5.5. The regularity assumptions can be thought of as follows. Fix a, then:

V (w) = −E [f∗(x)σ(⟨w,x⟩] , ∇wV (w) = −E [f∗(x)σ
′(⟨w,x⟩)x] , (73)

is required to be bounded and independent of dimension. In our example for X Gaussian integra-
tion by parts gives:

E
[
φ(u⊤

∗ x)σ
′(⟨w,x⟩)x

]
= C <∞. (74)

The above Theorem is particularly useful when one takes t ∈ O (1) so that R∞(φT ) < ϵ,
or e−cT 3 ∈ O (1) so that one can take N ≫ d and γ ≪ 1

d
. However, can we solve this PDE?

In general this is hard, but it is feasible numerically and when there are lots of symmetries also
analytically in some cases. To give an example, for a true function f∗(x) = φ(⟨u∗,x⟩) with x
isotropic (say uniform on a sphere) the dimension of the PDE in the large width limit is determined
by θi = (ai,wi) ∈ Rd+1 but symmetry & isotropy make ρt invariant under rotations of u∗. At finite
width, the symmetry is broken. Essentially, the PDE as N → ∞ is dependent on

θ̃i = (ai, s, r) ∈ R3 s = ⟨wi, u∗⟩ , r =
∥∥w⊥

i

∥∥ , (75)
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Figure 14: Mean Field NTK Risk {fig:MF NTK risk}

which is a considerable dimensionality reduction. Numerically, this is solvable, but it could still
present analytical hurdles. For an initialization φt(a, s, r), with d appearing as a parameter inside,
s ∼ N (0, 1√

d
) and r centered at 1 with the same variance it is easy to prove the following statement.

Fact 5.6. For all ϵ > 0 there exists T ≡ T (ϵ, d) such that R∞(φT ) ≤ ϵ. In other words, fixing the
dimension the risk can be made arbitrarily small depending on the variance 1

d
induced by d.

Open Problem #10

Prove that T (ϵ, α2) ≡ T (ϵ) where α = 1√
d
. Namely, prove that the convergence time for

arbitrarily small risk is not dependent on the data dimension. This would shed light to the
fact that at the α → ∞ limit, where the initialization is singular, the PDE methods do not
apply. Numerical evidence appears to be in disaccordance with this.

What we eventually know is summarized in Figure 14. The Theorem above briefly says that
N ≫ d matters. With one pass SGD and n = ⌊T

γ
⌋, T ∈ O (1) , γ ∈ O

(
1
d

)
, setting a risk target

ϵ, and recalling T ≡ T (ϵ, d) the required sample size is n = cd. In simple terms, O (d) samples
suffice for learning a Ridge function.

45



References
[ALS19] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. “A Convergence Theory for Deep

Learning via Over-Parameterization”. In: Proceedings of the 36th International Con-
ference on Machine Learning. International Conference on Machine Learning. PMLR,
May 24, 2019, pp. 242–252. URL: https://proceedings.mlr.press/
v97/allen-zhu19a.html (visited on 08/05/2023).

[AS17] Madhu S. Advani and Andrew M. Saxe. High-Dimensional Dynamics of Generaliza-
tion Error in Neural Networks. Oct. 10, 2017. arXiv: 1710.03667 [physics,
q-bio, stat]. URL: http://arxiv.org/abs/1710.03667 (visited on
09/12/2023). preprint.

[AW01] R. Ahlswede and A. Winter. Strong Converse for Identification via Quantum Chan-
nels. Oct. 22, 2001. DOI: 10.48550/arXiv.quant-ph/0012127. arXiv:
quant- ph/0012127. URL: http://arxiv.org/abs/quant- ph/
0012127 (visited on 09/07/2023). preprint.

[Bar+20] Peter L. Bartlett et al. “Benign Overfitting in Linear Regression”. In: Proceedings of
the National Academy of Sciences 117.48 (Dec. 2020), pp. 30063–30070. ISSN: 0027-
8424, 1091-6490. DOI: 10.1073/pnas.1907378117. arXiv: 1906.11300
[cs, math, stat]. URL: http://arxiv.org/abs/1906.11300 (vis-
ited on 08/19/2023).

[Bis95] Chris M. Bishop. “Training with Noise Is Equivalent to Tikhonov Regularization”.
In: Neural Computation 7.1 (Jan. 1995), pp. 108–116. ISSN: 0899-7667, 1530-888X.
DOI: 10.1162/neco.1995.7.1.108. URL: https://direct.mit.edu/
neco/article/7/1/108-116/5828 (visited on 08/19/2023).

[BMR21] Peter L. Bartlett, Andrea Montanari, and Alexander Rakhlin. Deep Learning: A Sta-
tistical Viewpoint. Mar. 16, 2021. arXiv: 2103.09177 [cs, math, stat].
URL: http : / / arxiv . org / abs / 2103 . 09177 (visited on 08/05/2023).
preprint.

[COB20] Lenaic Chizat, Edouard Oyallon, and Francis Bach. On Lazy Training in Differen-
tiable Programming. Jan. 7, 2020. DOI: 10.48550/arXiv.1812.07956. arXiv:
1812.07956 [cs, math]. URL: http://arxiv.org/abs/1812.07956
(visited on 11/21/2022). preprint.

[Du+19] Simon S. Du et al. Gradient Descent Finds Global Minima of Deep Neural Net-
works. May 28, 2019. arXiv: 1811.03804 [cs, math, stat]. URL: http:
//arxiv.org/abs/1811.03804 (visited on 08/05/2023). preprint.

[Gho+19] Behrooz Ghorbani et al. “Limitations of Lazy Training of Two-layers Neural Net-
work”. In: Advances in Neural Information Processing Systems. Vol. 32. Curran As-
sociates, Inc., 2019. URL: https://proceedings.neurips.cc/paper/
2019/hash/c133fb1bb634af68c5088f3438848bfd-Abstract.html
(visited on 08/19/2023).

46

https://proceedings.mlr.press/v97/allen-zhu19a.html
https://proceedings.mlr.press/v97/allen-zhu19a.html
https://arxiv.org/abs/1710.03667
https://arxiv.org/abs/1710.03667
http://arxiv.org/abs/1710.03667
https://doi.org/10.48550/arXiv.quant-ph/0012127
https://arxiv.org/abs/quant-ph/0012127
http://arxiv.org/abs/quant-ph/0012127
http://arxiv.org/abs/quant-ph/0012127
https://doi.org/10.1073/pnas.1907378117
https://arxiv.org/abs/1906.11300
https://arxiv.org/abs/1906.11300
http://arxiv.org/abs/1906.11300
https://doi.org/10.1162/neco.1995.7.1.108
https://direct.mit.edu/neco/article/7/1/108-116/5828
https://direct.mit.edu/neco/article/7/1/108-116/5828
https://arxiv.org/abs/2103.09177
http://arxiv.org/abs/2103.09177
https://doi.org/10.48550/arXiv.1812.07956
https://arxiv.org/abs/1812.07956
http://arxiv.org/abs/1812.07956
https://arxiv.org/abs/1811.03804
http://arxiv.org/abs/1811.03804
http://arxiv.org/abs/1811.03804
https://proceedings.neurips.cc/paper/2019/hash/c133fb1bb634af68c5088f3438848bfd-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c133fb1bb634af68c5088f3438848bfd-Abstract.html


[Gho+20] Behrooz Ghorbani et al. “When Do Neural Networks Outperform Kernel Methods?”
In: Advances in Neural Information Processing Systems. Vol. 33. Curran Associates,
Inc., 2020, pp. 14820–14830. URL: https://proceedings.neurips.cc/
paper/2020/hash/a9df2255ad642b923d95503b9a7958d8-Abstract.
html (visited on 08/19/2023).

[Gho+21] Behrooz Ghorbani et al. “Linearized Two-Layers Neural Networks in High Dimen-
sion”. In: The Annals of Statistics 49.2 (2021), pp. 1029–1054.

[Gro11] David Gross. “Recovering Low-Rank Matrices from Few Coefficients in Any Ba-
sis”. In: IEEE Transactions on Information Theory 57.3 (Mar. 2011), pp. 1548–1566.
ISSN: 0018-9448, 1557-9654. DOI: 10.1109/TIT.2011.2104999. arXiv:
0910.1879 [quant-ph]. URL: http://arxiv.org/abs/0910.1879
(visited on 09/07/2023).

[Has+20] Trevor Hastie et al. Surprises in High-Dimensional Ridgeless Least Squares Interpo-
lation. Dec. 7, 2020. DOI: 10.48550/arXiv.1903.08560. arXiv: 1903.
08560 [cs, math, stat]. URL: http : / / arxiv . org / abs / 1903 .
08560 (visited on 08/19/2023). preprint.

[KLS20] Dmitry Kobak, Jonathan Lomond, and Benoit Sanchez. Optimal Ridge Penalty for
Real-World High-Dimensional Data Can Be Zero or Negative Due to the Implicit
Ridge Regularization. Apr. 9, 2020. DOI: 10.48550/arXiv.1805.10939.
arXiv: 1805.10939 [math, stat]. URL: http://arxiv.org/abs/
1805.10939 (visited on 08/19/2023). preprint.

[Kur71] T. G. Kurtz. “Limit Theorems for Sequences of Jump Markov Processes Approximat-
ing Ordinary Differential Processes”. In: Journal of Applied Probability 8.2 (June
1971), pp. 344–356. ISSN: 0021-9002, 1475-6072. DOI: 10 . 2307 / 3211904.
URL: https://www.cambridge.org/core/product/identifier/
S002190020003535X/type/journal_article (visited on 09/04/2023).

[KY16] Antti Knowles and Jun Yin. Anisotropic Local Laws for Random Matrices. Aug. 4,
2016. DOI: 10.48550/arXiv.1410.3516. arXiv: 1410.3516 [math-ph].
URL: http://arxiv.org/abs/1410.3516 (visited on 08/19/2023). preprint.

[LY23] Yue M. Lu and Horng-Tzer Yau. An Equivalence Principle for the Spectrum of Ran-
dom Inner-Product Kernel Matrices with Polynomial Scalings. May 5, 2023. DOI:
10.48550/arXiv.2205.06308. arXiv: 2205.06308 [math, stat].
URL: http : / / arxiv . org / abs / 2205 . 06308 (visited on 08/19/2023).
preprint.

[LZB21] Chaoyue Liu, Libin Zhu, and Mikhail Belkin. On the Linearity of Large Non-Linear
Models: When and Why the Tangent Kernel Is Constant. Feb. 19, 2021. DOI: 10.
48550/arXiv.2010.01092. arXiv: 2010.01092 [cs, stat]. URL: http:
//arxiv.org/abs/2010.01092 (visited on 08/05/2023). preprint.

47

https://proceedings.neurips.cc/paper/2020/hash/a9df2255ad642b923d95503b9a7958d8-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/a9df2255ad642b923d95503b9a7958d8-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/a9df2255ad642b923d95503b9a7958d8-Abstract.html
https://doi.org/10.1109/TIT.2011.2104999
https://arxiv.org/abs/0910.1879
http://arxiv.org/abs/0910.1879
https://doi.org/10.48550/arXiv.1903.08560
https://arxiv.org/abs/1903.08560
https://arxiv.org/abs/1903.08560
http://arxiv.org/abs/1903.08560
http://arxiv.org/abs/1903.08560
https://doi.org/10.48550/arXiv.1805.10939
https://arxiv.org/abs/1805.10939
http://arxiv.org/abs/1805.10939
http://arxiv.org/abs/1805.10939
https://doi.org/10.2307/3211904
https://www.cambridge.org/core/product/identifier/S002190020003535X/type/journal_article
https://www.cambridge.org/core/product/identifier/S002190020003535X/type/journal_article
https://doi.org/10.48550/arXiv.1410.3516
https://arxiv.org/abs/1410.3516
http://arxiv.org/abs/1410.3516
https://doi.org/10.48550/arXiv.2205.06308
https://arxiv.org/abs/2205.06308
http://arxiv.org/abs/2205.06308
https://doi.org/10.48550/arXiv.2010.01092
https://doi.org/10.48550/arXiv.2010.01092
https://arxiv.org/abs/2010.01092
http://arxiv.org/abs/2010.01092
http://arxiv.org/abs/2010.01092


[MBM17] Song Mei, Yu Bai, and Andrea Montanari. The Landscape of Empirical Risk for Non-
convex Losses. Jan. 14, 2017. DOI: 10.48550/arXiv.1607.06534. arXiv:
1607.06534 [stat]. URL: http://arxiv.org/abs/1607.06534
(visited on 09/07/2023). preprint.

[Mis22] Theodor Misiakiewicz. Spectrum of Inner-Product Kernel Matrices in the Polyno-
mial Regime and Multiple Descent Phenomenon in Kernel Ridge Regression. Apr. 21,
2022. arXiv: 2204.10425 [math, stat]. URL: http://arxiv.org/abs/
2204.10425 (visited on 08/19/2023). preprint.

[MM23] Theodor Misiakiewicz and Andrea Montanari. Six Lectures on Linearized Neural
Networks. Aug. 25, 2023. DOI: 10.48550/arXiv.2308.13431. arXiv: 2308.
13431 [cs, math, stat]. URL: http : / / arxiv . org / abs / 2308 .
13431 (visited on 08/30/2023). preprint.

[MMM21] Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Generalization Error of
Random Features and Kernel Methods: Hypercontractivity and Kernel Matrix Con-
centration. Jan. 26, 2021. arXiv: 2101.10588 [math, stat]. URL: http:
//arxiv.org/abs/2101.10588 (visited on 08/19/2023). preprint.

[MZ22] Andrea Montanari and Yiqiao Zhong. The Interpolation Phase Transition in Neu-
ral Networks: Memorization and Generalization under Lazy Training. June 8, 2022.
DOI: 10.48550/arXiv.2007.12826. arXiv: 2007.12826 [cs, math,
stat]. URL: http://arxiv.org/abs/2007.12826 (visited on 09/07/2023).
preprint.

[OS19a] Samet Oymak and Mahdi Soltanolkotabi. “Overparameterized Nonlinear Learning:
Gradient Descent Takes the Shortest Path?” In: Proceedings of the 36th International
Conference on Machine Learning. International Conference on Machine Learning.
PMLR, May 24, 2019, pp. 4951–4960. URL: https://proceedings.mlr.
press/v97/oymak19a.html (visited on 08/05/2023).

[OS19b] Samet Oymak and Mahdi Soltanolkotabi. Towards Moderate Overparameterization:
Global Convergence Guarantees for Training Shallow Neural Networks. Feb. 12,
2019. DOI: 10.48550/arXiv.1902.04674. arXiv: 1902.04674 [cs,
math, stat]. URL: http://arxiv.org/abs/1902.04674 (visited on
08/05/2023). preprint.

[RR07] Ali Rahimi and Benjamin Recht. “Random Features for Large-Scale Kernel Ma-
chines”. In: Advances in Neural Information Processing Systems. Vol. 20. Curran
Associates, Inc., 2007. URL: https://papers.nips.cc/paper/2007/
hash/013a006f03dbc5392effeb8f18fda755- Abstract.html (vis-
ited on 11/20/2022).

[RZ18] Alexander Rakhlin and Xiyu Zhai. Consistency of Interpolation with Laplace Kernels
Is a High-Dimensional Phenomenon. Dec. 28, 2018. DOI: 10.48550/arXiv.
1812.11167. arXiv: 1812.11167 [cs, math, stat]. URL: http://
arxiv.org/abs/1812.11167 (visited on 08/05/2023). preprint.

48

https://doi.org/10.48550/arXiv.1607.06534
https://arxiv.org/abs/1607.06534
http://arxiv.org/abs/1607.06534
https://arxiv.org/abs/2204.10425
http://arxiv.org/abs/2204.10425
http://arxiv.org/abs/2204.10425
https://doi.org/10.48550/arXiv.2308.13431
https://arxiv.org/abs/2308.13431
https://arxiv.org/abs/2308.13431
http://arxiv.org/abs/2308.13431
http://arxiv.org/abs/2308.13431
https://arxiv.org/abs/2101.10588
http://arxiv.org/abs/2101.10588
http://arxiv.org/abs/2101.10588
https://doi.org/10.48550/arXiv.2007.12826
https://arxiv.org/abs/2007.12826
https://arxiv.org/abs/2007.12826
http://arxiv.org/abs/2007.12826
https://proceedings.mlr.press/v97/oymak19a.html
https://proceedings.mlr.press/v97/oymak19a.html
https://doi.org/10.48550/arXiv.1902.04674
https://arxiv.org/abs/1902.04674
https://arxiv.org/abs/1902.04674
http://arxiv.org/abs/1902.04674
https://papers.nips.cc/paper/2007/hash/013a006f03dbc5392effeb8f18fda755-Abstract.html
https://papers.nips.cc/paper/2007/hash/013a006f03dbc5392effeb8f18fda755-Abstract.html
https://doi.org/10.48550/arXiv.1812.11167
https://doi.org/10.48550/arXiv.1812.11167
https://arxiv.org/abs/1812.11167
http://arxiv.org/abs/1812.11167
http://arxiv.org/abs/1812.11167


[SS95a] David Saad and Sara Solla. “Dynamics of On-Line Gradient Descent Learning for
Multilayer Neural Networks”. In: Advances in Neural Information Processing Sys-
tems. Vol. 8. MIT Press, 1995. URL: https://proceedings.neurips.cc/
paper_files/paper/1995/hash/a1519de5b5d44b31a01de013b9b51a80-
Abstract.html (visited on 08/21/2023).

[SS95b] David Saad and Sara A. Solla. “Exact Solution for On-Line Learning in Multilayer
Neural Networks”. In: Physical Review Letters 74.21 (May 22, 1995), pp. 4337–
4340. ISSN: 0031-9007, 1079-7114. DOI: 10.1103/PhysRevLett.74.4337.
URL: https://link.aps.org/doi/10.1103/PhysRevLett.74.4337
(visited on 08/14/2023).

[SS95c] David Saad and Sara A. Solla. “On-Line Learning in Soft Committee Machines”.
In: Physical Review E 52.4 (Oct. 1, 1995), pp. 4225–4243. ISSN: 1063-651X, 1095-
3787. DOI: 10.1103/PhysRevE.52.4225. URL: https://link.aps.
org/doi/10.1103/PhysRevE.52.4225 (visited on 08/21/2023).

[TAP21] Nilesh Tripuraneni, Ben Adlam, and Jeffrey Pennington. Covariate Shift in High-
Dimensional Random Feature Regression. Nov. 16, 2021. DOI: 10.48550/arXiv.
2111.08234. arXiv: 2111.08234 [cs, stat]. URL: http://arxiv.
org/abs/2111.08234 (visited on 08/19/2023). preprint.

[Tro12a] Joel A. Tropp. “User-Friendly Tail Bounds for Sums of Random Matrices”. In: Foun-
dations of Computational Mathematics 12.4 (Aug. 1, 2012), pp. 389–434. ISSN:
1615-3383. DOI: 10.1007/s10208-011-9099-z. URL: https://doi.
org/10.1007/s10208-011-9099-z (visited on 09/07/2023).

[Tro12b] Joel A. Tropp. “User-Friendly Tools for Random Matrices: An Introduction:” in:
Fort Belvoir, VA: Defense Technical Information Center, Dec. 3, 2012. DOI: 10.
21236/ADA576100. URL: http://www.dtic.mil/docs/citations/
ADA576100 (visited on 09/07/2023).

[YS22] Gilad Yehudai and Ohad Shamir. On the Power and Limitations of Random Features
for Understanding Neural Networks. Feb. 27, 2022. DOI: 10.48550/arXiv.
1904.00687. arXiv: 1904.00687 [cs, stat]. URL: http://arxiv.
org/abs/1904.00687 (visited on 09/07/2023). preprint.

[Zou+18] Difan Zou et al. Stochastic Gradient Descent Optimizes Over-parameterized Deep
ReLU Networks. Dec. 27, 2018. DOI: 10.48550/arXiv.1811.08888. arXiv:
1811 . 08888 [cs, math, stat]. URL: http : / / arxiv . org / abs /
1811.08888 (visited on 08/05/2023). preprint.

49

https://proceedings.neurips.cc/paper_files/paper/1995/hash/a1519de5b5d44b31a01de013b9b51a80-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/1995/hash/a1519de5b5d44b31a01de013b9b51a80-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/1995/hash/a1519de5b5d44b31a01de013b9b51a80-Abstract.html
https://doi.org/10.1103/PhysRevLett.74.4337
https://link.aps.org/doi/10.1103/PhysRevLett.74.4337
https://doi.org/10.1103/PhysRevE.52.4225
https://link.aps.org/doi/10.1103/PhysRevE.52.4225
https://link.aps.org/doi/10.1103/PhysRevE.52.4225
https://doi.org/10.48550/arXiv.2111.08234
https://doi.org/10.48550/arXiv.2111.08234
https://arxiv.org/abs/2111.08234
http://arxiv.org/abs/2111.08234
http://arxiv.org/abs/2111.08234
https://doi.org/10.1007/s10208-011-9099-z
https://doi.org/10.1007/s10208-011-9099-z
https://doi.org/10.1007/s10208-011-9099-z
https://doi.org/10.21236/ADA576100
https://doi.org/10.21236/ADA576100
http://www.dtic.mil/docs/citations/ADA576100
http://www.dtic.mil/docs/citations/ADA576100
https://doi.org/10.48550/arXiv.1904.00687
https://doi.org/10.48550/arXiv.1904.00687
https://arxiv.org/abs/1904.00687
http://arxiv.org/abs/1904.00687
http://arxiv.org/abs/1904.00687
https://doi.org/10.48550/arXiv.1811.08888
https://arxiv.org/abs/1811.08888
http://arxiv.org/abs/1811.08888
http://arxiv.org/abs/1811.08888

	Setting and Phenomenology
	Linear and Lazy Regime

	Three Models
	Linear (Ridge) Regression
	Sharp Characterization of proportional regime

	Kernel Ridge Regression

	Neural Networks
	More about previous problems

	NTK and Risk analysis
	Phase diagram
	Techniques

	Limitations
	Ridge functions Learning
	Another Separation example and the importance of scaling


