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Introduction

The following document is a redaction of part of the topics I studied in the past
three years. The motivations borrow largely from the Statistical Physics literature,
which I at the same time loved and had trouble understanding. The elegance of
the field is evident, as well as the power of the results. As a matter of fact, some
techniques originally intended for the study of Physical phenomena happen to be
very effective when dealing with learning systems. To this day, the correspondence
amazes me. Despite the large amount of words I could spend admiring the results
and the depth of the consequences, I have to stress that I am yet to be accustomed
to the field. This Thesis is an attempt to narrow the gap, which hopefully has been
successful, in that I took some time to tidy up a large world of publications and
techniques. What follows is a brief summary of the objectives and the content of it.

Audience and Style of narrative For the first three Chapters, the ideal reader
is inexperienced, and still in the need of a very detailed explanation of the steps.
The reason for this choice is that I myself am very junior, and decided to strengthen
my basics. The last two Chapters are more advanced and gloss over details, to get
quickly to the current state of matter. The funneling from the first to the second
step is necessary, but might be abrupt to the less experienced reader. For this rea-
son, some easier/more informal topics are purposely placed in between the advanced
ones, as to make the development not too hard and technical.
Whenever possible, formal statements and intuitive explanations are accompa-
nied with all proofs that are not too technical and are at the same time instruc-
tive/fundamental. If a proof is very standard, meaning that one internet search
gives the answer, it is omitted. If an advanced statement has a clear proof on a
reference, preference is given to citing the exact location of the proof rather than
copy pasting it on this document.

Addenda To make up for missing steps in the theory and the concepts, I have
added two types of boxes:

Question which collect the main aims of the current discussion

Laws/concepts which state general ideas to keep in mind

References which provide the reader with additional sources of information, that hold
more details, missing proofs, more precise definitions.

Interesting results that are not essential for the main topic and definitions with
standard notations are placed in the Appendix, where the reader can justify some
potentially hand-wavy sentences present in the main text.
I think it is also important to remark that this is just a portion of what I wrote down.
In particular, I plan to make available a document with topics roughly around the
basics of Thermodynamics and mathematical tools for Statistical Physics, which
would greatly help the discussion and notation in these Chapters. As a matter of
fact, it is impossible to give proper justification to all the objects and the steps
required to get a working knowledge of publications of the last 20 years: the history
of the field is just too long. I am also working through a deeper redaction of the
important aspects of Replica Theory, which is sadly avoided here.

ix



About the last claims Given the fact that this project is still in its primordial
phase, all of the claims contained in the second part Chapter V from Section ?? are
to be taken as speculations. In other words, we discuss two potential ideas, which
constitute part of the research carried out while I was at IST Austria in the summer
of 2023. For the sake of preserving current topics of research, the online version of
this document will omit those sections. We now showcase a non-technical summary
of the contents. For a research oriented review, refer to the abstract.

Informal Motivation and Outline In this thesis, we will introduce the stan-
dard way of describing the phenomenology of models falling under the umbrella of
Statistics/Machine Learning which arose in the field of Statistical Physics. The main
contribution is interpreting the models as physical and describing them in terms of
phase transitions. This has great advantage in the modern setting in which the
abundance of data makes a Data Science question essentially akin to a question in
Thermodynamics, where the large size assumption is structural. In other words, a
set of tools derived for a large number of particles is useful to confront scenarios
with a large number of data-points. We will provide the reader with the essential
mathematical tools to derive a starting description of the solvability of a model
according to some parameters that describe the appearance of the data. The im-
portant industrial advantage is that when this is known for a given task, an ideal
company can decide ex-ante if investing in the development of a tailored algorithm
will be beneficial or not. The summarized conclusion could be stated in even one
line “The available data is over/under the solvability threshold”. Despite being a set
of concepts still under development, it is widely agreed that the conjectures match
with experimental evidence, therefore vindicating the methods.
Given the breadth and difficulty of the subject, it is also standard to focus on a
sub-class of models, or even a single one. In the second part, the funnelling of the
narrative eventually converges towards a single model of importance to the commu-
nity: noiseless mixed phase retrieval. Summarizing, there are two main issues with
it.
On the computational side, we have that the (believed to be) State of the Art Algo-
rithm requires an exogenous initialization that cannot be achieved with a random
guess. Put in simple words, another procedure is needed to warm start the best
algorithm known so far. This poses the difficult question of understanding if the
regime of parameters in which the former and its initializer work coincide. If so,
one would like to bring forward arguments that prove it, if not, the next step would
be finding a justifiable alternative, if existing.
On the pure solvability side, we would like to understand when the model parame-
ters make the signal detectable at all, and if there are configurations such that the
signal is detectable but no Algorithm can. These peculiar regions are themselves a
topic of discussion, with a large body of recent literature, bringing forward various
conjectural techniques.

Notation

An index of how some basic objects are drawn is in the List of Symbols. Some will
be dealt with as standard, without a precise definition, but matching in notation
with the introductory document in preparation. A simple search command on the
main references (e.g. (Krzakala and Zdeborová 2021; Mezard, Parisi, and Virasoro
1986; Marc Mezard and Montanari 2009; Zdeborová and Krzakala 2016; Zhang,
Mondelli, and Venkataramanan 2022)) and/or a basic course in Thermodynamics
(Arovas 2019) are sufficient to recover more context.

Objects Scalars are in italic lowercase, vectors are in bold italic lowercase,
matrices are in BOLD UPPERCASE. For a vector x P Rd, a subset determined
by some other index i of it is denoted as Bi.
Matrices are in Rn1ˆn2 spaces, while generally concatenations of vectors are in
Rn1 ˆ Rn2 when defining functions.
Random quantities are capitalized. The only possible confusion is that a deter-
ministic and a random matrix are both bold uppercase. Whenever not clear from



context this will be specified. For example, x is a scalar, X is a scalar r.v., x is
a vector, X is a random vector, X is either a random vector or a random matrix.
When we will want to make explicit the dependence on a vector of vectors, we will
use the notation v⃗, and state it clearly. Other notations we could potentially use
are xrAs when denoting a subset of X of elements that also belong to a set A, or
the Python-like notation Xr:is that means elements up to the ith included, or Xri:s

which means elements from the ith onwards.
Throughout the text, y, y,Y will denote observations, while x, x,X will denote sig-
nals to be recovered. The respective spaces, when possibly intended to be general,
will be Y ,X .

Conventions Placeholder functions are e.g. f, g, h, while important functions
will be defined and assigned specific symbols. Similarly, a, b, c, k, are placeholder
variables. The sample size will always be n, the feature size will always be d,
apart from examples where we might need them to differ. By i we intend a generic
sample, and by j a generic feature. The symbols i P rns are to be understood as
i P t1, . . . , nu. Constants are clear from context and usually take the form of greek
lowercase non bold letters, or c, C. Ground truth, when the original object to be
found is known, is identified with the symbol ˚, while an object optimal wrt some
criterion has symbol ‹.
The symbol ľ is the partial order of matrices in the p.s.d. sense, namely A ľ B if
and only if A´B is p.s.d. and we write A´B ľ 0.
Derivatives are denoted with the apex 1 or classic symbols d

dx ,∇x,
B

Bx , Bx. When
dependence of quantities is crucially on more than one variable we will use B differ-
entiation.
Norms are always denoted as ∥¨∥¨ and the normed space is clear from context. The
p “ 2 norm is denoted as ∥¨∥2, while an r norm as ∥¨∥r.
The symbol ln denotes natural logarithm, and throughout the text we use the con-
vention 0 log 0 “ 0 where log is in any base. Recall that R “ r´8,8s “ RYt˘8u.
Imaginary numbers are denoted with the symbol i. For spaces of functions, we use
Lp, C1,C8,LippCq.

Probability The space of probability measures on X is denoted as PpX q. For
d P N let Pdprq be the set of Borel Probability measures µ on Rd such that
µp∥x∥r2q ă 8. Equality wrt some criterion is denoted as ¨

“. For example, equality
in distribution is d

“. Expectations are written as E¨ r¨s where the subscript is op-
tionally used to make clear with respect to which randomness we are averaging. In
Statistical Physics literature, the symbol x¨y¨ is used when averaging over the Boltz-
mann distribution, and this will be useful when in need of distinguishing between
many integrals over randomness.

Basic Acronyms Standard abbreviations are used throughout the text. We re-
port them here for the sake of completeness: left hand side (LHS), right hand
side (RHS), without loss of generality (wlog), want to show (wts), id est, that is
(i.e.), example given (e.g.), random variable (r.v.), with respect to (wrt),positive
semi-definite (p.s.d.), with probability (w.p.), with high probability (w.h.p.), The
following are equivalent (TFAE).

Acronyms

a.e. almost everywhere. 82

a.s. almost sure. 108

AE Average Error. 9

AMP Approximate Message Passing. 59

BP Belief Propagation. 45, 47



cdf cumulative distribution function. 109

CLT Central Limit Theorem. 62

d-RSB dynamic Replica Symmetry Breaking. 56

DGP Data Generating Process. 13, 60

e.g. example given. xvii

EA Edwards-Anderson. 23

EC Error Counter. 9

G-AMP Generalized AMP. 61

GC Glivenko-Cantelli. 113

GLM Generalized Linear Model. 5

i.e. id est, that is. xvii

LHS left hand side. xvii

MAP Maximum A Posteriori. 8

MEC Minimum Error Counter. 11

MLE Maximum Likelihood Estimator. 8

MMAE Minimum Mean Average Error. 11

MMSE Minimum Mean Squared Error. 11

OL Overlap. 9

p.s.d. positive semi-definite. xvii, 73

pdf probability distribution function. 10

PGF Probability Generating Function. 45

r-BP relaxed Belief Propagation. 62

r.v. random variable. xvi, xvii

RHS right hand side. xvii

RS Replica Symmetric. 56, 75

s-RSB static Replica Symmetry Breaking. 56

S-to-C Statistical to Computational. 16

SE Squared Error. 9

SNR Signal-to-Noise Ratio. 7

SoS Sum of Squares. 55

TAP Thouless-Anderson-Palmer. 60

TFAE The following are equivalent. xvii

VC Vapnik-Chervonenkis. 109



w.h.p. with high probability. xvii

w.p. with probability. xvii

wlog without loss of generality. xvii

wp with probability. 3

wrt with respect to. xvii

wts want to show. xvii





Chapter I

Modern Statistical Inference

In this Chapter, we review Inference with an eye on Statistical Physics, to later
review Statistical Physics with an eye on Inference in Chapter II. For this reason,

the two are to be dealt with jointly.
Section I.1 introduces the motivations of this thesis. After a discussion of the
origins of the method, in Subsections I.1.1 and I.1.2 the mathematical framework is
presented. The narrative proceeds through a summary of the Bayesian viewpoint
in Section I.2, with the first branching of approaches: point estimates (Subsec.
I.2.1) and the advantage of aiming for an answer in terms of distributions as far as
possible in the analysis, introducing the notions of risk and decision (Subsec. I.2.2).
To conclude, we give a brief justification on a part of the parameterization of our
problem in Section I.3 in terms of aligning with modern, high-dimensional datasets,
and explain the landscape of feasible and efficiently feasible estimation with the
notion of Statistical-to-Computational gap (Subsec. I.3.1).

I.1 What is Statistical Inference?
Inference is the result of a reasoning process of building a conclusion backed by logic
about an observation. The Greek Philosopher Aristotles (300 BC) theorized two
main branches in the field: deduction and induction. The former is more rigid, and
consists in evoking logical arguments that bring from true premises to a conclusion.
The latter is focused on deriving universal laws from local/restricted evidence. We
avoid discussing this distinction, and rather present an example and a paradigm of
interest. Given the mathematical flavour, it will be increasingly formalized, with
the purpose of justifying each step in a bottom-up fashion.

Statistical Physics is a field that aims to describe macroscopic phenomena as
a direct derivation of microscopic physical laws in large size systems. Inference,
in some sense, aims to find structure in data. Despite seemingly different, Pierre
Simone, Marquis de Laplace (1749-1827) contributed greatly to the former, and
initiated the latter, a motivation mentioned in the interesting review (Zdeborová
and Krzakala 2016). The most straightforward link is established considering the
microscopic atoms to be representatives of the i P rns datapoints/nodes/neurons.
In today’s applications, the connection is even stronger. Large sets of information
to be analyzed, extracting relations between billions of items involving billions of
parameters are in great accordance with techniques that were designed for systems
of the size of Avogadro’s number, n “ 1023. We take this as a motivating intro-
duction to present our general framework, but stress that the connections become
considerably deeper (see (Marc Mezard and Montanari 2009) for a classic reference
or those mentioned in (Zdeborová and Krzakala 2016, Sec. I)). In particular, we will
focus on methodologies that originally started in the spin glasses literature (Mezard,
Parisi, and Virasoro 1986). Among other things, a very interesting analogy between
phase transitions and inference feasibility boundaries will be observed.

The perspective is that of a statistician: a person that is given a problem with a
well defined set of questions that can be answered. Analyzing the various properties
of the phenomenon, the statistician will ultimately derive satisfactory conclusions,
to some extent. The way in which the subject is able to access the problem is via

1



a channel of communication. The statistician is a receiver of information from a
sender. The architecture of the channel is known up to some point, and the original
message has to be retrieved. We view this as an imaginary scenario in which a
friend of a statistician is on one side, and our character is on the other, and they
can only exchange information through an object that is termed channel. This
idealistic scenario turns out to be very accurate in reality, and also comes with
different interpretations. While the choice is just to give an idea of the playground
in which we are placed, it bears enough character to be termed sufficient.

For ease of exposition, we will mostly make the assumption that the generating
process is known up to some point, and the aim is only to recover the original
formulation. In other words, we assume that we do not need to test an hypothesis
on the model. With this set of information, the problem is not statistically friendly.
To be clearer: it rarely makes sense to assume that no model selection is needed.
However, in Physics one usually inspects the mechanics and validity of a model
rather than actually deriving it, so the choice is justifiable.
Incidentally, many modern studies (above all those on neural networks) appear to
be well working despite glossing over grounded details. We take this as a partial
justification for the freedom to place ourselves in this scenario. Although we will not
focus on Neural Networks in this document, the reasoning can be fairly extended
with the general aim of describing the phenomenology of some observations.

Further References

Many nice introductions to the common aspects of Machine Learning and
Statistical Physics are found in literature (Decelle 2022; Krzakala, Zde-
borova, et al. 2015; Krzakala and Zdeborová 2021; Zdeborová and Krzakala
2016). The collection starting with the preface (Agliari et al. 2020) is also a
good starting point to see current research topics at the interface. For deep
learning oriented reviews, some options are (Advani, Lahiri, and Ganguli
2013; Bahri et al. 2020).

I.1.1 A perspective from message retrieval

In the simplest possible setting, a statistical inference problem is formulated as
follows. For a given set of signals (variables) X˚ P X an observer has access to n
observations Y P Y ˆn, or more in general to a dataset D with n samples of the
phenomenon. The task is to retrieve X˚ from Y, upon knowledge of which relation
the two have. With knowledge and relation, we specifically mean that signals and
observations can be embedded in an equation that describes how one originates from
the other. The easiest understanding of this is a communication system, where:

X˚ ⇝ C ⇝ Y, (I.1.1)

and it is understood that C is a channel to be specified.

Example I.1.2. A sender sends a (vector) message x˚, and a statistician reads on
a tape y P R, a scalar. Upon seeing a stream of n messages, the receiver has read
y P Rn communications.

At this point, it is standard to assume that the messaging system is unfaithful,
namely that Y ‰ pX˚qˆn. The reason is simple: aiming to reproduce a realistic
scenario, it is common to hypothesize that the act of communicating changed the
signal, so that the observed phenomenon of the receiver is not equal to the original
one. This channel of communication, represented as a nontrivial function X ⇝
C ⇝ Y is placed on purpose, and expands the formalism to potential tweakings of

the signal. Without this change, the questions would be self-answering, and n “ 1
would ensure signal retrieval.
Most practical applications pursue guarantees for efficient communication, which is
to be understood as being able to summarize enough, potentially at a lower cost
than the original message. In our mathematical formalism, this summarization is
seen via a compression. Namely, the channel applies a function φ : X Ñ Y that



Sender C Statistician
x˚ py,aq

pφ,aq

Figure I.1: Parametrized Compression Map
The scheme is a typical example of vector reconstruction from scalar observations.

maps messages from the sender to the receiver. In particular, we will focus on a
compression that lowers substantially the dimensionality of the message, so that
X Ď Rd and Y Ď R, which amounts to compressing by a factor of d. It is worth
noticing that this is only one of the many justifications for the formalism, and one
of the many scenarios. It could be that the signal and the observation have the
same size, but the function corrupts differently. Often, we represent this through a
scheme, which is a rule for performing compression. We see this as a specific form
of φp¨; ¨q, possibly parametrized. For the sake of the narrative, these principles of
compression motivate a restriction of our interests to a paradigmatic setting, found
in the box below.

Vector reconstruction from scalars

In most examples, unless specified, we will have Y Ď R and X Ď Rd. Thus,
observations are scalars and independent variables are vectors. We stack n
observations into a vector y P Rn. In this case, the way compression is per-
formed is typically through a function φ that among other operations applies
a measurement matrix A P Rnˆd, which is received by the statistician.

A diagram is Figure I.1.

Example I.1.3. Let φ be such that φpxq “ xai,xy where ai P Rd over i P rns
observations. Letting A P Rnˆd, we have that y “ Ax˚. This is a linear system of
equations. The channel is projecting at each observation the signal according to a
set of vectors paiqiďn. The observations in this case are D “ tpai, yiqu

n
i“1. The ai

vectors act as auxiliary information: they parametrize the act of communication.

We narrow the ways in which these realizations manifest, focusing on a specific
formal approach: statistical inference. An inferential process that involves statistics
is described by embedding the signal-message problem with randomness. In par-
ticular, the n observations are a sample from a larger population, which admits a
probability distribution. In this renewed scenario, we endow py,x˚q with a prob-
ability measure, and aim to draw conclusion about the latter from the former. To
be able to do this, we must adopt the assumption of a specific statistical model.
While seemingly restrictive, this step is in some sense a generalization. Deter-
ministic phenomena are a subset of stochastic phenomena described by unit-mass
measures, i.e. events with probability (wp) 1. In addition to this, the choice is
natural in two ways. Firstly, it is safe to study probability models: the risk of
making mistaken assumptions is mitigated. Secondly, natural events present ran-
domness: randomness induced by complexity1which accounts for what we cannot
explain, and randomness induced by variability, which we can explain, but cannot
decode at each time instantly. In simple terms we are considering “the process of
using data analysis to infer properties of an underlying distribution of probability”
(Upton and Cook 2008). After this second lifting, we will have to study problems
where the channel acts on the signal and the process is nondeterministic accord-
ing to some assumed rules. We summarize this as Y “ φ d x˚, with capitals to
highlight the randomness we could have, and d denoting element-wise application

1this aspect is strongly linked to the probabilistic approach to thermodynamics we will discuss
in another document.



of the compression function. Notice that potentially the focus has transitioned to
answering probabilistic questions about x˚, since randomness will be involved.
We further allow the relationship to be corrupted by noise. For simplicity, we will
only consider additive noise, which amounts to adding a scalar term ϵi P R to the
equation for each signal and observation.
To justify why this makes sense, we must resort to application arguments. The
main reason is that real systems are subject to failure, and being able to describe
such failure is useful whenever the theoretical construction can be made close to
the concrete problem. The concept of corruption can be formalized in many ways,
but always with similar descriptions. The most intuitive explanation is seen for
a measurement problem. If the channel φ is any physical instrument, then many
objections can be made to the validity of it. Assuming for simplicity that it does
not have systematic errors2, its calibration to a certain precision will necessarily
mean that all the quantities of lower order will be (randomly) neglected.
In other words, the choice of an instrument with associated units of measure is
already implying a mistake: if precision is up to centimeters, any length that is in
the millimeters is by construction uncertain, and measurements are expressed as
# ˘ 1 cm. In most cases, if the instrument is reliable enough, this noise can be
taken to be random and symmetric about zero. On average no mistake is made,
but eventually a mistake of overestimation or underestimation is inevitable, with
equal weights. Again, this is a reasonable construction, since a priori it would not
make sense to consider asymmetric noise, but rather admit that our instrument has
a larger variance and is still symmetric. Additionally, this makes most models more
amenable to mathematical analysis.

I.1.2 Statistical Model and Statistical Problem
We thus reach a general expression

Y “ φd px˚,Aq ` ϵ, (I.1.4)

where E rϵis “ 0 and Var rϵis “ ∆ for all i P rns and d denotes component wise
application of φ. By the generality of our reasoning, it is possible to retrieve all the
previous stages, or any combination, by just choosing the specific dimensions, ran-
domness, and functions in place. To represent this, we will give a formal definition
that encapsulates a large set of scenarios.

Definition I.1.5 (Statistical Model). A collection M “ pX ,Y , φ,Pϵ,P, nq that
describes communication of signals from a sender to a receiver through a channel
C. We recognize:

• pX ,Y q the message space and the receiver space.

• φ the compression function

• Pϵ the distribution of the noise vector ϵ P Y ˆn, assumed to factorize into Pϵ

• P, the collection of randomness over any of the above objects

• n the sample size.

A depiction is Figure I.2.

When given a collection of n samples, the statistician is also provided partial
or full knowledge about the channel , e.g. some distributions and the compression
map C “ tφ,Pϵ,PCu. This motivates the construction of a specific principle.

Problem I.1.6 (Statistical Problem). The Statistical problem is handed to the
statistician. The material is a deterministically observed tuple P “ pD ,Hq, with
which we would like to answer a question about the statistical model, that is its
source. It is composed of an n-sized sample from the population, which we call
dataset D , and a hypothesis H. In practice, the hypothesis is just an indication of
how calculations should be performed, what can be assumed, what is known, what is
to be inferred.
The statistician is in particular required to answer questions about x˚.

2e.g. it does not always add `2 since it is out of scale



Sender C Statistician
x˚ py,aq

pφ,a, ϵq

Figure I.2: Sender-Statistician diagram of a Statistical Model M.
The channel applies the compression map and noise. The result is that the

receiver gets only the measurement used a and the final observation y. The task is
recovering x˚ by reusing this channel. A difficult task means that the channel has
to be queried a large number of times. A task is impossible when even an infinite

amount of queries does not provide a meaningful result.

Below, we show some starting examples of how one can describe common prob-
lems in this framework.

Example I.1.7 (Intuitive Statistical Inference problems). On the informal side,
some statistical inference problems are:

1. recovering the original image from a blurry observation

2. reconstructing a corrupted message from a noisy voice line

Example #1 could be formalized with observations Y1, . . . ,Yn where Yi “ X˚`Ξi.
In this case all the objects are matrices, and X˚ is the deterministic original image.
The channel just amounts to adding noise Ξi to each observation, blurring the
image.
Example #2 is seen as a general message transmission where yi “ φpx˚q and φp¨q
maps to some resulting vector that (possibly) is itself non-scalar.

Example I.1.8 (Denoising). Let the statistician observe a vector y P Rn noisy
observations of a signal x˚ P R, corrupted by a Gaussian noise ϵ P Rn. The
equation of the model reads:

y “

»

—

–

x˚

...
x˚

fi

ffi

fl

` ϵ yi “ x˚ ` ϵi ϵi
iid
„ N p0,∆q, @i P rns. (I.1.9)

Where we see that there is no compression, and the mapping function is φpxq “ x.
In this case, the variance of the noise is the only disturbing factor that does not
allow to guess directly the solution.

Example I.1.10 (Classic Linear Regression). In linear regression, the model is
expressed as

y “ Ax˚ ` ϵ yi “ xai,x
˚y ` ϵi ϵi „ N p0,∆q @i P rns. (I.1.11)

The compression component here is the matrix A P Rnˆd and the noise component is
a standard Gaussian ϵ, which plays the role of corruption. In the classic framework,
the task is rephrased as retrieving the vector that relates a list of scalar dependent
observations y and independent explanatory variables encoded in a matrix A. The
dataset is D “ py,Aq.

In particular, we will focus on a paradigm of inference that generalizes many
models, and a specific case that is of practical interest in many applications. We
briefly outline them below.

Example I.1.12 (Generalized Linear Model). For the purpose of this document,
a Generalized Linear Model (GLM) is a problem where the compression function
is φp¨,Aq : Rd Ñ R, where A is a possibly random matrix in Rnˆd independent
of the signal and the map is applied component-wise. Unless otherwise stated, the
observations are independent and identically distributed. Noise is additive.



Example I.1.13 (Phase retrieval). A specific example of GLM is Phase retrieval,
where the compression function is φpmq “

“

|m1| ¨ ¨ ¨ |mn|
‰J, the symbol mi rep-

resenting the message from the compression xai,x
˚y at each row. We further as-

sume that observations i P rns are independent and identically distributed and that
the vectors ai admit a distribution. Basically, the original vector is projected in
different ways at each observation, its sign is removed, and further it is corrupted
by white noise ϵi „ N p0,∆q. The task is recovering x˚ from D “ py,Aq, which is
an n-sized sample from the randomness of the channel. We write this succintly as:

y “ |Ax˚| ` ϵ, (I.1.14)

where | ¨ | is applied row-wise and A is a random matrix.

Common scenarios in which the phase retrieval problem arises are related to
measurements in which only the magnitude of the observation is recovered, and
the orientation is lost. Indeed, the modulus has this exact role in the formalism of
Example I.1.13. From a theoretical standpoint, it is interesting for the same reason:
the phase holds a considerable amount of information to detect a message, and
losing it poses a challenging task. To give an example, any phase retrieval problem
for centered randomness sources will have expectation zero, since it is not known if
the single observation came from xai,x

˚y or xai,´x
˚y. Clearly, more observations

will provide information of how this vector might place itself, but estimation might
also end up in results that hold up to a global sign change, to be intended as flipping
all signs in the guess of the signal. We will come back to this example continuously.
Even more importantly, in Chapter V we will take a generalized formulation and
analyze it in detail.

I.2 Bayesian Inference
The paradigm is not closed, since no methodology can be provided as of now.
We close our mathematical model by focusing on Bayesian parametric Estimation
problems of a specific kind. Formally, from a common distribution on observations
pD ;Hq we assume that:

• the observations admit a joint distribution P rDs

• the observations are iid, hence wlog one can study them individually

• the distribution over signal and observation is separable into a prior and a
likelihood term, so that PrpX,Dqs “ PrXsPrD |Xs

• alternatively information about the channel C is given to derive a likelihood
from a prior.

• whenever disputable, probabilities and densities are well-behaved.

Placing a prior on the signals ensures that Bayes’ Theorem is applicable. This
choice has a big philosophical implication. A random truth to be recovered means
that we will wish to formulate an answer that takes into account the fact that the
prior is a hypothesis. In simple words, if we wished to retrieve a random version of
x˚, a prior would already be enough. Instead, we pursue an answer that is backed
by information, with a more robust degree of belief/reliability.

Remark I.2.1. Bayesian inference and its terminology are assumed to be known,
a good reference for its foundations is (De Finetti 1989).

Remark I.2.2. It is important to understand that this is almost a forced choice.
Even if it were known that x˚ existed, it is not clear how to retrieve it directly from
y. What one can do is hope to find a scheme to update a trial density that describes
a current belief with subsequent observations of the phenomenon. The improper
choice of assigning a prior is however largely debated in the Bayesian vs Frequentist
approach to statistics (see (Cramér 1999; Feller 2009; Jeffreys 1998; Keynes 2004)
)
In simple words, our choice allows to model a phenomenon of interest stochastically,
despite it not being necessarily stochastic in nature.



Inference is then translated into answering questions about the posterior distri-
bution:

P rX | Ds “
P rD |XsP rXs

PrDs
, (I.2.3)

which is effectively an update of our belief based on the observations D . To show
that the paradigm applies also to more general scenarios, we provide another stan-
dard example that involves corrupted matrices.

Example I.2.4 (Spiked Wigner Model). A canonical example of signal recovery is
formalized as follows. For a true signal x˚ we observe a matrix:

Y “

c

λ

n
x˚x˚J

`W, (I.2.5)

where Wij „ N p0, 1q for all i ‰ j and Wii „ N p0,∆q on the diagonal. In this
case λ P R plays the role of a Signal-to-Noise Ratio (SNR). In simple terms, it is a
tunable parameter that determines how much the true signal weights wrt background
noise. To different λ correspond different statistical problems. Intuitively, the higher
the parameter the weaker is the corruption (i.e. the signal makes most of the matrix
Y. This is superfluous, as it could be absorbed in the noise variance with a rescaling.
However, we will see why it makes sense to make it explicit when discussing hardness
in Section II.6.
A Bayesian structure on the model is then specified after allowing x˚ to be randomly
distributed (again, for the sake of embedding the problem in the formalism). An
interesting and very tractable case is when xi „ Radp˘1q, which amounts to each
entry being ˘1 with given probabilities (see Alaoui, Krzakala, and Jordan 2018).

The formalism allows to provide the statistician with many answers about basic
models, and much inspiration about the more complicated ones. There are two
main flavours. On one side, we might hope to compute the posterior and sample
from it, one the other side, we might wish to find a reasonable estimator for x˚ that
exploits data.

Example I.2.6 (Gaussian Bayesian Posterior). Let X „ N p0, 1q, Yi “ X`ϵi where
ϵi

iid
„ N p0, 1q. A well known result is that for a sequence of observations y P Rn:

P rX | Y “ ys “
P ry | XsP rXs

P rys
9P ry | XsP rXs “

n
ź

i“1

e
´pyi´xq2

2 e
´x2

2 , (I.2.7)

where we have ignored constants wrt X, used the iid assumption and expressed
everything in terms of densities. Reordering some terms:

¨ ¨ ¨ 9e´ 1
2 px2

`
ř

i y
2

´2x
ř

i yi`nx2
q9e´ 1

2 rpn`1qx2
´2x

ř

i yis. (I.2.8)

The kernel of a normal distribution N pµ, σ2q is then recognized. The mean and
variance have closed form expressions:

µ “

ř

i yi
n` 1

σ2 “
1

n` 1
. (I.2.9)

Example I.2.10 (Noisy Rademacher Signal). A low-dimensional model similar to
Exm. I.2.4 is constructed as follows. Assume the relationship is:

yi “ x˚ ` ϵi
?
∆ ϵi „ N p0,∆q,∆ P R @i P rns. (I.2.11)

Placing a Rademacher one dimensional prior X „ Radp˘1q, one can check that the
posterior will have density:

P rX | Y “ ys “
1

1` e´x
ř

i
yi
∆

“ σ

ˆ

x
ÿ

i

yi
∆

˙

(I.2.12)

Where σp¨q is the sigmoid function.



In general, when the posterior is easy to compute and easy to sample from,
the problem of inference is solved. For reasons that we will see later, it turns out
that this is not always the case, because the computation of the denominator of
Bayes’ rule is very hard. We call this object a partition function. Intuitively, the
difficulty in computing it lies in the fact that for large ambient spaces of the signal,
the term becomes a large sum, with no general expression. On the other hand,
it can be shown that it is a cumulant generating function for the randomness of
the problem, hence bearing the statistical information required to answer inference
questions. On a different perspective, it has the role of normalizing the likelihood-
prior numerator to a valid probability, establishing how different configurations
partition into the space of probabilities. Clearly, for a hard to solve problem, it
will be hard to compute. The very question of many fields falling into the inference
incubator is finding workarounds, approximations or direct results on the partitition
function.
For the moment, we avoid discussing this, and move to the most sensible next thing,
which is to provide a point estimate that can describe the shape of the posterior,
and more importantly, give an approximation of the signal x˚. We review this
method below.

Most of the cases, we will focus on parametric models, which add the further
notion that the relationship of the encoding between observation and signal is by
hypothesis in a space that can be parametrized. This amounts to assuming that
the random distributions admit a description Pr¨;ϑs where ϑ P Rp. Knowledge or
partial knowledge of the distributions amounts to different specifications of these
parameters.

I.2.1 Point Estimates

An estimator px is a function that admits as input a dataset and returns a guess for
x˚. Mathematically:

px : tDu ÑX . (I.2.13)

The most intuitive choices of an estimator are the Maximum Likelihood Estimator
(MLE) or the Maximum A Posteriori (MAP). These have form:

pxMLE :“ argmax
X

tP rD |Xsu (I.2.14)

pxMAP :“ argmax
X

tP rX | Dsu . (I.2.15)

We claim that the two have some advantanges but present serious criticalities.

Remark I.2.16 (Pros and shortcomings of MLEs and MAPs). Recognize the fol-
lowing easy assertions for the MLE and the MAP:

• both are a point estimate. If a distribution is bimodal, they are inaccurate.

• the MAP and MLE are useful when the distribution is concave and first order
algorithms are well-behaved

• if the distribution is not concave, algorithms for the MAP and the MLE con-
verge to a sub-optimal point (a local stationary point). In other words, both
depend on starting conditions

• they are not a distributional estimate, and thus lack flexibility

• the MLE is sensitive to outliers, since it relies on the distribution of observa-
tions only

• estimating them can be an NP-hard problem (Shimony 1994; Yi, Caramanis,
and Sanghavi 2014).

Despite being a non-exhaustive list, we claim it is sufficient to justify a different
approach.



Given the circumstances, a naturally arising question would be the following.

Bayesian Point Estimation

Is it possible to consider different strategies?

Both approaches treat the target as something that can be estimated pointwise.
On the other hand, Bayesian principles implicitly require to treat unknowns as if
they came from a distribution. This suggests postponing the search for a single
answer to the latest stage possible. Leveraging the randomness, we hope that the
result will be

• robust to variations of the signal

• adjusted to the peculiarities of the problem.

I.2.2 Risk-Based Approach from Decision Theory

To answer the above question, we define a measure of correctness for estimators
and a systematic way to evaluate comparisons. This is carried out by constructing
performance-based estimators, that are compared in terms of an error/loss function:

L : X ˆX Ñ R` ppxpDq,x˚q Ñ LppxpDq,x˚q. (I.2.17)

Notice that the loss is random given that D is randomly sampled. Interestingly, we
wish to average the result over the randomness of observations. This ensures that
our techniques will be somewhat robust to variations in the signal and adaptive
to the problem by construction. To a problem with randomness, we inject further
randomness and model the whole in a way such that reliability is encoded in a loss.

Example I.2.18 (Common Error functions). Among the most famous costs we list:

• the L2 norm, or Squared Error (SE) LL2ppxpDq,x˚q :“ 1
d ∥pxpDq ´ x

˚∥22

• the Average Error (AE), or L1 norm LL1ppxpDq,x˚q :“ 1
d ∥pxpyq ´ x

˚∥1

• the Error Counter (EC), for discrete data, LECppxpDq,x˚q :“ 1
d

řd
j“1 1pxj‰x˚

j
.

Remark I.2.19. The L2 error is a proper norm, a proper loss and it induces a
Hilbert space under suitable conditions. Namely, all square integrable functions wrt
a reference measure µ form a Hilbert space with equipped L2 norm and a notion of
inner product. Being Hilbert, every Cauchy sequence is convergent, and all the nice
properties of Hilbert spaces are derived.

Another performance indicator commonly encountered in Physics is the Overlap
(OL) of the estimator with the signal, which is just a normalized alignment:

m :“
xpx,x˚y

2

∥px∥22 ∥x˚∥22
P r0, 1s. (I.2.20)

Remark I.2.21. The overlap and the L2 error are closely linked when signals and
estimators have fixed norm.

With a notion of error, we can further construct a framework that takes into
account the probabilistic structure of the problem. Indeed, x˚ is in principle un-
known and cannot be used for a direct evaluation of the loss, which is itself random.
Leveraging access to the various distributions allows to construct a strategy that
is robust against the presumed randomness of the problem. If we imagine that x˚

was sampled, we can represent the performance in terms of a determinstic quantity.



Definition I.2.22 (Risk). Given an estimator px and an error function L, the risk
is a functional that averages the loss over the joint distribution P r¨, ¨s of signal and
dataset. Namely

Rppx;Lq :“ EX,D

”

LpxXpDq,Xq
ı

“ ED

”

RpxX | D ;Lq
ı

“ ED

“

EX|D;L rLs
‰

.

(I.2.23)
We remark that D is per se a random variable, and X˚ is random (written as X
here) since it is assumed to be sampled from a prior. By the assumed factorization
of the probability, the second equality follows, with the risk now being the expectation
of the loss wrt the posterior. In particular:

argmin
px

Rppx;Lq “ argmin
px

ED rRppx | D ;Lqs . (I.2.24)

Remark I.2.25. At first sight the posterior version of the risk and the averaged
version are different. An application of the towering property3 saves us from this
tedious distinction. Indeed, it suffices to consider the conditional risk for fixed D .
A result that holds almost surely for the posterior risk will then transfer to the risk.
We see this since the almost sure result holds for any D with nonzero probability,
so that integrating over the randomness of D does not impact the conclusion.

Example I.2.26. Inference of a signal x˚ from observations y “ D all admitting
a probability distribution function (pdf) means that the risk structure is:

Rppx;Lq “ EX,Y rLppxpY q, Xqs (I.2.27)

“

ż

Y ˆn

ż 8

´8

Lppxpyq, xqppx | yqdx ppyqdy (I.2.28)

“ EY rRppx | Y ;Lqs . (I.2.29)

In general we would hope to find the best possible estimator wrt a loss. For a
class of estimators A this will be the infimum over all estimators in the set. We
name it Bayes Action and its respective risk the Bayes risk.

px‹
A pLq :“ arg inf

pxPA

␣

Rppx;Lq
(

, Rppx‹
A ;Lq “ R

‹
pLq. (I.2.30)

Remark I.2.31. Notice that we do not focus on the performance in terms of pre-
diction (e.g. supervised learning), but rather in recovering the original signal. This
means that the principle of empirical risk minimization is not interesting.

Remark I.2.32. We further observe that for a finite prior, an application of Fu-
bini’s Theorem would allow to exchange the expectations for the risk. Then:

Rppx;Lq “ EX

“

ED|X rLppxpDq,Xqs
‰

“ EX rRppxpDq,X;Lqs . (I.2.33)

Where we have recognized the frequentist risk Rp¨, ¨; ¨q, that averages over the like-
lihood P rD |Xs. The best estimator wrt the average of frequentist risk is termed
Bayes rule. It is explicitly dependent on the choice of the prior, but we will keep
it fixed.

In the Bayesian setting, allowing the signal to have a distribution, we find that a
finite prior4 makes the frequentist Bayes decision rule coincide with the Bayesianist
Bayes action. Actually, this is the classical starting point for deriving our presen-
tation of the risk. One starts from the frequentist risk. Adding a prior, the risk R
can be defined, and it will depend on the prior. Assuming that the conditionals can
be defined and that the distributions are “nice”, the posterior risk minimized almost
surely will minimize the risk, as discussed previously.

Given the above discussion, we speak freely of Bayes decision rule and Bayes
action, as they are the same. Precisely, the Bayes rule is obtained by taking the

3EX,Y rfpX,Y qs “ EY

“

EX|Y rfpX,Y “ yqs
‰

4this is true in most cases



Bayes action for each particular D . In the framework of inference, emphasis is
placed on using only one realization of D to perform inference.

Another criterion for frequentist risks is the minmax criterion, by which one
selects:

R‹
Mm :“ inf

px
sup

x˚PX
Rppx,x˚;Lq. (I.2.34)

In words, it is the estimator that achieves the smallest maximum frequentist risk,
so it is best in the worst case. We term this arg inf sup the minimax optimal
estimator accordingly.

Remark I.2.35. While the Bayes approach has the flavour of an average-case
performance analysis, the minimax approach is meant to be worst-case. In this
document, we are interested in typical behaviors, so we will keep the discussion
simple for the latter. In the next statements we argue that the average-case results
will still give information about the worst-case scenario.

Definition I.2.36 (Least favorable prior). A prior P0 determines the notion of risk
starting from the frequentist setting. Then, a prior is termed least favorable for per-
forming a task when its risk is always higher than any other choice. Mathematically
for fixed L:

RP0
ppxP0

;Lq ě RPppxP;Lq @P,P0, (I.2.37)

with pxP0
, pxP chosen according to the prior as Bayes rules, and the risk depends on

the prior chosen.

Proposition I.2.38. Fix a loss L. If P0 is a prior such that its associated Bayes
rule pxP0p¨q satisfies

RP0ppxP0 ;Lq “
ż

RppxP0 ,x
˚;LqdP0rx

˚s “ sup
x˚

RppxP0 ,x
˚;Lq (I.2.39)

then:

1. it is minimax

2. if it is the unique Bayes estimator it is unique minimax

3. P0 is least favorable

Proof. (Claim #1) Let px ‰ pxP0
. Then:

sup
x˚

RppxP,x
˚;Lq ě

ż

Rppx,x˚;LqdP0x
˚ ě

ż

RppxP,x
˚qdP0px

˚q “ sup
x˚

RppxP0
;Lq.

(I.2.40)

Accordingly, pxP0
is minimax.

(Claim #2) Uniqueness of Bayes risk implies that ě above in the second inequality
becomes ą. Then the estimator is the unique one that achieves maximum risk, and
is the unique minimax.
(Claim #3) Consider P ‰ P0, with associated Bayes estimator pxP. The risks are
such that:

RppxP;Lq “
ż

RppxP,x
˚qdPpx˚q ď

ż

RppxP0
,x˚qdPpx˚q ď sup

x˚

RP0
ppxP0

,x˚q.

(I.2.41)
In particular, the first inequality holds since pxP is the Bayes rule wrt P.

By construction, the risk and the Bayes decision rule depend on the choice of
Lp¨, ¨q. In some cases, it is possible to derive a closed form of this minimum, as the
next Proposition shows.

Proposition I.2.42 (Best estimators for different error functions). Go back to
Example I.2.18, then:

1. the Minimum Mean Squared Error (MMSE) estimator is pxMMSEpDq “ EX|D rXs,



2. the Minimum Mean Average Error (MMAE) estimator is pxMMAEpDq “ medX|DpXq,

3. the Minimum Error Counter (MEC) estimator is the maximum of the marginal
for each entry j P rds, namely:

pxMECpDq “

»

—

–

argmaxµ1px1 | Dq
...

argmaxµdpxd | Dq

fi

ffi

fl

µjpxj | Dq :“

ż

P rX | Ds
ź

l‰j

dxl @j P rds.

(I.2.43)
namely, it is an entry-wise MAP.

Proof. Consider Equation I.2.24, then we can minimize the posterior risk. The
strategy is common to the three proofs, and consists in evaluating the gradient
vector ∇

pxR P Rd and setting it to zero entry-wise. This will be sufficient to find a
minimum since the losses are convex in px.
(Claim 1)

∇
pxRppx | D ;MSEq “

2

d
EX|D rpxpDq ´Xs “ 0 ðñ pxpDq “ EX|D rXs . (I.2.44)

In the last step, we used the fact that for fixed D the estimator is constant.
(Claim 2) Following the same fashion we first express the posterior risk

∇
pxRppx | D ;MAEq9∇

px

`

EX|D rLppxpDq,Xq1pxěX s ` EX|D rLppxpDq,Xq1pxěX s
˘

(I.2.45)

“ ∇
px

˜

ż

px

´8

px´ x dP rx|Ds `
ż 8

px

x´ px dP rx | Ds

¸

(I.2.46)

“

ż

px

´8

dP rx|Ds ´
ż 8

px

dP rx | Ds “ 0 (I.2.47)

Where in the first passage we have ignored the normalization and in the second
passage we have used Leibniz’s Integral rule (see Subsec. A.1.1 for a discussion
and references). Then, the condition implies, together with

ş8

´8
P rx | Ds “ 1 that

xpDq “ medX|DpXq, the median.
(Claim 3) The indicator function is not differentiable, so we resort to inspecting
the form of the posterior risk.

Rppx | D ;ECq9
ÿ

x

P rx | Ds
d
ÿ

j“1

1
pxj‰xj

“
ÿ

x

P rx | Ds
l jh n

“1

´
ÿ

x

P rx | Ds
d
ÿ

j“1

1pxj “ pxjq.

(I.2.48)

Minimizing such function means bringing the second term as close as possible to 1.
The choice of entry-wise maximums of the marginals is sound, since the weight of
probability is the highest at the maximizer, and the test of the indicator is entry-
by-entry.

Remark I.2.49. For the Error counter, the overlap and the MSE the optimal
estimator depends only on the marginals when the features are iid.

Remark I.2.50. The expert reader might object that we justified the introduction of
a loss to avoid providing point estimates, to later discuss the best estimators, which
are still answers based on points. Moreover, one could argue that the MMSE estima-
tor and the MAP coincide for distributions that are jointly Gaussian. All of these
comments are right, bt we also remark that it is standard to approach problems in
Machine Learning/inference with a notion of performance (a loss) and that depend-
ing on the situation one estimator or the other might be more useful. Additionally,
this coincidence applies to the choice of square loss only, and we eventually find
marginals. The decision theoretic approach bears more generality than the simple
point estimate.



In general, such a computation presents two hurdles:

1. the minimization is potentially difficult (avoided in Prop. I.2.42),

2. the posterior is hard to evaluate, as before (not avoidable),

3. there is no knowledge of the true distributions (avoided below).

Bayes-Optimal Inference

It is now important to remark that we are not discussing the dependence on the
choice of the prior. Additionally, to derive sensible bounds, we will focus on the
Bayes-Optimal setting, which provides the largest set of information to the statis-
tician.

Bayes-Optimality

With Bayes-Optimal inference we mean that all distributions are available
to the statistician: the true prior, the true likelihood and the true posterior.
In other words, the Data Generating Process (DGP) is known.

Intuitively, this would give a lower bound on any other setting, since it is the
best possible scenario in which the statistician knows everything but the solution.
Upon knowledge of the data generating process, Bayes-Optimal inference can be
performed, and a statistician has access to an expression of the posterior distribu-
tion PrX | Ds, potentially not in closed form.
The easiest instance of the non-Bayes-Optimal setting is when the true family of dis-
tributions is known, but not up to the true parameters. Assuming the parametriza-
tions are all stored in a vector ϑ˚, the statistician knows that the randomness is
from that model, but is clueless about the true value of ϑ˚ and must resort to a
guess ϑ. This situation is termed mismatched. Different constructions can be
designed, depending on how much information is made available. Adding degrees
of freedom to the problem of the statistician, the task is made harder (more objects
to infer). The Bayes-Optimal setting is thus the least difficult edge-case, for which
conclusions about the general framework can be made. In the next subsection, we
specifically describe our main scenario of interest, where Bayes-Optimal problems
will be crucial to establish bounds for the general method of Bayesian inference.

Example I.2.51 (Bayes-Optimal and non-Bayes-Optimal). A Bayes-optimal prob-
lem could be knowing that Pr¨;ϑ˚s “ N pµ˚, σ

2
˚q, while a partially non-Bayes Optimal

problem is the unknown variance/known mean analogue where N pµ˚, σ
2q.

I.3 Average Case Efficiency in High-Dimensions
In modern inference problems the amount of available data is large in both direc-
tions: samples and features. This raises a huge concern in resources needed to
answer even basic questions about the phenomenon under consideration. In math-
ematical terms, the scenario justifies observing limiting properties of a model, with
n Ñ 8, d Ñ 8 but with aspect ratio fixed δ “ n

d P Θ p1q. This loosely means
that we imagine that the dataset has many rows and many columns (so many that
their precise number is negligible, and there will be dimensionless properties that
kick in at some limit), but that their proportion is kept fixed (so that the dimen-
sionless properties will depend on such δ). A good interpretation is seeing δ as an
indicator of complexity (equivalently of information) for each measurement. The
higher it is, the least (respectively more) complex (resp., informative) the model
will be. Intuitively in the most extreme example, it should be easier to infer a one
dimensional vector from one million measurements (d “ 1, n “ 106) rather than a
1 million dimensional vector from one measurement pd “ 106, n “ 1q.

The key observation regarding this choice is that we basically get rid of pn, dq,
which is useful in two ways:

• some parameters are lost



• sizes inspected will be by construction large and in accordance with the current
state of affairs of applied problems.

In a real scenario, the limiting statements will be valid for large enough n with
adjustable reliability, by the definition of limit. All will regard a Statistical Model
M (Def. I.1.5) and an associated Problem P (Def. I.1.6). Additionally, we let P
be Bayes-Optimal, so that the fewest information is unknown and any real world
scenario, where the source is not necessarily known, will be at best as good.

Statistical inference in these premises is broadly concerned with two questions.
The statements are borrowed from (Zdeborová and Krzakala 2016), and will be
explained below. Both have been approached with concepts that have a long history
in Statistical Physics.

Sufficient Information

From (Zdeborová and Krzakala 2016).

“Under what conditions is the information contained in the observations
sufficient for satisfactory recovery of the variables?”

Answers to this question are formulated with techniques that belong to Statis-
tics and Information Theory. The main objective is providing a formalism by
which it can be precisely stated when information about a phenomenon is enough
to derive a meaningful description of it. We give two precise notions below that are
the canonical starting points.

Remark I.3.1. Notice that the overlap is different from losses as a principle, since
we wish it to be high (not low like losses), the statements must be adjusted accord-
ingly. Moreover, it is not in general true that losses behave as below, but it is also
true that for sufficiently nice distributions (e.g. spherical, Gaussian) this is the
case.

Problem I.3.2 (Weak Recovery). Find a sufficient condition on P in terms of
its parameters such that the signal of M is estimated with non-trivial success wrt
a given loss. Namely, find an estimator pxpDq such that there exists a constant
c ă ctriv for which:

lim
nÑ8

P rLppxpDq,x˚q ď pc` o p1qqns “ 1, (I.3.3)

where ctriv is the performance density of a trivial estimator, to be understood as
the number of errors-per-sample. In other terms, find a procedure that beats ran-
dom guessing by a vanishing but nonzero5 amount almost surely wrt the assumed
randomness.

Problem I.3.4 (Strong Recovery). Find a sufficient condition on P such that the
signal of M is estimated correctly wrt a given loss. Namely, find an estimator pxpDq
such that:

lim
nÑ8

P rLppxpDq,x˚q “ o pnqs “ 1. (I.3.5)

In simple words, find an estimator that has vanishing loss at the limit. In some
references, this is termed weak consistency/almost exact recovery, with strong con-
sistency/exact recovery being 0 instead of o pnq.

Before continuing with the second set of Problems, it is crucial to observe that
we are not at all restricting ourselves in terms of number of operations to perform.
The question is merely a feasibility question: given a setting, find an answer within
a time possibly scaling very fast in n. Realistically, a problem is solvable in two
phases:

• when it is simply solvable,

• when it is efficiently possible to do so.
5o p1qn “ o pnq



This motivates the introduction of a computationally bounded requirement for solv-
ability.

Computational Efficiency

From (Zdeborová and Krzakala 2016).

“Can the inference be done in an algorithmically efficient way? What are
the optimal algorithms for this task?”

To inspect this problem, tools from Computer Science need to be considered,
in the sense that we must design procedures (algorithms) that are efficient wrt the
relevant size of the problem. For simplicity, we will refer to efficient solvability with
polypnq running time. This choice amounts to having a single distinction6:

• polyonomial algorithms A

• non-polynomial procedures.

Remark I.3.6. Despite being a binary labeling (i.e. polynomial vs non-polynomial),
this is already sufficient to answer industry related tasks. A super-polynomial pro-
cedure requires times that for moderate sized n are already unfeasible. Even worse,
exponential-times procedures quickly get to the point that one computation per sec-
ond requires more time than the age of the universe. From a practical perspective,
a complex classification of hierarchies is not needed.

Armed with this, we can define the Problems analogous to Probs. I.3.2, I.3.4.

Problem I.3.7 (Weak efficient Recovery). Devise an estimator px that solves Prob.
I.3.2 in efficient polynomial time.

Problem I.3.8 (Strong efficient Recovery). Devise an estimator that solves Prob.
I.3.4 in efficient polynomial time.

To find these estimators, it might be that an explicit set of steps is to be taken.
In this case, we can think of a proper algorithm A providing the solution. When
the estimator is just the result of a single calculation, the notion of algorithm is
somewhat vacuous, but one can still check the computational complexity of it in
terms of the size of the problem. If the single operation has a cost that is non-
polynomial in size, then the imaginary procedure is non-efficient.

Remark I.3.9. We find three other equivalent notions of recovery (see (Gu and
Polyanskiy 2023; Reeves, Xu, and Zadik 2019) and (Abbe 2022, Def. 4)). For weak
recovery, we can consider:

lim
nÑ8

sup
1

n
E
”

LpxX,X˚q

ı

ď ctriv ´ ϵ for some ϵ ą 0, (I.3.10)

or
lim
nÑ8

P rLppx,x˚q ď pctriv ´ Ω p1qqns “ 1´ o p1q , (I.3.11)

or

lim
nÑ8

sup
E
”

LpxXpDq,X˚q

ı

Lppxtriv,x˚q
ă 1. (I.3.12)

All of the above encode the same notion: at the limit, the estimator must be at least
slightly better than random guessing.
For strong recovery:

lim
nÑ8

sup
1

n
E
”

LpxX,X˚q

ı

“ 0, (I.3.13)

or
lim
nÑ8

P rLppx,x˚q ď o p1qns “ 1´ o p1q , (I.3.14)

6in some cases, a richer collection of results can be derived by describing how algorithms behave
in a finer spectrum of complexities.



or

lim
nÑ8

sup
E
”

LpxXpDq,X˚q

ı

Lppxtriv,x˚q
“ 0. (I.3.15)

All of the above are the same notion: when norms of the vectors are bounded by the
fact that xpxpDq,x˚y ď ∥pxpDq∥ ∥x˚∥ the overlap is non-vanishing and well-defined
(Arous, Gheissari, and Jagannath 2021). More importantly, in the model we inspect
in Chapter V a random guess is vanishing in performance as „ d´ 1

2 by classic high
dimensional probability arguments (see (Vershynin 2018, Chap. 3)). Moreover, the
nicest formulation is the one with expectations, which in most of the cases will be
expressed in terms of overlaps, requiring a trivial “flip” of all these definitions.

The picture becomes fairly easier for specific choices of the loss. By Proposition
I.2.42, we know that for the MSE the posterior expectation minimizes the posterior
risk almost surely, and thus minimizes the risk. A closed form of its expression
would be sufficient to evaluate the behavior of the MMSE of recovering the true
signal. In this case it suffices to understand the behavior of the following limit:

lim
nÑ8

EX

“

pX ´ EX|D rX | Dsq2
‰

. (I.3.16)

In general, it is not guaranteed that the conditional expectation is computable, and
one might resort to approximations, leading to the side-question of quantifying how
much far away in performance an estimator can get.

I.3.1 What is a Statistical-to-Computational Gap?
From the above notions, we can draw some immediate implications.

Fact I.3.17. It trivially holds that:

• strong recovery implies weak recovery

• strong efficient recovery implies weak efficient recovery

• weak efficient recovery implies weak recovery.

In an (almost) general setting, a statistical problem P linked to a statistical
model M will depend on a set of (hyper) parameters pn, d,ϑq P R1ˆ1ˆH . Letting
n, d Ñ 8 means that the picture in the description of the high dimensional limit
will depend on choices of ϑ, which appear in general in a Cartesian plane RH`1.
The above Facts then define nested regions of the space with associated notions
of hardness/solvability and algorithmic hardness/efficient solvability. Given that
the three settings are in an ordered relation, the appearence is that of a matriosk:
the impossible phase is contained in the hard phase which is contained in the easy
phase, or viceversa, depending on the meaning of is contained in. To make this
easier, we identify separate regions in which the problem is exclusively impossible,
hard or easy, leading to a partition of the parameter space. The general picture
looks like the diagram of Figure I.3. To give a concrete example, we will take the
simplest case in which there is only one hyperparameter. Here H “ 0 and by our
construction the only parameter is δ “ n

d P Θ p1q, but in general there could be
other examples, such as the SNR of the channel, which is completely analogous. A
diagram of their behavior is Figure I.4.

With this in hand, it is reasonable to discuss the existance of the three phases
for a given problem, as well as their size and position on the phase diagram. From
a practical standpoint, the interesting phase is the Hard one. Indeed, unsolvable
problems are just not interesting, while a solvable problem bears the question of the
worthiness of finding its solution: if too much resources are required, one might as
well ignore it. The hard phase describes a scenario in which it is not advised to aim
for retrieval, despite it being possible. Whenever it exists, we speak of a Statistical
to Computational (S-to-C) gap, meaning that there exists configurations in RH`1 of
the parameter space by which the problem is information-theoretically (IT) solvable
but not algorithmically solvable wrt its size. More generally, characterizing the
whole space of parameters allows to close a problem, meaning that in any case, the
statistician will know its basic phenomenology.



Impossible Hard Easy

Figure I.3: Multidimensional cartoon of the phases of an inference problem
Fix a problem. Here by Impossible we mean “instances of the problem in this ring
have no solution to the problem”, while Hard is understood as “instances have a
non-polynomial procedure that returns a solution” and Easy “instances can be
solved efficiently”. If we saw the structure as a matriosk, the perspective above
would change to instances with efficient, polynomial, non-polynomial solution,

instances with non-polynomial or polynomial solution and exclusively polynomial
instances.

SNRhard-easySNRimp-hard EasyHardImp

Figure I.4: Signal-to-Noise Ratio-like Phase Diagram
Intuitively, the SNR is a quantity that indicates how strong the signal magnitude

is wrt to the noise of the channel. The larger it is, the more we expect the
problem is easy to solve. Given this, the general phase diagram for problems that
depend only on the SNR will be line split into three regions. In the first, we fail
because the observations appear as if they are noise. In the second, we succeed

inefficiently, because the solution exists but can only be found by e.g. exhaustive
search. In the rightmost setting, the strength of the signal is large enough as to be

isolated in efficient time.



Example I.3.18 (Phase retrieval). Assume you are given a dataset D which comes
from a channel with transmission mechanism:

yi “ | xai,x
˚y | ` ϵi @i P rns, (I.3.19)

with ϵi „ N p0,∆q Gaussian noise. In literature, this is a Phase Retrieval problem.
It is widely studied because it presents the difficulty that it is symmetric: informa-
tion about the sign of xai,xy is lost in the channel. For this reason, the signal can
be recovered only up to a global sign change, since | xa, by | “ | xa,´by | for any pair
of vectors pa, bq.
From a mathematical standpoint, it is an interesting question. In some sense it is
also the prototypical example of a GLM (Exm. I.1.12) that is not linear regression.
If we go at the high dimensional limit where n, dÑ8, δ P Θ p1q, the parameters are
pδ,∆q: the complexity and the noise. Their ratio could be seen as a SNR, but we will
rather focus on the case where also ∆Ñ 0`, termed noiseless phase retrieval. Then,
the phase diagram could be regarded as that of Figure I.4, with δ in place of SNR.
In (Mondelli and Montanari 2018), the authors find that δIT ě 1

2 and δalg “ δIT.
This means that if n ą 2d, i.e. the observations are twice the number of features,
one can expect that at high dimensions the signal can be recovered, efficiently. In
this particular case, there is no gap: as soon as it is possible to retrieve the signal,
an algorithm can in polynomial time. This model will be generalized and discussed
further in Chapter V.

Further References

We will exclusively focus on the mathematical formalism, but it is worth
mentioning why understanding the peculiarities Phase Retrieval is crucial in
applications.
From an experimental point of view, it is seen as the task of solving the
Phase problem (Taylor 2003), an impediment that often appears in real
scenarios. Some measurement tools only give an estimate of the intensity
of some quantity, neglecting its direction. In most cases, this direction is
fundamental to improve the quality of the analysis. Examples include but
are not limited to:

• optical systems (Fienup 1993; Krist and Burrows 1995)

• crystallography (Hauptman and Langs 2003)

• electron crystallography (D. L. Dorset 1996; Douglas L. Dorset 1997;
Henderson et al. 1986)



Chapter II

The Perspective of Statistical
Physics

To overcome the hurdles of the methods presented earlier, many approaches are
considered. The focus of this document being Statistical Physics, we have

reviewed the modern setting of Statistical inference to introduce the final motivation
to study techniques that were originally intended for complex systems.

This Chapter is a collection of basic results about the Statistical Physics view-
point of Inference. In Section II.1, we will introduce the physical terminology and a
good formalization. Section II.2 develops further the connections between canonical
models in Thermodynamics and Learning problems, with the very peculiar notion
of quenched disorder playing the key role of distinguishing types of randomness.
Sections II.3 and II.5 are made to introduce the reader to two paradigms of analysis
which serve for the purpose of creating a narrative and a common playground to
analyze models, while Section II.4 in the middle of the two is more technical, and
provides the reader with two fundamental tools used throughout the document in
the background. Lastly, Section II.6 returns to discuss how much Statistical Physics
and Inference are essentially the same field with two different vocabularies. At the
cost of reading research in two fields, it is immediate to notice that Phase transitions
are a relevant question for learning problems (Subsec. II.6.1), and that they greatly
benefit from the Mathematics of objects that were formalized more in Information
Theory (Subsec. II.6.2). In this last matter, it is also very important to stress
that this is not a comprehensive guide to how much the fields are interconnected
when asking the right questions, but rather a selection of results. Hopefully, the
references cited will give more guidance to the interested reader. As a matter of
fact, the connections would have required an independent, dense book on its own.

Further References

On the Philosophical approach side, the connection between Bayesian infer-
ence and Physics is in its nature a discussion topic. A classic reference is
(Cousins 1995).

II.1 Boltzmann-like distributions

The first observation is that many (see Rem. II.1.3) posterior distributions allow for
a description in terms of a Boltzmann canonical distribution. Indeed, from Bayes’
Theorem:

P rX | Ds “
P rD |XsP rXs

P rDs
“

1

ZpD ;β,Dq
e´βH pX;Dq, (II.1.1)

where β P R` is an additional parameter. In general, one needs to place into ZpD ;βq
all terms not depending on X and into the Hamiltonian all terms dependent on X.
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This is a rule of thumb, by the simple identity x “ eln x at β “ 1 the Hamiltonian

H pX;Dq “ ln

„

1

P rD |XsP rXs

ȷ

(II.1.2)

is an equivalent description of the posterior. While this is just a rearrangement of the
terms, it highlights in a more explicit sense that some macroscopic conclusions can
be made. Among all, the explicit Partition Function is the Cumulative Generating
Function (CGF) of the randomness, and in the thermodynamic limit results in
closed form formulas for the average energy and any moment.

Remark II.1.3. This choice might look arbitrary. For β “ 1, it is a mathematical
identity. For β ‰ 1, we find a relaxation of the problem to a more general model
that was largely studied in Physics, and comes with a nice set of tools to analyze it.
This trick being itself a topic of discussion, we remind the reader that on top of this
we took a Bayesian perspective, and most of the times Gaussian noise.

In the next example we show how this emerges naturally for a problem of infer-
ence.

Example II.1.4 (Bridge from Bayesian Theory to Statistical Physics I). Consider
the model yi “ φpx˚q ` ϵi, where φp¨q is a deterministic transformation, and noise
is Gaussian with variance ∆. It might be tempting to observe that Bayes’ rule takes
the form:

Ppx | yq “
PpxqPpy | xq

Ppyq
“

1

Ppyq
ljhn

:“Zpyq

exp

$

’

’

&

’

’

%

lnrPpxqPpy | xqs
l jh n

“´βH

,

/

/

.

/

/

-

“ PBoltz,ypx;β “ 1q.

(II.1.5)

However, a slightly different parametrization is nicer for computations (Krzakala
and Zdeborová 2021). By the assumption on noise and the fact that the channel
maps to scalar values independently for each observation, we can factorize the like-
lihood as a product of Gaussians. Then, aim to completely isolate x and obtain:

Ppx | yq “
1

Ppyq
Prxs

ś

i e
´

pyi´φpxqq2

2∆

?
2π∆

“
e´

ř

i y2
i

2∆

p
?
2π∆qnPY pyq

l jh n

:“Zpyq

Prxse
ř

i ´
φpxq2

2∆ `
φpxqyi

∆

(II.1.6)

“
Ppxqe

ř

i ´
φpxq2

2∆ `
φpxqyi

∆

Zpyq

Where we recognize the terms:

Zpyq “ e´

ř

i y2
i

2∆

p
?
2π∆qnPrys

“

ż

e´

ř

i y2
i

2∆

p
?
2π∆qnPrys

Prxsdx “
ż

e
´φpxq2

2∆ `

ř

i yiφpxq

∆ Prxsdx

(II.1.7)

β “ 1

H pxq “ ´
φpxq2

2∆
`

n
ÿ

i“1

ř

i yiφpxq

∆
.

In particular, the term Zpyq can be read as the sum over possible configurations x
of the numerator.
A little more work shows that this holds also for GLMs like those of Example I.1.12.
A function φp¨;Aq with A random induces a posterior:

P rX | Ds “
P rD |XsP rXs

P rDs
“

P rpy,Aq |XsP rXs
P rpy,Aqs

, (II.1.8)



where we have made the content of the dataset explicit. Given independence over
the observations, the likelihood factorizes. Hence:

P ryi,ai | xs “ P ryi | ai,xsP rai | xs “ P ryi | ai,xsP rais @i P rns, (II.1.9)

by independence of the compressing matrix and the signal. The representation fol-
lows by isolating x , since P ryi | ai,xs is a Gaussian density. Therefore, the par-
tition function admits a more explicit expression as in Eqn. II.1.6:

Zpy,Aq “
e´

ř

i y2
i

2∆

śn
i“1 P rais

p
?
2π∆qnPry,As

(II.1.10)

Remark II.1.11 (Partition function as a Likelihood Ratio). It is remarkable that
such a formalism is equivalent to asserting that:

ZpDq “ PrandpDq

PpDq
(II.1.12)

Where random means e.g. a purely random noise yi „ N p0,∆q and random matrix
vectors, and on the denominator we find the probability of D coming from the true
data generating process. The observation is made in (Krzakala and Zdeborová 2021),
for the first part of Example II.1.4, with the second part as a natural extension. This
has very interesting ties with other directions of study, focused on Likelihood ratios
(Kunisky 2020). Comments in this matter are postponed to a future exploration.

Remark II.1.13. The connection with a general Bayesian problem can also be seen
in the context of Graphical models, which we discuss in Chapter III.

Example II.1.14. We now provide a more Physical interpretation of the parametriza-
tion, inspired from the study of magnetic materials. In the simple case in which the
dataset is made of independent observations that depend on a subset Bi Ă rds of the
signal entries, the posterior of the model can be safely written as:

Prx|ys “
1

Zpyq
exp

#

β
n
ÿ

i“1

lnPryi|txjujPBis ` β
d
ÿ

j“1

lnPrxjs

+

“
1

Zpyq
exp t´βH px,yqu .

(II.1.15)
where a uniform additional β factor was added. In a Statistical Physics model, the
first term inside the exponential would be the interaction term, and the second
would be the (local) magnetic field. The marginals of the posterior are interpreted
as local magnetizations of single spins at β “ 1.

We report one very important property of the β parametrization and then pro-
ceed with further comments about this construction.

Proposition II.1.16 (Low temperature minimum energy configuration conver-
gence). Letting pβpXq be a canonical Boltzmann distribution with Hamiltonian H
well-behaved (to be discussed in the proof), the following limits are true:

1. limβÑ0 pβpXq “ UnifpX q

2. limβÑ8 pβpXq “ Unifptx‹ “ argminH pxquq

3. in particular, the mean energy concentrates at the minimum for β Ñ8

Proof. (Claim 1) Obvious, letting β Ñ 0 the weights become 1 for each x P X .
The partition function is the sum of the individual weights and the distribution is
uniform.
(Claim 2) A tedious derivation shows that the Boltzmann probability distribution
concentrates around the minimum for β Ñ8. Assuming that x is scalar and there



is only one minimizer x‹, the steps are as follows:

lim
βÑ8

1

Zpβq
e´βH pxq “ lim

βÑ8

e´βH pxq

ř

tx1u

e´βH px1q
“ lim

βÑ8

e´βH pxq

ř

tx1,x1‰x‹u

e´βH px1q ` e´βH px‹q

(II.1.17)

“ lim
βÑ8

e´βH pxq

e´βH px‹q

e´βH px‹q

e´βH px‹q `

ř

tx1,x1‰x‹u

e´βH px1q

e´βH px‹q

(II.1.18)

“ lim
βÑ8

e´βpH pxq´H px‹
qq

1`
ř

tx1,x1‰x‹u

e´βpH px1q´H px‹qq
(II.1.19)

“

#

1 if x “ x‹

0 otherwise
. (II.1.20)

The general case follows by the same principle with some adjusted arguments in
the algebraic tricks.
(Claim 3) Recall that BβZpβq “ xH pXqyβ . Taking the limits they are the same,
and we can say that:

lim
βÑ8

´

xH pXqyβ

¯

“ lim
βÑ8

¨

˝

1

Zpβq
ÿ

txu

H pxqe´βH pxq

˛

‚“ min
tXu

tH pXqu , (II.1.21)

where we have assumed a discrete distribution. If we wanted to prove this for a
continuous distribution, we would have exchanged limit and partial differentiation
or limit and integral (see Subsec. A.1.2 for a discussion). In a Physical sense, this
operation is always meaningful once the limit exists, since we are talking about a real
object. Attempting to prove this as a mathematical statement requires more work.
We can for example require that well-behaved above means that e.g. dominated
convergence (Thm. A.1.12) applies, or assume that the conditions of Lebesgue-
Vitali’s Theorem (Thm. A.1.18) are valid. We avoid lengthy discussions and just
imagine that this is allowed holds. For meaningful Hamiltonians, this is true.

Remark II.1.22. In Inference problems, we do not even require the temperature
to change, so the discussion of Claim #3 in the above statement can be ignored.

For this reason, taking the low temperature limit forces the distribution to con-
centrate on the ground states1 of its associated Hamiltonian. This is a mild concen-
tration phenomenon, since it is an indication that high probability events dominate
the outcome of randomness. Accordingly, the MAP estimator is the ground state
of the Hamiltonian, which also happens to be the β Ñ 8 limit point of the degen-
erate distribution, As a direct consequence of Proposition II.1.16, the MAP is the
estimator achieving MMSE at β Ñ 8. To build a stronger connection with learn-
ing problems, we first present a perspective originated in the study of magnetic
materials.

II.2 Spin Glasses and the concept of disorder

Ferromagnetic Models The simplest ferromagnetic model is the Ising model.
This is described as a binary-interaction Hamiltonian for binary spins of size n
placed on a general graph G “ pV, Eq. The prescribed strength of interactions is
J, the magnetic moment is µ and the local magnetic field is h. We endow the
configurations with the canonical ensemble distribution. Mathematically:

H px;J,hq “ ´
ÿ

pi,jqPE

Jijxixj ´ µ
n
ÿ

i“1

hixi, P rxs “
e´βH pxq

Zpβq
dνpxq, (II.2.1)

1the global minima



where ν is the counting measure on t˘1un.
Even for simple cases of this model open questions resist years of research. In princi-
ple, the hardness of every question relates with how one deals with the free entropy
F pβq. While this model exhibits randomness, we recognize that it is not exactly
equivalent to our case: the Hamiltonian has interactions and local terms, but the
problem is not inherently Bayesian as the only randomness is in the signal x. To
get to an analogous example, we need to inject more probabilistic objects.
Spin glasses are systems where the Hamiltonian presents quenched disorder (Castel-
lani and Cavagna 2005; Krzakala and Zdeborová 2021; Mezard, Parisi, and Virasoro
1986; Marc Mezard and Montanari 2009; Zdeborová and Krzakala 2016). Just like
in the scenario of a Bayesian problem, this disorder is encoded as a random variable
that plays the role of the dataset D . The simplest example is the Edwards-Anderson
(EA) model (Edwards and P W Anderson 1975). This has Hamiltonian:

H px;Jq “ ´
ÿ

pi,jqPE

Jijxixj , J “ tJijui,jPE „ PD , (II.2.2)

and the standard choice of the couplings distribution is taken to be Gaussian.
Here a distinction needs to be made. The word quenched refers to the timescale of
variation. When computing any quantity wrt the posterior, we will first deal with a
quenched probability P rX | Ds, and then average it out wrt the quenched disorder.
The analogy is that the randomness in D is held fixed while the randomness over the
signal x˚ varies. In general, the integrals

ş

dD ,
ş

dx are exchangeable when there
are no functions in the middle. We easily see this with an application of Jensen’s
inequality.

Example II.2.3. Let ZpD ;β “ 1q “ ZpDq be the partition function in the case of
the GLM. Then it is a random variable with randomness in the dataset realizations,
but it is also an integral per se. For any convex function f : Rd Ñ R:

f pED rZpDqsq ď ED rf pZpDqqs . (II.2.4)

As previously discussed, there are many reasons why we would like to tackle the
problem of computing the partition function, the two most important ones being
having an expression for the posterior and accessing the thermodynamical variables.
We remark that this computation has two main hurdles:

1. it is a sum of nÑ8 or in general n " 1 many exponential terms

2. it is a random realization, and one needs to be careful with taking its expec-
tation at the right time.

While a solution to #1 will require a very long detour, it is common in Statistical
Physics to ignore #2 with a judgeful twist of the problem.

Definition II.2.5 (Self-Averaging Quantity). A quantity Qpyq that is dependent on
the quenched disorder of a model is said to be self-averaging if in the thermodynamic
limit nÑ8 it is independent of the realization of disorder but is just related to its
statistical properties. Mathematically:

lim
nÑ8

Pr|Qpyq ´ E rQpyqs | ą ϵs “ 0 @ϵ ą 0 (II.2.6)

Remark II.2.7. The definition is slightly different from convergence in probability
since both Qpyq and E rQpyqs in principle are indexed by the system size. Contrarily,
convergence in probability holds for a sequence pxnq and a fixed value x. We take
this matter with some more care. The right formalism is as follows. Set X :“
|QpY q ´ E rQpY qs |. Then X

p
Ñ 0. By definition of convergence in probability:

lim
nÑ8

P r|X ´ 0| ą ϵs “ 0 @ϵ ą 0, (II.2.8)

which is also expressed as p limnÑ8 |QpY q´E rQpY qs | “ 0. The equation limnÑ8 QpY q “
limnÑ8 E rQpY qs still does not make sense, as on the LHS we have a random vari-
able and on the RHS we have a deterministic quantity, but we take it as a definition
of the probability convergence above. This implicitly requires that in the limit QpY q
is not a random variable.



Remark II.2.9. Even if a quantity Y is not self averaging, it turns out that its
logarithm lnY often is. In these cases, it is more interesting to look at exp tlnE rY su
than E rY s itself.

It is in general expected that the free entropy density is self-averaging in the
thermodynamic limit. This means that:

lim
nÑ8

1

n
lnrZnpβ,Dqs “ lim

nÑ8
fnpβ,Dq “ lim

nÑ8
ED rfnpβ,Dqs “ fpβq, (II.2.10)

by Definition II.2.5. Quenched disorder realizations do not impact the value of
the free energy in the limit and we can use the penultimate expression throughout.
Notice that we are purposely considering the free energy density as to be an intensive
quantity that does not diverge with n. A way to make this work is attempting to
obtain an extensive expression for the free energy, which in turn, being the log of
a sum of exponential terms, means that the Hamiltonian is extensive. With this
premise, it is possible to prove that the variance wrt the disorder vanishes at the
nÑ8 limit (e.g. it is of order 1?

n
).

One could also reason as follows. The partition function contains many random
contributions, and it is not in general expected that its most probable value coincides
with its mean: then ZnpDq is not self-averaging. On the contrary, the normalized
sum of independent terms tends to a Gaussian distribution by the CLT. Then if
Zn „ enfnpβq at large n it is the case that lnZnpDq is self-averaging, with associated
free entropy density:

fpβq “ lim
nÑ8

1

n
ED rlnZnpD ;βqs . (II.2.11)

While this is not rigorous, it is also not crucial for the exposition. As a matter of
fact, Statistical Inference and Information Theory directly study the mean wrt the
disorder. For the sake of simplicity, we will take it as a granted assumption when
needed. Our model of interest is also proved to be self-averaging in a large portion of
cases (see (Aubin et al. 2019; Barbier 2020; Barbier, Krzakala, et al. 2019; Barbier
and Macris 2018)).

Wishing to compute an expression for Equation II.2.10 is the starting point of
a Statistical Physics inference problem. A special case of the discussion in Exm.
II.2.3 gives us the so-called annealed free energy approximation, which relies on the
fact that lnp¨q is a concave function. Assuming that the probabilities have a density
wrt to a reference measure (Lebesgue for simplicity):

ED rlnZpDqs “ ED

„

ln

ż

ppx | Dqppxqdx

ȷ

ě ln

„

ED

„
ż

ppx | Dqppxqdx

ȷȷ

,

(II.2.12)
and we have found an overall lower bound to the quenched free energy, or equiva-
lently an upper bound to the quenched free entropy2. In both perspectives, one can
think of a blanket estimate. For low enough temperatures, the lower bound is known
to be not tight in many models. We give a mathematical a physical/quantitative
argument argument for this.

(Math) Jensen’s Inequality is not necessarily tight.

(Phys) The free energy being extensive, the intensive density should fluctuate with de-
caying rate as nÑ8. The precise power of the fluctuations is not important,
and can be taken to be 1?

n
for simplicity (Mezard, Parisi, and Virasoro 1986).

The partition is instead a sum of exponential terms, with potentially large
fluctuations. An average over Z might be dominated by rare but dominant
in size fluctuations.

Example II.2.13 (Non-tight Jensen’s for quenched and annealed averages). The
classic scenario in which quenched and annealed averages are different is very easy.
Recall that the partition function is random. Let a, b P R be constants. If:

ZpD ;βq “

#

e´βn w.p. a
n

e´bβn w.p. 1´ a
n ,

(II.2.14)

2recall that the two differ by a minus sign.
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Figure II.1: Quenched and Annealed free entropy density as a function of the num-
ber of particles.
Parameters a “ 1, b “ 2, β “ 3. Given that we consider the large size limit, what

matters is the n ě 1, nÑ8 behavior.

with b ‰ 1 the two free entropies differ. The quenched free entropy density is:

fquepβq “ lim
nÑ8

1

nβ
E rlnZpD ;βqs “ lim

nÑ8

1

nβ

”a

n
p´βnq `

´

1´
a

n

¯

p´bβnq
ı

“ ´b.

(II.2.15)
While the annealed free entropy density is:

fannpβq “ lim
nÑ8

1

nβ
lnE rZpD ;βqs (II.2.16)

“ lim
nÑ8

1

nβ
ln
”a

n
e´βn `

´

1´
a

n

¯

e´bβn
ı

(II.2.17)

“ lim
nÑ8

1

nβ
ln
”

e´βn
´a

n
`

´

1´
a

n

¯

e´βpb´1qn
¯ı

(II.2.18)

“ ´1` lim
nÑ8

1

nβ
ln
”a

n
`

´

1´
a

n

¯

e´βpb´1qn
ı

(II.2.19)

“ ´1` lim
nÑ8

1

nβ
ln

„

1

n

´

a` pn´ aq e´βpb´1qn
¯

ȷ

(II.2.20)

“ ´1` lim
nÑ8

1

nβ
ln
”

a` pn´ aq e´βpb´1qn
ı

. (II.2.21)

The function inside the logarithm is slightly more difficult to deal with. We claim
that the limit tends to zero (notice that we also have a 1

nβ term). To show this, one
can do a tedious application of Hôpital’s rule, and verify that the limit of the result
is null. We show an example of the behaviors in Figure II.1.

On the other hand, when the timescales of disorder change and configuration
change are similar, the annealed average is the correct one (Krzakala, Zdeborova, et
al. 2015). The reason is that the motivation for which physicists introduce quenched
averages is to deal with different frequencies in the stochasticity of a phenomena,
and when these are made to be equal, the whole construction is not needed. From a
Bayesian point of view, this is always in principle a question that is not interesting
to ask. The terms quenched and annealed are indeed self-explanatory when consid-
ering Physical problems. Nevertheless, even in the theoretical setting, the annealed
average provides a lower bound, and can answer interesting questions, the quickest
among all providing an immediate approximation of the true CGF. We just add
two properties, where the second especially is useful for optimization problems (i.e.
study of ground states of a given Hamiltonian).

Proposition II.2.22 (Properties of Quenched/Annealed Free entropy). Consider a
sample size n and an inverse temperature β. Let unpβ “ 8q :“

1
nED rminX H px;Dqs,

i.e. the ground state density at zero temperature, a minimum of the Hamiltonian
by Prop. II.1.16. Then:



1. dfpquenchq
n pβq

dβ ď 0

2. the annealed and the quenched free entropies are convex in β (i.e. convex in
T “ 1

β )

3. unpβ “ 8q ě minβPr0,8s f
pannq
n pβq.

Proof. All statements follow by a careful inspection of (Marc Mezard and Montanari
2009, Sec. 5.4), where the discussion uses as subject the free energy density, working
out the necessary sign flips.

The connection with inference is made stronger when aligning it with some field-
specific terminology, that elaborates further with physical arguments concepts that
are implicit in a Bayesian inference problem. For this reason, we opt to argue on
two macro-intepretations of how disorder is handled.

II.3 Teacher-Student Model
A related paradigm of analysis was introduced by Gardner and Derrida (Gardner
and Derrida 1989). In short, it presents a generative perspective on an inference
problem with nice properties. This is to be seen in comparison and conjunction
with the section on Planted models we will present later.

Definition II.3.1 (Teacher Student Scenario). Two actors are interacting:

• a Teacher, who generates x˚ from a prior distribution PTPrxs, and outputs
y from a likelihood PTLry | x

˚s.

• a Student, receiving from the Teacher y and information about the prior and
likelihood, with the aim of retrieving the x˚ used in generating process.

Here retrieving is purposely sloppy, as in some cases it will require just feasibility
and in others also efficiency of the method, as discussed when presenting the two
main questions of inference.
In some cases, the distributions will be fully available (Bayes-Optimal), while in oth-
ers just partially. In addition to this, variants where there is a further parametriza-
tion are naturally included in this setting. While we focus on the first case, the
approach is rather general.

It is also common to place the analysis in the simplest possible scenario. To do
so, we further assume that the entries of the prior (i.e. the features j P rds) and the
observations (i.e. the samples i P rns) are independent, leading to the expressions:

PTPrxs “
d
ź

j“1

PTPrxis PTLry | xs “
n
ź

i“1

PTLryi | xs. (II.3.2)

In some cases, the observations might also depend on a subset of the features,
where we might use the subset notation Bi Ă rds, to denote a neighborhood of the
observation i and express the new likelihood as:

PTLry | xs “
n
ź

i“1

PTLryi | txjujPBis. (II.3.3)

In models such as the Ising model (Eqn. II.2.1), site-marginals, termed local mag-
netizations, are an interesting object of study. It turns out that for factorizing
problems these are also important for a general Bayesian construction (see Prop.
I.2.42 and the remark below). We denote them with the usual literature notation:

µjpxjq :“

ż

Prx | ys
ź

j1‰j

dxj1 j P rds. (II.3.4)

Having shown how disorder plays an important role in random distributions, we
turn to presenting two important statements in the literature of Statistical Physics.



II.4 Nishimori, Stein and more about Bayes-Optimality
The following presentation of the Nishimori identity is borrowed from (Zdeborová
and Krzakala 2016), and gives a quick idea of its importance.
Assume we are able to sample from the posterior Prx | ys of a signal x˚. For
three independent samples x,x1,x2 „ PrX | ys it trivially holds that a function
f : Rd ˆ Rd Ñ R taking vector valued inputs will be such that:

E rfpX1,X2qs “

ż

fpx1,x2q ppyqppx1 | yqppx2 | yq
l jh n

“ppx1,yqppx2|yq

dx1 dx2 dy (II.4.1)

E rfpX˚,Xqs “

ż

fpx˚,xqppx˚,xqdx˚ dx “

ż

fpx˚,xqppx˚,x, yqdx˚ dx dy

(II.4.2)

“

ż

fpx˚,xqppx | y,x˚qpTPpx
˚qpTLpy | x

˚qdx˚ dx dy (II.4.3)

where the crucial difference between the two is that it makes sense to express y
conditionally on x˚ to reach the different formulation via the Teacher’s distributions.
Additionally, the assumptions on the model allow us to say that Prx | x˚,ys “
Prx | ys by conditional independence of the posterior sampling3. Given this, in the
Bayes-Optimal setting it will be the case that:

E rfpx1,x2qs “ E rfpx,x˚qs , (II.4.4)

since the TP,TL densities are used in the first expectation, and the integral is
over the exact same functions. This property, known in its general form as the
Nishimori identity is fundamental for many of the concepts we will see later. It
can be briefly interpreted as a trick of replacing random posterior samples with the
true signal upon knowledge of the true data generating process. In the mismatched-
prior/likelihood case, the same reasoning does not guarantee this general condition.
The formal statement is reported in the next proposition.

Proposition II.4.5 (Nishimori Identity). Given k iid samples from the posterior
distribution and a measurable integrable function f : R ˆ Rdˆk Ñ R we can swap
one copy of Xpiq with the true signal X˚. Mathematically, establishing the notation

A

f
´

Y ,Xp1q, . . . ,Xpkq
¯E

k
:“

ż k
ź

i“1

fpY ,xp1q, . . . ,xpkqqppxpiq | Y qdxpiq, (II.4.6)

where we stress that Y is random, we have that:

EY

”A

f
´

Y ,Xp1q, . . . ,Xpkq
¯E

k

ı

“ EpY ,X˚q

„B

f

ˆ

Y ,Xp1q, . . . ,Xpk´1q,X˚

˙F

k´1

ȷ

(II.4.7)

Proof. One has to be careful about the operations, but the identity follows after
some workarounds. We start from the RHS and keep x˚ to distinguish it from the
others in the integrations. Expanding the outer integral we get:

EX˚,Y

„

A

fpY ,Xp1q, . . . ,Xpk´1q,X˚q

E

k´1

ȷ

“

ż

ppx˚,yq
A

fpy,Xp1q, . . . ,Xpk´1q,x˚q

E

k´1
dx˚ dy,

(II.4.8)

which by separating the joint density into evidence and posterior gives the expres-
sion:

ż

ppyq

ż

A

fpy,Xp1q, . . . ,Xpk´1q,x˚q

E

k´1
ppx˚ | yqdx˚ dy. (II.4.9)

The next step follows from the above discussion. In principle, the Bayes-Optimal
setting allows us to replace x˚ with xpkq since it is a dummy index of summation,

3recall that by construction x is sampled from the posterior, and so it depends only on the
realization of the observation.



and we have access to the true likelihood and prior of generation. Then this mask
on the true signal density gives the expression:

ż ż

A

fpy,Xp1q, . . . ,Xpk´1q,xpkqq

E

k´1
ppxpkq | yqdxpkqppyqdy. (II.4.10)

The final step is by definition, the kth posterior is brought inside the bracket nota-
tion, while outside the expectation is wrt Y . Eventually:

. . . “

ż

A

fpy,Xp1q, . . . ,Xpk´1q,Xpkqq

E

k
ppyqdy (II.4.11)

“ EY

”A

fpY ,Xp1q, . . . ,Xpkqq

E

k

ı

. (II.4.12)

Remark II.4.13. While we have used the y notation, everything follows equiv-
alently if we consider a more complicated observation such as D “ py,Aq. The
choice was influenced by the fact that we could make clear when y was random and
when it was fixed.

This integration trick has very interesting consequences, and different versions.
We report some of them below:

Remark II.4.14 (Magnetization with Nishimori). The concept of magnetization
refers to ferromagnetic materials. For our purposes, we will regard it as the average
over the dataset and signal randomness of the overlap of a posterior mean (denoted
with the Boltzmann notation here) and the true signal. For the moment, we ignore
their norms and assume those are unity. It reads:

m :“ EpD,X˚q

”

xXpDqyJ
X˚

ı

, (II.4.15)

where D is random. Letting fpD ,X,X˚q to be our function, Proposition II.4.5
allows us to say:

m “ EpD,X˚q rfpD ,X,X˚qs “ ED

“@

fpX,X 1,Dq
D‰

“ ED

“@

XpDqJX 1pDq
D‰

,

(II.4.16)

where we just replaced the true signal with a posterior sample X 1 and replaced the
dummy index. In the scalar case, it would read:

m “ ED

”

xXpDqy2
ı

“ ED

”A

Xp1qpDqXp2qpDq
Eı

, (II.4.17)

for two independent replicas4 pxp1q, xp2qq. In general, this always holds by the prin-
ciple that the true signal can be taken as a posterior sample in the Bayes-Optimal
setting. This is intuitive, and could also be seen as an application of Bayes’s The-
orem.

Lemma II.4.18 (Optimal Bayesian inference MMSE). Assume centered (mean
zero) distributed signals. In Optimal Bayesian inference it holds that:

MMSE “ EpX˚,Dq

“

pX˚ ´ xXpDqyq2
‰

“ ρ´m, ρ :“ EX˚

”

X˚J
X˚

ı

. (II.4.19)

Where ρ can be seen as variance of a centered message, i.e. a self-overlap of the
truth, and we denote the matrix square with the scalar square for conciseness in the
first expression.

Proof. Denote throughout the square of matrices with the scalar square. We just
need to expand the product inside the expectation to find that:

EX˚,D

“

pX˚ ´ xXpDyq2
‰

“ EpX˚,Dq

“

pX˚q2
‰

` EpX˚,Dq

”

xXpDqy2
ı

(II.4.20)

´ 2EX˚,D

”

xXpDqyJ
X˚

ı

(II.4.21)

“ ρ` q ´ 2m “ ρ`m´ 2m “ ρ´m, (II.4.22)

where we used the Nishimori condition at the end of the first line.
4A replica is not an independent sample but rather a copy of the original vector. In other

words, this is the square norm of the estimator



Lemma II.4.18 guarantees that we only need to compute m (the overlaps), since
ρ is rather easy to get, and often stated in the model assumptions. The Nishimori
Identity applied to other losses follows the same principles. For example:

MEC “ EpD,X˚q rLpXpDq,X˚;ECqs X
d
“X˚ „ PrX | ys. (II.4.23)

Next, we prove very useful lemma for Gaussian distributions and some general-
izations of it.

Lemma II.4.24 (Stein’s Lemma (C. M. Stein 1981)). Let X „ N pµ, σ2q. Let g be
differentiable and such that both ErpX ´ µqgpXqs and Erg1pXqs exist. Then:

E rgpXqpX ´ µqs “ σ2E
“

g1pXq
‰

. (II.4.25)

Proof. Found in (Krzakala and Zdeborová 2021).
Recall the easy Gaussian identity:

ż 8

´8

px´ µqe´
px´µq2

2σ2 dx “ ´σ2e´
px´µq2

2σ2 . (II.4.26)

Denote the Gaussian density with ψpxq :“ 1?
2πσ2

e´
px´µq2

2σ2 . Expressing the LHS of
Equation II.4.25 we get applying integration by parts5:

E rgpXqpX ´ µqs “
ż

ppxqgpxqpx´ µqdx “

ż

ψpxqpx´ µq
l jh n

f 1

gpxq
ljhn

h

dx

“

„

gpxq

ż

ψpxqpx´ µqdx

ȷ
ˇ

ˇ

ˇ

ˇ

8

´8

´

ż

g1pxq

ˆ
ż

ψpzqpz ´ µqdz

˙

dx

“

„

gpxqp´σ2qe
´px´µq2

2σ2

ȷ
ˇ

ˇ

ˇ

ˇ

8

´8

´

ż

g1pxqp´σ2qe
´px´µq2

2σ2 dx (II.4.27)

“

„

gpxqp´σ2qe
´px´µq2

2σ2

ȷ
ˇ

ˇ

ˇ

ˇ

8

´8

` σ2Erg1pXqs.

Where in Equation II.4.27 we applied the Gaussian identity on both the dz integral
and the integral in the first term. What is missing is proving that the first term is
null, this can be realized through some additional arguments.
Inspect the product of ψp¨qgp¨q (up to a constant equal to the argument considered)
at the extremes xÑ ˘8 where we need to evaluate it. Recall that for finite µ (the
mean of ψp¨q) we will have that limxÑ˘8 ψpxq “ 0 and ψp¨q is decreasing for all
x ą µ. It is also useful to express gp¨q differently as:

gpxq “ gpx0q `

ż x

x0

g1pyqdy. (II.4.28)

Now, let x0 ą µ ensuring that for all x ą x0:

gpxqψpxq “ gpx0qψpxq ` ψpxq

ż x

x0

g1pyqdy ď gpx0qψpxq `

ż x

x0

ψpyqg1pyqdy,

(II.4.29)

where in the last step we used the fact that ψp¨q is decreasing. Then,

lim
xÑ8

sup gpxqψpxq ď

ż 8

x0

ψpyqg1pyqdy @x0 ą µ. (II.4.30)

Hence, for any ϵ there is an x0 large enough such that the RHS is less than ϵ.
Consequently the LHS is null. The reasoning for ´8 is symmetric. Having proved
that the first term is null, the result follows.

5ş f 1h “ rfhs ´
ş

fh1



Another proof of this nullity follows by dominated convergence (Thm. A.1.12). It
is rather easy to establish that:

|g1pyq|ψpxq1rµ,xspyq ď |g
1pyq|ψpyq1rµ,xspyq, @y P R. (II.4.31)

Therefore, the RHS is integrable by assumption, while the LHS tends to zero point-
wise for every y as xÑ8. An application of dominated convergence then gives:

lim
xÑ8

gpxqψpxq “ lim
xÑ8

pgpxq ´ gpµqqψpxq “ lim
xÑ8

ż x

µ

g1pyqψpxqdy “ 0, (II.4.32)

where in the first step we use the fact that the density tends to zero, in the second
we use the integral representation by the differentiability of gp¨q and in the third we
use the previous equation. Again, the other limit is symmetrically obtained.

Corollary II.4.33 (Multivariate Stein’s Lemma/Gaussian integration by parts).
Consider a Gaussian vector X “ pX1, . . . , Xnq „ N pµ,Σq, and a function g :
Rd Ñ R. Let all g and all its partial derivatives to be integrable with respect to the
Gaussian density. It holds that:

E rgpXqpX ´ µqs “ Σ ¨ E r∇gpXqs , (II.4.34)

where the product on the LHS is the inner product matrix-vector, which outputs a
vector in Rn. Entry by entry, this reads:

E rgpXqpXi ´ µiqs “

d
ÿ

j“1

ΣijE
„

BgpXq

BXj

ȷ

, i P rds. (II.4.35)

In the bidimensional case of pX,Y q Gaussian and g : R Ñ R, we get the refined
statement

CoV rgpXq, Y s “ CoV rX,Y sE
“

g1pXq
‰

. (II.4.36)

Proof. We prove the statement in Eqn. II.4.35 for arbitrary i, which allows to
recover the vector valued expression since they are the same, and reduces the d “ 2
statement to a special case. To ease calculations, we let X have mean zero wlog.
The general case follows by substitution. The argument is from (Panchenko 2016,
Sec. 5).
Consider the vector X. Fix a target entry i P rds to compute E rgpXqXis, denote
its variance as σ2 “ E

“

X2
i

‰

. Let rXj :“ Xjp1 ´ ρjq, where ρj “ 1
σ2E rXjXis “

1
σ2CoV rXjXis. Then it holds that:

E
”

rXjXi

ı

“ E rXjXis ´ ρjσ
2 “ 0 @j (II.4.37)

by construction. Uncorrelated Gaussians are independent, so we can say that for
rX KK Xi the function gpXq “ gpĂX ` Xiρq can be seen as a function of Xi only
when taking expectations in Xi. An application of Stein’s Lemma II.4.24 gives:

EXi
rXigpXqs “ EXi

”

XigpĂX `Xiρq
ı

“ σ2EXi

«

BgpĂX ` tρq

Bt

ˇ

ˇ

ˇ

ˇ

t“Xi

ff

. (II.4.38)

By the assumed integrability, an application of Fubini’s Theorem returns the ex-
pectation wrt the vector X, which reads:

EX rXigpXqs “ σ2EX

«

BgpĂX ` tρq

Bt

ˇ

ˇ

ˇ

ˇ

t“Xi

ff

. (II.4.39)

Lastly, we unravel the derivative to get:

BgpĂX ` tρq

Bt

ˇ

ˇ

ˇ

ˇ

t“Xi

“

d
ÿ

j“1

ρj
BgpĂX `Xiρq

BXj
“

d
ÿ

j“1

ρj
BgpXq

BXj
. (II.4.40)

Recognizing that ρjσ2 “ Σij the claim follows.



Remark II.4.41. A fundamental requirement to apply Stein’s Lemma is integrabil-
ity of g and its partial derivatives with respect to the Gaussian Measure. Subexpo-
nential growth of g and its partial derivatives form a set of sufficient conditions for
this by dominated convergence. Mathematically, we could require |gpxq| ď c1e

∥x∥

and either of the following for each j ď d and fixed i:
ˇ

ˇ

ˇ

ˇ

Bgpxq

Bxj

ˇ

ˇ

ˇ

ˇ

ď c1e
c2∥x∥ or Σij “ 0, (II.4.42)

where c1, c2 P R are positive constants.

In reality, an even more general statement can be proved (see Subsec. A.5).

II.5 Planted Models
Further References

More context and precise statements are found in literature. Two good
sources for a first understanding are (Zdeborová and Krzakala 2016, Chap.
II) (Krzakala, Zdeborova, et al. 2015). See instead (Achlioptas and Coja-
Oghlan 2008; Krzakala and Zdeborová 2009; Mossel, Neeman, and Sly 2012)
for other results.

In many cases, the idea of recovering a known signal gives a second notion of
free energy approximation. This is best understood under the lenses of a classical
paradigm of analysis which we will discuss at length in this subsection.

The first step is generating a signal completely at random. This means sampling
x˚ from a prior Prxs that does not have any informative shape.

Example II.5.1. For X “ t˘1ud a random sampling is accomplished with a coin
toss at each j P rds. This is a d-dimensional Rademacher distribution Radp˘1q.

Example II.5.2. If the signal space is a unit sphere X “ Sd´1 “ tx | ∥x∥22 “ 1u,
a uniform sample is obtained by sampling x „ N p0, Idq standard Gaussian and
setting:

x˚ “

»

—

—

–

x1

∥x∥2

...
xd

∥x∥2

fi

ffi

ffi

fl

. (II.5.3)

We briefly explain why this is true. Notice that for an orthogonal matrix O it holds
that OX d

“X, since the characteristic functions are equal. Then X is orthogonally
invariant. By the same reasoning:

O
X

∥OX∥2
d
“

X

∥X∥2
, (II.5.4)

and the vector belongs to the unit sphere.

Having a signal x˚, we then generate the disorder D such that it is sampled
from the energy-based likelihood:

D „ PrD | x˚s, ppD | x˚q9e´βH px˚;Dq, (II.5.5)

assuming for simplicity that it admits a density. According to this sampling scenario,
we can write Bayes’ Theorem for the just derived likelihood:

P rD | x˚s “ P rx˚ | Ds
P rDs
P rx˚s

9P rx˚ | DsP rDs , (II.5.6)

where in the last step we have used the uniformity of the prior. Then, by the
proportionality of the likelihood, the posterior is up to normalization:

ppx˚ | Dq9
e´βH px˚;Dq

ppDq
ùñ ppx˚ | Dq “

e´βH px˚;Dq

Zpβ,Dq
, Zpβ,Dq “

ż

e´βH px;Dq dx.

(II.5.7)



Remark II.5.8. The planted signal x˚ is a sample from the posterior distribu-
tion, which is in turn the canonical ensemble distribution at equilibrium for a given
hamiltonian H p¨;Dq.

Unfortunately, there is a very important difference with the quenched ensemble,
where the disorder is a random realization of an observed phenomena. Here the
disorder D admits a density:

ppD ; plaq “ wpD ;βqZpβ;Dq9Zpβ;Dq s.t.

ż

wpD ;βqZpβ;DqdD “ 1, (II.5.9)

where we enforce the last equation to make it a meaningful probability density. The
proportionality is obtained by Eqn. II.5.7. The weight factor w can be seen as :

wpDq “
ppD ; queq

ş

ppD ; queqZpβ;DqdD
, (II.5.10)

where we used another color to make it explicit that the objects are different6.
Thanks to these relations, we eventually obtain by a combination of Eqns. II.5.9,
II.5.10 that:

ppD ; plaq “
Zpβ;Dq
Zpβ; annq

ppD ; queq, Zpβ, annq :“
ż

ppD ; queqZpβ,DqdD , (II.5.11)

with all the specific names spelled out.

Remark II.5.12. The term on the LHS is the term on the LHS of Eqn. II.5.9,
the probability of the disorder in the planted distribution. The weight function is
formally a reweighting of the uniform sampling of the quenched distribution by the
partition function that cancels out the spiked importance of doing a likelihood sam-
pling in the planted model. The term at the denominator is instead seen as the
annealed partition since it is effectively the average over disorder of the quenched
partition function. This is best seen in terms of the discussion on Jensen’s inequal-
ity: logpZannq “ logED rZques ď ED rlogZques.

At this point, it is mindful to ask what kind of properties are retained with
this injection of a true signal. We report some of the statements of (Krzakala,
Zdeborova, et al. 2015) to give an idea.

Fact II.5.13 (Planted vs Annealed Ensemble). Consider the planted ensemble, for
which randomness is wrt the posterior distribution (Eqn. II.5.7) and the annealed
ensemble, that averages out disorder and signal randomness simultaneously. Fix a
temperature β for both ensembles and assume that they always admit nice probabil-
ities and densities. Then

1. averages over the disorder of the ensembles are equivalent

2. the free energies are different

Proof. (Claim #1) We avoid writing dependence on β explicitly since it is the same
for both ensembles by assumption. Consider an observable Opx;β,Dq. Denoting
x¨yann , x¨ypla as the annealed and planted averages we get that:

ED

”

xOpx;Dqypla

ı

“

ż

ppD ; plaq

ż

1

ZpDq
e´βH px;Dq dx dD (II.5.14)

“

ż

Zpβ;Dq
Zpβ; annq

ppD ; queq

ż

1

ZpDq
e´βH px;Dq dx dD (II.5.15)

where we used Eqn. II.5.11. Then a simplification of the two planted partition
functions leads to:

ED

”

xOpx;Dqypla

ı

“

ż

ppD ; queq
1

Zpβ; annq

ż

e´βH px;Dq dx

l jh n

annealed

dD “ ED rxOpx;Dqyanns ,

(II.5.16)
6This is superfluous since the disorder at the denominator is integrated out but hopefully makes

the explanation clearer



where we recognized that the annealed ensemble average was recovered via the def-
inition of annealed partition function in Eqn. II.5.11. In simpler words, we are
effectively averaging at the same time over disorder and signal randomness. One
could also check that this is true by observing that the joint for annealed models and
planted models. The former is proportional to the energy, i.e. ppD ,x; annq9 exp t´βH px;Dqu.
The latter by construction satisfies:

ppD ,x; plaq “ ppD | x; plaqppx; plaq9 exp t´βH px;Dqu . (II.5.17)

(Claim #2) The planted ensemble is by construction a typical problem instance,
and we might compute its free energy. The annealed free energy is instead an
average over instances (over the disorder). In principle, it is not necessary that
they are the same object.

Remark II.5.18. As a byproduct of the second claim above, we get that the an-
nealed free energy is not the free energy of a typical problem instance of the annealed
ensemble, but rather an average estimate. Given that it is a mean, and not a rep-
resentative, it can be negative. One of the simplest examples is the Random Energy
Model (Bernard Derrida 1981). On the contrary, the planted model exhibits a re-
alistic sample, which cannot have negative free energy. By #1 above, it can be
intepreted as a typical instance of the annealed ensemble.

Having explained in which terms the annealed and planted ensemble are related,
we now turn to establishing links between the quenched ensemble and the planted
ensemble. In earlier works, this connection was derived in a very peculiar way.
Consider a Hamiltonian that presents disorder in coupling variables J, such as the
EA Hamiltonian of Eqn. II.2.2. Starting from a planted ensemble a gauge invari-
ant mapping of the Hamiltonian can lead to a quenched ensemble with a different
distribution of the disorder. From this distribution, a relationship between the pro-
portion of positive couplings and the inverse temperature can be established. This
is nothing but an equation between two scalar quantities pj`, βq that can be drawn
on a line in R2, termed Nishimori Line (Nishimori 2001). On the Nishimori line,
the planted ensemble is a Nishimori ensemble, which in turn is a particular type
of quenched ensemble. If we assume self-averaging of the free energy densities, by
Remark II.5.18, the annealed typical behaviors and quenched typical behaviors are
matched. We make this explicit by equating their free energy densities in the limit7,
which implies that the planted partition Zpβ;Dq is equal to the annealed partition
Zpβ; annq in Equation II.5.11, and we get for free that the disorder densities are the
same in the planted and quenched ensemble. It turns out that this derivation, de-
spite being very useful in determining a path to the connection between ensembles,
is not necessary (Zdeborová and Krzakala 2016). As detailed in (Iba 1999), there is
a more general connection between Bayes-Optimal inference and the study of Spin
Glasses. Recall that for a given Hamiltonian a planted configuration is effectively
an equilibrium configuration of the posterior. This can be seen also in terms of the
Nishimori Identity (Prop. II.4.5), which states that a sample from the posterior
behaves like the planted signal under averages or in the thermodynamic limit (Zde-
borová and Krzakala 2016), where averaging properties start to hold. This fact,
combined with Remark II.5.18 and Equation II.5.11 is already sufficient to obtain
ppD ; plaq “ ppD ; queq. The final conclusion is that “generating instances from the
planted ensemble is the same thing as generating from the randomly-quenched en-
semble” (Zdeborová and Krzakala 2016). When the free energy densities are equal
as above, we refer to this equivalence as quiet planting.

In the context of the Teacher Student Model, the randomness of y is due to the
action of the teacher. From the perspective of the student, y is held fixed, and acts
as quenched disorder.

If we add planting, each instance of yi is not properly iid, but is known to be
generated from a specific instance x˚. To understand this, we take inspiration from
(Krzakala, Zdeborova, et al. 2015) and (Zdeborová and Krzakala 2016) to present
the general idea behind this. The signal x˚ is essentially injected/planted by the
teacher, and the quenched noisy observation y is sampled from the likelihood PTLry |

7which means we discard fluctuating differences at finite size



x˚s, which makes it an equilibrium configuration. The power of this backwards
task is best understood in terms of the classical way of exploring the phase space
by Monte Carlo simulations, which from y attempt to retrieve x˚ with strong
difficulties in complex problems. Contrarily, a planted model does so with no effort.
Following the approach in (Zdeborová and Krzakala 2016), we refer to the objects
as planted disorder, and planted configuration. A Teacher-Student Model will
then take the self explanatory name of planted model.

Example II.5.19. For the general form of the posterior in Eqn. II.1.15, we rec-
ognize that the Bayes-Optimal distribution of our model will be the β “ 1 version.

Further References

For a perspective in error-correcting codes, see (Sourlas 1994; Nicolas Sourlas
1989, 1994), or the pedagogical presentation in the book (Nishimori 2001).
Studies in Mathematics are found in (M. Jerrum and Sorkin 1993; Mark
Jerrum 1992).

The utility of this perspective is in the way planting is explicitly stated in the
data generating process. Many models fall under this general construction. Some
examples are found in (Zdeborová and Krzakala 2016, Sec. C). It is however crucial
to understand that a necessary requirement is that the Boltzmann distribution must
be also the posterior of the inference problem. A situation in which this does not
happen is when the quenched disorder is generated by auxiliary variables which are
not part of the posterior-inference connection (Zdeborová and Krzakala 2016).

II.6 Revisiting Hardness Concepts with Statistical
Physics

Armed with all these notions, we are now ready to discuss the strategies we will
oversee and those that we be avoided for the sake of time. To keep the exposition
interesting, we present right away a connection between Phase Transition Types
and the Phase diagram that we could encounter in an inference problem.

II.6.1 Describing the stages of inference

Much of the exploration falling under the large incubator of Statistical Physics and
beyond aims to provide an understanding of the phases of a certain problem. While
the concept of Phase can be somehow loose (Krzakala and Zdeborová 2021), its
utility is certainly benefiting from this. By phase, we will purposely intend any
collection of parametrizations of a given problem that obeys the same phenomenol-
ogy. In order to make this clearer, one identifies a space of parameters, say H ` 1
real variables, and a notion of manifestation of their choice, which we call order
parameter, i.e. an observable which can be measured. Arising in the context of
Thermodynamics, the notion of Physical phase transition presumes that n Ñ 8,
and is always related to an abrupt change8, in the order parameter of choice. The
most intuitive way to describe this graphically is a plane in RH`1 dimensions where
the silhouette of the order parameter presents a visible change.

The careful reader will have recognized a great similarity with the discussion
in Section I.3. Indeed, the notion of Statistical-to-Computational gap is nothing
but a partition of the space of parameters of an inference problem into phases
of inference, described by a performance indicator (say, a loss). Surprisingly, not
only the methods end up being helpful in both fields, but even the questions become
substantially equivalent. In this subsection, we give further space to the Theoretical
terminology and notions, leaving some details to further Chapters.

Since the statistics of the object under analysis are to some level well-described
by the free energy/entropy and its derivatives, it follows that a phase transition
is a discontinuity of the derivative of the free energy in some order. The general

8in fact: a discontinuity
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Figure II.2: A portion of the Pressure-Temperature Phase diagram of water, Source:
Izaak Neutelings, tikz.net
The most classic example of phase diagram. Phase boundaries are black lines, and

the R2
` plane is partitioned into three phases, corresponding to the states of

matter of the H2O molecule.

definition of a phase transition occurrence is related to the free energy being non-
analytic.The peculiar form of the function (logarithm of a sum of exponentials)
makes it analytic for any system size n. Potential non-analytic points will appear
only when nÑ8. This justifies identifying phase transitions at the thermodynamic
limit. One of the most common classifications of such phenomena is attributed to
Ehrenfest (Ehrenfest et al. 1960). Two main classes are considered, based on the
fact that non differentiability at some derivative implies non-analyticity.

• 1st order when the derivative of F pβq is discontinuous. Physics intuition
explains that this happens when there is phase coexistance in a region of phase
space. These two stable phases lead to metastability at a higher free energy
than the optimal one. For problems that can be observed in a Euclidean
setting, it is possible to describe the regions of coexistance clearly, and refer
to its boundaries as spinodal points. Note also that the first derivative of
the free energy is an entropy term.

• second order when the second derivative of F pβq is discontinuous. Crucially,
this also means that we can expand to first order the free energy wrt the
variable that we are using to compute the derivative. In some cases, the second
derivative of the free entropy is a susceptibility term, that is in connection with
lengthscales of correlation of particles (for a clearer discussion, refer to (Marc
Mezard and Montanari 2009, Chap. II)).

• kth order analogously to the two above.

Remark II.6.1 (Discontinuous free energy derivatives and thermodynamical quan-
tities). Notice that the free energy derivative being discountinuous also makes the
thermodynamically associated quantity discontinuous, as well as all the other quan-
tities that involve it in their expressions.

Remark II.6.2. One might ask, why we can speak about phases and we do not have
single points behaving differently? We leave this important but intuitive aspect on
hold until we will present the model in Chapter V, but it could be already answered
with the information at hand, and is indeed glossed over in literature. Briefly, if one
chooses a reasonable order parameter, then the phase diagram will be some sort of
tiling of the parameter space, where no tiles sharing the same label will be separate,
making the word partition somewhat non-precise. As a consequence, there will be a
clear line of equilibrium where two phases are said to coexist, which is nothing but
the boundary between two regions. A graphical example is Figure II.2.

The two types are just a description of phase transitions in general terms with
some comments. Adopting a problem/question focused perspective, a different col-
lection of phase transitions can appear, as well as different comments on it. In the

https://tikz.net/phase_transitions/


next subsection, we briefly describe some methods in literature that appeared to
solve questions around these topics, about the geometry of solutions, the ground
states, or the shape of the free energy. The hardness landscape presents connec-
tions with these types of phase transitions. In simple words, the notion of phase
transition is strongly related to the question one wants to ask and the method used,
and should be thought of rather as a paradigm of description.

Remark II.6.3 (A nice observation by (Zdeborová and Krzakala 2016)). A second
order transition is often of the information theoretic type, while a first type transition
is related to algorithmic hardness. The latter implies a consideration of the concept
of metastable solutions, i.e. points that are not the actual target where some iterative
process gets stuck for large timescales.

II.6.2 Mutual Information and Free Energy

To give a quick comment on the generality of the method, it is worth discussing
its connections with Information Theory. Recall that a Csizár divergence with
associated function f defines the Csizár-mutual information of two random variables
with joint measure pX,Y q „ ρ and individual measures µ, ν as:

IpX;Y q :“ df pρ||µb νq. (II.6.4)

In particular, the choice fpxq “ x log x returns the classic KL divergence. We focus
on it from now on.
Aiming to show results for a particular but wide class of DGPs, we now turn to the
narrative of (Barbier 2020). Assume the signal is some vector x˚ P Rd, or possibly
a matrix. Let the prior be:

• parametric P0r¨;ϑs

• with bounded support supppP0r¨ | ϑ0sq for all ϑ0 P Θ0.

Build the observations and the signal as:

x˚ „ P0r¨ | ϑ0s y „ Pout p¨ | x
˚, ϑoutq , (II.6.5)

where y is in some euclidean space of sampling and ϑout P Θout. Assuming a Bayes-
optimal setting, everything is known to the statistician and we have access to the
full posterior:

P rX˚ “ x | y, ϑs “
P0rx | DsPoutpY | x, ϑoutq

ş

PoutpY | x1, ϑoutqdP0rx1 | Ds
(II.6.6)

“
1

Zdpy, ϑq
P0px | ϑ0q exp t´H px,y, ϑoutqu , (II.6.7)

where ϑ “ pϑ0, ϑoutq are generic variables that can be high dimensional.

Taking the formalism of (Barbier 2020) the average free entropy in this case
reads:

F “ E rlnZpY , ϑqs “ E
„
ż

exp t´H px,Y , θoutqudP0px | θ0q

ȷ

, (II.6.8)

where E rs is Eϑ

“

EX|θ

“

EY |X,θout r¨s
‰‰

, and averages all the quenched variables.
Namely, it integrates over the randomness of pX,Y , ϑq. Contrarily, x inside is
dynamic, and is distributed in terms of the posterior (Barbier 2020). With this
construction, a nice direct connection with Information Theory objects can be es-
tablished.

Proposition II.6.9. Consider a problem as above and the expected free energy,
which is minus the average free entropy. Then if the prior factorizes into equal
components:

IpX,Y | ϑq “ FpY | ϑq ´HpY |X, ϑq. (II.6.10)



Proof. Straightforward. Notice that the free energy, as defined, is the Shannon
entropy conditional on ϑ, i.e. FpY | ϑq “ ´HpY | ϑq. Then this is just a rearrange-
ment of the classic decomposition of mutual information.

Remark II.6.11. In the case of a dataset which we discussed until now, we can
recover this result. Recall that D “ py,Aq, so y takes the positions yi of the claim
for a distribution pout, while ϑ is a combination of pϑ0, ϑoutq. In ϑ0 we place whatever
parameter the prior might have, while ϑout “ A “ taiu

n
i“1, to be taken iid row by

row. For n rows, at each step we have that:

yi
iid
„ pout p¨ | xai,x

˚yq , i P rns, P0 “ pbd
0 (II.6.12)

so that the total likelihood is obtained by factorization Poutp¨ | θout,x
˚q “

śn
i“1 poutp¨ |

xai,x
˚yq. The results are seamlessly adapted for IpX,D | ϑ0q.

By the above identity, since it is often the case that the conditional entropy on
the RHS is constant, we can say that the expected free entropy and the mutual
information are equal up to constants:

IpX,D | ϑq – ´ED rF pDqs . (II.6.13)

In some cases, the connection mutual information/free entropy and the minimum
MSE estimator is even more explicit, as shown in the next Theorem, borrowed
from (Krzakala and Zdeborová 2021). In general, the objective is the same but the
relation is more convoluted. As a matter of fact, the partition function is a generator
for the randomness of the problem, and the MMSE being a quantity dependent on
randomness will be necessarily related to its shape.

Theorem II.6.14 (I´MMSE Theorem, simple case). For a single disturbed mea-
surement:

Y “ X˚ `
?
∆ϵ ϵ „ N p0, 1q (II.6.15)

It holds that:

BF p∆, nq

B∆´1
“

1

2
m (II.6.16)

BIp∆q

B∆´1
“

1

2
pρ´mq. (II.6.17)

Where ρ is the variance of the signal and m is the posterior expectation, making
ρ´m the value of the MMSE.

Proof. Firstly, we express the free entropy as a function of the noise to take its
expectation:

F “ EY rlnrZpY qss “ EY

„

ln

ż

e´ x2

2∆ ` xY
∆ PXpxqdx

ȷ

“ EpX˚,Zq

„

ln

ż

e
´ x2

2∆ ` xX˚

∆ ` xZ?
∆

ȷ

PXpxqdx.

(II.6.18)

The partial derivative yields9:

BF p∆, nq

B∆´1
“ EpX˚,Zq

»

—

—

—

—

—

–

1

ZpY q

ż

e
´ x2

2∆ ` xX˚

∆ ` xZ?
∆PXpxq

l jh n

Boltzmann weight

„

´
x2

2
` xX˚ `

xZ

2

?
∆

ȷ

dx

fi

ffi

ffi

ffi

ffi

ffi

fl

(II.6.19)

“ EpX˚,Zq

„B

´
X2

2
`XX˚ `

XZ

2

?
∆

Fȷ

, (II.6.20)

9ignoring some regularity conditions which we enforce



where we have used brackets to denote the posterior expectation. Rearranging
terms one gets:

¨ ¨ ¨ “ ´
1

2
EpX˚,Zq

“@

X2
D‰

` EpX˚,Zq rX
˚ xXys `

1

2
EpX˚,Zq

»

—

—

—

–

Z
ljhn

„N p0,1q

?
∆ xXy

l jh n

:“gpzq

fi

ffi

ffi

ffi

fl

(II.6.21)

“ ´
1

2
EpX˚,Zq

“@

X2
D‰

` EpX˚,Zq rX
˚ xXys `

1

2
EpX˚,Zq

»

—

—

—

–

@

X2
D

´ xXy
2

l jh n

“g1pzq

fi

ffi

ffi

ffi

fl

(II.6.22)

“ ´
1

2
EpX˚,Zq

“@

X2
D‰

` EpX˚,Zq

”

xXy
2
ı

`
1

2
EpX˚,Zq

“@

X2
D‰

´
1

2
EpX˚,Zq

”

xXy
2
ı

“
1

2
m.

Where in the passage after Equation II.6.21 we used Nishimori’s (Prop. II.4.5) for
the second term and Stein’s (Lem. II.4.24). Explicitly, using x to highlight the
weights from the function in the expectation:

xXy “
1

ZpY q

ż

e
´ x2

2∆ ` xx˚

∆ ` xz?
∆xPXpxqdx “

„

ş

e
´ x2

2∆ ` xx˚

∆ ` xz?
∆x

ȷ

PXpxqdx

ş

e
´ x2

2∆ ` xx˚

∆ ` xz?
∆PXpxqdx

,

(II.6.23)
and the classic differentiation rule for fractions:

B

Bz

ˆ

numpzq

denpzq

˙

“
rBznumpzqsdenpzq ´ rBzdenpzqsnumpzq

rdenpzqs2
(II.6.24)

numpzq “

ż

e
´ x2

2∆ ` xx˚

∆ ` xz?
∆xPXpxqdx (II.6.25)

denpzq “ ZpY q y “ x˚ `
?
∆z (II.6.26)

Bznumpzq “

ż

e
´ x2

2∆ ` xx˚

∆ ` xz?
∆x

B

Bz

ˆ

´
x2

2∆
`
xx˚

∆
`

xz
?
∆

˙

l jh n

“ x?
∆

PXpxqdx (II.6.27)

Bzdenpzq “

ż

e
´ x2

2∆ ` xx˚

∆ ` xz?
∆
B

Bz

ˆ

´
x2

2∆
`
xx˚

∆
`

xz
?
∆

˙

l jh n

“ x?
∆

PXpxqdx. (II.6.28)

Filling all the passages we plug these results inside the expression to find that:
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(II.6.31)

“
@

X2
D

´ xXy
2
. (II.6.32)

Therefore, the result of Equation II.6.17 can be obtained using Proposition II.6.9,
the fact that the entropy of a Gaussian channel is constant at HpX | Y q – 1

2 ln 2πe∆
and the just proved Equation II.6.16.





Chapter III

Message Passing Algorithms

As we briefly discussed, the description of the randomness of a problem has a
peculiar interpretation with tools of Statistical Physics. We now turn to the

second objective of this document which is designing a procedure that is able to
retrieve signals in practice. To do so, we will present a model, a relaxed version
and a practical algorithm, which is believed to be state of the art. This path goes
through some yet to answer questions, but turns out to have a complete description
in its final form for most models. In Chapter V, we will use it to showcase the way
to tackle a specific problem.
In Section III.1 Graphical Models are presented. This visualization, despite not
being universal, is very useful to provide an aesthetic and effective presentation of
Message Passing Algorithms (Sec. III.2) in general and of Belief Propagation, which
will be the focus of our discussion. Instead of writing down the equations directly,
we take a more didactic path, building up from easy settings to a fairly general for-
mulation. This goes through discussing the simplest types of graphs (trees, Subsec.
III.2.2). Proceeding, we get into the realm of general graphs representing distribu-
tions in Section III.2.3, and report the very nice results about their representations
in terms of quantities originated in Physics. As a final set of interesting topics, we
derive a high-dimensional deterministic set of equations able to describe the dynam-
ics of the Algorithm in Section III.2.4, which presents the difficulty of simulating
the trajectories (Sec. III.2.5), and give yet another view of the role of phase transi-
tions in inference problems in Section III.3. In particular, this last topic is quickly
overviewed, and must be deepened with more advanced references, included in the
discussion.

Notation Throughout, we index what we call variables by i, j, l,m, and factors
by a, b, c, d. A graph is an object GpV, Eq where V are nodes and E are the edges.
The symbol Ba “ tia1 , . . . , iaka

u denotes the neighbors of a given node a. A bipartite
graph is a special graph where the vertex set is made of two groups pV,Wq that
have no intraconnections and only interconnect. For a vector x P Rd, we write
xBa ” pxia1 , . . . , xiaka

q, which is nothing but a subset of the entries corresponding to
the neighborhood of a given node.

III.1 Graphical Models

The central question of interest is computing the marginals of an inference prob-
lem. We provide two justifications for this. Recalling the discussion in the previous
Chapter, and in particular Proposition I.2.42, we understand that this is crucial in
determining the behavior of optimal estimators. Apart from this, it is also impor-
tant as an independent question: having access to the marginals of a distribution
we can reconstruct the behavior of a collection of objects that behave stochasti-
cally. The best way to visualize the utility of graphical models is in visualizing
Constraint Satisfaction Problems, but their potential extends well beyond. A prob-
ability distribution can be decomposed into conditionals. For x P Rd and well
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defined conditional distributions it is always true that:

ppxq “ p1px1qppx2 | x1q ¨ ppxd | x1, . . . , xd´1q. (III.1.1)

In almost all cases1, the properties of such distribution can be expressed with a graph
structure. From now onwards, we assume that this is the case and aim to design a
procedure that estimates the marginals by operating on a graph. Differently from
distributions, graphs are operational structures: they allow for the construction of
actions over edges/nodes.
If we saw Equation III.1.1 with the simplest graph, we would have the trivial clique
with d´ 1 vertices, and edges joining each variable j P rds to each other one. If the
statistician stops here, every distribution is graphically equivalent, and the visual
perspective is useless. Additionally, it is not guaranteed that the expressiveness of
the graph will characterize the true distribution. This motivates the wish to find a
different visualization that is advantageous computationally.
In some cases, the dependence structure of a probabilistic model simplifies, due to
some conditional independence properties. Consequently, also the representative
graph loses edges and becomes a peculiar descriptor.

Remark III.1.2. Even in the simplest case where the domain is X “ t˘1ud, the
generic problem of inferring µpxq or its marginals is hard: the space of a marginal
distribution has 2d´1 potential realizations over which one should sum. Given the
absence of structural assumptions, this is the best one can do and is clearly compu-
tationally inefficient. A starting justification for considering structured probabilities
is that the generic question is too hard. On the contrary, some assumptions are just
useless or too easy. For example:

• if the variables are completely independent ppxq “
śd

j“1 ppxjq

• if the variables are split into K independent distinct clusters ppxq “
śK

k“1 ppxkq,
and the atomic structure of the cluster makes inference be as hard as the
generic problem, with 2k´1 ă 2d´1 size this time, but still exponential.

On the contrary, a choice of overlapping subsets of conditionals is the interesting
one to inspect.

In general, graphical models are used to express the dependence structure of
a probabilistic model, by explicitly showing how its density function factorizes.
Each comes with its rules for visualization. In this document, we focus on factor
graphical models, which operate on factor graphs. A factor graph is a bipartite
graph GpV,W, Eq, where the two vertex sets pV,Wq are joined with edges E . In our
notation, V will be the set of variable nodes, W the set of factor nodes. Factors are
just a generalization of conditionals, which do not require to be proper densities.
We will see that this is not problematic.
Let X d “ X , and denote the neighborhood of a set element according to a given
topology as Bi. The generic factorization of a generic function gpXq : X Ñ R is
intended to be an equation

gpxq “
ź

aPW
ψapxBaq, ψa : X |Ba| Ñ R. (III.1.3)

Conversely, a function gpxq with an arbitrary factorization can be represented as a
factor graph, where edges join a variable i and a factor a if i P Ba. To represent a
distribution µpxq the Equation is adjusted with a normalization term Z that sums
over the space of X .

Remark III.1.4. The notion of potentials slightly generalizes conditional proba-
bilities, but is essentially the same. Notice that we are not restricting the Ba sets
to be non-overlapping. The interesting instances will be when the intersections of
neighborhoods are non null and | Ba| ! d. The former condition makes the problem

1This is a very delicate matter. There is a large body of literature focusing on the question
of representational power of distributions in terms of graphs. For simplicity, we assume that it is
always possible to do so. In future works, this topic will be dealt with in detail.
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Figure III.1: Factor graph of Example III.1.5

different from the distinct cluster factorization. The latter is useful since potential-
level information is non overwhelming. Indeed, the smaller the | Ba| wrt the total
size d, the more local the dependences are.

Example III.1.5. Consider a function f : R5 Ñ R which factorizes as:

fpxq “ fpx1, x2, x3, x4, x5q “ fpx1, x4qfpx2, x3, x5qfpx1, x3, x4q. (III.1.6)

We recognize 3 factors, with different neighborhoods. Aligning with the notation
introduced we write fpxq “ ψapxBaqψbpxBbqψcpxBxq. The bijection with the graph
of Figure III.1 is evident.

having established a set of rules, we give a definition to our object that is tailored
to the scope of this document.

Definition III.1.7 (Probalistic Graphical Model). A tuple G “ pµ,Gq where the
two elements are in bijection, and are understood as follows.
A probability density µpxq on X d that has a prescribed factorization into a product
of potentials normalized by a common partition function:

µpxq “
1

Z
ź

aPW
ψpxBaq –

ź

aPW
ψpxBaq. (III.1.8)

An unambiguously associated bipartite graph GpV,W, Eq that obeys the same struc-
ture, with |V| “ d, |W| “ n.

In words, a graphical model is a visualization of the dependence structure of some
probability density function. It turns out to be helpful as a tool for performing anal-
ysis, being a clever definition of the terms in play. With the term graphical model,
we will precisely refer to a factor graph graphical model, but there are other types
such as Bayesian networks, undirected graphical models, Restricted Boltzmann Ma-
chines. Its utility is just in terms of highlighting the connections. Physically, it is
a proper visualization of how different local potentials (factors) cooperate globally
at the level of the distribution. Locality is an important and intuitive concept in
Physics, that bears the role of making computations easier by neglecting relatively
small quantities. In many applications out of the realm of Physical models, it turns
out to be adequate, and the techniques designed are passed on seamlessly. The
choice of a factorizing distribution as in Equation III.1.3 is then partially justified:
it is not the most general measure, but it is appropriate in a vast amount of cases.
An equivalent treatment can be carried out if one is willing to consider the factor
graph as a hyper-graph: we let the variable nodes constitute the nodes and the
hyper-edges be the factor nodes. Given that a hyper-edge can join more than two
endpoints, the hyper-graph perspective is as valid as the bipartite.

Example III.1.9. Go back to Example III.1.5 and Figure III.1. The equivalent
hypergraph is established by connecting variable nodes with factor edges whenever
they are part of the same factor. The result is Figure III.2, where each hyperedge is
colored differently and connects more than two nodes.

Another representation with hyper-edges is Figure III.3, which is literally a bi-
partite graph. In other words, all are equivalent.
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Figure III.2: Factor Hypergraph of Example III.1.9, hyperedges are colored
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Figure III.3: Factor hypegraph of Example III.1.9

We keep the bipartite graph visualization. The study of random realizations
of factor graphs is made easier by collecting objects that share a property under
the same ensemble. Namely, for a given property, we place into its ensemble each
instance of a graph satisfying that property and aim to sample uniformly from this
basket. The most common/useful ones are taken from (Marc Mezard and Montanari
2009, Chap. 9) and listed below.

• random k factor graph Gdpk, nq, where k ě 1, d the number of nodes.
To generate a sample from it, for each factor a choose a k-tuple among the
`

d
k

˘

options and assign it to Ba.

• non overlapping- k graph Gdpk, δq, where k ě 1, n is the number of fac-
tors, d the number of nodes, δ a parameter denoting the per-variable rate of
factors.
To generate a sample from it, consider the k-tuples, a collection of

`

d
k

˘

ele-
ments. Each of them is a factor grouping k variables. Add it to the graph
with a weighted probability dδ

pdkq
.

Remark III.1.10. It is important to notice that the number of edges in the second
case is a random variable, since it depends on the probabilistic assignment of the
edges. In expectation it will be E rns “

`

d
k

˘

dδ

pdkq
“ dδ. Having enumerated all the

possible factor nodes among the
`

d
k

˘

, every neighborhood Ba is distinct.

In the applications we will consider, the size of n, d is large, to obtain the high-
dimensional thermodynamic limit. Particularly, we will let d Ñ 8, n Ñ 8 with
constant aspect ratio n

d P Θ p1q. For Gdpk, nq this amounts to requiring that δ :“ n
d

is constant. For Gdpk, δq, the parameter δ needs to be constant. The reasons for
seeking answers in this regime are many (recall the discussion in Chapters I, II).
Firstly, it is realistic: modern Learning tasks have very wide and tall datasets, with
many rows and many columns. Secondly, keeping δ fixed at complexity n

d , the
number of individuals per feature we see is kept constant across pairs pn, dq. This
ensures that for any δ-complex distribution of problem instances, we will be able to
derive descriptions that only depend on how small/large it is.

Further References

In other words, allowing the δ gap to vary is more complicated. We require
it fixed to have a common phenomenology across all pn, dq size pairs. In
other lines of research, vanishing dimensions are studied. For examples of
“non-constant complexity” models, (Brennan and Bresler 2020) is a good
starting point.



In the above ensembles, the degree of factor and variable nodes is always constant
at k. If we allow this to vary, we use the local notion of degree profile. For a factor
graph G, we let:

• Vi be the fraction of variables with degree i,

• Fi be the fraction of factors with degree i.

The objects are unambiguous: the infinite series V “ pViqiě0 and F “ pFiqiě0

are proper distributions over the non-negative integers and take non-zero values in
a finite number of positions. Indeed, the former must be such that

ř

iě0 Vi “ d,
while the latter has condition

ř

iě0 Fi “ n. A useful representation is given by the
generating functions2 of the two distributions. Being discrete, we have that:

GV ptq “
ÿ

iě0

Vit
i, GF ptq “

ÿ

iě0

Fit
i. (III.1.11)

Consequently, being that V ,F are non-zero in a finite subset of the naturals, the
PGFs are finite polynomials, and the moments of the degree profiles3 pV, F q are
derived as:

E rV s “
ÿ

iě0

Vii “ GV p1q, E rF s “
ÿ

iě0

Fii “ GF p1q. (III.1.12)

Example III.1.13. Consider the ensembles Gdpk, nq,Gdpk, δq. Both are such that
the degree profile of factors is fixed at k, while the degree profile of variables is a
random variable.

Allowing for more flexibility, we have enough objects to define a degree-constrained
factor graph ensemble. This will be denoted as DdpV ,F q, and is understood as
enforcing the distributions pV ,F q to the variables and factors degree profiles. Sam-
pling from DdpV ,F q is done uniformly across graphs with this structure. Proper-
ties and a procedure for generating instances of this ensemble are outlined in (Marc
Mezard and Montanari 2009, Chap. 9).

III.2 Message Passing Algorithms and Belief Prop-
agation

For the moment, we implement the narrative of (Marc Mezard and Montanari 2009,
Chap. 14), which presents important results, and aim to outline their presentation
in our notation. Assume we wish to compute the marginals µj where the random-
ness of x P X d is represented as a graphical model, and |X | ă 8. This makes the
presentation simpler. A sum over all possible configurations is clearly unfeasible, as
each space of configurations, even if finite in size, multiplies, leading to a number
of operations that grows exponentially in size. Precisely, we would need |X |d op-
erations, and if d " 1 this is hard to perform (recall Rem. III.1.2). Computations
become tractable in graphical models that present a tree structure. The solution as
a dynamic programming procedure operates constructively from the leaves to the
root.
It turns out that this can be seen from the perspective of a message passing algo-
rithm, which was found independently in many fields. Among the early studies, we
recognize (Bethe 1935; Gallager 1962; Pearl 1982). When speaking of Belief Propa-
gation (BP), we precisely mean the method that originated in Artificial Intelligence,
but all can be thought of as equivalent formulations.

2akin to the MGF, when the distribution is discrete it is useful to consider the Probability
Generating Function (PGF). It is a series Gpptq :“

ř

iě0 pptqti for a distribution pp¨q and t P R.

Analogously, it can be used to derive expressions of the moments as E
“

Xk
‰

“

ˆ

t
BGpptqk

Btk

˙ ˇ

ˇ

ˇ

ˇ

t“1´

.

The relationship with the MGF is easily derived as Gpptq “ Mppln tq.
3seen as random variables arising from the distribution over nodes



III.2.1 General Framework
All the algorithms we will see can be thought of as instances of the same class of
algorithms.

Definition III.2.1 (Message-Passing Algorithm Structure). For a given factor
graph pµ,GpV,W, Eqq, a general message-passing algorithm works on a modified
directed bipartite multi-graph GÑpV,W, EÑq with:

• an alphabet M of messages that change over time. For each message, there
is one directed edge.

• a set of update functions taking information from neighbors and modifying the
local messages, namely:

ΛiÑa : M |Biza| ÑM ΓaÑi : M |Bazi| ÑM (III.2.2)

• an initialization, possibly random, seen as a function from EÑ to M for each
of the multi-edges.

• a decision rule, seen as a function pΛi from M Biza to the space of decisions.

Given that the graph is bipartite, we can unambiguously refer to a message and an
associated edge as νptq

iÑa, ν
ptq
aÑi PM . Moreover:

• The initialization is required because we eventually want to build an algorithm.

• The decision rule returns a local estimate of the quantity of interest for a given
site/variable i. This justifies our notation, since the domain is the available
information to a given site (i.e. its neighborhood).

• The codomain could be any, but in most of the cases will be PpX q, the set of
probability distributions where the marginal lies.

• The hat exemplifies the notion of estimation.

Given this rather general set of rules, we can envision many procedures:

• Parallel procedures, which update at the same time t all the variable and
factor nodes according to their neighboring messages, and return an estimate
via the decision rule at some later time t1 ą t.

• Sequential procedures, which are carried out similarly, with the difference
that at each t only one directed edge e⃗ P EÑ is chosen (uniformly).

• Basically any procedure involving a choice of updates, with its advantages and
disadvantages to be considered.

In particular, we will be interested in random distributions over targets, given
the scenario which we described in Chapter II. This motivates the introduction of
a very specific object.

Definition III.2.3 (Random Graphical Model). Given a target x P Rd, a random
graphical model is a random distribution with structure. We denote it as pµ,G,Dq.
Precisely, we take it to be defined up to normalization by interaction potentials
of factors grouping variables and local potentials of variables. Denoting these as
ψa : X Ba Ñ R, ψi : X Ñ R, we assume that the graph G is a randomly sampled from
Gdpk, δq or Gdpk, nq. Eventually, the distribution reads

µpxq “
ź

aPW
ψapxBaq

ź

iPV
ψipxiq. (III.2.4)

The interaction potentials are random and sampled according to a precise scheme.
Namely for any given degree k (i.e. neighborhood size) we make available a distri-
bution over disorder Prks

pD
from which we sample a k sized disorder instance pDk and

set ψap¨q “ ψpkqp¨, . . . , ¨; pDaq for | Ba| “ k.
The same is done for the variable potentials, which require only a one dimensional
sample termed Di.



Remark III.2.5. The random graphical model is rather complicated, but just be-
cause many objects are to be listed. We need a graph, a set of interaction potentials,
a set of variable potentials, and rules to choose them randomly. The structure of
the graph induces the set of possible realizations of the potentials.

One instance of a procedure to make inference on a random graphical model is
BP, which builds on an attempt to describe locally the problem.
To present it, we will take a constructive approach, and start from a Tree Graphical
model that has non-random distribution.

III.2.2 Deterministic Trees
Let the distribution be:

µpxq “
1

Z

M
ź

i“1

ψapxBaq –

M
ź

i“1

ψapxBaq, (III.2.6)

where the– symbol it to be intended as up to normalization. The following Theorem
is easily proved by induction on the number of factors.

Theorem III.2.7 (Thm. 14.2 in (Marc Mezard and Montanari 2009)). Consider
a tree graphical model G “ pG, µq. Then:

µpxq “
ź

aPW
µapxBaq

ź

iPV
µipxiq

1´|Bi|, (III.2.8)

where the terms on the LHS are marginals of factors and variables.

The importance of the Theorem above is that we are now motivated to find a
nice expression of the variable marginals. Doing so, we will embark on a slightly
longer route via to design a suitable message-passing Algorithm.

Messages are probability distributions as per Def. III.2.1. The idea is that at
each t:

• ν
ptq
iÑa attempts to describe the marginal of a graphical model that removed

the factor a

• pν
ptq
aÑi attempts to describe the marginal of a graphical model that removed all

factors b P Bi apart from a.

As per (Marc Mezard and Montanari 2009, Chap. 14), the BP equations are:

ν
pt`1q

jÑa –
ź

bPBjza

pν
ptq
bÑjpxjq (III.2.9)

pν
ptq
aÑjpxjq –

ÿ

xBazj

ψapxBaq
ź

kPBazj

ν
ptq
kÑapxkq, (III.2.10)

with the conventions that:

• Bjza “ H ùñ νjÑapxjq is uniform

• Bazj “ H ùñ pνaÑjpxjq “ ψapxjq.

Given an initialization pνp0q, pνp0qq, we then term:

• a BP fixed point, a collection of 2|E | messages (i.e. every edge of the multi-
graph) that satisfy Eqns. III.2.9, III.2.10 with time independence. In other
terms, a collection of expressions that when iterated with the BP equations
does not change.

• a t-time estimate of the local marginal, the product of all incoming messages
from neighboring factors. Mathematically:

pµipxiq :“ ν
ptq
i pxiq –

ź

aPBi

pν
pt´1q

aÑi pxiq. (III.2.11)
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Figure III.5: Detailed Messages Cartoon
A figurative intepretation of Equations III.2.9 on the left, and III.2.10 on the

right.

Algorithm 1 Belief Propagation (parallel, generic)
Inputs: graphical model G “ pG, µq with associated directed graph GÑ and a a set
of local potentials ψ for each node.
Hyperparameters: desired accuracy ϵ, iterations T , starting distribution p, a rule
for the maximum message change calculation.

Init: let the BP messages be sampled iid from p
for t P t0, . . . , T u do

for edges pa, jq in EÑ do
compute pνaÑj with Eqn. III.2.10

end for
for edges pj, aq in EÑ do

compute νjÑa with Eqn. III.2.9
end for
∆Ð maximum message change at time t
if ∆ ă ϵ then

return pνptq, pνptqq

end if
end for
return Warning: no convergence



Accordingly, we reach the formulation of an example algorithm that operates under
these principles. The choice of starting with a tree model is justified by the following
Theorems, which will also serve to present the Thermodynamic counterpart of this
algorithm.

Theorem III.2.12 (BP is exact on Trees). Consider a tree-graphical model with
maximum distance between variables dmax (aka diameter). Then:

1. for any intialization p, Algorithm 1 converges after ă dmax iterations

2. the estimates built as in Eqn. III.2.11 are exact at convergence.

Proof. Statements #1, #2 are found in (Marc Mezard and Montanari 2009, Thm.
14.1)

As largely discussed in our main reference, (Marc Mezard and Montanari 2009,
Chap. 14.2.3., 14.2.4) this is not the only guarantee on Trees, which present a long
list of peculiarities. We briefly outline them below to have a sufficient amount of
information for the next steps.

Being able to compute marginals of single variables, joints over collections of m
variables are in general hard to adapt. The updated model that conditions on one
variable is:

µpx | xi “ xq –
M
ź

a“1

ψapxBaq1txi“xu. (III.2.13)

But aiming to do so in |X |m´1 possible assignments of m variables appearing as
indicators is unfeasible. Fortunately, tree models admit a nicer expression also in
this case (Marc Mezard and Montanari 2009, Eqn. 14.18).
Given this shortcut, terms such as the entropy the average energy and the free
energy/entropy can be computed and expressed as sums of local BP messages via
a clever application of Thm. III.2.7.

Remark III.2.14. Crucially, the structural equations for some macroscopic quan-
tities such as 4pU pµq,S pµq,F pµqq are dependent on the distribution µ, but the
results derived from BP provide expressions in terms of messages pν, pνq at conver-
gence or at time t as an estimate.

More importantly than other quantities, we get an expression of the free entropy
as a functional of the messages, which we report below for convenience.

Definition III.2.15 (Bethe Free Entropy). Consider a graphical model G and its
message passing graph GÑ with a set of 2|E | messages ν⃗ :“ pν, pνq. The Bethe Free
entropy is defined as:

FBetpν⃗q :“
ÿ

aPW
lnZapν⃗q `

ÿ

iPV
lnZipν⃗q ´

ÿ

pi,aqPE

lnZiapν⃗q, (III.2.16)

where

Zipν⃗q “
ÿ

xBa

ψapxBaq
ź

iPBa

νiÑapxiq (III.2.17)

Zapν⃗q “
ÿ

xi

ź

bPBi

pνbÑipxiq (III.2.18)

Ziapν⃗q “
ÿ

xi

νiÑapxiqpνaÑipxiq. (III.2.19)

Roughly, it can be interpreted as a sum of logarithms of partition functions that
refer to models that ignore part of the graph. The edges partition functions at the
end are removed to avoid double counting.

Given the above Theorem and the comments, largely discussed in (Marc Mezard
and Montanari 2009), a very important conclusion is the following.

4respectively, the internal energy, the canonical entropy and the free energy.



Theorem III.2.20 (Bethe Free entropy is exact on trees, Thm. 14.3 (Marc Mezard
and Montanari 2009)). For a graphical model G “ pµ,Gq and associated GÑ it holds
F pµq “ FBetpν⃗‹q, for ν⃗‹ the messages at convergence of Algorithm 1.

For graphical models, this gives rise to a simple sampling algorithm that builds
recursively the distribution µ starting from a single marginal.

Example III.2.21. A very important instance of tree graphical models is that of
pairwise models, where each variable and factor node has degree 2. These can be
seen as a generalization of the Ising model, and the factors are absorbed into the
edges of a real graph. Namely, the structure of G induces a graph GÑ which is not
a proper multigraph since the degree 2 restriction makes each factor join only two
variables. Then, we can describe this as a simple graph GpV, Eq where edges pi, jq
are present whenever there is a factor constraining them. This simplifies greatly
the expressions of Eqns. III.2.9, III.2.10. Precisely, we can disregard one set of
messages and iterate over the variable i to edge pi, jq messages, termed i Ñ ij,
which suffice. The messages are then:

ν
ptq
iÑij “ ν

ptq
iÑj –

ź

lPBizj

ÿ

xl

ψilpxi, xjqν
pt´1q

lÑi pxlq. (III.2.22)

Also the free entropy admits a nicer expression (see (Marc Mezard and Montanari
2009, Ex. 14.7)).

III.2.3 Deterministic Graphs
Despite being designed for marginals of trees, Algorithm 1 is applicable to different
problems and general graphs. The former deviations will be avoided for the sake
of simplicity, but can be found in (Marc Mezard and Montanari 2009). The latter
question is more general and requires some care. An application of BP to non-tree
graphical models will be distinguished as a Loopy BP inference procedure. Given
that the main Theorems of this subsection do not hold in the general setting, the
methodology might seem to fall short. There is no guarantee of convergence, of
stability of the fixed points, of reliability of the estimation. In answering these
questions there is no general formalism, but given the right restrictions, some con-
clusions can be reached. We will focus on providing a brief comment on:

• the usage of the Bethe free energy as an approximate mean-field like compu-
tation

• a deterministic descriptions of the dynamics

• numerical methods for simulations.

Remark III.2.23. Belief Propagation and the soon to be presented Approximate
Message Passing are not variational mean-field methods in the classical sense.
Namely, the free energy approximation they perform is not a bound on the true
value. However, under certain conditions, it can be shown that this approximation
is asymptotically exact. In other words, we are not placing a blanket on the true
object of interest, but rather doing a guess that might become precise in the large
size limit.

Bethe Free Entropy Working on a non-tree model makes the Bethe free en-
ergy potentially ambiguous. This is because it could be the case that messages
do not represent distributions. To avoid this, we restrict the domain of FBet to
locally consistent marginals. For a given graphical model G and associated GÑ we
identify these as the set of collections of distributions over factors and variables
ρ⃗ “ pρV ,ρWq “ ptρiuiPV , tρauaPWq where ρi P PpX q and ρa P PpX |Ba|q that ad-
mit a reasonable description in terms of factor-variable bonds. Mathematically, this
means:

ÿ

xBazi

ρapxBaq “ ρipxiq @a PW, @i P Ba. (III.2.24)



Definition III.2.25 (Locally consistent marginals). For a graphical model G and
its directed graph GÑ the set of locally consistent marginals is referred to with the
symbol LOCpµ,G,GÑq.

Accordingly, a general Bethe free entropy is seen as a function

FBet : LOCpµ,G,GÑq Ñ R (III.2.26)
ν⃗ Ñ FBetpν⃗q, (III.2.27)

with explicit expression derived in analogy to Definition III.2.15:

FBetpρ⃗; LOCq “ ´
ÿ

aPW
ρapxBaq ln

ρapxBaq

ψapxBaq
´

ÿ

iPV
p1´ | Bi|qρipxiq ln ρipxiq. (III.2.28)

If the statistician is willing to add the requirement that marginals are locally consis-
tent, the now workable Bethe free entropy turns out to be a good variational object
to derive properties of Algorithm 1.

Proposition III.2.29 (Properties of Bethe Free entropy). For a graphical model,
the following are true statements.

1. if for every factor a and neighborhood Ba it holds ψapxBaq ą 0 there is a
bijection between the stationary points of FBetp¨; LOCq above and the fixed
points of the BP equations Eqns. III.2.9, III.2.10.

2. as a consequence, the condition on the potentials is sufficient for the existance
of a fixed point of the BP equations.

3. the general notion of Bethe free entropy has the following properties:

(a) any stationary point of FBetpν⃗q is a fixed point of the BP equations
(b) any stationary point of the BP equations such that FBetpν⃗q is finite is a

fixed point of the latter.

In particular, we recognize that #3.(b) is a partial inverse induced by the result
of #1, #2, that is easily understood as an existance condition on the logarithm
of Eqn. III.2.28. Moreover, the condition being not satisfied would make the
graphical model vacuous (one null potential makes the distribution have weight
zero on those configurations).

Remark III.2.30. The free energy evaluated as in Eqn. III.2.28 is convex for
tree graphs and graphs with one cycle. Consequently, the Proposition above proves
existence and uniqueness of BP fixed points, by existence and uniqueness of the
stationary point of the function. In general, FBetp¨; LOCq is non-convex and there
are no guarantees.

In reality, when the graph is tree-like with high probability and nÑ8, the BP
fixed equations are still robust and able to converge to the marginals.

Example III.2.31. In a pairwise graphical model the easy structure helps under-
stand better this claim. The message νiÑjpxiq represents a belief in a graph where
the factor potential ψijpxi, xjq was removed. The expression is seen as:

νiÑjpxiq –
ÿ

xBizj

ź

lPBizj

ψilpxi, xlqµBizjpxBizjq, (III.2.32)

where µBizjpxBizjq is the joint of Bizj variables for removed factors ψilpxi, xlq. Namely,
we count all possible occurrences of removal of potentials across neighbors but j, to
get the removal of j. To be a BP fixed point, a collection5 ν must satisfy Eqn.
III.2.22. A sufficient condition is:

µBizjpxBizjq “
ź

lPBizj

νlÑipxlq. (III.2.33)

The equality is certainly true if either of the following hold for txl : l P Bizju:
5recall that in pairwise models there is only one type of message.



• independence in µBizjpxBizjq

• the marginals in µBizjpxBizjq coincide with νlÑipxiq.

In tree graphical models, these are true. In absence of long range correlations and for
nÑ8, they turn out to be true also for locally tree like models (Gallager 1962; Luby
et al. 1998; Richardson and Urbanke 2001). The intuition is that for a given node
i, the children pj, j1q are whp distant from each other, with a distance that increases
with n and correlations that are inversely proportional to the distance. For large
sizes, correlations are essentially null and distances are essentially infinite.

III.2.4 A deterministic description for Random Graphs
For this subsection, we state a collection of assumptions that allow us to derive the
ancestor property of State Evolution, which we will review in Subsection IV.2.

Assumption III.2.34 (Structural). For all i variables and a factors of the given
factor graph the update functions simplify their function form in the following sense:

(A1) updates on iÑ a depend solely on p| Bi|,Diq, simplifying to:

ΛiÑa :“ ΛiÑaptpνbÑi : b P Bizauq :“ ΛiÑaptpν1, . . . , pνl;Diq, (III.2.35)

where l “ | Bi| ´ 1 and tpνbÑi : b P Bizau “ tpν1, . . . , pνlu.

(A2) updates on aÑ i depend solely on p| Ba|, pDaq, simplifying to:

ΓaÑi :“ ΓaÑiptνjÑb : j P Baziuq ” ΓaÑiptν1, . . . , νk; pDaq, (III.2.36)

where k “ | Ba| ´ 1 and tνjÑb : j P Baziu “ tν1, . . . , νku.

(A3) The decision function obeys the same principles.

For a random graphical model G “ pµ,G,Dq and directed graph GÑ, initialize
all BP messages pνp0q

iÑa, pν
p0q

aÑiq at t “ 0 as iid random variables independent of n. In
the large size limit n Ñ 8 we require some further technical assumptions to state
the result.

Assumption III.2.37 (Technical). Consider a Message-Passing Algorithm as in
Definition III.2.1. Let:

(TA1) the messages live in M Ď Rd, the dataset of randomness for each node be
such that supppPDq Ď Rd

(TA2) the update functions pΛiÑa,ΓaÑiq be continuous wrt the topology of Rd.

We further define the notion of t-directed neighborhood NiÑa,tpGq of a message
iÑ a as the subgraph of nodes that can be reached in t steps from i without using
in any step pi, aq. We have the following result.

Lemma III.2.38. Let G be a random factor graph from the DdpV ,F q ensemble
(see Sec. III.1). For any pi, aq and any t

NiÑa,tpGq
nÑ8
Ñ
d

TtpV ,F q, (III.2.39)

where the d convergence is “in distribution” and the RHS is an ensemble over trees
with a well-defined structure (see (Marc Mezard and Montanari 2009, Chap. 9)).

Convergence in distribution to an object that is independent of the edge pi, aq
is sufficient to state the following.

Theorem III.2.40 (Density Evolution Recursive relation). This result is best de-
scribed with a constructive proof in (Marc Mezard and Montanari 2009, Chap. 14.6)
with a final Proposition.
Let Assumptions III.2.34, III.2.37 hold for a random graphical model. Choose
an initialization of messages from a common distribution. In other words, let



ν
p0q

iÑa
d
“ νp0q and pν

p0q

iÑa
d
“ pνp0q.

For t ě 0 and pi, aq P E an edge at random from G, where G was sampled from
Gdpk, nq or DdpV ,F q defined in Section III.1 the messages converge to well defined
random variables:

ν
ptq
iÑa

nÑ8
Ñ
d

νptq
pν

ptq
aÑi

nÑ8
Ñ
d

pνptq. (III.2.41)

Additionally, the random variables obey the following recursion in terms of the up-
date equations:

νpt`1q d
“ Λlppν

ptq
1 , . . . , pν

ptq
l´1, pν

ptq
l ;Dq, pνptq “ Γkpν

ptq
1 , . . . , ν

ptq
k´1, ν

ptq
k ; pDkq. (III.2.42)

In particular,

• the first l ´ 1 and k ´ 1 terms in the functions are copies of νptq and pνptq,

• the last terms (in blue) are integers sampled from two distributions pλl, ρkq,
which are the degree distribution of a root node in the variables and in the
factors (node i included and modulo node i respectively).

• the disorder(s) pD , pDq are distributed as pPD ,Prks

pD
q respectively.

Remark III.2.43. Being very involved as a statement, we provide the most di-
rect consequence in plain words. Instead of computing all the single messages, for
large sizes, it can be concluded that each message has the same scalar distribution.
Consequently, the dynamics are completely described by the iterations of pνptq, pνptqq.
This is a considerable dimensionality reduction from ω pnq computations to O p1q
computations at each time step.

As we will later present in Section IV.2, and Chapter V, this is nothing but the
primordial version of the deterministic description at the thermodynamic limit of
Approximate Message Passing. Remarkably, this algorithm is proved/conjectured to
be optimal for a large class of inference problems. As BP under suitable conditions
presents a simplified description of its dynamics, Approximate Message Passing
will. Before presenting it, we close our remarks on BP, discussing how to simulate
density evolution equations. Then, we take a constructive approach and showcase
the physics-inspired steps that lead to Approximate Message Passing. In a second
moment, we will see it can also be defined in a completely Statistical framework,
which however might lack the effort to get to its formulation.

III.2.5 Simulations

Despite their simplicity, the density evolution equations are not solvable for most
tasks. We briefly outline a technique to provide numerical estimates of pν, pνq. Again,
given the diverse set of origins of BP-type iterations, the Algorithm comes under
different names. In Coding Theory, it appeared as “sampled density evolution” or
“Monte Carlo method ”. In Statistical Physics, the term used is “population dynam-
ics”. All are self-explanatory of one of the principles behind the idea:

• we will approximate pν, pνq with a large population of N samples

• eventually, it is a Monte Carlo sampling scheme.

Given the stochastic nature of the method, it is important to describe how to deal
with the various divergent parameters and how to judge if the chain is well-behaved.
Below, we collect some general ideas.

Remark III.2.44. Returning the final vectors pνpT q
emp, pν

pT q
empq is more general. The

statistician can compute various quantities dependent on the density evolution ran-
dom variables. If only the value of the density evolution equations was needed, the
empirical distribution of the output would have sufficed.

Remark III.2.45. Algorithm 2 is generic since one could have chosen a different
way of storing the chain to inspect its stability.



Algorithm 2 Population Dynamics, generic
Also termed: Monte Carlo method/Sampled Density Evolution.
Inputs: graphical model G with associated directed graph GÑ.
Precisely the pρ, λq distributions of Thm. III.2.40.
The noise distributions of variables PD and factors Prks

pD
.

Hyperparameters: population size N , maximum iterations T
Init: let the initial estimates tνp0q

i u be sampled iid from p
for t P t0, . . . , T u do

for i “ 1, . . . , N do
draw k „ ρ Ź an integer
draw ip1q, . . . , ipk´1q uniformly from t1, . . . , Nu

draw pDk „ Prks

pD

pν
ptq
i Ð Γkpν

pt´1q

ip1q
, . . . , ν

pt´1q

ipk´1q
; pDkq

end for
for i “ 1, . . . , N do

draw l „ λ Ź an integer
draw ip1q, . . . , ipl´1q uniformly from t1, . . . , Nu
draw D „ PD

ν
ptq
i Ð Λlpν

pt´1q

ip1q
, . . . , ν

pt´1q

ipl´1q
;Dq

end for
end for
return νpT q

emp “ tν
pT q

i uNi“1, pν
pT q
emp “ tpν

pT q

i uNi“1 Ź as empirical distributions

Important Remarks The first sampling is done according to the p distribution
that was used to initialize BP in Algorithm 1. At any finite iteration T , the following
limit is a consequence of the Glivenko-Cantelli Theorem (see Subsec. A.4 for a
complete discussion):

lim
NÑ8

empptνiu
pT q

1,...,N q⇒ νpT q, lim
NÑ8

empptpνiu
pT q

1,...,N q⇒ pνpT q, (III.2.46)

where empp¨q is the empirical distribution and ⇒ denotes uniform convergence in
the argument x (Def. A.1.1). However, we also need to let the dynamics converge,
which requires taking the T Ñ 8 limit. In this case, the order of taking these
operations matters.

If one takes limTÑ8 limNÑ8, the order is not relevant for our purposes, since
we reduce the problem to dealing with the previous pνptq, pνptqq random variables
that are assumed to be hard to solve.
On the contrary, the limit limNÑ8 limTÑ8 needs some care. If the fixed point is
unique, the time evolution will unambiguously lead to the right fixed point, and the
subsequent N Ñ 8 application will just drive it to the non-empirical fixed point.
Removing this assumption, consider the Markov Chain of iterates to be convergent
to a unique stationary distribution6. How can Population Dynamics reach the
multiple fixed-points behavior of density evolution? Empirically, it appears that
this unique convergence happens only if T ” T pNq grows a lot faster than N . For
an appropriate choice of scaling, the convergence will get to quasi-fixed-points that
are the fixed points of Density Evolution.

To check if this scenario is verified, one can inspect averages of test functions
over distributions. If the dynamics reached a quasi-fixed-point, it is expected that
the averages at fixed time of an N population present stationarity up to order
O
´

1?
N

¯

population level fluctuations (Marc Mezard and Montanari 2009, Chap.
14). In other words, we expect that averages of test functions do not exceed finite
population size effects, which would mean that there is a time-dependent effect
acting on the sampling scheme. Mathematically, for a sequence of samples after

6assume the simplest setting for this to hold



burn-in t‹, evaluate:

1

N

N
ÿ

i“1

ξpν
ptq
i q ξ : PpX q Ñ R, t P tt‹, . . . , t‹ `Ku (III.2.47)

and derive a judgement from the behavior of the time indexed list of expectations.
Ideally, they should have small variance wrt N (say O

´

1?
N

¯

as above).
The same method can be used to derive estimates of arbitrary functions. If ξ :
PpX qbl Ñ R, a function of iid copies of the distributions, the formula reads:

pξptq “
1

R

R
ÿ

r“1

ξpν
ptq
irp1q

, . . . , ν
ptq
irplq
q, (III.2.48)

where pirp1q, . . . , irplqq are independent samples from the N -sized empirical estimate
of the population at time t (R is a shortcut for approximate replicas). For good
results, one typically takes R P Θ pNq and l ! N , so that the empirical bias is small
and the averaging pool is large enough. In simple words, for each N population at
time t one takes many samples of a function requiring a relatively small number of
inputs.

Applicative power Being that the messages expressions are strongly dependent
on the underlying graph and the problem structure, the general framework largely
extends for specific models. Tailored results always allow for a more complete
description. Some examples are in (Marc Mezard and Montanari 2009, Chaps. 15,
16), (Krzakala and Zdeborová 2021, Chaps. 5, 9, 11, 12), (Zdeborová and Krzakala
2016). An extensive account of the main references up to 2009 is given in the closing
Notes of (Marc Mezard and Montanari 2009, Chap. 14).

Further References

The Bethe free entropy can be seen as the first level of a hierarchy of approx-
imations. This concept is nicely explained in (Yedidia, Freeman, and Weiss
2001). Recently (Wein, Alaoui, and Moore 2019) it was found to be con-
nected to Sum of Squares (SoS) proofs, a technique originating in Computer
Science.

III.3 Describing the measure via phases

Having explained some features of this method, we now briefly present a classifi-
cation of the hardness of a problem from a different peerspective than Sec. I.3.1
and Sec. II.6.1, which however bears the same underlying ideas. We do so to
actually explain that this classification will not be needed in the Bayes-Optimal
setting. Despite this, we choose to discuss it for the sake of clarity. Given the
difficulty and vastness of the matter, it is strongly suggested to refer to the material
in the reference box below. In the future, this topic will be properly expanded in
an independent document.

Further References

For a formal and longer treatment, refer to (Marc Mezard and Montanari
2009, Chap. 19) and the references in the Notes at the end of Chapter 19
there. Without being exhaustive, the concept of Replica Symmetry Breaking
is also discussed in other textbooks (Mezard, Parisi, and Virasoro 1986; Tala-
grand 2003), reviews (Castellani and Cavagna 2005; Zdeborová and Krzakala
2016), courses (Krzakala and Zdeborová 2021).

In the previous sections, we discussed situations in which the probability measure
of a certain graphical model presented a structure that allows to derive answers in
an algorithmically efficient fashion. Crucially, this corresponded to the assumption



of a locally-tree-like structure, preventing loops at short distances that (roughly)
induce backward correlations between variables. Considering again a factor graph,
we introduce some notions before giving an intuition of the object to focus on. With
the word cavity, we will intend a subset of the variable nodes C Ă V, which induces
a subgraph GC “ pC,VC ,WCq made of:

• all the variables in C

• all the factors a PW such that Ba Ă C

• all the edges joining factors and variables considered.

Additionally, we say that an edge pi, aq P BC when i P C and a R WC , meaning
that it is not included in the induced subgraph, but “almostt” there. As before, we
interpret the collection tpνaÑiu as probability measures over X where the edges in
the directed graph GÑ can be taken to be anywhere, not just inside GC .

Consistency in the BP method for inference can be loosely intended as it granting
the existance of a set of messages tpνaÑiu such that a generic probability distribution
µ can be expressed within some accuracy by the induced factor graph over cavities.
Giving more details (Marc Mezard and Montanari 2009, Def. 19.1), µ is a Bethe
measure if there exists tpνaÑiu such that for almost all cavities C ” Cpnq such that
|C| is bounded as nÑ8 it holds that:

µCpxCq »
ź

aPWC

ψapxBaq
ź

pi,aqPBC

pνaÑipxiq ` errpxCq, (III.3.1)

the last term being an error quantity to be specified, as well as the notion of “almost
all”. For example, one could choose a vanishing tolerance ϵ ” ϵpnq so that the
norm of the error is smaller than it, for more than 1 ´ ϵ cavities with bounded
size. Being a particular choice of probabilistic structure, it will necessarily induce
some features in the Statistics of the model. For example, the authors in (Marc
Mezard and Montanari 2009) mention that under additional conditions on the factor
potentials and loops over G, it can be shown that the BP equations are almost
satisfied by the messages in the above equation, with the notion of almost being
again subject to an accuracy. Perhaps more importantly, it is important to notice
that while a Bethe Measure requires existance of these approximate solutions, the
injectivity of the mapping from quasi solutions to Bethe-measures is not guaranteed
(see (Marc Mezard and Montanari 2009, Exms. 19.1, 19.2)). Keeping this in mind,
we formulate a partition of the phase diagram of a problem into the appearence of
its distribution:

• Replica Symmetric (RS), when µ is a Bethe measure, or a decomposition into
a finite number of Bethe measure with global symmetries (e.g. sign flip)

• dynamic Replica Symmetry Breaking (d-RSB), when µ is a Bethe measure,
but there is an exponentially large in n number of them, and µ decomposes
into a convex combination of them. Mathematically:

µpxq “
ÿ

m

wmµmpxq, (III.3.2)

a sum of exponentially many in n terms with wm exponentially small weights.

• static Replica Symmetry Breaking (s-RSB), when the same as d-RSB happens,
but a finite number of the wm take Θ p1q weight and make µ not a Bethe
measure.

• full RSB, where a hierarchy appears (see reference box for some ideas).

Clearly, the performance of BP and related conclusions to be taken with it is largely
influenced by the object of inference. Roughly, the inductive bias of the Algorithm
is just wrongfully placed if the measure is not sufficiently Bethe Measure-like. While
many solutions to this have been envisioned, we avoid discussing them due to space
constraints. In addition to this, and even more importantly for us, there is no s-RSB
or further in Bayes-Optimal inference, so there can be only RS or d-RSB (Bouchaud



et al. 1997). To understand this, see (Zdeborová and Krzakala 2016, Sec. II.G) for a
justification with a different definition of RSB, or the references therein. Given this,
BP can describe the marginals of the RS phase, and can be shown to be accurate
also in the d-RSB phase, as argued in (Zdeborová and Krzakala 2016, Sec. III),
vindicating the method when everything but the signal is known. In short, despite
the great power of the formalism, we do not need it for our purpose and can proceed
ignoring this finer comment.





Chapter IV

Approximate Message Passing

In this Chapter, we provide an instructive derivation of an efficient and powerful
approximation of Belief Propagation, which we discussed in Chapter III. Section

IV.1 serves the purpose of giving an explanation of the origin of the procedure. To
do so, we follow a mid-step, relaxed BP. Section IV.2 discusses the analogue of the
density evolution equations (cf. III.2.4) for the newly obtained Algorithm, termed
State Evolution.

IV.1 Approximate Message Passing, Physics Intu-
ition

While the physics derivation of Approximate Message Passing (AMP) is very in-
teresting, we restrict ourselves to the basic notions here since it is well treated in
literature. The reasons are twofold. First, it is important to give a historical note on
where the method originates to understand it. Secondly, the notation in this easier
setting will be beneficial for when we will need it in later parts. A nice outline of
the steps that led to its formulation can be found in (Zdeborová and Krzakala 2016,
Sec. VI.C). The box below summarizes the essential historical steps.

In Chapter V we will present the recent results of (Aubin et al. 2019; Feng et al.
2021; Tan and Venkataramanan 2023), which encompass the first discoveries and
generalized formulations. For the moment, we stay on the Physics intuition side
and present a quick derivation of these equations from (Zdeborová and Krzakala
2016, Sec. VI.D.1) which is a sketch of the argument in (Kabashima, Krzakala,
et al. 2016).
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Further References

For the connection with the development of compressed sensing, refer to
(Zdeborová and Krzakala 2016, Sec. VI.B). As a technique it appeared
in (Donoho, Maleki, and Montanari 2009) for linear estimation in com-
pressed sensing, i.e. y “ Ax˚ ` ϵ, in (Mezard 1989) for the perceptron
and (Kabashima 2003) for Code Division Multiple Access. The first stud-
ies on Generalized Approximate Message Passing date back to (Kabashima
and Uda 2004; Mezard 1989), where it was derived for perceptrons. The
widely believed conjecture that AMP is optimal among all efficient algo-
rithms started to be inspected after the work of (Braunstein and Zecchina
2006). Surprinsingly, there are two main connections with earlier iterative
procedures. In (Rangan 2010) it was argued that the work of (Braunstein
and Zecchina 2006) is closely related to a relaxed formulation of BP, while
in (Kabashima 2003) the connection with Thouless-Anderson-Palmer (TAP)
equations was established (see (Thouless, P. W. Anderson, and Palmer
1977), (Zdeborová and Krzakala 2016, Sec. IV.E). The popularization of
AMP eventually reached its peak with its application to compressed sens-
ing (Donoho, Maleki, and Montanari 2009), which was followed by formal
proofs of its potential (Bayati, Lelarge, and Montanari 2015; Bayati and
Montanari 2011). Eventually, (Rangan 2012) brought Generalized AMP to
the attention of the research community, underlining that it could work for
non-linear estimation models (i.e. GLMs). Being that the whole framework
is a philosophy of approach rather than a strict set of rules, many variants
of the algorithms appeared in the years. We gloss over their details and
opt for presenting only one. A derivation in the style of Statistical Physics
argument for Gaussian noise channels is found in (Krzakala, Mézard, et al.
2012), later generalized by (Kabashima, Krzakala, et al. 2016)

For now, we will restrict to a self contained introduction of its origin, to later
deal with the fundamental properties in our problem of interest. Every result can
be derived with a “Physics-blind” approach in the form of Theorems. For the sake
of simplicity, we will focus on a linear estimation problem, which is very close to
the model of (Tan and Venkataramanan 2023) that we will study in later Chapters.
Specifically, we assume the following DGP:

y “ φout pAx
˚q yi “ φout pxai,x

˚yq @i (IV.1.1)

where φout plays the role of an output channel with potentially added noise, ap-
plied component-wise. The terms py,Aq are observed and φout is known. The
observations are independent. Given such a setting, it is natural to introduce the
likelihood of a given observation dataset. By the independence of rows we will use
the notation:

Pry | zs “
n
ź

i“1

Poutryi|zis zi “ xai,xy (IV.1.2)

and the output probability accounts for the structure of φout. Unless otherwise
stated, we also take the prior on the signal to be iid from a one-dimensional distri-
bution. This means that P rX˚s “

śd
j“1 P

“

X˚
j

‰

“ P rX˚
1 s

d. Sometimes, to avoid
using the star notation, and put emphasis on the sampling of the true signal, we
will use the symbols PX “ Pbd

X .

Example IV.1.3 (Noiseless and Noisy phase retrieval). Let φoutpzq “ |z|` ϵ where
ϵ „ N p0,∆q, and z is the scalar inner product of the two vectors. The formulation
is that of phase retrieval with noise. Removing ϵ, one gets noiseless phase retrieval.
In the first case, the likelihood reads:

Pry | zs “
n
ź

i“1

Poutryi|zis “
1

?
2π∆

exp

$

&

%

´
1

2∆

˜

yi ´
d
ÿ

j“1

Aijxj

¸2
,

.

-

(IV.1.4)

It is possible to recover a standard Bayesian-Planting approach by just placing a
prior on the signal.
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Figure IV.1: Factor graph of a linear estimation problem.
Parameters pn, dq “ p3, 4q, showing in red only the matrix values of the first

sample for readability.

Approximate Message Passing ’s first appearances date back to studies on the
perceptron (Mezard 1989). However, it was only with its introduction in the com-
pressed sensing setting that it got the current name and found its success (Donoho,
Maleki, and Montanari 2009). For a more general formulation including applica-
tions to the model we are considering, one must however use Generalized AMP
(G-AMP), which was first introduced in (Rangan 2012). The Statistical Physics
origin of the method is attributed to the theory of TAP Equations (Thouless, P. W.
Anderson, and Palmer 1977).

Remark IV.1.5. As pointed out in (Zdeborová and Krzakala 2016), TAP is for
Ising Spins with pairwise interactions (i.e. a 2-body Hamiltonian with discrete
Rademacher signals), while AMP is constructed to work with continuous signals
and d-body interactions.

Terminology for the AMP’ Physics side Wishing to give a bird’s eye view
of what lead to AMP from the Physics side is worth but must be taken with great
care. Behind the motivation, there are a lot of research works involved. It is useful
to introduce some terminology to be sufficiently prepared for their concepts. In
our setting, the prior and the observations y play the role of factors. What is
variable is the vector we would like to use as estimator (px). The matrix entries
Aij , specifying the interactions yi, pxj can be thought of as weights of the edges.
Assuming a factorizing prior, a visualization is Figure IV.1. Given a graphical
model of this form, it is possible to design a Belief Propagation (BP) Algorithm on
it to approximate the posterior marginals. The iterations take the form of messages
from factors to variables and viceversa. For a factorizing prior the posterior reads

Prx | y,As “
1

Zpy,Aq

n
ź

i“1

Poutryi|zis
d
ź

j“1

PX rxjs zi “ xai,xy (IV.1.6)

and the BP messages are a generalization of Eqns. III.2.9, III.2.10 (see (Zdeborová
and Krzakala 2016, Eqns. 137, 138)) for pairwise models as in Example III.2.31:

νjÑipxjq “
1

ZjÑi
PX rxis

ź

k‰i

νkÑjpxjq (IV.1.7)

νiÑjpxjq “
1

ZiÑj
PX rxis

ż

Poutpyi| xai,xyq
d
ź

r‰j

drxrνrÑipxrqs (IV.1.8)

where the integral in red is d´ 1 dimensional. For large signal vectors, this compu-
tation is intractable: the only option is perfoming numerical integrations, and no
general approach is given by theory.

Remark IV.1.9 (Details about the derivation). We have effectively changed the do-
main of signals from discrete to continuous, getting complicated integrals. The first
derivation for continuous signals is attributed to (Baron, Sarvotham, and Baraniuk
2009). While y is the planted disorder, the matrix A is often described as randomly-
quenched. If the matrix entries are independent and the variance is O

`

1
d

˘

then



the model is a mean-field spin glass, a class of models studied in (Zdeborová and
Krzakala 2016). Bayes-Optimality and this construction ensure that the fixed point
of the BP equations with minimum free energy F will describe the exact posterior
marginals, as we saw previously.

One option to make the operations feasible is deriving a form of relaxed Belief
Propagation (r-BP) (Guo and Wang 2006; Rangan 2010). The general idea is
reducing computational overhead by just passing messages that refer to the first
two moments, largely simplifying the problem. Intuitively, models that are in some
sense Gaussian or close enough to it will not be harmed. We summarize the heuristic
with the following observations made in (Zdeborová and Krzakala 2016, Sec. 6.C),
(Krzakala and Zdeborová 2021, Sec. 14.2) and (Rangan 2010).

• the conditioning on yi is1 zi “ Aijxj `
ř

r‰j Airxr

• by the independence of the xj , a basic application of the Central Limit The-
orem (CLT) gives that:

ÿ

r‰j

Airxr „ N pωiÑj , ViÑjq ωiÑj “
ÿ

r‰j

AirarÑi, ViÑj “
ÿ

r‰j

vrÑi

(IV.1.10)
where

arÑi :“

ż

xrνrÑipxrqdxr vrÑi :“

ż

x2rνrÑipxrqdxr ´ a2
rÑi (IV.1.11)

• ignoring the normalization, the second messages are recasted to a scalar Gaus-
sian integral of the form:

νiÑjpxjq –

ż

Pout ryi|zis exp

"

´
1

2ViÑj
pzi ´ ωiÑj ´Aijxjq

2

*

dzi (IV.1.12)

• expand the square with collected terms pzi ´ ωiÑj , Aijxjq

• perform a Taylor Expansion of the exponential of the second term. With a
clever use of the order of the variance of Aij which yields Aij P O

´

1?
d

¯

obtain
that

νiÑjpxjq –

ż

Pout ryi|zis

ˆ

1`A2
ijx

2
j ´ 2pzi ´ ωiÑjqAijxj `

1

2
pzi ´ ωiÑjq

2A2
ijx

2
j ` o

ˆ

1

d

˙˙

exp

"

´
1

2ViÑj
pzi ´ ωiÑjq

2

*

dzi

(IV.1.13)

• suppressing all the indices, denote for a function f : RÑ R:

dϕBPoutpf ;ω, y, V, zq :“
fpzq ¨ Poutry|zs exp

␣

´ 1
2V pz ´ ωq

2
(

ş

Poutry|zs exp
␣

´ 1
2V pz ´ ωq

2 dz
( dz (IV.1.14)

which tweaks f according to the parametrization of the Gaussian ˆ output
measure. Accordingly, defining the output function as

goutpω, y, V q :“

ż

dϕBPout

ˆ

z ´ ω

V
;ω, y, V, z

˙

, (IV.1.15)

it enjoys the property2:

ż

dϕBPout

˜

ˆ

z ´ ω

V

˙2

;ω, y, V, z

¸

“
1

V
` Bωgoutpω, y, V q ` g

2
outpω, y, V q.

(IV.1.16)
1this choice looks arbitrary, but recall that the conditioning appears in νiÑj , thus the choice

of isolating ij indices.
2we do not prove this, but it is claimed in Zdeborová and Krzakala 2016



• Eventually find that the using gout, by rebringing the linearized terms in ex-
ponential form, and normalizing, the second message (Eqn. IV.1.8) reduces
to the expression

νiÑjpxjq “

c

AiÑj

2πN
exp

#

´
x2j
2d
AiÑj `BiÑj

xj
?
d
´
pBiÑjq

2

2AiÑj

+

(IV.1.17)

AiÑj “ ´BωgoutpωiÑj , yi, ViÑjqA
2
ij BiÑj “ goutpωiÑj , yi, ViÑjqAij ,

(IV.1.18)

where Bω denotes the derivative wrt ωiÑj with no ambiguity.

This procedure gives us a nice expression for the second messages, which in turn
yields a compact form to the first messages (Eqn. IV.1.7)

νjÑipxjq9PX rxise
´ 1

2ΣjÑi
pxj´RjÑiq

2

(IV.1.19)

where pRjÑi,ΣjÑiq are the mean and the variance of the exponential density ob-
tained by combining the just derived expressions. Just as in the design of ϕBPout define
a tweaked measure for ease of notation

dϕBP0 pf ; Σ, Rq :“
fpxq ¨ PX rxse

´ 1
2Σ px´Rq

2

ş

PX rxse´ 1
2Σ px´Rq2 dx

dx (IV.1.20)

and two input functions

fapΣ, Rq :“

ż

dϕBP0 px; Σ, Rq fvpΣ, Rq :“ Σ BRfapΣ, Rq “ Σ BR

ˆ
ż

dϕBP0 px; Σ, Rq

˙

.

(IV.1.21)

Remark IV.1.22. The input functions are used to update the local mean and the
local variance at the level of a node. They aggregate information from the neighbors
and average over the local “Gaussianized” posterior.

As for BP, it is possible to express this as an asymptotically exact iterative
algorithm that returns an estimate of the means and variances of the marginals,
which in our notation are a “ pa1, . . . , anq and v “ pv1, . . . , vnq. The update
procedure is listed in Algorithm 3.

Generalized AMP G-AMP can be derived from a further relaxation of Algo-
rithm 3 that leads to the formulation of (Rangan 2012). It can be proved that the
terms of the target node (i.e. where the message is delivered) are weakly interacting
with the objects over which the iteration is done. The principle is similar to that of
the derivation of the TAP equations (see (Zdeborová and Krzakala 2016, Sec. IV E,
VI C) for a comparison). What happens is that it is possible to group all the weakly
interacting terms into an Onsager correction term (Thouless, P. W. Anderson,
and Palmer 1977). The exactness of marginals estimation with BP will then guar-
antee the exactness of marginals estimation of AMP up to the second moment. The
key steps just require being careful with neglecting terms up to leading order. It is
crucial to define the non-target-dependent versions of our iterators. Fast forwarding
some computations, these are:

ω
pt`1q

i “
ÿ

j

Aija
ptq
jÑi V

pt`1q

i “
ÿ

j

A2
ijv

ptq
jÑi (IV.1.23)

Σ
pt`1q

j “
1

ř

iA
pt`1q

iÑj

R
pt`1q

j “

ř

iB
pt`1q

iÑj
ř

iA
ptq
iÑj

(IV.1.24)



Algorithm 3 Relaxed-Belief Propagation (r-BP)
Input: py,Aq
Init: a

pt“0q

jÑi , v
pt“0q

jÑi , tÐ 1

while a
ptq
jÑi, v

ptq
jÑi not converged do

for i P rns, j P rds do
V

ptq
iÑj Ð

ř

k‰j A
2
ikv

pt´1q

kÑi

ω
ptq
iÑj Ð

ř

k‰j Aika
pt´1q

kÑi

end for
for i P rns, j P rds do

B
ptq
iÑj Ð goutpω

ptq
iÑj , yi, V

ptq
iÑjqAij

A
ptq
iÑj Ð ´Bωgoutpω

ptq
iÑj , yi, V

ptq
iÑjqA

2
ij

end for
for i P rns, j P rds do

Σ
ptq
jÑi Ð

1
ř

r‰iA
ptq
rÑj

RjÑi Ð Σ
ptq
jÑi

ř

r‰iB
ptq
rÑj

end for
for i P rns, j P rds do

a
ptq
jÑi Ð fapΣ

ptq
jÑi, R

ptq
jÑiq

v
ptq
jÑi Ð fvpΣ

ptq
jÑi, R

ptq
jÑiq

end for
tÐ t` 1

end while

a
ptq
i Ð fa

ˆ

1
ř

r‰iArÑj
,

ř

r‰iBrÑj
ř

r‰iArÑj

˙

v
ptq
i Ð fv

ˆ

1
ř

r‰iArÑj
,

ř

r‰iBrÑj
ř

r‰iArÑj

˙

return paptq, vptqq



and one can check that the following chain of approximations can be established
with a

ptq
j :“ fapR

ptq
j ,Σ

ptq
j q, v

ptq
j :“ fvpR

ptq
j ,Σ

ptq
j q:

V
pt`1q

i «
ÿ

j

Aijv
ptq
j (IV.1.25)

Σ
pt`1q

j «
1

´
ř

iA
2
ij Bωgoutpω

pt`1q

i , yi, V
pt`1q

i q
(IV.1.26)

R
pt`1q

j « Σ
ptq
j

«

ÿ

i

Aijgoutpω
pt`1q

iÑj , yi, V
pt`1q

iÑj q

ff

(IV.1.27)

still messages on second term (IV.1.28)

goutpω
pt`1q

iÑj , yi, V
pt`1q

iÑj q « goutpω
pt`1q

i , yi, V
pt`1q

i q ´Aija
ptq
j Bωgoutpω

pt`1q

i , yi, V
pt`1q

i q

(IV.1.29)

ùñ R
pt`1q

j « a
ptq
j ` Σ

pt`1q

j

ÿ

i

Aijgoutpω
pt`1q

i , yi, V
pt`1q

i q (IV.1.30)

ajÑi « a
ptq
j ´ goutpω

ptq
i , yi, V

ptq
i qAijv

ptq
j (IV.1.31)

ω
pt`1q

i “
ÿ

j

Aija
ptq
j ´

ÿ

j

goutpω
ptq
i , yi, V

ptq
i qA2

ijv
ptq
i (IV.1.32)

“
ÿ

j

Aija
ptq
j ´ V

ptq
i goutpω

ptq
i , yi, V

ptq
i q (IV.1.33)

Thanks to these expressions, we can reformulate the r-BP procedure of Alg. 3
into GAMP. The result is Algorithm 4. It is important to notice that the Onsager

Algorithm 4 Generalized Approximate Message Passing (GAMP)
Input: y,A
Init: a

pt“0q

j , v
pt“0q

j , g
pt“0q

out,i @i, tÐ 1

while a
ptq
j , v

ptq
j not converged do

for i P rns do
V

ptq
i Ð

ř

j A
2
ijv

pt´1q

j

ω
ptq
i Ð

ř

j Aija
pt´1q

j ´ V
ptq
i g

pt´1q

out,i

end for
for i P rns do

g
ptq
out,i Ð goutpω

ptq
i , yi, V

ptq
i q

Σ
ptq
i Ð

1

´
ř

iA
2
ij Bωgoutpω

ptq
i , yi, V

ptq
i q

Rj Ð a
pt´1q

j ` Σ
ptq
j

ř

iAijg
ptq
out,i

end for
for i P rns, j P rds do

a
ptq
j Ð fapΣ

ptq
j , R

ptq
j q

v
ptq
j Ð fvpΣ

ptq
j , R

ptq
j q

end for
tÐ t` 1

end while
return aptq, vptq P Rd

correction terms wrt Algorithm 3 are just those in red, and are strongly liked to
those arising from the TAP equations derivation (see (Zdeborová and Krzakala 2016,
Sec. IV E)).

Remark IV.1.34. The computational time of GAMP is O pndq, only matrix oper-
ations are performed.

Remark IV.1.35. While this derivation sketch is general for factorizing prior and
independent observations, it is worth noticing that any model will just require to
work out the specific pgout, faq functions, with all the rest being equal throughout. We



call the former the output (denoising) function and the latter the input (denoising)
function. A crucial aspect remains being able to neglect terms.

In (Krzakala, Mézard, et al. 2012), it is shown that the most probable value
of the parameters is found by maximizing the partition function, which in turn
is equivalent to minimizing (respectively, maximizing) the Bethe free energy3

(Entropy). Such function is directly related to the Belief Propagation messages,
with an elegant sum of partitions across variable and factor nodes and an adjustment
via the partitions of edges to avoid double counting. Mathematically:

FBet “
ÿ

i

logZi `
ÿ

j

logZj ´
ÿ

ij

logZij

Zi “

ż

e
´ 1

2Vi
pωi´zq

2

?
2πVi

Poutryi|zsdz (IV.1.36)

Zj “

ż

ź

i

νiÑjpxjqP0rxjs dxj

Zij “

ż

νiÑjpxjqνjÑipxjqdxj .

Remark IV.1.37. This is essentially the same object we found in Definition III.2.15.

In (Krzakala, Manoel, et al. 2014, Sec. IV) via the AMP approximations it is
further shown that at the fixed points of the GAMP equations are the stationary
points of the logarithm of the posterior likelihood (Krzakala, Manoel, et al. 2014,
Thm. 2):

FGAMP
Bet ptRju, tΣju, tωiu, taju, tvjuq (IV.1.38)

“
ÿ

i

logZi ´
ÿ

j

logZpRj ,Σjq ´
ÿ

j

vj ` paj ´Rjq
2

2Σ2
j

´
ÿ

i

pωi ´
ř

j Aijajq
2

2Vi

(IV.1.39)

Vi “
ÿ

j

A2
ijvj (IV.1.40)

ZpR,Σq “
ż

P0rxse
´ 1

2Σ2 px´Rq
2

dx. (IV.1.41)

The result is clearly similar to that of Proposition III.2.29. While this turns out to be
a weak condition, since stationarity does not imply that the function is minimized,
it is possible to reformulate the optimization in terms of a variational Bethe free
energy that satisfies the consistency conditions between the various parameters.
This construction eventually leads to a variational expression that Message Passing
equations minimize:

FGAMP
Bet ptRju, tΣju, tω

‹
i u, ta

‹
j u, tv

‹
j uq “F var

BetptRju, tΣjuq, (IV.1.42)

where:

F var
BetptRju, tΣjuq “

ÿ

j

dKLpϕ
BP
0 pPX ,Σj , Rjq||PXq `

ÿ

i

dKLpϕ
BP
outp1, ωi, yi, Viq||Poutq

`
1

2

ÿ

i

log 2πV ‹
i ` 1` V ‹

i Bωgout,

(IV.1.43)

where PX is the prior, Pout is the probability of the output channel, and the term
with KL pedix is the Kullback-Leibler divergence.

3an approximation of the free energy to graphs with no cycles (trees), that in many cases is
asymptotically exact (Krzakala, Mézard, et al. 2012; Krzakala and Zdeborová 2021; Marc Mezard
and Montanari 2009). As we saw previously, this happens when the graph is almost cycle-less,
meaning that it is locally tree-like.



Remark IV.1.44 (A thorough explanation of Equation IV.1.43). We roll out the
expressions as follows. First of all the notations pϕBPout, ϕBP

0 q were presented in Eqns.
IV.1.14, IV.1.20 as differentials. In this case, we naturally express them as proba-
bility distributions ϕBPoutp1, ωi, yi, Viq, ϕ

BP
0 pPX ,Σj , Rjq. Surprisingly, the latter is also

the optimal mean-field approximation that achieves the minimum of the Mean-Field
free energy (see (Krzakala, Manoel, et al. 2014, Eqn. 5)):

ϕBP0 pPX , Rj ,Σjqrxjs “
1

ZpRj ,Σjq
PX rxjse

´ 1
2Σj

pxj´Rjq
2

, (IV.1.45)

for a coordinate xj of interest. In the original publication (Krzakala, Manoel, et al.
2014, Eqn. 34) the former has a 1

2πVi
factor added, but we just take it inside the

normalization. The peculiar result is that when rewritten, the following equality is
made more evident:

Zipωi, yi, Viq
a

2πVi “

ż

Poutryi | zs exp´
1

2Vi
pz ´ ωiq

2 dz, (IV.1.46)

where Zi was defined in Equation IV.1.36 and analogously in Eqn. III.2.17. Ac-
cordingly, their Kullback-Leibler divergences greatly simplify (suppressing the indices
j, i)

´dKLpϕ
BP
0 ||PXq “ lnZpR,Σq ` v ` pa ´Rq2

2Σ2
(IV.1.47)

´dKLpϕ
BP
outp1, ω, y, V q||Poutq “ logZ ` 1

2

`

log 2πV ` 1` V pBωgout ` g
2
outq

˘

.

(IV.1.48)

Under suitable conditions (to be presented later, see Section V.2), the iterations
of GAMP are guaranteed to converge, with conjecturally better MSE than any
efficient algorithm. For a discussion of potential extensions to accomodate more sets
of assumptions see (Zdeborová and Krzakala 2016, Sec. VI.C.4) and the references
therein. One of the options is directly minimizing the variational expression of Eqn.
IV.1.42 which slows down the dynamics but ensures that the GAMP fixed points
will be local minimas.

IV.2 State evolution

The first appeareance of the term was in (Donoho, Maleki, and Montanari 2009)
for a problem of compressed sensing. Rigorous results for AMP and G-AMP were
later proved in (Bayati, Lelarge, and Montanari 2015; Bayati and Montanari 2011;
Javanmard and Montanari 2012). As a concept, it is similar to the self-consistent
equations found in the theory of TAP equations with the work of Bolthausen, but
is also closely related to density evolution (see (Bolthausen 2014) and Subsection
III.2.4). Via Statistical Physics techniques, it is derived starting from the BP mes-
sage equations, which anticipate G-AMP. From there, using the fact that incoming
messages are assumed to be conditionally independent, the extensive sums are made
of uncorrelated terms. By another application of the CLT, the leading behavior at
large sizes is Gaussian, only in terms of the mean and the variance.

A complete physical perspective is the derivation in (Krzakala, Mézard, et al.
2012, Sec. IV.B). There, the authors show that these equations can also be in-
dependently derived via the cavity method or with the replica symmetric analysis
of the model in the Bayes-Optimal setting, and give more context of the formal
similarity with TAP equations.
The result is that at n Ñ 8 the dynamics are described by a scalar recursion,
with considerable dimensionality reduction.

As a first step, we reparametrize the output distributions as a delta density over
the noisy realizations of the input signals:

Poutry|zs “

ż

Pϵpϵqδry ´ φoutpz, ϵqsdϵ, (IV.2.1)



where φout is the output function: the channel that only adds noise at the end. The
random variables Vi “

ř

j A
2
ijvj concentrate around their mean (Def. II.2.5) since:

E rVis “
ÿ

i1

vi1

n
Var rVis P o p1q . (IV.2.2)

Then, it must be the case that V t`1 “ 1
n

ř

i vi. Additionally, by the BP assump-
tions, the variables

ωiÑj “
ÿ

k‰j

AijajÑk ziÑj “
ÿ

k‰j

Aijx
˚
j (IV.2.3)

are sums of uncorrelated variables. They can be interpreted as the messages of the
estimator (via the ω mean) and the ground truth signal x˚. Then, in the limit,
they will converge to Gaussian with variance-covariance structure:

E
“

ω2
‰

“ E
“

a2
‰

“ q E rzωs “ E rx˚as “ m E
“

z2
‰

“ E
“

px˚q2
‰

“ ρ. (IV.2.4)

Moving to pRj ,Σjq, one can see that:

Rj

Σj
“
ÿ

i

BiÑj “
ÿ

i

AijgoutpωiÑj , yi, ViÑjq (IV.2.5)

“
ÿ

i

Aijgout

˜

ωiÑj , h

˜

ÿ

k‰j

Aikx
˚
k , ϵi

¸

, V

¸

` x˚
j δ pm pm :“ Eϵ,z,ω rBωgoutpω, hpz, ϵq, V qs

(IV.2.6)

“N p0, 1q ¨
a

δpq ` x˚
j δ pm pq :“ Eω,z,ϵ

“

g2outpω, hpz, ϵq, V q
‰

,

(IV.2.7)

where δ “ n
d .

With a simpler concentration argument, we also claim that the following holds

1

Σ
“ δpq. (IV.2.8)

Eventually the expressions for q,m are reduced to:

q “ Ex˚

“

ER,Σ

“

f2a pΣ, Rq
‰‰

m “ Ex˚

“

ER,Σ rxs
˚
fapΣ, Rq

‰

(IV.2.9)

where x˚ is to be intended as one of the entries of x˚, since they are iid.

Bayes-Optimal simplification Without additional assumptions, the State Evo-
lutions equations are written all together as:

q “ Ex˚

“

ER,Σ

“

f2a pΣ, Rq
‰‰

m “ Ex˚

“

ER,Σ rxs
˚
fapΣ, Rq

‰

(IV.2.10)

pq “ Eω,z,ϵ

“

g2outpω, hpz, ϵq, V q
‰

pm “ Eϵ,z,ω rBωgoutpω, hpz, ϵq, V qs . (IV.2.11)

In the Bayes-Optimal case, by the Nishimori condition, one can add that q “ m.
Unsuprisingly, it can also be proved that pq “ pm (Kabashima and Uda 2004), which
is another Nishimori identity. Then, for Gaussian White Noise, the state evolution
will eventually involve the MMSE in a very peculiar way (Krzakala, Mézard, et al.
2012):

$

’

’

&

’

’

%

mpt`1q “
ş

PX rxs
ş 1
?
2π
e´ 1

2 ξ
2

f2a

ˆ

1

δ pmptq
, x`

ξ
?
δ pmptq

˙

dξ dx

pmptq “
1

∆` EX rX2s ´mptq
.

(IV.2.12)

In general, the expression of the second iterator is more difficult (see (Zdeborová
and Krzakala 2016, Eqn. 203). As a morale, we moved from vectorial inference to
a scalar recursion that is able to describe exactly how the estimator and the true
signal will overlap.



Free Energy The scalar description of the dynamics of AMP allows for a scalar
expression of the Bethe free energy, which can be derived as the optimal points of
the two objects of iteration or of the MSE of an estimator E “MSEppx,x˚q. These
are formulations shown in (Zdeborová and Krzakala 2016, Eqns. 205, 206). To give
greater insight into the more complicated setting of the next Chapter, we choose
instead to provide the formulation of (Barbier, Krzakala, et al. 2019). The lesson
is rather simple: in the Bayes-Optimal setting the quenched free energy “splits” at
the thermodynamic limit. Here by splits we mean that it can be expressed as the
optimal configuration over two free energies related to two subproblems of inference,
precisely as a sup inf of the two. The meaning of the two subproblems is analogous
to the general case of Chapter V and will not be anticipated, but the result is
roughly of this nature:

lim
nÑ8

fn “ sup
rě0

inf
qPr0,ρs

ψP0prq ` δΨPoutpq; ρq ´
rq

2
, (IV.2.13)

where:

• ρ is the variance of the signal

• δ is the aspect ratio δ “ n
d

• ψ,Ψ are free entropies relative to two retrieval problems described in terms
of a zero channel and an output channel.

Recognizing that r is the analogue of pm, we further establish that the fixed points
of the state evolution equations are in correspondence with the stationary points of
this free energy, as State Evolution practically implements the following iterations:

#

mpt`1q “ 1
2 BrψP0

ppmptqq

pmptq “ δ 1
2 BqΨPoutpm

ptq; ρq.
(IV.2.14)

To obtain this result, there are many approaches. A heuristic guess is the replica
method (see for example (Krzakala, Mézard, et al. 2012)). Recently, the adaptive
interpolation method rigorized some of the earlier guesses of the replica method
(Barbier and Macris 2018).





Chapter V

Inference on Many Signals

In this final Chapter, we focus on a relevant model of inference, and leverage all
the previous discussions to understand the phases of its solvability. To begin,

Section V.1 is the bridge between the Physics literature and the Statistics literature,
of which we present the formulation in Section V.2. Continuing, Section ?? is the
largest portion, where we tackle the problem and its complicacies. While there are
precise results for the phase diagram of spectral estimators, not everything is known
for phase retrieval. Therefore, we numerically and theoretically inspect where AMP
places itself and if it can be helped in all regimes by a spectral estimator. Inciden-
tally, we also argue that the Physics and the Statistics formulation are equivalent
up to a change of variable, allowing us to exploit the results from both fields.

So far, we moved from:

1. deterministic tree graph models of a discrete signal

2. deterministic graph models of a discrete signal

3. random graph models of a discrete signal

4. random graph models of a continuous signal.

We now focus on random graphical models of multiple signals on a continuous
domain. Having briefly discussed the general ideas behind the passages from BP to
r-BP and AMP for the simpler example, we avoid repeating them. The Statistical
Physics derivation is always similar: messages are simplified to Gaussian messages
that only keep the first two moments. For each stage, it is possible to derive a
rigorous set of results that ignores the intuition. As a consequence, this Chapter
will have a short Statistical Physics presentation of the framework and a long, yet
absolutely non-exhaustive, collection of results with formal Theorems.

V.1 The Committee Machine

We place ourselves in the teacher-student scenario. This is briefly understood with
the narrative of a teacher entity that generates the disorder starting from a true
signal X˚ that was sampled from a distribution. Remarkably, the signal is a ma-
trix, which can be thought of as a collection of weights of a K neurons two layer
neural network structure that one wishes to recover. Precisely, the teacher model
reads:

Yi “ φout

¨

˝

#

1
?
d

d
ÿ

j“1

AijX
˚
jl

+K

l“1

, λi

˛

‚ or Yi „ Pout

¨

˝¨ |

#

1
?
d

d
ÿ

j“1

AijX
˚
jl

+K

l“1

˛

‚,

(V.1.1)
where λi is a factor accounting for the noise of the channel. Following standard
assumptions, we let X˚

jl „ P0, Aij „ N p0, 1q. The teacher hands in a collection of
observations D “ py,Aq “ tpyi,aiqu

n
i“1 to the student that wishes to recover X˚.

In Statistical-Physics parlance, D acts as quenched disorder.

71



Remark V.1.2. The model is not exactly a 2-layer neural network but rather in-
cludes it as a special case. No details about the noise are given, and one could design
different models. In general, it can be thought of as a complicated noisy channel that
operates on a set of signals X˚ in a well-defined manner.

Remark V.1.3. The notation P0 for the prior will largely rely on the difference in
appearance between scalars, vectors and matrices. In other words, P0 is the scalar
prior, PX is the vector prior, and PX is the matrix prior. Assuming independence
across rows (samples) they all end up being products b of each other. Sometimes
we will need to sample a vector X˚ from the distribution over the prior, which
we will write as X˚ „ PbK

0 , by independence and the distribution being identical.
When we will wish to emphasize that we want to include the limiting behavior,
we will place an overline over the random variable. This is done when studying
asymptotic results, often requiring that the actual distribution converges to a well-
behaved random variable.

To perform inference, we are clearly interested in edge cases. In the Teacher-
Student setting this is exactly Bayes-Optimal inference, defined as the situation in
which the student knows everything but the signal. Let us place ourselves in this
scenario: it is evident that no other estimation procedure to retrieve the signal will
be better; by logical contradiction, an actor with less information about the model
doing better would make no sense. Additionally, the precise questions we ask will
be the classic ones, namely:

Recovery

What are the choices of parameters for which it is information-theoretically
impossible to learn?

Efficient Recovery

What are the choices of parameters for which it is computationally
impossible to learn?

Both are clearly to be answered in the case in which most of the information is
given to the student, as the answer will (informally be):

“ For this choice of parameters, no student, not even the best possible, can retrieve
the signal.”

“ For this choice of parameters, no student, not even the best possible, is able to
retrieve efficiently the signal.”

Incidentally, the concept of choice of parameters is something that was largely
studied in Physics, due to the everlasting presence of phase transition phenomena:
sharp changes of behavior that highlight precise phase boundaries such that e.g.
above we have impossibility and below we have noticeable feasibility of a problem.
We do not discuss much this matter since it is very vast, but just mention that the
free entropy is an object that can answer these questions since its silhouette can
be expressed as a function of some order parameter, to be understood as another
object that describes unambiguously the outcome of a statistical procedure. All the
previous Chapters touched upon aspects of this, hopefully in a sufficient manner.

Example V.1.4. Consider a signal and an estimator. A natural notion of perfor-

mance is the overlap m “
xpx,x˚y
∥px∥∥x˚∥ P r´1, 1s. We will see that in our cases the free

entropy is directly expressed as a function F pm; ¨q. More in general, a nice form of
the free entropy will give access to quantities that depend on the randomness of the
problem.

Crucially, the inspection of the various phases of inference will be described with
a phase diagram. We understand it as follows. For simplicity, let the parameters be
over the reals. A phase diagram is a cartesian plane where for each axis a parameter
is chosen. Then, each point will correspond to a problem instance, and conditioned
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Figure V.1: Typical phase diagram
For example, impossible below the red line, algorithmically hard below the blue

line (and above the red line), easy above the blue line. Increasing one parameter,
the scenarios are in order. By order here we mean two things: (i) all the three

phases or a subset of the three are explored, and (ii) this exploration by changing
one parameter is always with the same appareance. Namely, by taking constants
α1, α2 and varying δ the two slices have the same behavior. As an example,
consider: impossible, hard, easy for the first α1. Consider also the same or a

subset with the same ordering for the second. It is never the case that for distinct
α1, α2 the slices appear as hard-impossible-easy and, say, impossible-hard.

on being able to solve the questions about it, each point will be labelled as solvable
or unsolvable in some sense. Consequently, a collection of regions where the problem
is solvable or unsolvable arises.

Remark V.1.5. It is hard to establish a priori whether the phase diagram will
look as a partitioning of the space or as a checkered cartesian plane with alter-
nating hard-easy phases. However, most if not all of the problems of inference
and Physics behave like the former: the space is partitioned into phases with exact
descriptions and no two phases with the same features are separate. This makes
physical sense: once one varies the right parameter (in jargon, an order parameter)
it should describe exactly the phases of the problem. In some sense, it is fundamen-
tal to understand its phenomenology, and its jumps determine changes of phase in
a sequential way, from impossible, to easy to hard without turning back. In other
words, a confused scenario such as Figure V.2 is unlikely. For example, if we let
ϑ1 be the SNR, we expect that as the signal increases in magnitude wrt noise, we
will get from impossible, to easy to hard, and never back to either of the first two.
Given this intuition, we expect a phase plot in the spirit of Figure V.1.

A formula for the free entropy

A remarkable result of (Aubin et al. 2019) is a rigorous formula that describes the
behavior of the model under a set of assumptions. With describe here we mean
that a formula of the free entropy is given, where it is known that the free entropy
is sufficient to recover the MMSE of the model.

Let S`
K denote the space of p.s.d. matrices in RKˆK , S``

K for positive definite
and for M P S`

K use S`
KpMq for the set of matrices Q that are p.s.d. and such that

also M´Q is p.s.d.

Fact V.1.6. For K ě 1:

1. S`
K is convex

2. S`
KpMq is convex and compact for any nondegenerate M P S`

K

Proof. (Claim #1) Convexity is trivial in S`
K .



ϑ1

ϑ2

Figure V.2: A Phase diagram that is not expected
Imagine that the green, blue and red regions represent easy, hard and impossible

phases. This scenario is not expected.

(Claim #2) we prove convexity by taking α P r0, 1s and B1,B2 P S`
KpMq. Clearly:

M´pαB1`p1´αqB2q “ αM`p1´αqM´αB1´p1´αqB2 “ αpM´B1q`p1´αqpM´B2q.
(V.1.7)

By hypothesis, the matrix differences are in S`
K and they satisfy the definition of

p.s.d. matrices. By convexity of the set of p.s.d. matrices, the convex combination
itself αB1 ` p1´ αqB2 is p.s.d. Consequently, the set S`

K is convex.
To prove compactness, we prove boundedness and closedness of the set wrt a ma-
trix norm that is induced by the inner product xB1,B2y :“ Tr pB1B2q for some
matrices B1,B2. Let pBnqně0 Ď S`

KpMq. This is a consequence of the fact that
(i) Matrices are in bijection with euclidean spaces, (ii) K is finite, so the space
is finite-dimensional, (iii) by (i) and (ii) the Heine-Borel Theorem can be applied
(Thm. A.1.4). To show closedness, we want to show that limnÑ8 Bn P S`

KpMq.
Inspecting the second condition we find that for x P RK :

xJpM´ lim
nÑ8

Bnqx “ x
JMx´ xJ lim

nÑ8
Bnx. (V.1.8)

By continuity of the quadratic form xÑ xJBx it holds that:

lim
nÑ8

xJBnx “ x
J lim

nÑ8
Bnx @x P RK , (V.1.9)

and closedness is proved since the limiting element belongs to the set. For bound-
edness, we use the fact that each matrix is p.s.d. and also its difference wrt the
pivot M is p.s.d. If M is non-degenerate (i.e. not zero or infinity) the eigenvalues
are always bounded by those of M. Using the eigendecomposition of matrices, we
get that the set S`

KpMq is bounded by M and 0.

Given a model such as that of Equation V.1.1, the object of interest is the
posterior. Its expression is easily derived as:

P rX | Ds “
1

ZpD ;nq

d
ź

j“1

P0rwjs

n
ź

i“1

Pout

¨

˝Yi |

#

1
?
d

d
ÿ

j“1

AijX
˚
jl

+K

l“1

˛

‚ (V.1.10)



where wj “
“

wj,1, . . . , wj,K

‰J. Assuming that the free entropy is self-averaging
and extensive, the object of interest is the free entropy density. This is standard in
Statistical Physics. We are then drawn to find a formula for:

fn “
1

n
ED rlnZpD ;nqs . (V.1.11)

In the classic proportional scaling assumption where n, d Ñ 8 with δ “ n
d P Θ p1q

fixed, conjectural formulas using the replica method are confirmed by the Theorem
we will showcase, which appeared in (Aubin et al. 2019, Thm. 3.1). The morale of
the result is that in the high-dimensional limit the true problem is expressed as a
combination of two easier channels that jointly determine how the original model
behaves in a very specific sense. For stability, we add noise to Equation V.1.1, so
that:

Yi “ φout

¨

˝

#

1
?
d

d
ÿ

j“1

AijX
˚
jl

+K

l“1

, λi

˛

‚` ϵi, @i P rns (V.1.12)

where ϵi „ N p0,∆q. This allows us to express the output Y in terms of a noisy
channel of a Gaussian density:

Poutpy | uq “
1

?
2π∆

ż 8

´8

e´ 1
2∆ py´φoutpu,λqq

2

dPrλs, u P RK . (V.1.13)

Following this adjustment, we define two auxiliary problems with their respective
channels:

• zero problem where we are asked to retrieve X˚ „ Pbk
0 from observations:

Y0 “ R
1
2X˚ ` ϵ0, ϵ0 „ N p0K , IKq, R P S`

K , (V.1.14)

associated posterior density

P pw | Y0q “
1

ZP0

P0rws exp

"

Y J
0 R

1
2w ´

1

2
wJRw

*

, (V.1.15)

and free entropy:
ψP0
pRq “ EY0

rlnZP0
s . (V.1.16)

• a partial recovery from interpolation problem, which asks to retrieve
U˚ „ N p0K , IKq upon knowledge of V „ N p0K , IKq and a set of observations
rY0 from the output channel, where its density is precisely:

rY0 „ Pout

´

¨ | Q
1
2V ` pP´Qq

1
2U˚

¯

. (V.1.17)

Additionally, let P “ E
”

X˚X˚J
ı

P S`
K be the correlation of the true signals

for X˚ „ PbK
0 and Q P S`pPq be an overlap matrix. The posterior density

is analogous to the previous case:

P pu | rY0,V q “
1

ZPout

exp
␣

´ 1
2u

Ju
(

p2πq
K
2

Pout

´

rY0 | Q
1
2V ` pP´Qq

1
2U˚

¯

,

(V.1.18)
with associated free entropy:

ΨPoutpQ;Pq “ E
pĂY0,V q

rlnZPouts . (V.1.19)

Remark V.1.20. The partial recovery problem is more general than scalar recovery.
The rY0 term in our case will be a number, since we take a compression function
φout that maps to scalars. The above definition can already be simplified.

Armed with these two channels, we define the RS free entropy density as:

fRSpQ,R;Pq :“ ψP0
pRq ` δΨPoutpQ;Pq ´

1

2
Tr pRQq . (V.1.21)

The utility of this object is solely in it giving a nicer expression for the original free
entropy, as we will see just after the assumptions.



Assumption V.1.22 (Assumptions for Committee result). Assume that:

(A1) the suppport of the prior supppP0q is a bounded subset of RK

(A2) the function φout : RK ˆ R Ñ R is bounded, twice differentiable, and with
buonded continuous first and second derivatives

(A3) the data matrix is made of standard independent Gaussians Aij „ N p0, 1q

(A4) the technical requirement of (Aubin et al. 2019, Ass. 1) is satisfied1

Theorem V.1.23 (Theorem 3.1 (Aubin et al. 2019)). Let Assumptions V.1.22
hold. Assume the scaling n, d Ñ 8, δ P Θ p1q. Then the noisy model V.1.12 with
associated channel found in Eqn. V.1.13 has limiting free energy density:

lim
nÑ8

fn “ sup
RPS`

K

inf
QPS`

KpPq

fRSpQ,R;Pq. (V.1.24)

Proof. See the various comments and a sketch in (Aubin et al. 2019, Sec. 3), while
details and properties are in the appendix. The general technique is the adaptive
interpolation method (Barbier, Krzakala, et al. 2019; Barbier and Macris 2018).

Upon solving this formula, it is possible to access information theoretic results
about the model of Eqn. V.1.12, and consequently for small noise ∆Ñ 0 of that of
Equation V.1.1. Namely, we let ∆ be generic, and then obtain the RS free energy
density of the noiseless model by sending ∆ Ñ 0 after everything else. This is
justified by the fact that at each ∆, the problem is valid, and it suggests that it will
be valid at null noise. In other words, the ϵ added term is just an artifact to use
the proof technique of (Aubin et al. 2019).

V.1.1 Physics-AMP

With more difficult but analogous calculations to those of Section IV.1, in (Aubin
et al. 2019, Appendix F, G) it is shown that starting from r-BP one can derive an
instance of GAMP to perform inference on the model of Equation V.1.1, which we
term Committee-Generalized Approximate Message Passing (C-GAMP) by anal-
ogy. As discussed before, it is conjectured to be optimal among all2 polynomial
algorithms. We report its pseudocode below and then present the deterministic
description of its performance in the Bayes-Optimal case. By construction, it is a
generalization of Algorithm 4 for multiple signals. To present it, we first need to
give an overview of the objects involved.
The most important aspect is that we wish to infer a collection of vectors. In
earlier examples, we had discussed the retrieval of only one vector. Proceed-
ing by analogy, scalar quantities become vectors in RK and vector quantities be-
come matrices with K columns. We will then iterate over some matrix estimators
Aptq P RdˆK , V⃗ptq P RpKˆKqˆd with variances V

ptq
j P S`

K for each j P rds. These
are seen for a single j P rds as a vector of marginals a

ptq
j P RK and an associated

variance V
ptq
j P S`

K . Accordingly, the mean is a vector, ωi P RK , and the variance is
such that Vi P S`

K . Lastly, the auxiliary mean is denoted as Rj P RK and the aux-
iliary variance is Σj P S`

K . Similarly, the denoising functions admit vector valued
expressions. We give precise formulations as follows. The shortcuts for distributions
are:

Q0pX;Σ,Rq :“
1

ZP0

P0pXq exp

"

´
1

2
XJΣ´1X `RJΣ´1X

*

(V.1.25)

rprior on X is in RKs

Qoutpz;ω, y,Vq :“
1

ZPout

exp

"

´
1

2
pz ´ ωqJV´1pz ´ ωq

*

Poutpy | zq. (V.1.26)

1we do not provide comments on these since it is a specific quantity in that appears in the
proofs.

2definitely a large class of



Poutpy1 | ta1,Xuq

Poutpy2 | ta2,Xuq

Poutpy3 | ta3,Xuq

X1

X2

X3

X4

PX PPpRdq

PX PPpRdq

PX PPpRdq

PX PPpRdq

Figure V.3: Factor graph of multiple signal estimation problem.
Parameters pn, d, Lq “ p3, d, 4q. Over the edges, we can define the BP messages.

Figure inspired from (Aubin et al. 2019, Fig. 4).

These allow us to define concisely the denoising functions as expectations wrt
pQ0, Qoutq .

goutpω, y,Vq :“ Bω lnZPout “ V´1EQout rz ´ ωs (V.1.27)

Bωgoutpω, y,Vq “ V´1EQout

“

pz ´ ωqpz ´ ωqJ
‰

´V´1 ´ goutg
J
out, (V.1.28)

fapΣ,Rq :“
B

BrΣ´1Rs
plnZP0

q “ EQ0
rX˚s , (V.1.29)

fVpΣ,Rq :“
B

BrΣ´1Rs
pfapΣ,Rqq “ EQ0

”

X˚X˚J
ı

´ faf
J
a . (V.1.30)

In particular, we remark that:

• the terms in red are shortcuts: they are respectively the functions of the line
above, evaluated on the input of their LHS, namely:

gout :“ goutpω, y,Vq P RK , fa :“ fapΣ,Rq P RK (V.1.31)

whenever clear from context, we will use this notation.

• from the LHS we have definitions, and the rightmost expressions are the sim-
plified form, which is

– just the expectation of one of the two channels in Eqns. V.1.25, V.1.26

– or some chain rule of them when we have an additional derivative.

• In particular, gout is the mean of V´1pz ´ ωq under Qout and the denoising
fa is the mean of Q0 (Aubin et al. 2019).

The graphical model is Figure V.3, and by relaxing the BP equations on it,
we can reach a formulation of AMP for the inference problem of the committee
machine (see (Aubin et al. 2019, App. F)). This can be understood as a vector
valued formulation where each variable node is multidimensional X˚

l P Rd, for a
total of L signals. The result is Algorithm 5 below. Akin to a density evolution
result, in the high dimensional limit n, dÑ8, δ P Θ p1q it is possible to describe the
dynamics of the Algorithm according to 4 parameters of interest by a sophisticated
Law of Large Numbers. These are nothing but the overlaps of estimators and
ground truths, and their respective Legendre conjugates (see footnote in the next
page for more context), leading to a description in terms of 4 matrices in S`

K . A
careful calculation (Aubin et al. 2019, App. G) shows that these have a precise form.
Under the additional setting of Bayes-Optimal inference, two Nishimori identities
reduce the number of overlap matrices to 2. Fast forwarding some computations,
the iterations take form:

Qpt`1q “ 2∇RψP0
pRptqq, Rptq “ 2δ∇QΨPoutpQ

ptq; ρq, (V.1.32)

where Qptq :“ limdÑ8
1
d r
pXptqsJX˚, and the estimator is nothing but the matrix of

means returned by AMP pXptq :“Aptq.



Algorithm 5 Committee Generalized Approximate Message Passing (C-GAMP)
Input: y P Rn,A P Rnˆd

Init: a
pt“1q

j P RK ,V
pt“1q

j P S`
K for all j P rds

Init: gpt“0q

out,i “ 0, Bωg
pt“0q

out,i P S
`
K , for all i P rns

Init: Σ
pt“0q

j “ IK for all j P rds
Init: tÐ 1

while Aptq, V⃗ptq not converged do
for i P rns do

V
ptq
i Ð

ř

j
1
dA

2
ijV

ptq
j

ω
ptq
i Ð

ř

j
1?
d
Aija

ptq
j ´ 1

dA
2
ij

”

Σ
pt´1q

j

ı´1

V
ptq
j Σ

pt´1q

j g
pt´1q

out,i

end for
for i P rns do
g

ptq
out,i Ð goutpω

ptq
i , yi,V

ptq
i q

Bωg
ptq
out,i Ð Bωgoutpω

ptq
i , yi,V

ptq
i q

end for
for j P rds do

Σ
ptq
j Ð ´

”

ř

i
1
nA

2
ij Bωg

ptq
out,i

ı´1

R
ptq
j Ð Σ

ptq
j

”

řn
i“1

1?
d
Aijg

ptq
out,ia

ptq
j

ı

end for
for j P rds do

a
pt`1q

j Ð fapΣ
ptq
j ,R

ptq
j q

V
pt`1q

j Ð fVpΣ
ptq
j ,R

ptq
j q

end for
tÐ t` 1

end while
return Aptq, V⃗ptq P Rd



Remark V.1.33. The fixed points of the iteration in Equation V.1.32 correspond
to the stationary points of the fRS function of Equation V.1.21. Iterating them, the
dynamics will stop at a stationary point of fRS.

To give more context, the actual result is explained below. More details are
found in (Aubin et al. 2019, App. G). For ease of notation, let zi “ 1

dX
˚ai denote

the ith input we give to the channel before injecting noise/applying the map, and
more importantly for any t ě 1 define:

V
ptq

:“ EX˚

«

lim
dÑ8

1

d

d
ÿ

j“1

V
ptq
j

ff

, X˚ „ PbK
0 (V.1.34)

which is the limiting mean variance estimator for a given set of signals X˚ P RK .
Assume a Bayes-Optimal setting. For t ě 1, in the high dimensional limit, the mean
and variance components pRptq,Σptqq are found to behave as:

Rptq :“ RptqpX˚, ξq „X˚ `

b

pQptqξ, Σptq „ rpQptqs´1, (V.1.35)

where X˚ „ PbK
0 , ξ „ N p0, IKq, and the order parameter pQptq is one of the two

iterators of interest3.

Remark V.1.36. It is important to note that the mean R and the matrix R are
unrelated. Unfortunately, too many symbols are required. This is the only inconsis-
tency in notation.

In other words, the true state evolution equations read:

Qpt`1q “ EpX˚,ξq

”

fvpΣ
ptq,RptqpX˚, ξqqfvpΣ

ptq,RptqpX˚, ξqqJ
ı

(V.1.37)

pQptq “ δEpω,z,λq

”

goutpω, φoutpz, λq,V
ptq
qgoutpω, φoutpz, λq,V

ptq
qJ
ı

, (V.1.38)

pz,ωq „ N p0,Cptqq, Cptq “

„

P Qptq

Qptq Qptq

ȷ

where pQ “ R and P is the mean covariance of the true signals, i.e.

P “ EX˚

«

lim
dÑ8

1

d

d
ÿ

j“1

X˚
j X

˚
j

J

ff

. (V.1.39)

Equations V.1.37, V.1.38 are just an explicit version of Equation V.1.32.

V.2 AMP exclusively from Statistics

The presentation of the previous section had the purpose of showcasing the intuition
behind AMP from a Physics perspective. This reasoning extends to a plethora
of models we do not touch upon. Preference is given to general results which
lack the interpretation, preferring the statistics-perspective, but come with great
expressivity. In particular, we will focus on presenting the formulations which are
suitable for the setting of our problem, and link their statistical formulations with
the Physics literature on the topic. The main reference in this case is (Tan and
Venkataramanan 2023), which in turn is an built upon the very useful review (Feng
et al. 2021). For these reasons, this exposition can be thought of as a different
construction with respect to the previous one, tailored for the specific case of mixed
regression, that eventually leads to the same results.

3i.e. it is the matrix R, here the notation is chosen to be suggestive of the Physics interpretation.
The matrix R “ pQ could seen as the Field coming from the system (modulo the prior). It is the
analog of the magnetization-field coupling. In the Ising model, the magnetization is Legendre
conjugated with the external field, here the overlap Q is the Legendre conjugate of the field R,
that can be thus seen as the necessary field that coupled with the prior provides the correct overlap.



Matrix GLM The case of two mixed signals naturally generalizes to the multiple
signals form where X˚ ” rx˚

1 | . . . |x
˚
Ls P RdˆL, which is associated to observations

Y P RnˆLout ,A “ taiu
n
i“1 P Rnˆd via the output function:

yi “ φ
`

pX˚qJai,λi

˘

i P rns, φ : RL ˆ RLΛ Ñ RLout (V.2.1)

where tλiu
n
i“1 are vectors of auxiliary latent random variables and A “ ra1, . . . ,ans

J

is the data matrix.

Example V.2.2 (Matrix GLM special case). We briefly recover the case of mixed
phase retrieval with the choice:

yi “ φpzi,λiq “

ˇ

ˇ

ˇ

ˇ

xx˚
1 ,aiy ηi1 ` . . .` xx

˚
L,aiy ηiL

ˇ

ˇ

ˇ

ˇ

` ϵi (V.2.3)

zi “ pX
˚qJai P RLˆd,

L
ÿ

l“1

ηil “ 1, tηilu P t0, 1u
L, ϵi „ N p0,∆q, λ1 “ ptηilu, ϵiq .

(V.2.4)

In simple words the output is determined by only one of the L signals at each time
since the latents are all binary valued and only one is non-zero for each sample i.
To recover our specific problem of interest, noiseless mixed phase retrieval, we set
L “ 2, η „ Bernpαq and ∆ “ 0.

A large body of literature provides ways to compute tractable forms of the global
Least Squares Estimator for the mixed linear regression case of Eqn. V.2.1, which in
principle is an NP-Hard problem. An exposition of references is found in (Tan and
Venkataramanan 2023, Sec. 1.1). It is also underlined how all of these methods are
not able to exploit information about the mixing signals (e.g. the prior in Bayes-
Optimal inference) and do not result in useful descriptions when n

d “ δ P Θ p1q,
requiring instead that the number of samples is at least d log d.

Most of the results stated in the following are strong theoretical statements of
the Physics formulation. For this purpose, we introduce some specific objects that
will be needed.

Definition V.2.5 (Complete Convergence). First introduced in (Hsu and Robbins
1947), discussed in (Feng et al. 2021, Sec. 1.1). For a sequence of random variables
pXnq on a euclidean space E we say Xn

c
Ñ x P E when Yn

a.s.
Ñ x for any sequence

pYnq Ă E such that Yn
d
“ Xn for all n.

Fact V.2.6. It holds that Xn
c
Ñ x ùñ Xn

a.s.
Ñ x, where the latter is almost sure

convergence (Def. A.3.1).

Proof. Trivially, the sequence pXnq is equally distributed wrt the sequence itself
and assumed to be almost surely convergent to be completely convergent.

Definition V.2.7 (Wasserstein Distance, Euclidean case). For pν, µq in Pdprq the
r-Wasserstein distance is:

drWasspµ, νq :“ inf
pX,Y q:X„µ,Y „ν

E r∥X ´ Y ∥r2s
1
r (V.2.8)

Remark V.2.9. This is the Euclidean formulation of Wasserstein distance which
can be far more general.

Structural Assumptions while our case is non degenerate and easily falls into
the framework considered, we briefly report the modeling assumptions that acco-
modate the result of (Tan and Venkataramanan 2023):

• The data matrix A is assumed to be such that the rows are iid ai „ N p0d,
1
nIdq

• the signals matrix X˚ is independent of the data matrix and the auxiliary
variables matrix Λ

• it holds that δ P Θ p1q and nÑ8



• for some r P r2,8s there are well-behaved pX,λq vectors respectively in
RL,RLΛ satisfying:

X „ PX λ „ Pλ E
”

X
J
X
ı

ą 0 E

«

L
ÿ

l“1

|X l|
r

ff

ă 8, E

«

L
ÿ

l“1

|λl|
r

ff

ă 8,

(V.2.10)
such that the empirical distributions of rows of the signal and auxiliary data
matrices converge completely in r-Wasserstein as nÑ8 to those well behaved
distributions. Namely for empirical distribution measures pνd, νnq averaging
over the respective rows:

drWasspνdpX
˚q,PXq

c
Ñ 0 drWasspνnpΛq,Pλq

c
Ñ 0. (V.2.11)

We are now ready to report the AMP iteration of (Tan and Venkataramanan 2023),
and its theoretical result. The iterative equations serve the purpose of estimating
pXptq P RdˆL,Θptq P RnˆL, where the latter estimates the matrix AX˚:

Θptq “ ApX´ xWt´1
´

Fptq
¯J

, xWptq “ gtpΘ
ptq;Y q Fptq “

1

n

d
ÿ

j“1

f 1
tpX

ptq
j q

(V.2.12)

Xpt`1q “ AJ
xWptq ´ pXptq

´

Cptq
¯J

pXpt`1q “ ft`1pX
pt`1qq Cptq “

1

n

n
ÿ

i“1

g1
tpΘ

ptq
i ;Yiq

(V.2.13)

where it is agreed that:

• the functions pgt, ftq are applied row wise to their inputs as:

gt : RL ˆ RLout Ñ RL gtpΘ
ptq;Y q “

´

gtpΘ
ptq
r1,:s;Y1q, . . . , gtpΘ

ptq
rn,:s;Ynq

¯J

(V.2.14)

ft : RL Ñ RL ftpX
ptqq “ pftpX

ptq
r1,:sq, . . . , ftpX

ptq
rd,:sqq

J (V.2.15)

• the matrices Fptq,Cptq are Jacobians P RLˆL wrt the first argument.

Remark V.2.16. Clearly, Eqns. V.2.12, V.2.13 can be cast into an algorithm.
The initializations would be pXp0q and xWp´1q “ 0 P RnˆL.

Remark V.2.17. Iterating Eqns. V.2.12, V.2.13 for T times has complexity
O pnpLT q, since they are all matrix operations.

Similar iteration schemes in literature are Iterative thresholding algorithms, which
however lacked the peculiarity of debiasing the estimators. Here the terms´xWt´1

`

Fptq
˘J

and ´pXptq
`

Cptq
˘J

perform exactly this task, and are essentially akin to the On-
sager correction of Chapter IV. This allows us to rexpress the complicated recursive
properties of the matrix AMP in terms of a recursion of deterministic vectors4

which are guaranteed to be the convergent limit of the empirical distribution of a
function of the original signal distribution. In turn, given that ft is just a function,
the estimators will converge empirically in the rows after the application of ft. This
last point makes ft be interepreted as a denoising function that might be adjusted
to exploit the properties of the original signal distribution. A similar statement
holds for the Θptq estimator.

State Evolution formally More precisely, we find that the empirical distribution
of the rows of pXptq and Θptq converge in a very strong sense (i.e. same of the
assumptions) to the distributions of the vectors:

M
ptq
X X`G

ptq
X G

ptq
X „ N p0,Tptq

X q M
ptq
Θ Z`G

ptq
Θ Z „ N

ˆ

0,
1

δ
E
“

XXJ
‰

˙

G
ptq
Θ „ N p0,Tptq

Θ q

(V.2.18)
4Before we had a recursion of deterministic scalars because we were estimating vectors, now we

are estimating matrices.



where the matrices pMptq
X ,T

ptq
X ,M

ptq
Θ ,T

ptq
Θ q are deterministic, derived recur-

sively and all in RLˆL. We now turn to describe how these are defined. For
ease of notation, rewrite the second denoising function as:

h : RL ˆ RL ˆ RLΛ Ñ RL htpz,u,vq :“ gtpu, φpz,vqq (V.2.19)

where it is again intended that it acts row-wise. The recursion is then defined given
Σptq P R2Lˆ2L. The first step is sampling vectors:

„

Z

Zptq

ȷ

„ N p0,Σptqq (V.2.20)

independent of λ „ Pλ P R
Lout . Then we evaluate the next deterministic step:

M
pt`1q

X “E
”

BZhtpZ,Z
ptq,λq

ı

(V.2.21)

T
pt`1q

X “E
”

htpZ,Z
ptq,λqhtpZ,Z

ptq,λqJ
ı

, (V.2.22)

where the derivative in the first term is the Jacobian of the first argument. Having
the new mean and the new variance of the noise, the variance-covariance matrix for
the following step is updated block wise as:

Σpt`1q “

«

Σ
pt`1q

p11q
Σ

pt`1q

p12q

Σ
pt`1q

p21q
Σ

pt`1q

p22q

ff

(V.2.23)

where:

Σ
pt`1q

p11q
“

1

δ
E
”

XX
J
ı

(V.2.24)

Σ
pt`1q

p12q
“ Σ

pt`1q

p21q
“

1

δ
E
”

Xft`1pM
pt`1q

X X `G
pt`1q

X qJ
ı

(V.2.25)

Σ
pt`1q

p22q
“

1

δ
E
”

ft`1pM
pt`1q

X X `G
pt`1q

X qft`1pM
pt`1q

X X `G
pt`1q

X qJ
ı

. (V.2.26)

Such recursion only requires a baseline Σp0q P R2Lˆ2L. Below we provide the
additional model assumptions for the results to hold.

Assumption V.2.27 (Matrix GLM AMP model conditions). Reporting the re-
quirements of (Tan and Venkataramanan 2023), we wish:

(A1) (reasonable start) there is a convergent matrix Σp0q and c0 P R such that in
the thermodynamic limit with δ P Θ p1q it holds:

1

n

«

pX˚qJX˚ pX˚qJ pXp0q

ppXp0qqJX˚ ppXp0qqJ pXp0q

ff

c
Ñ Σp0q 1

d

d
ÿ

j“1

L
ÿ

l“1

| pX
p0q

jl |
r c
Ñ c0 (V.2.28)

where the r power of convergence is the same of the Wasserstein convergence
of the structural assumptions. Additionally, there is a Lipschitz function f0 :
RL Ñ RL such that:

1

d

´

pXp0q
¯J

ϕpX˚q
c
Ñ E

“

f0pXqϕpXq
J
‰

Σ
p0q

p22q
´ E

“

f0pXqϕpXq
J
‰

ľ 0,

(V.2.29)
for all ϕ P LippRL,RLq, where LippRL,RLq is the set of functions f : RL Ñ RL

that are Lipschitz (wrt any finite constant).

(A2) (reasonable denoisers) for any time step, the denoising function ft`1 is:

– non constant

– Lipschitz in RL

– with derivative continuous and Lebesgue almost everywhere (a.e.) (see
Sec. A.3)

while the denoising function ht (which is just gt) is:



– Lipschitz on R2L`LΛ

– non-null measure non-constant in the auxiliary latents, namely:

Pλ ptv : pz,uq Ñ htpu, z,vq non-constantuq ą 0 (V.2.30)

– measure zero discontinuous derivative in the inputs of the learning pro-
cess, namely:

P
”

pZptq,Y q P Dt

ı

“ 0 Dt Ă RL`LΛ (V.2.31)

where Dt is the set of discontinouities of g1
t.

Remark V.2.32. Every algorithm requires an initialization. In the case of symmet-
ric channels such as phase retrieval, the null initializaiton ends up being a stationary
fixed point of the dynamics. As a consequence, in some cases the statistician needs
to find a leading estimator to feed the AMP algorithm. A choice for the estimator
is regarded as a head-start, i.e. pX “ ϵX˚ with ϵ P p0, 1q or any other scaling such
that the first estimator is mildly correlated with the ground truth. Another option
is just starting with a rescaling of the all ones matrix. Both guarantee that the first
Assumption is verified. Due to the symmetry of the Phase Retrieval channel, this is
complicated, as a random guess will have „ d´ 1

2 overlap with the true signal, thus
being null at infinite dimension. As we will discuss later, in many cases, a leading
spectral estimator is used to give a warm-start.

Definition V.2.33 (Pseudo-Lipschitz Space of functions). We define P-Lipmpr, Cq
as the set of functions ϕ : Rm Ñ R such that:

|ϕpxq ´ ϕpyq| ď Cp1` ∥x∥r´1
2 ` ∥y∥r´1

2 q ∥x´ y∥2 @x,y P Rm (V.2.34)

Functions in Rm belonging to an r class for some C are said to be r-Pseudo-
Lipschitz.

We now write down the main results of (Tan and Venkataramanan 2023), which
help us greatly in determining the properties of the AMP iteration we presented.

Theorem V.2.35 (Matrix GLM AMP, Theorem 1 of (Tan and Venkataramanan
2023)). The Iterations in Eqns. V.2.12, V.2.13, which constitute an AMP algo-
rithm for Matrix GLM models formalized as in Equation V.2.1 are such that, under
Assumption V.2.27, and the condition that T

p1q

X is positive definite, the following
holds for all t ě 0 as n, dÑ8, δ P Θ p1q:

sup
ϕPP´Lip2Lpr,1q

ˇ

ˇ

ˇ

ˇ

1

d

d
ÿ

j“1

ϕpX
pt`1q

j ,X˚
j q ´ E

”

ϕpM
pt`1q

X X `G
pt`1q

X ,Xq
ı

ˇ

ˇ

ˇ

ˇ

c
Ñ 0

(V.2.36)

sup
ϕPP´Lip2L`LΛ

pr,1q

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

ϕpΘ
ptq
i ,Θi,λiq ´ E

”

ϕpM
ptq
Θ Z `G

ptq
Θ ,Z,λq

ı

ˇ

ˇ

ˇ

ˇ

c
Ñ 0

(V.2.37)

where Θi :“ pX
˚qJai P RL for each i P rns and the noise terms are as before:

G
pt`1q

X „ N p0,Tpt`1q

X q KKX G
ptq
Θ „ N p0,Tptq

Θ q KK pZ,λq (V.2.38)

Proof. (Tan and Venkataramanan 2023, Sec. 5.1)

Corollary V.2.39 (Wasserstein Convergence version of matrix GLM AMP, Cor.
7.21 of (Feng et al. 2021)). Theorem V.2.35 can be restated to a Wasserstein conver-
gence result. The former equation is equivalent to asserting that the joint empirical
distribution of the rows of ppXj ,X

˚
j q is c-convergent in Wasserstein distance to the

joint distribution of the vectors on the RHS. A similar statement holds for the latter.



Remark V.2.40. The result of the Corollary-Theorem is very powerful. In the high
dimensional limit, the empirical distribution of a large class of functions evaluated
on the rows of the estimator and the ground truth is replaced by the same function
evaluated on a sample X „ PX , the limiting prior, and a deterministically per-
turbed version of the same sample, with known matrices pMX ,TXq performing the
perturbation. The degree of reliability of such result is complete convergence, which
is even stronger than almost sure convergence. More importantly, this convergence
is pointwise in time: at teach time step t, the result holds.

At this point one could ask what functions belong to the class of P-Lip functions.
Many objects of interest satisfy the requirements of Def. V.2.33.

Example V.2.41 (Overlap Evaluation Matrix GLM). An interesting performance
indicator for an estimator is the overlap. Briefly, it is the normalized alignment
of the estimator with the ground truth. Take an estimator matrix pX of the signal.
Each row j P rds is a feature, with L associated vectors that could be the feature
“effect”. Each column l P rLs is a signal estimator, trying to approximate the effects
j P rds of one of the possible vectors of e.g. mixed regression. By the result of Thm.
V.2.35, the overlap of the lth estimator is such that in the high dimensional limit

A

px
ptq
l ,xl

E2

∥∥∥pxptq
l

∥∥∥2
2
∥xl∥22

c
Ñ

E
”

ft,lpX
ptq
qxl

ı2

E
”

ft,lpX
ptq
q

ı2

E rxls2
@l P rLs X

ptq
:“M

ptq
X X `G

ptq
X

(V.2.42)
where ft,l is the lth component of the denoising function output and on the RHS,
xl is the lth component of X, a scalar.
Notice that we use the apex index t for time, the overline symbol surely means
that the object is a vector, and the l index on the matrix pX selects a ground truth
estimator pxl P Rd. The notation at first sight is very heavy.
In words, a column of the estimator matrix, being completely specified in empirical
mean by the expectation of a well defined sample from the prior, eventually reduces
to a mere evaluation of the equivalent limiting version of the overlap expressed in
terms of these expectations.

Example V.2.43 (MSE evaluation Matrix GLM ). As in the previous example,
the MSE of the lth ground truth estimator can be evaluated in the high dimensional
limit given the specialized result:

1

d

∥∥∥xl ´ px
ptq
l

∥∥∥2
2

c
Ñ E

„

´

xl ´ ft,lpX
ptq
q

¯2
ȷ

@l P rLs X
ptq

:“M
ptq
X X `G

ptq
X .

(V.2.44)

The examples provide even more evidence of the strength of Theorem V.2.35.
In the high dimensional limit, the iterates of the AMP estimators, which are over
very tall matrices nÑ8, are such that a big class of performance functions evalu-
ated on their rows and those of the ground truth is essentially equivalent to scalar
expectations and function evaluations of a tweaked prior. The state evolution
result is captured by the matrices pMptq

X ,T
ptq
X q, which achieve this. While for vector

AMP the calculations reduced to scalar state evolution in this case we have a state
evolution that is in terms of vectors in RL.

State Evolution optimization Remarkably, the state evolution iterates just
depend on the choice of the denoising functions pftp¨q, gtp¨; ¨qq. A natural question
is the existance of optimal functions in closed form. This is answered in the next
Proposition. First we report the intuition presented in (Tan and Venkataramanan
2023, Sec. 3.1). We have two recursions5 that describe the limiting dynamics of
our estimators in a correlation plus noise design. To choose the best denoising
functions, one would hope to make this noise as small as possible. This objective

5we ignored the result about Θ because it is essentially equivalent



can be expressed mathematically with some linear algebra. First we define two
versions of the iterates in State Evolution that rearrange the terms6:

rZ :“ Z `
´

M
ptq
Θ

¯´1

G
ptq
Θ

ĂXpt`1q :“X `

´

M
pt`1q

X

¯

G
pt`1q

X (V.2.45)

these are just used to express concisely two effective noise covariance matrices (Tan
and Venkataramanan 2023, Sec. 3.1). Indeed, we now express the magnitude of the
noise at time t for the two estimates:

N
ptq
Θ :“ CoV

”

rZptq ´Z
ı

“

´

M
ptq
Θ

¯´1

T
ptq
Θ

´

M
ptq
Θ

¯J

(V.2.46)

N
ptq
X :“ CoV

”

ĂXptq ´X
ı

“

´

M
ptq
X

¯´1

T
ptq
X

´

M
ptq
X

¯J

. (V.2.47)

Given such a construction, the objective has moved to a minimization of the traces
of these two matrices to make them small in norm. It is worth noticing that the
terms in Eqn. V.2.46 are determined by Σptq, which depends on ft. To see this,
observe how Eqn. V.2.18 establishes the relation, with the noise of sampling defined
in Eqns. V.2.23-V.2.26, paying particular attention to Eqn. V.2.25. Similarly, those
in Eqn. V.2.47 are determined by gt. This is concluded by a quick glance at Eqn.
V.2.18, and how its terms are determined in Eqns. V.2.21, V.2.22, with the function
h constructed from g in Eqn. V.2.19.
In presence of only one signal, which is the case of the classic GLM, optimality is

achieved in the Bayes-Optimal setting by maximizing the scalar SNRs m
ptq

X
b

q
ptq

X

,
m

ptq

Θ
b

q
ptq

Θ

(Feng et al. 2021; Rangan 2012). This reduces to finding the denoisers such that
m “ ρ “

?
q which lets state evolution be described by a single parameter and

pxptq “ ρptqx`
a

ρptqξt. In the multi-signal setting of Matrix GLM we find a closed
form expression which will eventually be equivalent in our model of interest due to
a very interesting property.

Proposition V.2.48 (Bayes-Optimal denoisers, Prop. 2 of (Tan and Venkatara-
manan 2023)). If pPX ,Pλq are known, for each time step k ě 1 it holds that:

1. given pMptq
X ,T

ptq
X q, the trace of the effective noise of estimating Θptq is mini-

mized when the denoiser is:

f‹
t psq “ E

”

X |M
ptq
X X `G

ptq
X “ s

ı

G
ptq
X KKX (V.2.49)

where Gptq
X „ N p0,Tptq

X q and X „ PX , i.e. the Bayes-Optimal condition

2. given pMptq
Θ ,T

ptq
Θ q the trace of the effective noise of estimating Xptq is mini-

mized when the denoiser is:

g‹
t pu, yq “ CoV

”

Z | Zptq “ u
ı´1 ´

E
”

Z | Zptq “ u,Y “ y
ı

´ E
”

Z | Zptq “ u
ı¯

(V.2.50)
where

• Y “ φpZ,λq is random and in RLout

• y is a fixed realization of it
• λ „ Pλ is in RΛ, sampled independently of Z

• the vector rZ,ZptqsJ „ N
`

0,Σptq
˘

.

Proof. Found in (Tan and Venkataramanan 2023, Sec. 5.2)

Remark V.2.51. Both results assume that the other State Evolution matrices are
known for the previous time-step in the algorithm. This is required by their recursive
definition, and one must consider that there will be a leading estimator pX from
which the iterations start. In particular, Bayes-Optimality is achieved time-wise,
i.e. separately for each t.

6if the inverse does not exist, conside the ´1 as the pseudoinverse (see Sec. A.2)
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Appendix A

Auxiliary Results

In this Chapter, we collect definitions and statements that are mentioned in the main
part of the text. They are not in a specific order. For organizational purposes, they
are divided in sections.

A.1 Analysis

Definition A.1.1 (Uniform convergence). Consider a sequence of functions pfnqnPN
all such that fn : E Ñ R, where E is generic. The sequence is uniformly convergent
to f : E Ñ R and we write fn ⇒ f when for every ϵ ą 0 there exists n P N such
that for all n ě n and for all x P E it holds:

|fnpxq ´ fpxq| ă ϵ.

The convergence is uniform in the sense that it holds for the same n for all x.

Definition A.1.2 (Open Cover). For a set A an open cover is a collection of
open subsets pAiqiPI such that the union of these sets contains A. A subcover is a
subcollection of a cover of a set that still covers the set.

Definition A.1.3 (Compact set). A set A is compact when each open cover has a
finite subcover.

Theorem A.1.4 (Heine-Borel). Let A Ă Rn. TFAE:

1. A is compact

2. A is closed and bounded.

A.1.1 Differentiation under Integral

It is often the case in Statistics that we stumble upon expressions such as:

∇x

ż bpxq

apxq

fpx, tqdt.

In this Subsection, we would like to state conditions that allow for the derivative to
be brought inside the integral.

Example A.1.5. In most applications, we will derive a result for apxq ” a, bpxq ”
x. This is simply:

d

dx

ż x

a

fpx, tqdt “ fpx, xq `

ż x

a

Bfpx, tq

Bx
dt.

We now present sufficient conditions for this identity to hold.
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Proposition A.1.6 (A version of Leibniz’s integral rule). Let fpx, tq, Bxfpx, tq be
continuous in their arguments in a region that for some x0, x1 includes the area:

tpx, tq : apxq ď t ď bpxq, x0 ď x ď x1u.

Let the functions ap¨q, bp¨q be C1 in the same slice x0 ď x ď x1. Then:

d

dx

ż bpxq

apxq

fpx, tqdt “ fpx, bpxqq
dbpxq

dx
´ fpx, apxqq

dapxq

dx
`

ż bpxq

apxq

Bfpx, tq

Bx
dt.

Notice that this result is more general than Example A.1.5.

The proof of Prop. A.1.6 is easily found. The conditions can be relaxed if
moving to a measure theoretic formulation.

Proposition A.1.7 (A stronger version of Leibniz’s integral rule). Consider a
measure space pX ,F , µq. Let A Ă R be open. A function f : A ˆX Ñ R such
that:

1. fpa,xq is integrable in X for all a P A.

2. Baf exists almost everywhere in X for all a P A.

3. the partial derivative Baf is bounded by an integrable function g : X Ñ R for
all a and for almost every x PX .

Then, for any a P A:

d

da

ż

X

fpa,xqdµpxq “

ż

X

Bafpa,xqdµpxq.

Proof. (preliminary object) By definition of derivative, we have:

B

Ba
fpa,xq “ lim

hÑ0

fpa` h,xq ´ fpa,xq

h
.

Using this, consider a sequence phnqnPN such that hn Ñ 0, and denote the sequence
obtained by using phnqnPN above as gnpa,xq. By #2 it holds that limnÑ8 gnpa,xq
is measurable1.
(Mean Value Theorem and Dominated Convergence) By an application of
the Mean Value Theorem and #3 one can state that2:

|gnpa,xq| ď sup
aPA

|Bafpa,xq| ď gpxq @a P A.

Therefore, by dominated convergence (Thm. A.1.12) applied for each a P A:

lim
nÑ8

ż

X

gnpa,xqdµpxq “

ż

X

lim
nÑ8

gnpa,xqdµpxq. (A.1.8)

On the LHS, we recognize the definition of derivative for the integral, and on the
RHS the definition of integral of a derivative. Mathematically one can realize that:

lim
hnÑ0

ş

X fpa` hn,xqdµpxq ´
ş

X fpa,xqdµpxq

hn
“

ż

X

Bafpa,xqdµpxq,

which is the claim of the statement.

1Observe that is f : clpAq Ñ R, where we have enlarged the definition of the function on its
closure, is differentiable then the function:

fnpxq :“

$

&

%

fpx` 1
n q´fpxq

1
n

if x ` 1
n

P clpAq

0 else

then fn is measurable and fn
nÑ8

Ñ f 1.
2The first inequality holds since by the MVT one has that infa,b f

1pxq ď
fpbq´fpaq

b´a
ď

supra,bs f
1pxq, where we use ra, bs “ ra, a ` hns Ă clpAq and realize that the supremum over

A will be larger for sure.



It turns out that these identities are much more general, and can be formulated
in terms of distributions. We avoid reporting these formulations and just point out
the reader to literature.

Further References

The topic is discussed in a general sense in (Talvila 2001). Statements in
Real Analysis are found in (Folland 1999, Thm. 2.27) or (Amann and Escher
2009, Pgs. 107, 108). For a formulation in the theory of distributions, the
first statements are found in (Jones 1982; Schwartz 1957). Some examples
and non-examples are found in (Conrad 2016).
A collection of notable statements is (Cheng 2010a). There it is mentioned
that a clean proof for the most general one involving distributions is found
in a report by the same author (Cheng 2010b). This report is only found
in a website that may be unstable (not uploaded by the author), but also
could remain there forever. For this reason, a copy of it can be retrieved by
emailing the author of this document.

Remark A.1.9. Since the matter is in general very delicate, we will avoid dis-
cussing its conditions and assume throughout that integration and differentiation
can be exchanged whenever necessary.

A.1.2 Limiting under the integral
Throughout this subsection, assume a common measure space pX ,F , µq.
Another common situation is the following. We are given an uncountable sequence
of parametrized functions pfθpxqqθPR and wish to do the following for a measurable
set A:

lim
θÑθ˚

ż

A

fθpxqdx “

ż

A

lim
θÑθ˚

fθpxqdx. (A.1.10)

Checking that this holds is in general hard, but some basic results in Measure
Theory establish sufficient conditions.

Theorem A.1.11 (Monotone Convergence). Consider pfnqnPN and A P F . Let
fn : A Ñ R` be non-negative and non-decreasing for all x. Assume3 pfnqnPN are
pF ,BpR`qq measurable and that the sequence converges pointwise to f , i.e.:

fpxq :“ lim
nÑ8

fnpxq.

Then the limit function f is pF ,BpR`qq measurable and:

lim
nÑ8

ż

A

fn dµ “

ż

A

f dµ.

Proof. (Bogachev 2007, Thm. 2.8.2).

Theorem A.1.12 (Dominated Convergence). Let pfnqnPN be a sequence of mea-
surable functions that converges pointwise to f . If:

|fnpxq| ď gpxq @n,@x PX

for some µ-integrable function g, then:

1. the pointwise limit f is µ-integrable

2. it holds:
lim
nÑ8

ż

X

|fn ´ f |dµ “ 0

3. as a consequence of #2, it also holds that:

lim
nÑ8

ż

X

fn dµ “

ż

X

f dµ.

3the symbol BpR`q denotes the Borel sigma-algebra of the set R`.



Proof. (Bogachev 2007, Thm. 2.8.1).

Corollary A.1.13. The statements of Theorem A.1.11 and A.1.12 can be relaxed
to µ-almost everywhere assumptions of non-decreasing and bounded respectively.

For finite measures, a weaker condition is sufficient. This is useful when no
bounding function is found. We use notions in Bogachev’s notation (Bogachev
2007). In particular, convergence in measure is sometimes termed global conver-
gence. Similar statements can be found in (Folland 1999).

Definition A.1.14 (Convergence in measure). Found in (Bogachev 2007, Def.
2.2.2). Consider a sequence of functions pfnqnPN and a function f all µ-measurable
and defined on X taking values in R. We say pfnqnPN converges in measure to f

and write fn
µ
Ñ f when for every ϵ ą 0:

lim
nÑ8

µ ptx PX : |fnpxq ´ fpxq| ě ϵuq “ 0.

We express this concisely by saying it is µ-convergent.

Definition A.1.15 (Uniform p-integrability). Let p ě 1. A set of functions F Ă
Lppµq is uniformly integrable when:

lim
HÑ8

sup
fPF

ż

|f |pąH

|f |p dµ “ 0.

By the definition of limit, this is equivalent to:

@ϵ ą 0, DH ” Hpϵq : sup
fPF

ż

|f |pěHpϵq

|f |p dµ ă ϵ.

The case for p “ 1 is treated in (Bogachev 2007, Def. 4.5.1).

Definition A.1.16 (Uniform absolute continuous integrability). Let p ě 1. A set
of functions F Ă Lppµq has uniformly absolutely continuous integrals if for every
ϵ ą 0 there exists δ ą 0 such that:

µpAq ă δ ùñ

ż

A

|f |p dµ ă ϵ @f P F.

This is the arbitrary p ě 1 case of (Bogachev 2007, Def. 4.5.3).

Proposition A.1.17. Let µ be a finite measure and F be a family of µ-integrable
functions. The collection is uniformly integrable if and only if it is bounded in L1

and has uniformly continuous integrals.
If µ is atomless, uniform integrability is just equivalent to uniformly continuous
integrals at p “ 1.

Proof. See (Bogachev 2007, Prop. 4.5.3).

Theorem A.1.18 (Lebesgue-Vitali). Let µ be a finite measure and pfnqnPN Ă Lppµq
with p ě 1 be a collection of measurable functions. TFAE:

1. for f P Lppµq it holds fn
Lp

Ñ f

2. fn
µ
Ñ f and p|fn|pqnPN is uniformly integrable.

Proof. The proof for p “ 1 is found in (Bogachev 2007, Thm. 4.5.4). The adaptation
for p ě 1 is natural. Notice that here uniform integrability is equivalent to uniform
absolute continuous integrability.

To restate this result for non-finite measures we need to work slightly more.

Definition A.1.19 (p-Tightness). Consider a collection of functions F “ pfnqnPN Ă
Lppµq. We say the collection is p-tight when for every ϵ ą 0 there exists Aϵ P F
with finite measure such that :

sup
fnPF

ż

X zAϵ

|fn|
p dµ ă ϵ.



Remark A.1.20. Tigthness is trivially verified for finite measures.

Theorem A.1.21 (Egoroff). Let pfnqnPN be a sequence of measurable functions
taking values on a separable metric space. Let A Ă X have finite µ-measure.
Assume fn

µ
Ñ f hwen restricted to A. Then for every ϵ ą 0 there exists B Ă A

measurable such that µpBq ă ϵ and fn ⇒ f on AzB.

Proof. See (Bogachev 2007, Thm. 2.2.1) or the handwritten notes (Torres 2017) or
(Ziemer and Torres 2017, Thm. 5.18).

Theorem A.1.22 (Lebesgue-Vitali for infinite measures). Let µ be a measure,
pfnqnPN Ă Lppµq with p ě 1 be a collection of measurable functions and f P Lppµq.
Then the statement:

fn
Lp

Ñ f

is equivalent to the following three conditions:

1. fn
µ
Ñ f

2. pfnqnPN has p-uniformly continuous integrals

3. pfnqnPN is p-tight

Proof. The p “ 1 statement is found in (Bogachev 2007, Cor. 4.5.5) without proof.
A reference with all the steps are the handwritten notes (Torres 2017) which follow
(Ziemer and Torres 2017, Thm. 6.30), and relies on Egoroff’s Thm. A.1.21.

Fact A.1.23. The almost everywhere version of the dominated convergence Theo-
rem (Thm. A.1.12) is implied by Vitali Convergence.

Proof. The sequence pfnqnPN is assumed to be almost sure convergent to f , and
dominated by an integrable g for each n. We want to show it is uniformly integrable
and tight.
(Uniform Integrability) Fix ϵ ą 0. By the integrability and positivity of g, we
take gϵ:

• measurable

• bounded

• with supppgϵq finite

• such that 0 ď gϵ ď g throughout

• satisfying 0 ď
ş

X g dµ´
ş

X gϵ dµ ă
ϵ
2 .

Let A ĂX be measurable. By the positivity of g ´ gϵ we know:
ż

A

g dµ´

ż

A

gϵ dµ ă
ϵ

2
.

By the boundedness of gϵ there exists M ě 0 such that 0 ď gϵ ď M . Combining
the two facts yields:

ż

A

g dµ ă

ż

A

gϵ dµ`
ϵ

2
ďMµpAq `

ϵ

2
.

A choice δ “ ϵ
2M gives:

µpAq ă δ ùñ

ż

A

g dµ ăMδ `
ϵ

2
“ ϵ,

so that g is uniformly integrable by the arbitrariness of A. By assumption |fn| ď g,
which holds also under integration and we get that pfnqnPN is uniformly integrable.
(Tightness) To show that pfnqnPN is tight it suffices to show g is. Fix ϵ ą 0 and
choose again gϵ such that it satisfies the inequality of the previous point. By that
condition, there exists a set A Ă X such that:

µpAq ă 8, µpgϵ1X zAq “ 0.



Using this last identity, we can bound the value of g integrated outside of A:
ż

X zA

g dµ “

ż

X zA

g ´ gϵ dµ ď

ż

X

g ´ gϵ dµ “

ż

X

g dµ´

ż

X

gϵ dµ ă ϵ.

Then g is 1-tight. Accordingly the integral over X zA of any fn is bounded by
that of g and pfnqnPN is 1-tight. By the Vitali-convergence Theorem the limit f is
integrable and it holds:

lim
nÑ8

ż

X

fn dµ “

ż

f dµ.

Remark A.1.24. To move from a countable sequence to an uncountable sequence
as we wished, it suffices to recall that the definition of fθpxq

θÑθ˚

Ñ fθ˚pxq is that for
all sequences pθnqnPN converging to θ˚ the limit fθnpxq Ñ fθ˚pxq holds.

Recently, a necessary an sufficient condition for stating Equation A.1.10 was
established for rather mild conditions4 (Kamihigashi 2020).

A.2 Algebra
Let K be either the field of real numbers or of complex numbers.

Definition A.2.1 (Hermitian Transpose). For a matrix A P Knˆm , denote the
Hermitian transpose (also, complex conjugate) with the dagger. Namely, identify
with A: the object:

pA:qij :“ Aij ,

where Aij “ ℜpAijq ´ ℑpAijq is the complex conjugate of the element at the pijqth
entry.
Observe that this is equivalently written as:

A: “
`

A
˘J
“ AJ,

since conjugation and transposition commute.

Definition A.2.2 (Hermitian matrix). A (square) matrix such that A: “ A.

Definition A.2.3 (Pseudoinverse). The pseudoinverse of A P Knˆm is another
linear map A` P Kmˆn that satisfies the following properties:

(weak Id.) AA`A “ A

(weak Inv.) A`AA` “ A`

(Herm a.) pAA`q: “ AA`

(Herm b.) pA`Aq: “ A`A.

It is also termed Moore-Penrose inverse.

A.3 Probability facts
Definition A.3.1 (Almost Sure convergence). A sequence of random variables
pXnqnPN where Xn : Ω Ñ X on a common probability space pΩ,F ,Pq converges
almost sure (a.s.) to X on the same probability space if:

P
”

ω P Ω | lim
nÑ8

Xnpωq “Xpωq
ı

“ 1.

In compact notation we write this as Xn
a.s.
Ñ X.

A function is termed Lebesgue integrable when its Lebesgue integral is finite.
A property of a probability space is said to hold almost everyhwere (a.e.) when
it does not hold on a set that has measure zero.

4Namely limnÑ8 fn being integrable and the measure µ being sigma finite.



A.4 Empirical Distributions
Consider a sequence of iid observations pXnqnPN, these have the same cumulative
distribution function (cdf). This statistical setting was largely studied, and many
results are known about the behavior of the sequence. In particular, we focus on a
standard strong result that is sufficient for our purposes.

A.4.1 Vapnik-Chervonenkis Theory

Assume we are in the usual probability space pX ,F ,Pq. The sigma-algebra F is
a collection of sets. We wish to describe how this behaves. By convention, denote
the intersection of a family of subsets F with a given set A as the object:

F XA :“ tAXB | B P Fu

We say the class F shatters a set A if for each subset B Ă A there exists C P F
such that B “ C XA.

Fact A.4.1. A class F shatters a set when F XA “ 2A, the power set of A.

Proof. By definition of F XA.

We implicitly make the assumption that A has finite size n, so that the size of
the power set is 2n ă 8.

Definition A.4.2 (Shattering coefficient). Consider F seen as a set of sets and
X be the ambient space. Its nth shattering coefficient is:

SF pnq :“ sup
x1,...,xnPX

ˇ

ˇ

ˇ

ˇ

ttx1, . . . ,xnu XB, B P Fu
ˇ

ˇ

ˇ

ˇ

.

In words, it is the size of the most numerous set arising from a choice of n elements
inside the sample space and a set B from the collection of sets. It measures the size
of AX F as a function of |A| “ n. It is also termed growth function.

Fact A.4.3. For a collection of sets F it holds that:

1. the shattering coefficient is upper bounded, SF pnq ď 2n.

2. Tightness implies shattering: if SF pnq “ 2n is tight then there exists A “

tx1, . . . , xnu that is shattered by F and such that |A| “ n

3. Monotonicity of non-shattering: if SF pNq ă 2N for N ą 1 then SF pnq ă 2n

is not tight for all n ě N .

Proof. (Claim #1) By Fct. A.4.1, any intersection of an element of F and A is
contained in the power set, which has dimension 2n.
(Claim #2) this is trivial, since the dimension of a shattering set is 2n and we set
the shattering coefficient to be 2n. In other words, the collection of sets F is able
to shatter at least one set A ĂX n.
(Claim #3) The shattering coefficient is solely related to the structure of F . If it
fails to be tight at N ą 1, then it must fail to be tight for any n ě N .

Definition A.4.4 (Vapnik-Chervonenkis dimension). The Vapnik-Chervonenkis
(VC) dimension of a collection of sets F is defined as:

VCpFq :“ min
n
tn : SF pnq ă 2nu .

In some references, one rather uses the definition with equality, which is just the
same up to a ˘1:

VC0pFq :“ max
n
tn : SF pnq “ 2nu “ VCpFq ´ 1.

In light of Fact. A.4.3(#1, #2, #3) we know that:



1. the shattering coefficient makes sense, since it is a finite number for each
choice of n P N

2. the shattering coefficient attains its maximum when there is a shattered set

3. the shattering coefficient is such that once there exists a size with no shattered
set, the collection of sets never shatters at higher dimensions.

Then, it is understood that if for any n P N it is always possible to find a shattered
set, then VC0pFq “ 8, and accordingly VCpFq “ 8.

Definition A.4.5 (VC class). A collection of sets F such that VCpFq ă 8.
Namely, a class for which there exists N ă 8 such that there is no shattering
sets from there onwards.

Lemma A.4.6 (Pascal’s Lemma). For positive natural number n, k we have:
ˆ

n

k

˙

“

ˆ

n´ 1

k

˙

`

ˆ

n´ 1

k ´ 1

˙

.

Proof. (Combinatorially) The LHS is the number of ways in which n elements
can be placed into k baskets. If we choose an arbitrary element i, the number of
ways to place all the elements but i into k baskets is

`

n´1
k

˘

. Similarly, the number of
ways in which n´ 1 elements can be placed into k´ 1 baskets, when one is already
occupied by i is

`

n´1
k´1

˘

. The LHS is the sum of the two terms, since they encompass
all possibilities.
(Algebraically) This is just a rearrangement of terms:

ˆ

n´ 1

k

˙

`

ˆ

n´ 1

k ´ 1

˙

“
pn´ 1q!

k!pn´ 1´ kq!
`

pn´ 1q!

pk ´ 1q!pn´ kq!
(A.4.7)

“ pn´ 1q!

„

1

k!pn´ k ´ 1q!
`

1

pk ´ 1q!pn´ kq!

ȷ

(A.4.8)

“ pn´ 1q!

„

n´ k

k!pn´ kq!
`

k

k!pn´ kq!

ȷ

(A.4.9)

“
n!

k!pn´ kq!
“

ˆ

n

k

˙

. (A.4.10)

Lemma A.4.11 (Sauer-Selah Lemma). Consider a family of sets F and a set A.
If VCpFq “ S then:

SF pnq ď
S
ÿ

s“0

ˆ

n

s

˙

@n.

Proof. The proof we show was found in (Balcan 2011) and is interesting because it
is a good exercise for induction on two parameters. Also, it highlights a different
interpretation of the objects in play. Three alternative proofs can be found in (Ngo
and Ngo 2010).
Proceed by induction on pS, nq. Let ΞSpnq :“

řS
s“0

`

n
s

˘

.
(Base case A) For n “ 0 and S P N we have only one subset, so that SF pnq ď
1 “ ΞSp0q.
(Base case B) Let S “ 0 and n P N. Then, no set can be shattered, and there is
a unique assignment for each point. Hence, SF pnq “ 1 ď ΞSp0q.
(Induction hypothesis) Assume the statement SF pn

1q ď ΞS1pn1q is true for each
n1 ď n, S1 ď S choice in the natural numbers with at least one of the two inequalities
strictly true.
(Inductive step, and a different perspective) Each element B P F of the sigma
algebra can be seen as a function fB : X Ñ t0, 1u which is the indicator function
fB :“ 1B . Accordingly, the sigma-algebra is a collection of binary functions (a
concept class in (Balcan 2011)). For a set A ĂX , define the following object:

DF pAq :“ tpfBpa1q, . . . , fBpa|A|qq : B P Fu Ď t0, 1un,



which is the set of functions that map the elements of A “ ta1, . . . , a|A|u to
a binary vector. Define a class of functions G “ tg : A Ñ t0, 1uu such that
DF pAq “ GpAq “ G. A set rA Ď A shattered by G is also shattered by F since
the constructions coincide. Hence, it necessarily holds VCpGq ď VCpFq.
(Building candidates and a representative function) The aim now is pro-
viding a sensible construction of two sets of functions pG1,G2q for which we can
apply the induction hypothesis. For g P G there corresponds a binary labeling of
the elements A´1 “ ta1, . . . , an´1u (notice we are ignoring one, hence the minus).
For each of these sublabelings, we build a representative function g as follows:

1. the mapping satisfies g : G Ñ G1, with G2 “ GzG1 yet to specify

2. for each function g P G2 there must exist a rg P G1 such that pg, rgq agree on
the set A´1 “ ta1, . . . , an´1u and disagree on the last term an that pg, rgq are
representing.

3. We set wlog gpanq “ 1, rgpanq “ 0. In words G2 is labeling the nth point as
positive.

The construction ensures that:

|DF pAq| “ |GpAq| “ |G1pAq| ` |G2pAq|. (A.4.12)

Hence, by the inclusion G1 Ď G the following bound holds VCpG1q ď VCpGq ď S.
(subproof) We now want to show that:

|G1pAq| “ |G1pAztanuq|,

which means that the added number on binaries does not matter in terms of how
the labeling is defined. Proceeding by double inclusion, one direction is trivial. The
hard direction holds since there is no function g such that:

gpA´ Y t0uq P G1, gpA´ Y t1uq P G1,

by the construction above. By the induction hypothesis, we have that

|G1pAq| ď ΞSpn´ 1q. (A.4.13)

(back to inductive step) Consider a set C. If C is shattered by G2 then CYtanu
is shattered by G. To see this notice that:

• an R C since all maps g P G2 are labeling an as positive by the convention #3
above

• necessarily CYtanu is shattered by G since there is a negative labeling function
rg P G1 in the opposite set that guarantees this shattering.

Consequently:
VCpG2q ď VCpGq ´ 1 ď S ´ 1. (A.4.14)

Following the subproof above, we also claim the equality |G2pAq| “ |G2pAztanuq|.
Hence, by this fact and Equation5 A.4.14 we conclude analogously:

|G2pAq| ď ΞS´1pn´ 1q.

Returning to the decomposition of Equation A.4.12, the steps above ensure that:

|DF pAq| ď ΞSpn´ 1q ` ΞS´1pn´ 1q. (A.4.15)

(sum simplification) What remains is to express Equation A.4.15 in terms of
ΞSpnq. This is done by just rearranging terms. As a first step:

ΞSpn´ 1q ` ΞS´1pn´ 1q “
S
ÿ

s“0

ˆ

n´ 1

s

˙

`

S´1
ÿ

s“0

ˆ

n´ 1

s

˙

“

ˆ

n´ 1

0

˙

`

S
ÿ

s“1

ˆ

n´ 1

s

˙

`

S
ÿ

s“1

ˆ

n´ 1

s´ 1

˙

,

(A.4.16)

5crucially, notice that we are obtaining ď S ´ 1 instead of ď S as in Equation A.4.13



where we have taken out the first term in the first sum and changed the index of
summation in the second. Now using the fact that

`

n
0

˘

“
`

n´1
0

˘

“ 1 for all n ě 1
we have a term in front and two summations over the same index:

ΞSpn´ 1q ` ΞS´1pn´ 1q “

ˆ

n

0

˙

`

S
ÿ

s“1

ˆ

n´ 1

s

˙

`

ˆ

n´ 1

s´ 1

˙

. (A.4.17)

The combinatorial identity of Pascal’s Lemma applied on pn, sq for each s gives the
claim, with base case s “ 0 being

`

n
0

˘

.

Lemma A.4.18. Notice that for n ě S, there is an additional bound
řS

s“0

`

n
s

˘

ď
`

en
S

˘S, so the conclusion above is expressed in asymptotic notation as:

n ě δ, VCpFq “ S ùñ SF pnq P O
`

nS
˘

. (A.4.19)

Proof. This is an easy combinatiorial bound. By assumption 0 ď S
n ď 1. Thus:

ˆ

S

n

˙S S
ÿ

s“0

ˆ

n

s

˙

ď

S
ÿ

s“0

ˆ

S

n

˙sˆ
n

s

˙

ď

n
ÿ

s“0

ˆ

S

n

˙sˆ
n

s

˙

“

ˆ

1`
S

n

˙n

ď eS . (A.4.20)

Rearranging, we get the claim.

Corollary A.4.21. An equivalent statement is if F has n distinct elements and
|F | ą

řS´1
s“0

`

n
s

˘

then F shatters a set of size S.

Proof. We prove that if Lemma A.4.11 is A ùñ B, here we have ␣B ùñ ␣A.
This holds by construction. The hypothesis that the VC dimension is S is paired
with F not shattering an S-sized set. These are obviously the negation of each
other. The conclusions are also in contradiction.

A.4.2 Glivenko-Cantelli Theory

In realistic scenarios, we only have access to a finite sample from a population. If
this population is not deterministic, then we will observe that the randomness is
manifested through the n phenomena. If we assume that these come from the same
distribution, the notion of empirical distribution function is natural.

Definition A.4.22 (Empirical Distribution function). The iid sequence pXnqnPN
of n iid samples from P has empirical measure:

Pnp¨q “
1

n

n
ÿ

i“1

1Xip¨q, (A.4.23)

which evaluates probabilities over Borel sets A Ă F as:

PnpAq :“
1

n

n
ÿ

i“1

1Xi
pAq. (A.4.24)

More in general, for a collection of measurable functions tf : X Ñ Ru we define
its empirical measure as:

Pnpfq :“

ż

f dPn “
1

n

n
ÿ

i“1

fpXiq. (A.4.25)

When we wish to emphasize the empirical distribution/measure, we might also use
empp¨q for clarity (as done in Chapter III).

A classic result in Probability Theory states that the empirical distribution
function of a real valued process has good convergence properties. This is the
content of the Glivenko-Cantelli Theorem.



Theorem A.4.26 (Glivenko-Cantelli). If tXiu
n
i“1 are iid with cdf F then:

∥F pxq ´ Fnpxq∥ “ sup
xP

|F pxq ´ Fnpxq|
a.s.
Ñ

nÑ8
0. (A.4.27)

In words, the empirical process converges almost surely uniformly in R.

If one wishes to adapt this to multidimensional empirical processes, the result is
more delicate. We need to establish modes of convergence and uniform convergence
for measurable sets or measurable functions and link this with a geometrical result in
the flavour of Vapnik-Chervonenkis, who were the first to establish the connection.

Further References

The next results are stated withour proof, as they are a mix of different
statements. To check all the required steps, a clean summary with proofs
and connections is given in (Caramanis 2000), or other short notes (Banerjee
2010; Kahle 2006; Raban n.d.). Some seminal works that established a
network of results are (Dudley 1987; Dudley, Giné, and Zinn 1991; Talagrand
1987; Vapnik and Chervonenkis 1971). In terms of pedagogical lecture notes,
some worth mentioning for an understanding and extended references are
(Sen 2022; Wellner 2004). A book with fundamental results is (Dudley
1999).

For this reason, we wish to inspect the multidimensional empirical measure in
relation to a set of measurable sets C and a set of measurable functions A . When
we express a norm wrt to either of the sets, we mean the supremum among all the
choices inside. For example, ∥Pn ´ P∥A :“ supfPA |Pnpfq ´ Ppfq|, where we use
the standard notation for Measure Theory6. For simplicity, we assume that the
expectations are always finite so that we can integrate without having to check.

Remark A.4.29. The norms are random variables since they depend on the n sized
sample.

Definition A.4.30 (Glivenko-Cantelli class). An collection of sets is a Glivenko-
Cantelli (GC) class if either of the following are true:

∥P´ Pn∥C
a.s.
Ñ

nÑ8
Ñ 0 (A.4.31)

∥P´ Pn∥C
p
Ñ

nÑ8
Ñ 0 (A.4.32)

∥P´ Pn∥C
L1

Ñ
nÑ8

Ñ 0, (A.4.33)

where in particular it can be shown that they are equivalent.

Definition A.4.34. A GC class of functions is analogous to the GC class above.

Definition A.4.35 (Universal GC class). A class F is universal GC if it is a GC
class wrt any P on pX ,Fq.

Definition A.4.36 (Uniform GC class). A class F is uniform GC if in addition
the globality wrt to any P on pX ,Fq is uniform. Mathematically:

sup
PPPpX ,Fq

E r∥P´ Pn∥C s ÑnÑ8
0. (A.4.37)

Definition A.4.38 (Suslin Space). A measurable space pJ ,J q such that it admits
a Borel measurable function that is a surjection from a Polish space P onto S.

Definition A.4.39 (Image admissible Suslin). Consider a measure space pX ,Fq,
a set A of functions on X and a map:

M : A ˆX Ñ R. (A.4.40)

We say M is image admissible Suslin via pJ ,J , Gq if
6namely:

µf :“ Eµ rf s . (A.4.28)



• pJ ,J q is Suslin

• J : J Ñ X is a surjection

• the map pj,xq ÑMpGpjq,xq is measurable on J ˆX .

We say a class is image admissible Suslin over the standard measure space if there
exists a function M and a triplet satisfying the conditions.

Theorem A.4.41 (VC-GC connection). Let A be image admissible Suslin, TFAE:

1. A is uniform GC

2. A is VC in the sense of Def. A.4.5.

Eventually, for uniform almost sure convergence of empirical measures, one can
check that the class of test functions is a VC class, to obtain that in that precise
restriction (though very wide) of space the result is valid.

A.5 More About Stein and Counting

As a general interesting fact, we quickly report a scalar converse of Stein’s Lemma
that can be found in (Nourdin, Peccati, and Réveillac 2010). To prove it, we first
need a Lemma of independent interest. The two statements are found in (Chen,
Goldstein, and Shao 2011)

Lemma A.5.1. Fix z P R. Let Φpzq “ PrZ ď zs be the cdf of Z. The unique
bounded solution fpxq :“ fzpxq to the equation:

f 1pxq ´ xfpxq “ 1txďzu ´ Φpzq (A.5.2)

is:

fzpxq “

#?
2πe

x2

2 Φpxqr1´ Φpzqs x ď z
?
2πe

x2

2 Φpzqr1´ Φpxqs x ą z.
(A.5.3)

Proof. Multiply the LHS and RHS of Eqn. A.5.2 by e
x2

2 . This gives:

pe
x2

2 fpxqq1 “ e
x2

2

`

1txďzu ´ Φpzq
˘

. (A.5.4)

Integrating the two over dx yields:

fzpxq “ e
x2

2

ż x

´8

r1txďzu ´ Φpzqse
´x2

2 dx “ ´e
x2

2

ż 8

x

r1txďzu ´ Φpzqse
´x2

2 dx.

(A.5.5)
The last equation is equivalent to the claim. To see that fzpxq is bounded, refer to
the statement in (Chen, Goldstein, and Shao 2011, Lem. 2.3) and the explanations
therein.
Lastly, we claim that the solution to Eqn. A.5.2 is fzpxq ` C. This constant is
a solution to the homogeneous equation, and thus has form C “ ce

x2

2 for some c
constant. To have a bounded solution, we are forced to take c “ 0.

Proposition A.5.6 (Partial Converse of Stein’s Lemma that characterizes Scalar
Gaussians). A random variable X has Standard Gaussian Law if and only if:

E
“

f 1pXq ´XfpXq
‰

“ 0, (A.5.7)

for each continuous piecewise differentiable function with E r|f 1pXq|s ă 8. In par-
ticular, the direction Standard Gaussian ùñ Equation A.5.7 can be relaxed to “for
all absolutely continuous functions with integrable derivative".



Proof. (C. Stein 1972) is one of the early references. A pedagogical proof is as
follows.
(relaxed direction) Let f : R Ñ R be absolutely continuous with integrable
derivative. If X is standard Gaussian then:

E
“

f 1pXq
‰

“
1
?
2π

ż 8

´8

f 1pxqe´ x2

2 dx (A.5.8)

“
1
?
2π

„
ż 0

´8

f 1pxq

ˆ
ż x

´8

´we´ w2

2 dw

˙

dx`

ż 8

0

f 1pxq

ˆ
ż 8

x

we´ w2

2 dw

˙

dx

ȷ

,

(A.5.9)

by using the integral representation of the exponential function on the two half
planes. Then an application of Fubini’s Theorem with the right change of variables
in the integration indexes gives:

E
“

f 1pXq
‰

“
1
?
2π

„
ż 0

´8

ˆ
ż 0

w

f 1pxqdx

˙

p´wqe´ w2

2 dw `

ż 8

0

ˆ
ż w

0

f 1pxqdx

˙

we´ w2

2 dw

ȷ

(A.5.10)

“
1
?
2π

ż 8

´8

rfpwq ´ fp0qswe´ w2

2 dw (A.5.11)

“ E rXfpXqs . (A.5.12)

(Eqn. A.5.7 ùñ Standard Gaussian) Consider the function fzpxq of Lemma
A.5.1. It is continuous and piecewise continuously differentiable. The discussion
in the proof also explains that fzpxq is bounded. Then the identity E rf 1pXqs “
E rXfpXqs holds in particular for fzpxq and we get:

0 “ E rfzpXq ´XfzpXqs “ E
“

1tXďzu ´ Φpzq
‰

“ PpX ď zq ´ Φpzq, (A.5.13)

and X has a Gaussian Law by the arbitrariness of z.

We introduce some notation taken from the original formulation (Isserlis 1918),
and presented succintly in (Kenneth Tay 2019). Consider a collection A :“ pa1, . . . , aN q
where possibly numbers are repeatedly sampled from the integers in t1, . . . , du. A
vector X P Rd has product in A defined with the expression:

XA “
ź

aiPA

Xai
, XH :“ 1. (A.5.14)

Then ΠpAq denotes the set of pairings (partitions into disjoint pairs) of A. For a
pairing π P ΠpAq we let Azπ be the set of indices i P rds such that we could express
the pairing as:

tpai, aπpiqq | i P Azπu (A.5.15)

Remark A.5.16. Note that ΠpAq “ H if A has odd size. Simply, there are no
pairings since one element is always left out.

Example A.5.17. Take pd “ 4, N “ 6q. Consider a set A “ t1, 2, 3, 4, 1, 2u, where
we used colors for repetitions. A simple pairing is placing adjacent elements as
pairs. We then have π “ pt1, 2u, t3, 4u, t1, 2uq. Then Azπ “ t1, 3, 1u, where the
map πpiq performs πp1q “ 2, πp2q “ 4, πp1q “ 2. Notice that once we choose a
pairing π the set Azπ is represented by essentially the same function.

Armed with this construction and a set A, we can define the structure of the
Hafnian:

HafpX;Aq :“
ÿ

πPA

ź

iPAzπ

Xai
Xaπpiq

, (A.5.18)

In words, for a fixed set A, list all the possible pairings, and for each of these, make
the product of the elements in the set Azπ.



Remark A.5.19. The Hafnian is an object connected to the notions of Deter-
minant, Permanent and Pfaffian. We gloss over these details and just provide a
statement.

Example A.5.20. We restrict ourselves to the simplest non trivial example. Let
A “ t1, 2, 3, 1u. Then the Hafnian is:

ÿ

πPA

ź

iPAzπ

Xai
Xaπpiq

“ X1X1 ¨X2X3 `X1X2 ¨X1X3 `X1X2 ¨X1X3 (A.5.21)

“ X2
1 ¨X2X3 ` 2X1X2 ¨X1X3, (A.5.22)

where in the first step we kept the colors, but eventually the index is the same.

In the context of Gaussian Vectors, a very nice statements about these combina-
tions of moments can be established, notably, this is equivalent to a generalization
of Stein’s Lemma.

Theorem A.5.23 (Isserli’s Theorem). Given a Gaussian vector X P Rd with zero
mean, it holds:

E rXAs “
ÿ

πPA

ź

iPAzπ

E
“

Xai
Xaπpiq

‰

“ HafpEbX;Aq, (A.5.24)

where the tensor product symbol is used to denote element-wise expectation.
Namely, the A-Hafnian of the Covariances in the entries is equal to the expectation
of a power of the entries instructed by the same A choice of integers.
This result is often termed Wick’s Probability formula.

Proof. (Janson 1997, Chap. 1, Thm. 1.28).

Remark A.5.25. Notice that this is equivalent to the multivariate version of Stein’s
Lemma (Cor. II.4.33). We only prove here that Gaussian integration by parts
implies Isserli’s result.
By induction on n, where f : Rn Ñ R this is trivial. Taking fpxq “ x2 ¨ ¨ ¨xn the
result follows.

Remark A.5.26. Notice that:

1. Taking |A| odd, there are no pairings, and the expectation is null.

2. for even size (say 2n), there are p2nq!
2nn! “ p2n´ 1q!! pairings

3. Given #1, #2, we immediately recover as a special case the result for moments
of Centered independent Gaussians X „ N p0, σ2q, which admit an expression:

E rXns “

#

pn´ 1q!!σn n even
0 n odd

. (A.5.27)
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