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Abstract

Low-degree lower bounds are an established method to claim average-case hardness for algorithms. When
the null hypothesis is simple, an explicit orthonormal basis suffices to start the derivation. When it is not,
advanced proof methods rely on a complex matrix inversion via recursive relations. In this work, we present a
new proof technique to find low-degree lower bounds for any type of null distribution. It relies on finding
an “almost orthonormal” basis. Specifically, we exploit symmetries in the distributions and the graphical
structure to adjust orthogonal polynomials for simple null hypotheses. With the right fixes, correlations decay
fast enough to reproduce the classical proof. We present the steps for a motivating example: the planted
sub-matrix model. The observation is a binary matrix such that the entries are more likely to be positive if
they belong to a latent clique of vertices of random size. After establishing a low-degree lower bound for
this model, we argue that our method works for many others. The progression is adaptive, with sections for
readers not familiar with low-degree polynomials and average-case hardness in general.
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list of symbols

rns integers from 1 to n
À, Á, « inequality/equality up to constants
Àlog, Álog, «log inequality/equality up to poly-logarithmic factors
Y observation matrix
X latent signal
n observation size
k signal size
λ signal strength/magnitude
Hnoise

0 pure noise null hypothesis
H0 null hypothesis
H1 alternative hypothesis
η signal strength perturbation
ζ signal size perturbation
θ parameter vector
Pθ parameterized probability distribution
D degree of a polynomial
AdvpďDqpH0, H1q advantage
π labelling of vertices
Πℓ injective functions from rℓs to rns

σ permutation
G “ pV, Eq skeleton graph in abstract space
πpGq “ pπpVq, πpEqq labelled graph in observation space
ψp¨; jq, ψp¨; Gq basis element
ψ basis vector
αG, αi, α coefficient of basis element, coefficients vector
GpďDq skeletons set
M set of matchings
MPM set of perfect matchings
M‹ set of star matchings
G△ “ pV△, E△q symmetric difference graph
#CC number of connected components in symmetric difference graph
csi constant in assumptions 3.1 - 3.7
#CCpure number of pure connected components in symmetric difference

graph
U unmatched vertices in symmetric difference graph
M matched vertices in symmetric difference graph
MPM perfectly matched vertices in symmetric difference graph
MSM semi-matched vertices in symmetric difference graph
dp¨, ¨q graph edit distance
AutpGq automorphism group of a graph
Mshadowp¨, ¨, ¨q set of shadow matchings
ΠpMq pairs of injections that give M as matching
PG canonical basis element of definition 2.18

pPG centered basis element
PG corrected basis element
νpGq dominant rescaling factor
rPG corrected rescaled basis
G Gram matrix of the basis
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1 introduction

The question of proving negative results for problems in statistics is long-standing, and dual to positive
results. Older literature focused mainly on finding impossibility/feasibility theorems for important problems
without constraining the space of functions considered. This line of work of information-theoretic lower and
upper bounds flourished (Arias-Castro and Verzelen 2014; B. Clarke, J. Clarke, and Yu 2014; Commenges
2015; Duchi 2024; Ebrahimi, Soofi, and Soyer 2010; Kullback 1978; Verzelen and Arias-Castro 2015). Often, the
claims argue that the optimal function to solve a given problem is already well-known in statistics, e.g. the
maximum-likelihood estimator or the likelihood ratio (Kunisky, Wein, and Afonso S. Bandeira 2019).

This work pertains attacking the same problems but from the point of view of what algorithms cannot
achieve. While there are known cases in which the best possible function from information theory coincides
with an algorithm (Mondelli and Montanari 2018), there are others where we have a so-called statistical-
to-computational gap (Afonso S. Bandeira, Perry, and Wein 2018; Kunisky, Wein, and Afonso S. Bandeira
2019; Zdeborová and Krzakala 2016). The phenomenon is widely present and hints at the existence of
scenarios in which even the best algorithm cannot cover all instances where the signal (information) rises above
the noise (randomness). Gaps arise in many fields and subfields. Notably, problems spanning hypothesis
testing (Kunisky 2020), estimation (Even, Giraud, and Verzelen 2024, 2025a,b; Schramm and Wein 2022; Sohn
and Wein 2025), refutation (Kothari et al. 2023), and optimization (Huang and Sellke 2025; Wein 2020) share
this phenomenology.

The low-degree method is a technique to tackle algorithmic lower bounds and find such gaps. It arose as
the “key step” in another procedure: the method of sum-of-squares (Barak, Hopkins, et al. 2016; Hopkins et al.
2017). Later, it matured into a separate field, with independent motivations (Kunisky, Wein, and Afonso S.
Bandeira 2019). Let us mention briefly some of its features.
On the positive side, its flexibility made it widely applicable, with plenty of recent works using it in different
flavours. Without being exhaustive we mention (Arpino and Venkataramanan 2023; Ding et al. 2023; Even,
Giraud, and Verzelen 2024, 2025a; Kothari et al. 2023; Rush et al. 2022) and reroute the reader to the review of
Wein (2025a) for a comprehensive summary. Notably, these span hypothesis testing, estimation, refutation,
and optimization as above (Wein 2025a,b).

Apart from using it as a workhorse for proofs, other objectives of current research on the method are:

• to refine the construction (Buhai et al. 2025; Kothari et al. 2023; Kunisky 2020);

• to find ways to use it when a certain class of orthogonal polynomials is not explicit (Kunisky 2020;
Schramm and Wein 2022; Sohn and Wein 2025).

Concerning the former, the main negative aspect is that the low-degree method relies on conjectured inclusions
of class of functions and algorithms, so it is subject to adjustments. See in particular (Hopkins et al. 2017, hyp.
2.1.5) (Wein 2025a, hyp. 3.1), the counterexample of Buhai et al. (2025) and the new formalism of Kunisky
(2024a,b). The positive argument is that it appears to work well under proper assumptions.
We are interested in the latter. Let us clarify it further. For a bottom-up justification of the following definitions
we reroute non-familiar readers to appendix C. It is a friendly summary of the transition from information-
theoretic lower bounds to computational bounds aimed at explaining what is a statistical-to-computational
gap and why we would be interested in it.

Suppose we observe a random matrix Y P t´1, 1unˆn which depends on a latent (i.e. unobserved) random
structure X, and we want to extract from Y knowledge about X. To model it, we say Y is sampled from an
unknown distribution Pθ depending on a latent parameter θ P Θ Ď RK which influences the strength/size of
the latent random variables (see the discussion in appendix C). From now onwards, we term Y the observation,
and X the signal with structure θ. In principle, Θ is a huge space, so we can say very little about the latent
structure of Y if we only know Y „ Pθ for some θ P Θ. A common situation in statistics is that expert
knowledge makes our life a lot easier. In practice we restrict the possible values θ can take.
Let us then take a very favourable case where we know that Y was sampled from either of two distributions.
From tθ P Θu we move to a pair pθ, θ1q P Θ ˆ Θ. We define two major types of problem when this simplification
happens:

Problem 1.1 (Detection). Let Θnoise Ă Θ be the subspace of parameters such that Y „ Pθnoise has no structure for
all θnoise P Θnoise, informally termed “pure noise”. Suppose θnoise P Θnoise, θ P Θ. Let Hnoise

0 be the hypothesis that
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Y „ Pθnoise . Let H1 be the hypothesis that Y „ Pθ is sampled from any other distribution. Study the behavior for given
θ P Θ of the hypothesis test between distributions:

Hnoise
0 : Y „ Pθnoise , H1 : Y „ Pθ. (1.2)

Namely, understand when we can distinguish between a pure noise matrix and a matrix with structure. We implicitly
assume that all pure noise distributions in Θnoise are indistinguishable in the sense that they induce the same distribution
on Y. The particular θnoise does not influence this problem.

Problem 1.3 (Complex detection). Let Pθ,Pθ1 be distributions of Y. Study the behavior for given pθ, θ1q P Θˆ2

with θj ‰ θ1
j for only one index j P rKs of the hypothesis test between distributions:

H0 : Y „ Pθ, H1 : Y „ Pθ1 . (1.4)

Namely, understand when we can distinguish two structured distributions, since the other cases collapse to problem 1.1.

In the even more favourable scenario, we know θ, and just need to infer information about the latent
structure. This corresponds to an additional simplification to Y „ Pθ, which leaves us with only one question:

Problem 1.5 (Estimation, or recovery). Assume Y „ Pθ for some θ P Θ. Study for given θ the behavior of an
estimator of the latent signal X in Y.

Problems 1.1 - 1.3 are hypotheses tests. In particular, problem 1.3 is an example of “complex” testing.
The common approach is to build a test function tp¨q and threshold it properly. For problem 1.5 we want an
estimator. There are many ways to write uniform bounds for success/failure of classes of functions for these
problems (see appendix C).

In this document, we focus on impossibility results for complex testing between distributions with
algorithms taking a maximum time to compute, i.e. problem 1.3, with the constraint that we allow test
functions to take a maximum computation time. Namely, we seek regions of Θ were no procedure up to some
computational time can solve with small error probability problem 1.3. We focus on a toy model (eqn. 1.6) to
present clearly the proof technique. Later in subsection 6.IV we discuss a large class of models with respective
assumptions that enjoy an analogous result.
We apply the low-degree method, a technique to show, at least conjecturally, that computational time-
constrained algorithms cannot solve problems 1.1 - 1.3 - 1.5 in prescribed regions of Θ. In section 2, we
explain why it boils down to upper bounding a quantity termed advantage (definition 1.10), which depends
on the hypotheses H0, H1, thus implicitly on the parameters pθ, θ1q. The dependency on the distributions
considered is natural, and led earlier works (see the review of Wein (2025a)) to decompose quantities inside
the expectations according in the Hilbert space of the null distribution (eqn. 1.13). Usually, this is easy for
problem 1.1, but way harder for complex testing and estimation, i.e. problem 1.3, or problem 1.5 when we take
the “null” to be the only distribution Pθ. In practice, the main problem in these last two cases is the presence
of a latent structure.
We overcome this issue with a new proof technique.

document structure In the remaining part of this section we present our contribution (subsec. 1.I) and
discuss related work in subsection 1.II. We then present the low-degree method for non-experts (sec. 2), and
define the objects pertinent to it. In particular, this section is intended for readers that are not familiar with the
subject. Our main results and assumptions are in section 3. We also discuss a specific representation of the
object we bound (subsec. 3.II), and our two main ideas in subsections 3.III - 3.IV. One crucial notion we will
introduce is that of skeleton graphs: in section 4 we clarify the construction and speak at large of it. From
the skeletons, we reach a formulation of an “almost orthonormal” basis in section 5. In simple words, it is a
basis satisfying a key property we present in definition 1.14. Section 6 concludes with the proof of the main
theorem: an upper bound on the performance of polynomials at varying degree. As a bonus, subsection 6.IV
briefly sketches in which sense the proof technique extends to many more models almost directly.
Appendix A reports the proofs of the lemmas of sections 2 - 3. Appendix B shows a matching lower bound of
our negative result. It clarifies an argument we make in section 3, in particular remarks 3.5 - 3.10. Appendix C is
an introduction to information-theoretic and algorithmic lower bounds in average-case hardness. In particular,
we formalize the notion of statistical-to-computational gap.

notation Most of the symbols are standard. We use the shorthand rns :“ t1, . . . , nu. To denote in-
equalities/equalities up to constants we write Á, À, « and Àlog, Álog, «log for relations that hold up to
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poly-logarithmic factors in the sample size n. The letters c, C, c¨, c¨, C¨, C¨ always mean constants. Since
Hnoise

0 , H0, H1, H are hypotheses of distributions depending on θ, when we write EH r¨s , PH we mean the
expectation (resp. probability) with respect to the distribution considered.
The only difference we make is between what is random and what is not, what is scalar, what is vectorial and
what is matricial. For example, a, b, c, x, y, z, α, β, γ is a scalar, while a, b, c, x, y, z,α,β,γ is a random scalar. Sim-
ilarly, a, b, c, x, y, z, α, β, γ is a vector; a, b, c, x, y, z,α,β,γ is a random vector. Again, A, B, C, X, Y , Z, Λ, Ψ, Θ

is a matrix; A, B, C, X, Y, Z,Λ,Ψ,Θ is a random matrix. An expectation such as Ex rxyzs “
ş

xyz dP rxs is such
that y is deterministic, and we integrate out against x which is deterministic once it is expressed inside an
integral, keeping z random throughout.
We denote graphs G “ pV, Eq via edges and vertices in a certain abstract space. Graphs in the space of the
observation are always labelled through a given injection π from the abstract space to the observation space.
The graph notation is independent of the rest, and we use A for sets of pairs related to graph theory objects.
All the other objects are explicit, and graphs are never random in this work.

1.i Contribution

In this document we propose a new method to prove low-degree lower bounds. We consider as toy
example an instance of the planted sub-matrix model:

Y P t´1, 1u
nˆn , such that for all i, j P rns Yij “

#

1 with probability
1`Xij

2

´1 with probability
1´Xij

2

, Xij “ xixj, (1.6)

where x P t0,
?

λun is a binary vector such that:

xi
i.i.d.
„

?
λBer

ˆ

k
n

˙

, λ P r0, 1s, k P N. (1.7)

In words: there is a signal x that acts on the observation as X “ xxJ and increases the probability of Yij “ 1
when xi “ xj “

?
λ. The matrix X “ xxJ is the latent signal with structure θ. It is a shift of the classical

Erdös-Rényi random graph with a planted clique of random size. There are many ways to study versions
of this model with the low-degree method and related approaches (Alon, Krivelevich, and Sudakov 1998;
Brennan and Bresler 2020; Gamarnik, Moore, and Zdeborová 2022; Hopkins et al. 2017; Kothari et al. 2023).

For given pk, λq “: θ P Θ :“ N ˆ r0, 1s the planted sub-matrix model is a distribution Pθ. We can study
problems 1.1 - 1.3 - 1.5 in the language of statistics.

Definition 1.8 (Pure noise parameters of planted sub-matrix). For the model of equation 1.6 we define the subspace
of pure noise parameters Θnoise :“ tpk, λq | kλ “ 0u. Notice that for all θnoise P Θnoise it holds that X is a null matrix

almost surely and Yij
i.i.d.
„ Radp1{2q for all i, j P rns. All pure noise parameters induce the same distribution on Y and the

definition is in accordance with problem 1.1.

Remark 1.9 (Problems 1.1 - 1.3 - 1.5 for the planted sub-matrix model). The “pure noise” scenario of definition 1.8

is such that Yij
i.i.d.
„ Radp1{2q for all i, j P rns for all θnoise P Θnoise. In accordance with definition 1.8 and problem 1.1

all observations Y „ Hpθnoiseq are indistinguishable, in the sense that they induce the same distribution and there is no
difference in doing hypothesis test with one or another.
The complex test of problem 1.3 is of two major types:

• we perturb the signal strength θ “ pk, λq to θ1 “ pk, λ ` ηq for some λ ą 0, η ą 0;

• we perturb the signal size θ “ pk, λq to θ1 “ pk ` ζ, λq for some k ą 0, ζ ą 0.

The case where n changes between the two distributions is easy to detect as we observe an n-dimensional matrix, so it is
trivial.
Estimation in problem 1.5 boils down to estimating for a given error measure the support of the clique, i.e. the sites j such
that xj “

?
λ where Y „ Hpθq for some θ P ΘzΘnoise.

As we said, we focus on complex hypothesis testing, the immediate example being testing between two
non-zero values of λ or k above. We call this complex testing because we want to distinguish distributions
both having signal (see problem 1.3). We defined problems 1.1 - 1.5 because non-triviality of complex testing
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depends on them (see remark 3.6) and our technique extends to these two, albeit being superfluous for
detection.

While the model is quite standard and we recover known results, the importance of the work is the expla-
nation in a controlled setting of the proof technique, which applies in far more instances (see subsec. 6.IV).
Due to its direct nature, we hope that this method will spark finer results and more explicit derivations of
low-degree lower bounds.

The main quantity in low-degree lower bounds is the advantage. We define it below.

Definition 1.10 (Advantage). Let H0, H1 be hypotheses of two probability distributions. We define the advantage as:

AdvpďDqpH0, H1q :“ sup
f :t´1,1unˆn ÞÑR

f :degp f qďD

EH1 r f pYqs
b

EH0

“

f 2pYq
‰

, (1.11)

where the supremum is taken over polynomials.

Remark 1.12. The adaptation for our three problems is immediate; the distributions are parameterized, and the advantage
depends on the parameters implicitly.
For detection (prob. 1.1) we take Pθnoise the distribution of Hnoise

0 , for some θnoise and Pθ the distributions of H1 for
some θ P Θ.
For complex testing (prob. 1.3), we consider Pθ the distribution of H0 and Pθ1 the distribution of H1 for a pair
pθ, θ1q P Θˆ2.
In our paper, all hypotheses correspond to a distribution so it is unambiguous.
In the case of estimation (prob. 1.5), at a given θ P Θ, there is an analog notion of advantage where we take integrals with
respect to Pθ at the numerator and denominator (see (Schramm and Wein 2022; Sohn and Wein 2025)).

We seek an upper bound on this quantity because it quantifies how polynomials of degree up to D are
able to make the mean under one distribution large with respect to the fluctuations under another. For the
special case of estimation it is a matter of making the mean large with respect to fluctuations under the same
distribution, like in the second moment method. For a full derivation in complex testing and detection see
section 2.
A function that makes the objective of the advantage large is said to separate (in the weak or strong sense, see
definitions 2.10 - 2.12). Therefore, if we show that no polynomial can separate, we claim the problem is hard to
study up to polynomials of some degree, and extrapolate conjecturally that it is the same for algorithms taking
a time that depends on D (see sec. 2). In particular, polynomial-time algorithms correspond in the low-degree
formalism to D «log log n.

The simplest way to upper bound the advantage is to upper bound the numerator and lower bound the
denominator. The former is easy (it is linear), so let us focus on the latter. Interpreting integrals under H0 as
a Hilbert space with associated inner product x f , gyH0

:“ EH0 r f gs the advantage turns into an optimization
problem over the coefficients of the expansion:

AdvpďDqpH0, H1q “ sup
α

EH1

”

ř

jPbasis αjψpY; jq
ı

b

ř

i,jPbasis EH0

“

αiαjψpY; iqψpY; jq
‰

, (1.13)

for pψpY; jqqjPbasis a basis of polynomials of degree less than D. For simple null hypotheses such as in Hnoise
0

from problem 1.1 there are known nice orthonormal bases. When this happens, the denominator is just }α}2
and the expression greatly simplifies. Much of the recent work on low-degree polynomials aims to overcome
the issues of generic distributions in H0. The simplest example of null hypothesis that is not trivial is when
H0 ” H0pθq is a distribution with λ ‰ 0 and k ‰ 0 as in problem 1.3: it has itself a signal, and we want to
distinguish it from H1 which has larger signal. We call it a complex testing problem (see prob. 1.3).

this work We will build an almost orthonormal basis of polynomials for complex testing. We define this
property as:

Definition 1.14 (Almost orthonormal basis). A basis pψp¨; jqqjPbasis for a Hilbert space induced by a distribution Q

is almost orthonormal when it satisfies the following inequalities up to constants:

}α}2 À

d

ÿ

i,j

EQ

“

αiαjψpY; iqψpY; jq
‰

“: }α}
EQrψψJs À }α}2. (1.15)
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In particular, for complex testing (problem 1.3) we have Q “ Pθ the distribution of H0 ” H0pθq, and are interested in
cases θ R Θnoise.
For estimation (problem 1.5) we seek an almost orthonormal basis with respect to the distribution Q “ Pθ which is at the
numerator and denominator of the advantage (def. 1.10).

Once we have an almost orthonormal basis the technique to bound the advantage degrades to models
where the distribution of the null hypothesis H0 admits an explicit orthonormal basis. The key steps in
building it rely on the symmetry and conditional independence of the problem. If it exists, the main theorem
(thm. 3.8) follows smoothly as the simplification is very deep.

1.ii Related work

There are two axes of similarity with literature: (i) finding computational lower bounds for non-trivial null
hypotheses, and (ii) exploiting the invariance of the distribution we consider in problems 1.1 - 1.3.
Concerning the former, to the best of our knowledge, the oldest work deriving algorithmic lower bounds with
the low-degree method under non-simple null hypotheses is (Kunisky 2020). In particular, Kunisky (2020) is
able to go beyond the assumption of a Gaussian null hypothesis by leveraging results on exponential families
of random variables. These enjoy explicit orthonormal bases. Later, the work of Schramm and Wein (2022)
unveiled an implicit way to upper bound the advantage (def. 1.10) with a recursive construction. The positive
aspect of the technique is that it is very general. The price to pay is that the method is rather complex. Many
works followed their paradigm (see the discussion in (Wein 2025a)). A sharpening of (Schramm and Wein
2022) also recently appeared as a preprint (Sohn and Wein 2025). However, the improved precision is again
traded-off with a complex derivation. A peculiar aspect of this technique is the appearance of cumulants in the
inequalities (see (Schramm and Wein 2022, thm. 2.2, rem. 2.3)), which have no clear justification. Properties of
such cumulants are crucial for obtaining the bounds (Even, Giraud, and Verzelen 2024, 2025a,b).
Invariance in statistics has instead a long history. The seminal books of Lehmann (1970) and Lehmann and
Casella (1998) study situations in which invariant distributions enjoy nice properties, especially for hypothesis
testing. The conjugation of these ideas with the low-degree method already started, with works largely
overlapping with physics ideas (Kunisky, Moore, and Wein 2024; Montanari and Wein 2022; Semerjian 2024).
The fact that physics comes up simultaneously with symmetry is not a surprise, and motivates us to discuss
alternatives to the low-degree method.

other connections While the low-degree method originated from the computer science/statistics
community, many formalisms arose in other fields. The idea is always the same; one seeks to restrict the class
of functions to a class of computable functions believed to include algorithms, or suggest their uselessness
in proper regimes. Among these, we find (non-exhaustively): the sum-of-squares hierarchy of relaxations
itself (Barak and Steurer 2014), proofs of average-case reductions (Brennan and Bresler 2020), techniques to
show that Markov chain Monte Carlo algorithms fail (Arous, Wein, and Zadik 2020; Jerrum 1992), the statistical
query approach (Feldman 2017; Reyzin 2020; Steinhardt 2016; Szörényi 2009), and plenty of methods from
statistical physics (Afonso S Bandeira and Alaoui 2022; Barbier 2024; Barbier et al. 2024; Gamarnik, Moore,
and Zdeborová 2022; Gamarnik and Zadik 2019; Zdeborová and Krzakala 2016). We comment some below.

In nice cases, predictions match across methods. In general, the low-degree pathway is the widest (Wein
2025a,b). Motivated by these facts, an exciting task that arose is classifying or showing equivalence between
any of them.
This ambitious direction has reached strong but narrow results. In certain classes of models, the low-degree
method may be “equivalent” in some proper sense to: the best known algorithm from statistical physics
(termed AMP, for approximate message passing) (Montanari and Wein 2022), an established method (termed
Franz-Parisi, after the authors) to prove geometric impediments in the complexity landscape (Afonso S
Bandeira and Alaoui 2022; Chen et al. 2025), or other types of so-called “free energy barrier” results such as
the overlap-gap property (Barbier et al. 2024; Gamarnik, Moore, and Zdeborová 2022; Gamarnik and Zadik
2019, 2022; R and Kızıldağ 2025). Notably, there are also plenty of connections within fields that do not include
the low-degree method under proper assumptions. For a very comprehensive overview, we reroute the reader
to the presentation of Wein (2025b) and the review of Wein (2025a).
For further arguments, we suggest consulting (Kunisky, Wein, and Afonso S. Bandeira 2019; Wein 2025a) and
the references therein. It is also useful to compare with the complementary physics side of the literature, well
exposed in (Afonso S. Bandeira, Perry, and Wein 2018; Zdeborová and Krzakala 2016).
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2 low-degree method (for unfamiliar readers)

In this section we review the low-degree method for hypothesis testing (e.g. probs. 1.1 - 1.3) with an eye
towards readers that are not experts of the literature. Coming back to the beginning of section 1, it is one of
the most used computational models to fix the issue of older unconstrained bounds. We postpone the broader
context of these unconstrained bounds and how these are linked to algorithmic bounds to appendix C.

The low-degree method is a restriction to the computational class of polynomials of low degree. Follow-
ing Wein (2025a, hyp. 3.1), it means that we roughly believe/conjecture the following inclusions:

“Degree Op1q polynomials Ď polynomial-time algorithms Ď degree Oplog nq polynomials”.

In full generality, if we wish to extend the analogy we believe in the inclusions of Hopkins et al. (2017, hyp.
2.1.5) and Wein (2025a, hyp. 3.2):

“exp tD{logC nu- time algorithmsĎ degree D polynomials Ď nOpDq-time algorithms”,

for some large C and D ” Dpnq increasing with n. While these have to be taken with care, we can in principle
study the behavior of the best performance over type I and type II errors for functions of a given degree, and
then come back later to the subtleties. In general, it makes sense to say that if polynomials of a very large
degree cannot solve a problem, then no algorithm up to some runtime can. Similarly, if a polynomial of low
degree can solve a problem, we expect to write down an algorithm that computes the polynomial and solves it.
For larger justifications and issues, we reroute the reader to subsection 1.II where we provide robust references.

Remark 2.1. We state our definitions in the context of our planted sub-matrix model for problems 1.1 - 1.3, but
they are fairly more general and adapt to any sequence of hypotheses ppHpnq

0 , Hpnq

1 qqnPN with associated distributions
ppPθpnq,Pθ1pnqqqnPN of random variables taking values in some N-dimensional space where N ” Nn. For our little
model, we have N “

`n
2

˘

if we observe only half of the matrix Y and ignore the diagonal, or N “ n2 if we observe all of it,
and Y lives in a hypercube. For tensors, we would have N “ np and Y tensorial in some field for example.

Remark 2.2. We state our definitions asymptotically for simplicity. One could adapt the whole explanation to a non-
asymptotic setting for the restricted computational class. The ways in which this is feasible or not are problem-dependent.

We formulate two notions of success for a test as in other works (Kunisky, Wein, and Afonso S. Bandeira
2019; Wein 2025a). The analogues in information theory and the algorithmic counterpart are in the appendix
(equations C.3 - C.4 - C.6 - C.7).

Definition 2.3 (Strong detection). For a hypothesis test pH0, H1q between distributions with given parameters
sequences θ ” θpnq, θ1 ” θ1pnq, we say a test t : t´1, 1unˆn ÞÑ t0, 1u performs strong detection if:

PH0 rtpYq “ 1s ` PH1 rtpYq “ 0s “ o p1q , as n Ñ 8. (2.4)

In words: the function performs asymptotically no errors.

Definition 2.5 (Weak detection). For a hypothesis test pH0, H1q between distributions with given parameters
sequences θ ” θpnq, θ1 ” θ1pnq, we say a test t : t´1, 1unˆn ÞÑ t0, 1u performs weak detection if:

PH0 rtpYq “ 1s ` PH1 rtpYq “ 0s ď 1 ´ Ω p1q , as n Ñ 8. (2.6)

In words: the function beats random guessing by a non-negligible margin.

In particular, these two are different notions of a positive result, and we can adapt them to degree D
polynomials by adding proper constraints.

Example 2.7. Consider the following criterions that are a study of type I and type II errors restricted to thresholding
polynomials:

inf
f :t´1,1unˆn ÞÑt0,1u

f :degp f qďD

inf
ξ

!

PH0

”

1 f pYqěξ “ 1
ı

` PH1

”

1 f pYqěξ “ 0
ı)

ě 1 ´ o p1q , @θ P ΘpďDq imp, (2.8)

inf
f :t´1,1unˆn ÞÑt0,1u

f :degp f qďD

inf
ξ

!

PH0

”

1 f pYqěξ “ 1
ı

` PH1

”

1 f pYqěξ “ 0
ı)

“ o p1q , @θ R ΘpďDq imp, (2.9)

where in words we mean that we take the best ξ thresholding each f attaining minimal type I and type II errors. We say
that:
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• if we are in the first scenario, then there is no weakly or strongly detecting degree D test, but there might be higher
degree computable tests;

• if we are in the second scenario, we know there is a degree D test that performs strong detection, hence also weak
detection. Moreover, since there are degree-D tests, the same happens if we remove the constraint.

In particular, we hope that the region of impossibility of polynomials roughly coincides with the region of impossibility
of algorithms with some runtime D1, i.e. that ΘpďDq imp « ΘpďD1qalg imp. For D «log log n we expect that we capture
polynomial time algorithms. In any case, we are interested in both the weak and strong sense of having low type I plus
type II error.

It turns out that showing this directly is not nice. The quickest simplification is using a looser criterion,
that of separability. There are two versions of it. The former is the strong version:

Definition 2.10 (Strong separation). A function f : t´1, 1unˆn ÞÑ R strongly separates a hypothesis test pH0, H1q

between parametric distributions for given parameter sequences θ ” θpnq, θ1 ” θ1pnq if:

max
␣

VarH0 r f s , VarH1 r f s
(

“ o
`
ˇ

ˇEH0 r f s ´ EH1 r f s
ˇ

ˇ

˘

. (2.11)

The latter relaxes the vanishing requirement to just boundedness.

Definition 2.12 (Weak separation). A function f : t´1, 1unˆn ÞÑ R weakly separates a hypothesis test pH0, H1q

between parametric distributions for given parameter sequences θ ” θpnq, θ1 ” θ1pnq if:

max
␣

VarH0 r f s , VarH1 r f s
(

“ O
`
ˇ

ˇEH0 r f s ´ EH1 r f s
ˇ

ˇ

˘

. (2.13)

To clear matters our, we argue that separability is a sufficient condition for detection.

Lemma 2.14. If there exists a weakly (strongly) separating function then there exists a weakly (strongly) detecting test.
Such test thresholds the separating function.

Proof. Follows by an application of Chebyshev’s inequality.

Having found a sufficient condition, we just work towards a nicer formulation for establishing bounds. We
want to compare quantities, so it is natural to consider their ratio:

ˇ

ˇEH0 r f s ´ EH1 r f s
ˇ

ˇ

max
␣

VarH0 r f s , VarH1 r f s
( . (2.15)

To simplify, we recenter the null to have EH0 r f s “ 0 at no loss, and lower bound the maximum in the
denominator.1 In doing these, we get to a larger quantity: EH1 r f s{

b

EH0 r f 2s. It is some L2-looking criterion
to compare the variance in the null and the first moment in the alternative. For a given test, if it is large
in some proper sense we know we are either weakly or strongly separating distributions in the sense of
definitions 2.12 - 2.10. Moreover, by lemma 2.14, we have the detection analogues and conclude that the
problem is solvable in the asymptotic regimes. With this machinery, we can show the positive result that in a
given region there is a function (possibly a polynomial of some degree) that attains low type I and type II
error jointly.

extrapolation To prove negative results we just “flip the sock”. If we show that no polynomial up
to some degree performs strong (weak) detection, then we are drawn to believe that there are no strongly
(weakly) detecting tests. We get to the workhorse of papers in the low-degree method: the advantage of
definition 1.10. We rewrite it below in the form of problem 1.3 for convenience.

AdvpďDqpH0, H1q “ sup
f :t´1,1unˆn ÞÑR

degp f qďD

EH1 r f pYqs
b

EH0

“

f 2pYq
‰

. (2.16)

We are interested in three behaviors of the advantage, depending on θ ” θpnq and D ” Dpnq:

1. when it is unbounded, and so there exists a strongly separating function;

1 By lower bounding the maximum we lose something, and might recover suboptimal results. In these cases, a certain “conditional”
low-degree method solves the issue (see the discussion at the end of (Kunisky, Wein, and Afonso S. Bandeira 2019, sec. 1.2)).
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2. when it is bounded but not vanishing, O p1q, in which case there is no strongly separating function, but
there is a weakly separating function;

3. when it is 1 ` o p1q, case in which there is not even a weakly separating function.

Using definitions 2.3 - 2.5, we will take case #1 as evidence of easiness of the problem in the strong and weak
sense, case #2 as evidence of hardness in the strong sense, and easiness in the weak sense, case #3 as evidence
of hardness in both senses.

Eventually, the best-case scenario of the low-degree method is a combination of the following steps, largely
dependent on the conjectured inclusions at the beginning of this section:

1. showing that for all given θ P ΘpďDq imp the advantage is vanishing (or bounded);

2. showing that for all θ R ΘzΘpďDq imp the advantage is bounded but not vanishing (or diverging);

3. in a finer way, showing that for all θ R ΘzΘpďDq imp there exists an algorithm attaining strong (or weak)
detection when D «log log n;

4. even better, showing that for all θ R ΘzΘpďDq imp there exists an algorithm that takes exp tD{logC nu time
to perform strong (or weak) detection at varying D.

intuition To tackle steps #2, #3, #4 we take inspiration from step #1, where we prove an upper bound on
the advantage. Informally, the hardest object to bound at given D should hint at the best-performing degree D
polynomial. When D «log log n, this gives an indication of the best-performing poly-time algorithm, which is
expected to be robust to a slight perturbation from ΘpďDq imp to its complement, and hence to “start working”
just outside the impossible phase. Therefore, we need to attack step #1.

usual technique To upper bound the advantage the trick is to rely on the statistical structure. We already
mentioned it is a L2-looking criterion, and while this analogy has a clear formalization (see e.g. (Kunisky,
Wein, and Afonso S. Bandeira 2019)), we do not need it in its entirety. If we have an orthonormal basis, the
representation of equation 1.13 greatly simplifies:

AdvpďDqpH0, H1q “ sup
f :t´1,1unˆn ÞÑR

degp f qďD

EH1

”

ř

jPbasis αjψpY; jq
ı

}α}2
“ sup

α:}α}2“1

ÿ

jPbasis

αjEH1 rψpY; jqs , (2.17)

and the complicated fraction became a linear sum. Upper bounding terms to get a bounded sum is then a
problem-dependent task.

While the existence of an orthonormal basis is not an issue in separable spaces, its tractability or it be-
ing explicit is not a guarantee. For pure noise null hypotheses as in problem 1.1, it is (see lem. 2.23):

Definition 2.18 (Canonical monomials). Let G “ pV, Eq be a graph over V “ tv1, . . . , vℓu vertices. Denote Πℓ the
set of injective mappings that label the graph. Define:

P : G ˆ Π¨ ˆ Rnˆn Ñ R

pG “ pV, Eq, Π|V|, Yq ÞÑ
ź

pi,jqPE

Yπpiq,πpjq
(2.19)

We term “canonical basis” of polynomials of degree less than D the set
´

1,
`

PG,π
˘

pπ,Gq,pďDq

¯

.
Here, the pπ, Gq pairs cover all non-empty labelled graphs with less than D edges and no isolated vertices.
We show it is an orthonormal basis for distributions allowed in Hnoise

0 of problem 1.1 in lemma 2.23.

Remark 2.20. We add the constant function f pYq ” 1 because it is needed and not present in the monomials. Morally,
it corresponds to the empty graph G “ H.

Remark 2.21. We use the notion of labelled graph πpGq for later purposes. One can just think of an element of this basis
as a product over edges pi, jq. When we sum over G, π, we morally sum over labelled graphs in the entries of the matrix.

Remark 2.22. In our specific model the underlying graph is simple (no double edges), and has no self-loops, i.e. no Yii
terms in the basis.
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Lemma 2.23. Under the distributions allowed in Hnoise
0 from problem 1.1 the canonical basis

´

1,
`

PG,π
˘

πPΠ|V|

¯

GPGpďDq

is an orthonormal basis of polynomials of degree less than D from t´1, 1unˆn to R.

Proof. See appendix A.

Contrarily, for structured null hypotheses, such as those in problem 1.3, or for estimation,2 which is
problem 1.5, finding an orthonormal basis is a hard task. As we mentioned in subsection 1.II, this impediment
was the main motivation behind the work of Schramm and Wein (2022). There, the authors and the works that
followed rely on a careful lower bound on the denominator to get to an upper bound on the advantage as in
equation 2.17. The resulting terms in the sum are recursively defined, and the technology is very involved.
Our proposal summarized in subsection 1.I is more explicit and direct. In the next section, we present its
consequence.

3 main result

The main result is a bound on the advantage (def. 1.10) in problem 1.3 for the planted sub-matrix model
of equation 1.6. As we said, it supports the claim that polynomials up to some degree fail at solving the
hypothesis test. It also works for problem 1.1, but it is superfluous (see remark 3.6). The main ideas behind an
adaptation to a larger class of models are in subsection 6.IV.
In particular, to obtain results about the denominator of the advantage (def. 1.10), which is independent of H1,
we only need to work on the first three parameters pn, k, λq and the degree D.

Assumption 3.1. The degree is such that D ě 2. Moreover:

max
"

k
n

,
λk
?

n
, λ

*

ď D´8csi , (3.2)

for some large universal constant csi ą 0. For the sake of this document, we do not optimize it.

Thanks to assumption 3.1, we will simplify greatly the denominator of the advantage (def. 1.10).

Proposition 3.3 (Preliminary version of proposition 5.82). Suppose we want to study problem 1.3 for the planted
sub-matrix model of equation 1.6. If the θ of H0 satisfies assumption 3.1 there exists a basis for the distribution in H0
that is almost orthonormal in the sense of definition 1.14.

Remark 3.4 (Important comment on almost orthonormality). We want an upper bound on the advantage (def. 1.10).
Therefore, almost orthonormality may look redundant, as we only need the upper bound in definition 1.14, i.e. that for
some basis }α}

EH0rψψJs Á }α}2 for all α vectors of coefficients of the decomposition. While this is true to obtain an upper
bound, there is no guarantee that it will be tight. Definition 1.14 ensures that the representation through the almost
orthonormal basis and that through the existing orthonormal basis differ by a multiplicative constant.

Remark 3.5 (Interpretation). There are three conditions, each with a precise meaning. Recall that we want to prove a
negative result for algorithms.

• We require k{n to be small because otherwise we saturate the information-theoretic bound in the sense of appendix C;
in regimes where the signal is as large as the observation the problem has no statistical-to-computational gap.

• We need λk{
?

n to be small because if it is not then a line-sum statistic can solve problem 1.3. Actually, it can
estimate (i.e. problem 1.5) the latent locations tj P rns | xj “ 1u which is a harder task in the sense of definition C.8.
We justify this in the next remark and show it in appendix B.

• We postulate the condition on λ to make the first two results at the right scale.

Remark 3.6 (Interesting regimes). Complex testing (prob. 1.3) is a generalization of detection (prob. 1.1) where
the null distribution can have a signal. Therefore, to prove a negative result about complex testing we need detection
to be in an easy regime. In addition to this, we can claim that complex testing is easier (in the sense of definition C.8)
than estimation of the position of the signal (prob. 1.5), as we can trivially use an estimator for the signal to solve the
hypothesis testing question. This suggests that complex testing is in between detection and estimation. The practical

2 One can prove hardness of estimation by bounding an analog of the advantage on only one distribution: it has signal in the denominator
and numerator. See (Schramm and Wein 2022; Sohn and Wein 2025).
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implication is that if we want complex testing to be an “interesting” problem of its own then we need detection to strictly
dominate estimation (again, in the sense of def. C.8). In terms of the signal conditions of the assumption, this results in
an added condition that k Álog

?
n. This region of parameters is said to have a detection-recovery gap.3

If we do not consider the case when k Álog
?

n, then we still have a hardness result for complex testing, but we already
know that detection, which is an easier problem (in the sense of definition C.8) is hard, so we are proving a superfluous
result.

To upper bound the full expression, we add an assumption on H1.

Assumption 3.7 (Perturbation). The perturbations for complex testing (problem 1.3) satisfy the following conditions,
where csi is the same constant of assumption 3.1:

• if we test a perturbation on the strength of the signal λ against λ ` η, then η ď λ{D and ηk2
{n ď D´8csi ;

• if we test a perturbation on the size of the signal k against k ` ζ then ζ ď k{2D and ζ
a

λ{n ď D´8csi .

The conditions on the csi constant may vary across the types of perturbations here. Morally, csi is always a constant but
it might be different when we test on λ or on k.

The main result is a fine control on the advantage.

Theorem 3.8. Suppose we want to study problem 1.3 for the planted sub-matrix model of equation 1.6. Recall
the definition of advantage (def. 1.10) and the fact that H0, H1 are hypotheses of distributions, so that the notation
AdvpH0, H1q is unambiguous.
Let assumptions 3.1 and 3.7 hold for pθ, θ1q P Θˆ2 parameterizing the distribution in H0 and H1 respectively. Then for
all D ě 2:

AdvpďDqpH0, H1q ď 1 `
1
D

. (3.9)

Remark 3.10 (Interpretation). In both cases of complex testing (prob. 1.3) we take the η or ζ perturbation to be
smaller by at least a D factor than the actual signal, i.e. η ď λ{D and ζ ď k{2D. Had we not assumed this, the intuition is
that we would have degraded to a detection task (prob. 1.1). For sufficiently large perturbations the null hypothesis “looks
like pure noise” even if it has signal from the perspective of the alternative.
If the other assumption does not hold, then there is a matching algorithm, as we said in remark 3.5 for the other conditions
of assumption 3.1. We sketch the argument in appendix B.

3.i Discussion

comparison with literature Our model in equation 1.6 is closely related to planted clique, which
is one of the pillars of average-case hardness. The detection problem (prob. 1.1) was amply studied in
literature (Brennan and Bresler 2020; Hopkins et al. 2017; Kunisky, Wein, and Afonso S. Bandeira 2019; Wein
2025a), as well as the estimation problem (prob. 1.5) (Alon, Krivelevich, and Sudakov 1998; Schramm and Wein
2022; Sohn and Wein 2025). Instead, the complex testing scenario of problem 1.3 was somehow overlooked.
While it is true that the technique of Schramm and Wein (2022) is well-suited for testing between distributions
with signal, the novelty of our result is the proof technique. The almost orthonormal basis (def. 1.14) greatly
simplifies the steps to bound the advantage and is not limited to the planted sub-matrix model (see extensions
in subsection 6.IV).

algorithmic implications As we mentioned in section 2, the low-degree conjecture states that
polynomial-time algorithms correspond to polynomials of degree log n, and an impossibility result for polynomial-
time algorithms corresponds to showing that the advantage is bounded in some proper sense for polynomials of
degree slightly larger than log n, e.g. plog nq1`ϵ for all ϵ ą 0. We can see from our statement in theorem 3.8 that
for D “ ωplog nq we have AdvpďDqpH0, H1q “ 1 ` o p1q, which according to definition 2.5 - 2.12 means weak
separation (and thus weak detection conjecturally) is impossible in the signal regimes of assumptions 3.1 - 3.7.
Logically, since weak detection is impossible, so is strong detection.4

3 A way to find this condition is to compare the detection threshold λ «log n{k2 and the estimation threshold, which is λ «log
?

n{k, imposing
that they are distinct. The reason why these two are expected to be the detection and recovery threshold is in the analysis of appendix B.

4 Notice how this is in accordance with the fact that AdvpďDqpH0, H1q “ O p1q and definition C.8.
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non-conjectural side We can find poly-time algorithms or information-theoretic barriers (in the sense
of appendix C) as soon as we violate either of the conditions in assumptions 3.1 - 3.7. In appendix B we
propose all the informal concentration arguments for perturbations of k, λ and all possible relaxations of the
assumptions, plus one fully formalized.5 This is the best-case scenario where we have a matching positive
result. The simple statistics:

sglobalpYq :“
ÿ

i,j

Yij, and slinepYq :“ #

$

&

%

j |
ÿ

i‰j

Yij ě ω

,

.

-

, (3.11)

for some well-chosen ω, distinguish pH0, H1q as soon as we get out of the parameters allowed by assump-
tions 3.1 - 3.7. As we expect not to find a better algorithm, we extrapolate that the low-degree method captures
the right behavior of polynomial time algorithms. The following propositions summarize the discussion in
appendix B:

Proposition 3.12 (Informal). Consider assumption 3.1 for the planted sub-matrix model of equation 1.6 and problem 1.3,
where we perturb either λ or k in the signal.

• If we relax the condition on k{n and consider precision up to poly-logarithmic factors then there exists an efficiently
computable function able to solve the detection problem 1.1 optimally among all functions: we hit an information-
theoretic bound.

• If we relax the condition on λk{
?

n up to poly-logarithmic factors, then there is a polynomial-time algorithm solving
complex testing (prob. 1.3).

• Similarly, if we relax assumption 3.7 up to poly-logarithmic factors there exists a polynomial-time algorithm solving
complex testing.

In words, if we break either of the interesting inequalities in assumptions 3.1 - 3.7 there is a statistic.

The only one we fully formalize is as follows.

Proposition 3.13. Consider the instance of problem 1.3 where H0 is a distribution Pθ with θ “ pk, λq and H1 is a
distribution Pθ1 where θ1 “ pk, λ ` ηq for some η ą 0. Let assumption 3.1 hold, and suppose assumption 3.7 does not
hold. Quantitatively, suppose k2η{n ą 4

?
2 ln 8. Then the statistic sglobalpYq from equation 3.11 is able to perform weak

detection (def. 2.5) by weakly separating (def. 2.12) the distributions in the null and in the alternative. In equations, the
following holds:

PH0

”

sglobalpYq ´ µ0 ě ξ
ı

` PH1

”

sglobalpYq ´ µ0 ă ξ
ı

ď 8
b

e´ϕ2{8n2
` ϵ ă 1, @ϵ ą 0, (3.14)

where µ0 “ npn´1q{n2k2λ, ϕ “ npn´1q{n2k2η and ξ is any value in the interval pn
a

´2 ln pc{8, ϕ ´ n
a

´2 ln pc{8q, with

pc “ 8
a

e´ϕ2{8n2
` ϵ.

Remark 3.15. If we believe in the low-degree conjecture of section 6, this result suggests that the low-degree method
captures up to poly-logarithmic factors the behavior of some “simple” statistics expected to be optimal. See subsection B.III
for alternative arguments in favour of this conclusion.

beyond polynomial time An extension of the low-degree conjecture we also mentioned at the begin-
ning of section 2 states that degree D “ nδ polynomials correspond to algorithms with runtime nrΘpDq “

exp
!

nδ˘op1q
)

, where rΘ p¨q hides poly-logarithmic factors. The generic correspondence for negative results is
that if the advantage is bounded (or asymptotically one) for some D ” Dpnq ď tpnqpolylogpnq then algorithms
with runtime ntpnq cannot distinguish the hypotheses. In other words, since theorem 3.8 is a negative result, for
any tpnq choice we will only be able to say when ntpnq algorithms are conjecturally expected not to work. Below,
we comment on this formalism with two interesting aspects.
The first natural question is how sub-exponential algorithms perform under our assumptions. We say an
algorithm is sub-exponential if for some δ P p0, 1q it has runtime nnδ

“ exp
!

rO
`

nδ
˘

)

, where rO p¨q hides
poly-logarithmic factors (Kunisky, Wein, and Afonso S. Bandeira 2019). The motivation is simple: we define
polynomial-time algorithms to have runtime npoly, where poly is any constant polynomial, and the immediate

5 The others are analogous.
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super-class of exponential type allow for nδ to be a vanishing monomial in n. In the sub-exponential case,
tpnq “ nδ for any δ ą 0. We find that their advantage is bounded as 1 ` 1{D going faster to zero, but in a much
narrower region of parameter space, since assumption 3.1 has inequalities that shrink exponentially fast with D.
The second question is if we can rule out somehow weak separation and not strong separation. Ideally, we
need the advantage to be bounded but not vanishing, which in theorem 3.8 corresponds to D “ Θ p1q. From
the identification with ntpnq algorithms and Dpnq ď tpnqpolylogpnq we already see that we cannot have this level
of accuracy in our bound. Moreover, we would be in a regime where the signal quantities in assumption 3.1
are potentially not vanishing.

In the next subsection, we start to work with bases to rewrite the advantage from equation 1.11 into a
specific version of equation 1.13, which will be equation 3.27.

3.ii A working representation of the advantage

adjust the basis While we cannot hope for an orthonormal basis in problem 1.3 as we said in section 2

there is an orthonormal basis for problem 1.1 to start from, which is that of definition 2.18. It is orthonormal
for the pure noise scenario by lemma 2.23: the null hypothesis of problem 1.1 of distinguishing a Rademacher
matrix from a matrix with signal. Let us call this hypothesis Hnoise

0 to be explicit. Under Hnoise
0 we have

Yij
i.i.d.
„ Radp1{2q for all i ď j, under H0 of problem 1.3 the observation is not i.i.d., but the canonical basis is still

a basis.

Lemma 3.16. In all the probability distributions we consider, the canonical basis
´

1,
`

PG,π
˘

πPΠ|V|

¯

GPGpďDqYtHu
is a

basis of polynomials of degree less than D from t´1, 1unˆn to R.

Proof. See appendix A.

In particular, for a generic hypothesis Hℓ of a probability distribution with θ “ pk, λq, we have:
A

PGp1q,πp1q , PGp2q,πp2q

E

Hℓ

:“ EHℓ

”

PGp1q,πp1q PGp2q,πp2q

ı

“ EHℓ

»

—

—

—

—

–

ź

pi,jqPπp1qpGp1qq

pi,jqPπp2qpGp2qq

Y2
ij

ź

pi,jqPπp1qpGp1qq

pi,jqRπp2qpGp2qq

Yij
ź

pi,jqRπp1qpGp1qq

pi,jqPπp2qpGp2qq

Yij

fi

ffi

ffi

ffi

ffi

fl

“ EX

»

—

—

—

—

–

EY|X

»

—

—

—

—

–

ź

pi,jqPπp1qpGp1qq

pi,jqRπp2qpGp2qq

Yij
ź

pi,jqRπp1qpGp1qq

pi,jqPπp2qpGp2qq

Yij

fi

ffi

ffi

ffi

ffi

fl

fi

ffi

ffi

ffi

ffi

fl

“ EX

»

—

—

—

—

–

ź

pi,jqPπp1qpGp1qq

pi,jqRπp2qpGp2qq

Xij
ź

pi,jqRπp1qpGp1qq

pi,jqPπp2qpGp2qq

Xij

fi

ffi

ffi

ffi

ffi

fl

“ λ|E△|

ˆ

k
n

˙|V△|

,

(3.17)

where G△ “ pV△, E△q is the symmetric difference graph induced by the edges of πp1qpGp1qq and πp2qpGp2qq.
Crucially, the final formula is due to the conditional independence of Yij | Xij for all edges and by the fact that
the Xij “ xixj are products of i.i.d. Bernoulli random variables dilated by a λ factor. By convention, when the
graphs are the same, the symmetric difference is the empty graph, and we return one.6

From this observation, orthonormality at λk “ 0 is immediate, and in the general case we lose it since λk ‰ 0.
Thanks to the last lemma, we always have a decomposition of the advantage in the canonical basis like in

equation 1.13, but only for Hnoise
0 we write at the denominator }α}2. In the generic case where H0 has λ ‰ 0

and k ‰ 0 the basis is not orthonormal.
6 This is in accordance with the fact that Y2

ij
a.s.
“ 1 for all pi, jq and all distributions considered.
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to summarize We see that the advantage from definition 1.10 is the usual object to prove low-degree
lower bounds. However, its main weakness is that it relies crucially on an understanding of how orthonormal
polynomials enter into the picture. This is due to the fact that the denominator does not have a nice form if
the decomposition is not orthonormal. At the same time, the spurious correlations have a precise form, i.e. the
symmetric difference of the underlying graphs considered (eqn. 3.17). This structure is in good terms with the
symmetries of the problem. Namely:

• any two pairs of labelled graphs that have the same symmetric difference have the same correlation;

• the probability distributions Hℓ enjoy a permutation symmetry: there are no preferred locations for the
signal (see lem. 3.23).

Combining these we attempt to collect terms by invariance in two nested ways: by labellings that have
the same correlation and by permutations. Going up at this level of symmetry allows us to not count twice
objects that are merely the same with regard to randomness. To formalize this, in subsection 3.III we discuss
the invariance by permutations, thanks to which we decompose the advantage differently. We argue that this
regrouping greatly simplifies how we handle correlations between labelled graphs.
In subsection 3.IV we then clarify what it means for a basis to be almost orthonormal, as we need for our
purposes. In particular, we present a sufficient condition for almost orthonormality (definition 1.14) to hold.

3.iii First idea: grouping by invariants, skeleton graphs

As hinted in the previous subsection, working over labelled graphs is superfluous: the randomness of the
problem and in particular the way monomials correlate (i.e. equation 3.17) do not crucially depend on the way
we labelled the two graphs. In this subsection, we present the formalism of skeletons which seeks to go up the
ladder of generality and reach the highest level of collection by invariant quantities.
As we did in definition 2.18, we consider a graph G “ pV, Eq where V “ tv1, . . . vℓu are its nodes/vertices for
some ℓ ě 2 and where E is the set of edges. We write |V| the number of nodes, and |E| the number of edges.

Assumption 3.18. Throughout the text all graphs have no isolated vertices. In other words, they are induced by their
edge set.

A skeleton is a collection of vertices and edges without regard to the labellings. In other words, it is the
equivalence class of the given pV, Eq pair. However, there are few ways to parameterize it, so we will adopt
choices that are useful for deriving results. Since it is relevant only for combinatorial purposes, we postpone
the details to section 4 and just present the mere definition.
In what follows Πℓ is the set of injective mappings π : V Ñ rns with |V| “ ℓ.

Definition 3.19 (Skeleton). Let G “ pV, Eq be a graph, where V “ tv1, . . . , vℓu, ℓ ď n, and there are no isolated
nodes. We say a graph πpGq on ℓ labelled vertices ti1, . . . , iℓu Ă rns is in the skeleton G when there is a labelling
π : V Ñ rns, with π P Πℓ, such that G and πpGq are isomorphic through π (def. 4.2). Namely, we have πpGq – G. A
skeleton is an equivalence class of graphs. We consider skeletons up to isomorphism, meaning that two isomorphic graphs
in the abstract space are the same skeleton. Within a skeleton, we include all distinct objects arising from injections
π P Π|V|. In particular, we also count automorphic labelled graphs. For extensive clarifications, see remark 4.7 and all of
the section 4.

Remark 3.20 (Alternative view). The skeleton formalism is useful if we need to refer to the original vertices with
labels unambiguously. Otherwise, we could have taken an unlabelled graph, or the skeleton with removed labels. The issue
with the unlabelled formulation is that it is somehow non-standard to refer to edges of an unlabelled graph. In practice,
the set V “ tv1, . . . , vℓu is an abstract set of vertices that we label through π.

Definition 3.21 (Set of skeletons). For a given D ” Dpnq ď n, we define GpďDq as the set of skeletons with less than
D edges quotiented by the isomorphism relation over graphs in the abstract space.

Remark 3.22. Coming back to the basis in definition 2.18, we have that pPG,πqpπ,Gq,pďDq has the same elements as
´

pPG,πqπPΠ|V|

¯

GPGpďDq

.
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symmetry The form of the correlation in equation 3.17 is emblematic. While we work over labelled graphs,
two different pairs of labelled graphs that have the same symmetric difference have the same correlation.
Working with skeletons allows us to fix the “shape” of the two graphs. Once we fix two skeletons Gp1q, Gp2q,
the many pairs πp1q P Π|Vp1q| and πp2q P Π|Vp2q| can be regrouped into sets of pairs that have the same
symmetric difference. Had we worked at the level of labelled graphs, we would have not done this as nicely,
especially with regard to the second invariance, that of permutations. We discuss it below.

Working over skeletons also allows us to exploit the permutation symmetry of the problem. The next
lemma formalizes what we meant earlier by “the signal has no preferred location”.

Lemma 3.23. Fix any degree D ą 0. Then, the value of the advantage AdvpďDqpH0, H1q in problems 1.1 - 1.3 is
achieved by a function f ‹ such that f ‹pYq is invariant by permutation. In other words, for any bijection σ : rns ÞÑ rns,
we have f ‹pYq “ f ‹pYσq where Yσ :“ pYσpiq,σpjqqi,j.

Proof. See appendix A.

Since there is an invariant optimal polynomial, it makes sense to seek a basis over invariant polynomials.
The way to build a naı̈ve proposal is to take the canonical basis of definition 2.18 and symmetrize it. In words,
this means collecting all basis elements that are in the same skeleton.7 We write for a given skeleton G:

PGpYq “
ÿ

πPΠ|V|

PG,π , (3.24)

and wonder if it is enough. Intuitively, the symmetrized object PG should be invariant to permutations because
we construct it by using all of them, and should still keep the explanatory power that the pPG,πqπPΠ|V|

had. We
check this in the next lemma.

Lemma 3.25. Consider problems 1.1 - 1.3. Let f be a polynomial invariant to permutations, of degree less than D, with
domain in t´1, 1unˆn. There exist numerical values pαGqGPGpďDqYtHu such that f pYq “ αH `

ř

GPGpďDq
αGPGpYq. In

other words, the collection
´

1, pPGqGPGpďDqYtHu

¯

with PG “
ř

πPΠ|V|
is a basis of invariant polynomials of degree less

than D.

Proof. See appendix A.

Combining lemmas 3.23 - 3.25, we have the following lemma.

Lemma 3.26. Let D ą 0. For any pairs of hypotheses from problems 1.1 and 1.3 the advantage decomposes along
´

1, pPGqGPGpďDqYtHu

¯

in the sense of equation 1.13. In equations, we have:

AdvpďDqpH0, H1q “ sup
pαGqGPGpďDqYtHu

EH1

”

ř

GPGpďDq
αGPG

ı

d

EH0

„

´

ř

GPGpďDq
αGPG

¯2
ȷ

. (3.27)

Moreover, the same holds for any alternative basis over invariant polynomials of degree less than D.

Proof. By lemma 3.23 the advantage is attained by an invariant function. Using lemma 3.25, we decompose
any invariant function as f “ αH `

ř

GPGpďDq
αGPG. We have the chain of equalities:

AdvpďDqpH0, H1q “ sup
f :t´1,1unˆn ÞÑR

f :degp f qďD

EH1 r f pYqs
b

EH0

“

f 2pYq
‰

“ sup
f :t´1,1unˆn ÞÑR

f :degp f qďD
f invariant to permutations

EH1 r f pYqs
b

EH0

“

f 2pYq
‰

“ sup
pαGqGPGpďDqYtHu

EH1

”

ř

GPGpďDq
αGPG

ı

d

EH0

„

´

ř

GPGpďDq
αGPG

¯2
ȷ

.

(3.28)

7 Here we start noticing that the redundant formalism of labelled graphs in the definition is useful.
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Once we know that the advantage depends only on skeletons and that the correlations of the canonical
basis group in terms of how they intersect, we seek to make the most of these regroupings. The essence of our
new proof technique is that there exists an almost orthonormal basis (def. 1.14). The path to present it clearly
is precisely to go at this level of invariance, where counting becomes easier because we make the most of the
symmetries. In the next section, we discuss the idea behind the claim of proposition 3.3 and further intuition
on how to establish the actual result, which is proposition 5.82.

3.iv Second idea: almost orthonormality

The issue with any basis is that the denominator of equation 3.27 is a highly coupled quadratic form
where each basis element interacts with the other.8 Characterizing the interaction of the basis with any set of
coefficients pαGqGPGpďDq

is far from trivial in general. In this section, we will sketch how we deal with this
aspect to prove an inequality as in definition 1.14, which we formalize in proposition 5.82. Then, establishing
theorem 3.8 is a routine consequence.

As in section 1 the simplest thing we can hope for is that for a given a basis decomposition:

f p¨q “
ÿ

GPGpďDq

αGψp¨, Gq, (3.29)

definition 1.14 holds. In another perspective, we hope that the decomposition along the basis becomes as
good as the Euclidean norm of the coefficients if we let n Ñ 8. Mathematically, we want to find a good
pψp¨, GqqGPGpďDq

set such that:

}α}
2
2 “ } f }

2
H0

“
ÿ

GPGpďDq

α2
G}ψp¨, Gq}

2
H0

`
ÿ

Gp1q‰Gp2q

Gp1q,Gp2qPGpďDq

αGp1q αGp2q

A

ψp¨, Gp1qq, ψp¨, Gp2qq

E

H0
« }α}

2
2. (3.30)

We propose next three different and complementary views on our objective.

covariance view We want to establish if under the interesting scaling the basis is almost orthonormal
(def. 1.14). As a reminder, it needs to hold for any invariant polynomial of degree less than D. Indeed, while it
cannot work all the way for any function, we can hope that if we sum over skeletons in GpďDq over less than D
edges decomposing any invariant polynomial f of degree less than D then it will be enough.
To start simplifying, let us take a normalized basis: we make each ψp¨, Gq have }ψp¨; Gq}H0

“ 1. We can also
regard the expression for the norm of f decomposed along the basis tψp¨, GquGPGpďDqYtHu as a quadratic form
as in definition 1.14:

} f }
2
H0

“ αJEH0

”

ψψJ
ı

α “ }α}
2
EH0rψψJs

, ψ :“ pψp¨, GqqGPGpďDqYtHu . (3.31)

In particular, the matrix in the quadratic form is the expectation of a rank-one matrix EH0

“

ψψJ
‰

that collects
the basis. It is a Gram matrix, with unit diagonal once we normalize and take the expectation. What we
morally wish is that:

EH0

”

ψψJ
ı

« I|GpďDq|`1. (3.32)

Since the matrix is Gram, it is positive semi-definite.

gershgorin view Another perspective is to use Gershgorin’s circle theorem (see (Potters and Bouchaud
2020, chap. 1.2.1) and (Horn and Johnson 2012, chap. 6)). The matrix EH0

“

ψψJ
‰

has unit diagonal entries.
Then, each eigenvalue is at least into one of the “Gershgorin circles”, which are circles centered at the diagonal
terms, i.e. 1 and with radius being the sum over columns or rows that discard the diagonal. Since the matrix is
symmetric, we need not consider the distinction of rows and columns. Then, we can say that all eigenvalues
are within:

1 ˘ sup
Gp1qPGpďDq

ÿ

Gp2qPGpďDqYtHu

Gp2q‰Gp1q

ˇ

ˇ

ˇ
CoVH0

”

ψp¨; Gp1qq, ψp¨; Gp2qq

ıˇ

ˇ

ˇ
. (3.33)

We then want the sum of covariances to be small.
8 Alternatively, as we will do later, we see it as an eigenvalue of a matrix of integrals over products of polynomials.
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approximate isometries We want the EH0

“

ψψJ
‰

matrix to be an approximate isometry, where ϵ the
approximation factor is small.

It turns out that for restricted isometry conditions all the three are equivalent, so we can either:

1. show that EH0

“

ψψJ
‰

is such that
›

›EH0

“

ψψJ
‰

´ I
›

›

op ď ϵ;

2. show that EH0

“

ψψJ
‰

is an ϵ-approximate isometry;

3. show that supGp1qPGpďDq

ř

Gp2qPGpďDqYtHu

Gp2q‰Gp1q

ˇ

ˇ

ˇ
CoVH0

”

ψp¨; Gp1qq, ψp¨; Gp2qq

ı
ˇ

ˇ

ˇ
ď ϵ.

Remark 3.34. The control by an arbitrary ϵ is even too strong. If we are able to show that the outer diagonal entries are
jointly small, then the non-infinitesimal version of the statements above bounds the eigenvalues inside an interval of 1.
For example, if:

sup
Gp1qPGpďDq

ÿ

Gp2qPGpďDqYtHu

Gp2q‰Gp1q

ˇ

ˇ

ˇ
CoVH0

”

ψp¨; Gp1qq, ψp¨; Gp2qq

ı
ˇ

ˇ

ˇ
ď

1
2

, (3.35)

then the eigenvalues of the Gram matrix EH0

“

ψψJ
‰

are all in the strip r1{2, 3{2s.

In particular, it will basically always be a sum of non-zero entries, as for each Gp1q, Gp2q there always exist a
pair pπp1q, πp2qq such that the correlation is non-zero. However, the magnitude of each will be rather small.
In section 5 we will show that an adjustment of the canonical basis of definition 2.18 is an approximate
isometry in the sense above, which means that the eigenvalues are controlled, which means that it is an almost
orthonormal basis (def.1.14).

Remark 3.36. The interesting and key step in the technique of proving theorem 3.8 is this construction of an almost
orthonormal basis ψ (def. 1.14). Once we have the property of almost orthonormality with proposition 3.3:

}α}2 Á }α}
EH0rψψJs Á }α}2 for all α “ pαqGPGpďDq

, (3.37)

the bound on the advantage follows by canonical arguments since there is a direct upper bound with the form of
equation 2.17 up to constants:

AdvpďDqpH0, H1q À sup
α:}α}2“1

EH1

»

–

ÿ

GPGpďDqYtHu

αGψpY; Gq

fi

fl . (3.38)

In the next section we properly define many objects that emerge from the invariance of labellings. These
are crucial for the construction of an almost orthonormal basis in section 5.

4 more details on the skeletons formalism

In the planted sub-matrix model (eqn. 1.6), the observation is:

t´1, 1u
nˆn

Q Y “

#

1 with probability
1`Xij

2

´1 with probability
1´Xij

2

, Xij “ xixj, xi
i.i.d.
„

?
λBer

ˆ

k
n

˙

. (4.1)

We want to use the low-degree method to derive a negative result for algorithms, as we argued in section 2. To
apply it we need to consider polynomials of degree less than D, where in particular for the interesting case
D «log log n. Since we work on a nice binary space over t´1, 1unˆn, these end up being represented through
an “adjustment” of the canonical basis for when the random variables are Rademacher distributed, i.e. when
Y „ Hnoise

0 as in the null of problem 1.1.9 As we saw in definition 2.18, this canonical basis is a collection
of monomials PG,πpYq “

ś

pi,jqPE Yπpiq,πpjq for πpGq a labelled graph, plus the unit function, i.e. the empty
graph. For a given set of edges T in a labelled graph πpGq, this perspective naturally gives rise to a graph
with random variables at each pi, jq, which is in turn a product of random variables at each vertex. Since we
will fix the degree to be less than D, we will then consider all graphs with vertices in rns that have less than
D edges, and automatically less than 2D nodes since there are no isolated vertices. Summing over all T, or
equivalently all edge labellings, is not trivial, but we can make some simplifications. In particular, we group
graphs up to isomorphisms.

9 An i.i.d. Rademacher distribution is the analogue of pure noise in this model: there is no signal.
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? ?

v1 v2

1 2 3 4 2 1

Figure 1: Three isomorphic graphs inside the same skeleton, two of which are automorphic in the observation
space
In the formalism of def. 3.19 the first and the third count as two distinct graphs and arise from three injections

of the form π : tv1, v2u Ñ rns, the skeleton, a formalization of the “shape” graph with question marks just
above.

clarifications and context In section 3 we introduced skeletons, with definition 3.19 and the justifi-
cation of seeking the highest level of abstraction to keep the interesting invariant quantities of the problem.
We clarify which combinatorial choices we adopt. Then, in the next subsection we define the invariant objects
at the level of skeletons that we need.

Definition 4.2 (Graph isomorphism). Two labelled graphs G “ pV, Eq, G1 “ pV1, E1q are isomorphic when there is a
bijection φ : V ÞÑ V1 between their vertex sets such that vertices in G are adjacent if and only if they are after applying φ.
When two labelled graphs are isomorphic, we write G » G1.

Definition 4.3 (Graph automorphism). An automorphism of a labelled graph G “ pV, Eq is a permutation
σ : V ÞÑ V that preserves edge connections, i.e. such that two vertices pv, v1q P E if and only if pσpvq, σpv1qq P σpGq the
graph obtained after applying the permutation.
In other words, it is an isomorphism of G to itself.

Definition 4.4 (Automorphism group). The automorphism group of a labelled graph G “ pV, Eq is the set of
permutations that preserve edge connections. We denote it as AutpGq. Its size is the number of such permutations,
written as |AutpGq|.

Lemma 4.5. Two graphs induced by edges are isomorphic if and only if there exists a permutation matrix P such that
AE1 “ PAEP´1, where AE, AE1 are the respective adjacency matrices.

Proof. The E, E1 graphs are in bijection with their adjacency matrix representation. The operation of permuting
E and isolated nodes in rnszV is represented through P, which permutes the columns of the adjacency
matrix.

Remark 4.6. In our computation, we need to consider the number of permutations that fixes each AE adjacency matrix
for E an edge set. This is the size of the automorphism group of the graph which we denote by AutpGq.

Remark 4.7 (What we are counting, what we are not counting). When referring to a skeleton, we take it in
G P GpďDq the space of graphs quotiented by isomorphism. We consider isomorphic skeleton graphs as the same graph.
Therefore, if Gp1q » Gp2q then PGp1q,π “ PGp2q,π for all labellings, but we consider the polynomial only once. This means
that the polynomial represented through PG,π , ignoring the indexes of the variables xi is uniquely counted across various
G P GpďDq.
Instead, we choose to consider skeletons “up to automorphisms”, in the sense that when building a given skeleton G we
place inside all the labellings π P Π|V| without quotienting the set. Doing so, we will slightly over-count, but it is easier
to deal with. The polynomials PG,πp1q , PG,πp2q for fixed G and different πp1q ‰ πp2q are then the same polynomial in the
labelled variables when the underlying graphs are automorphic.
Since we include automorphisms, the graphs in fig. 1 are all counted inside the same skeleton. The skeleton would be
the graph with v1, v2; the shape the graph with question marks. In terms of polynomials, we are saying we consider
inside PG (eqn. 3.24) all the three: PG,πp1q “ Y12, PG,πp2q “ Y21 and PG,πp3q “ Y34. The first and third graph are counted
twice: they are both present in the skeleton, despite being each related by a permutation (automorphic in the sense of
definition 4.3). In figures 2 - 3 we discuss a non-trivial example.

potential corrections Alternatively, we could consider all possible labellings of vertices neglecting
automorphisms. The sums for the symmetrized monomial PG of equation 3.24 in this case would be:

ÿ

πPΠ|V|z»Aut

, (4.8)
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v1 v2

v3v4

v5

v2

v4

v3

v1

v5

Figure 2: Two isomorphic skeletons in the abstract space
Since skeletons in GpďDq are taken from the space of graphs up to isomorphism (def. 4.2) the two graphs
above are the same skeleton, i.e. they are counted only once in the abstract space. They correspond to the
same G P GpďDq. Notice how the “arrangement” of the nodes in space is irrelevant, i.e. the way in which

vertices and edges are printed on paper.

1 2

34

5

5

4

3

2

1

1 2

3

5

4

Figure 3: Three labellings of the skeleton in figure 2, two of which are automorphic
Consider the skeleton of figure 2, for simplicity represented through the graph on the left of such figure. The
three graphs above correspond to three different labellings πp1q, πp2q, πp3q P Π5. The leftmost graph is such
that πp1qpviq “ i for all i P r5s. The center graph is such that πp2qpiq “ 5 ´ i for all i P r5s and the rightmost
graph corresponds to the labelling πp3qpiq “ i for all i P t1, 2, 3u, πp3qp4q “ 5, πp3qp5q “ 4. In particular, the

labellings πp1q, πp3q return two automorphic graphs (def. 4.3) in the observation space. In the skeleton
formalism, they are both counted as distinct. The center graph is of course also present in the enumeration.
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where »Aut quotients the labellings by automorphisms. It turns out that it is less helpful to group as such. We
stick to our choice, and potentially correct the sums for the various PG polynomials over skeletons as:

1
|AutpGq|

ÿ

πPΠ|V|

. (4.9)

In short: in our formalism the first and third graph in figures 1 - 3 are distinct, and both included when
enumerating the labellings of their skeleton.

Thanks to definition 3.19, the way we see E makes it so that skeletons are induced by E only,10 which fixes:

• the number of vertices |VE|;

• the number of edges |E|;

• the “type” of connections.

In particular, for a given graph induced by E, there is a representation in terms of a sequence of tuples
tpi, νiquiě1, where to each i P rns we pair its neighbors set νi Ď VEztiu, where VE is the set of vertices induced
by the edges E. Notice we also specify that for all i R VE we have νi “ H.

To give yet another perspective, we could say that two sub-graphs induced by edge sets E, E1 are such
that E » E1 when there is a permutation σ : rns Ñ rns such that the respective representations are equivalent.
In particular, it acts on both i and νi as σ ˝ νi “ νσpiq. For this reason a sum over a skeleton is permutation
invariant. A skeleton can then be seen as a set of edges that are isomorphic to each other in the sense above.
Since it is an equivalence relation, it partitions the set of graphs. We write tE : E – E1u when we want to fix a
skeleton and consider its various edge profiles. The sub-graphs of the complete graph Kn over rns vertices are
then partitioned into various equivalence classes containing isomorphic graphs.

In the next subsection we define relevant objects at the level of skeletons. These are fundamental for
deriving the results of section 3. Working at the such symmetry level of skeletons is crucial here: the objects
that arise from the integrals are invariant to permutations, so counting at a lower level (e.g. if we consider
labelled graphs) is superfluous and more complicated.

4.i Invariant graph-theoretic objects at the level of skeletons

For a given pair of skeleton graphs, irrespectively of how they are “decorated” with labels, we can identify
different useful notions of how the labelled graphs intersect, and group the two equivalence classes in subsets
of pairs accordingly.

matching of nodes Consider two skeletons Gp1q “ pVp1q, Ep1qq, Gp2q “ pVp2q, Ep2qq. We write M ”

MpGp1q, Gp2qq for a set of pairs of nodes pvp1q, vp2qq P Vp1q ˆ Vp2q where no node in Vp1q or Vp2q appears twice.
Write M for the set of all possible matchings of nodes.

Remark 4.10 (Size). Naturally, the size of a matching is the number of vertices it fixes, i.e. the size of the subset of Vp1q

taken, which is equal to the size of the subset of Vp2q taken.

pairings set For a generic M P M:

ΠpMq :“
!

πp1q P ΠVp1q , πp2q P ΠVp2q : @pvp1q, vp2qq P Vp1q ˆ Vp1q, tπp1qpvp1qq “ πp2qpvp2qqu ðñ tpvp1q, vp2qq P Mu

)

,
(4.11)

which is in words the set of pairs of labellings of two skeletons that make the labelled graphs match through
M.

symmetric difference graph For any
´

πp1q, πp2q
¯

P ΠpMq the “overlap” of labelled graphs is constant

and equal to M. For this reason, we define G△ ” G△pM, Gp1q, Gp2qq “ pV△, E△q. The graph G△ is the
symmetric difference graph associated to pGp1q, Gp2q, Mq. To construct it, we take the symmetric difference
of edges in both graphs and the vertices in such set. Alternatively, we join Gp1q and Gp2q according to the
matching M, in the sense that we merge the vertices present in the pairs in M. Then, we remove edges that
are present in both graphs, and isolated nodes. Notice how this definition generalizes equation 3.17.

10In other words: since we do not consider isolated vertices the edge set induces the vertices in its connections.
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We write #CC ” #CCpMq for the number of connected components in G△, and #CCpure ” #CCpurepMq for
the number of connected components in G△ that are composed of nodes exclusively in either Gp1q, or Gp2q.
This is the number of connected components that are “untouched” from the matching process.

types of vertices in a matching For a matching M, there are vertices that are left out. We denote
these as Up1qpMq, resp. Up2qpMq. We term them unmatched nodes. In words, they are the sets of nodes in
Gp1q, resp. Gp2q that are not matched. We have that:

Up1qpMq :“ Vp1qztw P Vp1q : Dpvp1q, vp2qq P M s.t. w “ vp1qu,

Up2qpMq :“ Vp2qztw P Vp2q : Dpvp1q, vp2qq P M s.t. w “ vp2qu.
(4.12)

The connection between matched and unmatched nodes is, for i P t1, 2u:
ˇ

ˇ

ˇ
Vpiq

ˇ

ˇ

ˇ
´ |M| “

ˇ

ˇ

ˇ
Upiq

ˇ

ˇ

ˇ
. (4.13)

There are two main types of matched nodes. For the set of pairs nodes in Gp1q, resp. Gp2q that are matched
but that are adjacent to a node in Up1q, resp. Up2q we define:

MSMpMq :“ tpvp1q, vp2qq P M : vp1qadjacent to a node in Up1q or vp2qadjacent to a node in Up2qu. (4.14)

This is the set of semi-matched nodes (SM). The remaining pairs of nodes MzMSMpMq are said to be perfectly
matched (PM) as they are only incident to matched nodes.
Using this distinction we construct an object that is crucial for our proof technique.

shadow matchings Consider two sets of unmatched nodes Up1q
Ă Vp1q, Up2q

Ă Vp2q and a set of node
matches M Ă M. We define the set of shadow matchings of this triplet as:

MshadowpU1, U2, Mq :“
!

M1 P M : Up1qpM1q “ Up1q, Up2qpM1q “ Up2q, MSMpM1q “ M
)

. (4.15)

In words, it is the set of all matchings that lead to the set M of semi-matched nodes and to the sets U1, U2 of
unmatched nodes in resp. Gp1q, Gp2q. We say that these matchings satisfy a given shadow pU1, U2, Mq. The
only thing that can vary between two elements of MshadowpU1, U2, Mq is the matching of the nodes that are
not in U1, U2, or part of a pair of nodes in M. This matching must ensure that all of these nodes are perfectly
matched.

types of matchings It is also useful to classify matchings further. We will sometimes mention the set
MPM of matchings in M such that the nodes in V are perfectly matched in the sense that it leads to G△ being
the empty graph (with E△ “ H). We can have a perfect match if and only if the graphs belong to the same
skeleton. Then, MPM ‰ H if and only Gp1q and Gp2q are equal up to a labelling of the nodes, i.e. Gp1q » Gp2q if
Gp1q, Gp2q P GpďDq, where » is the equivalence relation of def. 4.2.
Moreover, we define M‹, the set of matchings of nodes such that each M P M‹ satisfies that all connected
components of Gp1q, Gp2q have at least one node present in M. Note that for any M P M‹, we have

#CCpurepMq “ 0. (4.16)

Example 4.19 shows three graphs that help visualize this crucial construction.

distance between graphs Another crucial ingredient of our proof is establishing a control of the
correlation of skeletons in terms of a proper distance notion. We introduce for Gp1q, Gp2q P GpďDq the following
distance:

d
´

Gp1q, Gp2q
¯

:“ min
MPM

|E△|. (4.17)

Note that if Gp1q ‰ Gp2q, it is strictly larger than 0. Otherwise, it is 0.

Remark 4.18. This distance is known in literature as the graph edit distance (Serratosa 2021).

Example 4.19. In figures 4 - 5 - 6 we discuss graphically some relevant constructions.

Thanks to this formalism, we can present a four-pager outline of the proof idea.
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Figure 4: Matching exemplified
In this depiction, the vertex sets of two graphs Gp1q, Gp2q once labelled by πp1q, πp2q are colored respectively in
purple and orange. Vertices are black dots, or black crosses if they are present in both graphs. They match

according to some M P M‹, since each connected component in both graphs is impacted, and #CCpure “ 0. It
is important to notice that from this schematic view we cannot identify all matched vertices since they depend

on the edges that our “blobs” have. We can only say that the crosses are in M. For the full image, refer to
fig. 6.

4.ii Proof ingredients

(a) find a sparse and nice basis The monomial basis from definition 2.18 is nice: the inner product
of its terms is explicit. Combining equation 3.17 and assumption 3.1, we have:

EH0

”

PGp1q,πp1q PGp2q,πp2q

ı

“ λ|E△|

ˆ

k
n

˙|V△|

“ o p1q , (4.20)

where G△ is the symmetric difference of the two labelled graphs. A symmetric difference graph has:

• untouched nodes Up1q, Up2q that are not common and neither are their neighbors;

• boundary nodes, the semi-matched vertices in MSM;

• perfectly matched pairs of nodes in MPM.

The Gram matrix of this basis is very dense: all inner products are non-zero. It is difficult to study. We seek
cancellations in the inner products. A good starting point is to center each term. Considering:

PG,π ´ EH0

“

PG,π
‰

, (4.21)

we would notice that when the graphs of two basis elements are such that pπp1q, πp2qq P ΠpHq the inner
product is zero by independence. However, this is not enough, and we can exploit more independence: each
connected component of the graph is a conditionally independent random variable. Then for a skeleton G
with m connected components:

m
ź

s“1

PGs ,π ´ EH0

“

PGs ,π
‰

, (4.22)
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Figure 5: A matching not in M‹

The vertex sets of Gp1q, Gp2q labelled by πp1q, πp2q do not intersect over all connected components: there is a
purple connected component that is left alone, and #CCpure “ 1.

centers the canonical polynomial over a labelled graph pG, πq component by component. When we compare
two labelled graphs pGp1q, πp1qq and pGp2q, πp2qq, their inner product in this basis is null unless each connected
component has at least a shared vertex with at least a component from the other graph. Such a property is a
consequence of the fact that components are centered and independent random variables. We say graphs of
this kind are interconnected. There are a lot fewer graphs of this type, so the Gram matrix under this basis is
sparser. The entries are non-zero if and only if pπp1q, πp2qq P ΠpMq for some M P M‹, which we defined in
subsection 4.I.

(b) group by symmetries As we discussed in subsection 4.I, the issue with the label-by-label view is
that the inner product of two basis elements depends on quantities that are invariant with respect to the
labels pπp1q, πp2qq. Namely, the correlation of the canonical monomial basis of definition 2.18 is constant across
labellings pπp1q, πp2qq P ΠpMq. The symmetric difference of equation 3.17 is merely a result about how the
skeleton graphs intersect, and not about where in the graph they do so. This motivates us to consider a basis of
the form (see def. 5.11):

PG “
ÿ

πPΠ|V|

m
ź

s“1

PGs ,π ´ EH0

“

PGs ,π
‰

, (4.23)

where Π|V| is the set of injections (labellings) of the vertices of the graph. We justified the idea in subsection 3.III.
Effectively, the basis we build is invariant to permutations like the function attaining the advantage of
definition 1.10:

Lemma (Lemmas 3.23 - 3.25 - 3.26 in the main text). In the planted sub-matrix model of equation 1.6 (and all models
invariant by permutations), the advantage (def. 1.10) is equal to the advantage restricted to invariant functions. Therefore,
we can work on a decomposition of the advantage as in equation 1.13 where the basis is a basis for invariant polynomials
of degree less than D.

The basis of equation 4.23 is dense but smaller: each term is non-zero, as there is always a choice of labellings
pπp1q, πp2qq P ΠpMq by which two skeletons pGp1q, Gp2qq can match with M ‰ H, but the size of the basis is
only the number of such skeletons over less than D edges, which is the size of the GpďDq set from definition 3.21

(plus one including the constant function).
We want to show that this grouping gives a dense matrix where the off-diagonal terms are globally small.
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Figure 6: Full view of fig. 4

To highlight which edges are in the symmetric difference, we add in thick colored lines all connections within
shared vertices in both edge sets (so that they do not appear in the symmetric difference). Then, we connect
the perfectly matched vertices with the semi-matched vertices with black lines. We use purple (resp. orange)
lines to form connections on the purple (resp. orange) connected components. Semi-matched nodes “bridge”

perfectly matched nodes and unmatched nodes.

(c) back to label vs label Our first key observation is that our candidate basis is non-zero a lot less
frequently than the first basis; only for labelled graphs that interconnect each connected component, i.e. for
which the matching is such that M P M‹. Our second key observation is that the candidate basis, when it is
non-zero, has inner products up to constants being still a symmetric difference:

Proposition (Proposition 5.30 in the main text). Suppose Gp1q, Gp2q are skeletons with labellings
´

πp1q, πp2q
¯

P

ΠpMq. Let assumption 3.1 hold. Then:

• if M R M‹ we have EH0

”

PGp1q,πp1q PGp2q,πp2q

ı

“ 0;

• if M P MPM we have:
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

EH0

”

PGp1q,πp1q PGp2q,πp2q

ı

´ EH0

”

PGp1q,πp1q PGp2q,πp2q

ı

EH0

”

PGp1q,πp1q PGp2q,πp2q

ı

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ o p1q , (4.24)

• if M P M‹ it holds that:
ˇ

ˇ

ˇ
EH0

”

PGp1q,πp1q PGp2q,πp2q

ı
ˇ

ˇ

ˇ
ď p1 ` o p1qqEH0

”

PGp1q,πp1q PGp2q,πp2q

ı

, (4.25)

Proof. Use the binomial theorem and the key property of lemma 5.27:

EH0

”

PGp1q,πp1q

ı

EH0

”

PGp2q,πp2q

ı

ď

ˆ

k
n

˙|M|

EH0

”

PGp1q,πp1q PGp2q,πp2q

ı

, (4.26)

where M is the matching of pπp1q, πp2qq.

Then, we morally have a lot less symmetric differences contributions to sum over labellings.
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(c)-bis graph vs graph This leads to two key results. First, we can normalize the basis. There is a
dominating term in the variance, i.e. such that EH0

”

P2
G

ı

— νpGq, which is definition 5.40

νpGq “
n!

pn ´ |V|q!
|AutpGq|. (4.27)

Now that we can normalize the basis, we look at the rescaled covariances. Our second key result is that the
basis of equation 4.23 normalized by 1{

?
νpGq has a quantitative bound in the off-diagonal terms:

Proposition (Proposition 5.30 in the main text). Consider the P basis of equation 4.23 rescaled by 1{
?

νpGq. Let
assumption 3.1 hold. Then if D diverges with n:

VarH0

«

1
a

νpGq
PG

ff

— 1, (4.28)

Moreover, if Gp1q ‰ Gp2q are two skeletons:
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

CoVH0

»

–

1
b

νpGp1qqνpGp2qq

PGp1q PGp2q

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

À D´4csi dpGp1q,Gp2qq, (4.29)

Here d is the edit distance of the two labelled graphs: the more graphs are far away, the less they correlate.
We need a quantitative control since we will show later that the sum over graphs is negligible, so we want to establish
later that all terms are smaller than the cardinality of the sum.

Proof. The dominating factor νpGq is the correlation over perfect matchings: these are never negligible, but
they appear if and only if Gp1q » Gp2q are isomorphic skeletons (def. 4.2) and they match perfectly when
labelled. Therefore, it is present only when we compute the variance. Whether we compute the variance or the
covariance, we have an additional correction term we want to bound:

correct :“
ÿ

MPM‹zMPM

ÿ

pπp1q,πp2qqPΠpMq

1
b

νpGp1qqνpGp2qq

EH0

”

PGp1q,πp1q PGp2q,πp2q

ı

,

À
1

b

ˇ

ˇAutpGp1qq
ˇ

ˇ

ˇ

ˇAutpGp2qq
ˇ

ˇ

ÿ

MPM‹zMPM

n|Up1q|`|Up2q|{2λ|E△|

ˆ

k
n

˙|V△|

“
1

b

ˇ

ˇAutpGp1qq
ˇ

ˇ

ˇ

ˇAutpGp2qq
ˇ

ˇ

ÿ

MPM‹zMPM

ˆ

λk
?

n

˙|Up1q|`|Up2q|

λ|E△|´|Up1q|´|Up2q|

ˆ

k
n

˙|V△|´|Up1q|´|Up2q|

.

(4.30)

The final expression comes from an application of the proposition in step (C), a bound on counting labellings,
and using the fact that the inner product in the old basis (eqn. 4.20) is invariant for fixed M. In the second
step, we grouped terms nicely to apply our assumption 3.1. Working on the fact that graphs have no isolated
nodes, we showed in lemma 4.59 that:

|E△| ě |V△| ´ #CC, (4.31)

namely that the symmetric difference is at least a forest of connected components. Combining some inequalities
& identities from lemma 4.59 we also establish:

|E△| ´ |Up1q| ´ |Up2q| ě max
!

0, dpGp1q, Gp2qq ´ |Up1q| ´ |Up2q|, 1 ´ |Up1q| ´ |Up2q|

)

since |E△| ě 1; (4.32)

|MSM| ´ #CC ě 0 (4.33)

|V△| ´ |Up1q| ´ |Up2q| “ |MSM|. (4.34)

With these in mind, we are ready to show that equation 4.30 is vanishing. Using the signal condition from
assumption 3.1:

max
"

λk
?

n
,

k
n

, λ

*

ď D´8csi , (4.35)

for some large constant csi ą 0, we can collect all powers inside a single term:

correct À
1

b

|AutpGp1qq||AutpGp2qq|

ÿ

MPM‹zMPM

´

D´8csi
¯pow

(4.36)

pow :“ |Up1q| ` |Up2q| ` max
!

0, dpGp1q, Gp2qq ´ |Up1q| ´ |Up2q|, 1 ´ |Up1q| ´ |Up2q|

)

` |MSM|. (4.37)
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Discussing the cases in the maximum some algebra shows that:

´8csipow ď ´8csi max
!

dpGp1q, Gp2qq, 1, |Up1q| ` |Up2q| ` |MSM|

)

. (4.38)

In practice the only dependence we need to control is through the number of untouched vertices |Up1q|, |Up2q|

and the number of semi-matched pairs of vertices |MSM|. Such a triplet gives rise to a “shadow matching”
from subsection 4.I. Therefore, grouping by sizes and using the bound on shadow matchings from lemma 4.64:

correct À 1{
b

|AutpGp1qq||AutpGp2qq|
ÿ

MPM‹zMPM

D´8csi maxt dpGp1q,Gp2qq,1,|Up1q|`|Up2q|`|MSM|u

ď
ÿ

pUp1q,Up2q,Mq triplets

D´8csi maxt dpGp1q,Gp2qq,1,|Up1q|`|Up2q|`|MSM|u

ď
ÿ

1ďu1ď2D
1ďu2ď2D
1ďsď2D

Nu1,u2,s ¨ D´8csi maxt dpGp1q,Gp2qq,1,u1`u2`su.

(4.39)

It remains to count the number of triplets at the level of skeletons, i.e. Nu1,u2,s. For graphs over less than D
edges, and so less than 2D vertices, it is certainly less than p2Dqu1`u2`2s. Plugging it inside:

correct À
ÿ

1ďu1ď2D
1ďu2ď2D
1ďsď2D

p2Dqu1`u2`2sD´8csi maxt dpGp1q,Gp2qq,1,u1`u2`su, (4.40)

For a fairly large constant we can counter the exploding p2Dqu1`u2`2s ď D2pu1`u2`2sq factor and get that
correct ď D´4csi maxt dpGp1q,Gp2qq,1u.

(d) across graphs We constructed a Gram matrix where the diagonal is unity and the off-diagonals are
small in a controlled way. It remains to show that this control is just enough. Noticing that there are less than
pd ` Dq2d ď pDq4d graphs over less than D edges at distance d from a given one (this is lemma 4.74) for c large
enough the co-variances are globally smaller than unity, and the eigenvalues of the Gram matrix are finely
controlled around 1 when D diverges. Mathematically for all Gp1q skeletons:

Proposition (Proposition 5.82 in the main text). This is a specialized version of proposition 3.3 for the basis of
definition 5.42.
Suppose assumption 3.1 holds and D ” Dpnq Ñ 8 as n Ñ 8. The P basis rescaled by 1{

?
νpGq decorated with the unit

function (which is the rPG basis of def. 5.42) is almost orthonormal in the sense of definition 1.14.

Proof. By the discussion of subsection 3.IV, we just need to show that the Gram matrix of correlations of the
basis is an approximate isometry. With the proposition of step (C)-BIS, and the Gershgorin view of bounding
the off diagonals (from subsec. 3.IV), we just need to count skeletons (denoting the empty graph as the unit
function):

ÿ

Gp2q‰Gp1q,Gp2qPGpďDqYtHu

ˇ

ˇ

ˇ
CoVH0

”

1{
?

νpGp1qqPp1q

G , 1{
?

νpGp2qqPGp2q

ı
ˇ

ˇ

ˇ
ď

D
ÿ

d“1

D4dD´4csi maxtd,1u ď D´c “ o p1q . (4.41)

Letting ψ :“ p1{
?

νpGqPGqGPGpďDqYtHu where H denotes the empty graph/constant function this implies that

the eigenvalues of EH0

“

ψψJ
‰

are all within 1 ˘ o p1q as n Ñ 8, and the claim follows.

(e) on the advantage Since the eigenvalues are in a vanishing window around unity, we have an
approximate isometry by decomposing along the basis of equation 4.23 rescaled. Such a basis is an almost
orthornormal basis in the sense of definition 1.14. In equations, it holds that all coefficient decompositions of
polynomials of degree less than D satisfy }α}

EH0rψψJs — }α}2. Thanks to step (D), the proof of theorem 3.8

is a matter of applying the technique for orthonormal bases of a detection problem (prob. 1.1), since the
advantage simplifies to a linear representation of the form of equation 3.38. We get to the final result:

Theorem (Theorem 3.8 in the main text). Suppose assumptions 3.1 - 3.7 hold for the parameters of the complex
testing problem (prob. 1.3) of the planted sub-matrix model (eqn. 1.6). Then if D ” Dpnq Ñ 8 as n Ñ 8:

AdvpďDqpH0, H1q ď 1 ` o p1q . (4.42)
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In the next subsection we establish properties of the graph-theoretic objects from subsection 4.I. We use
them throughout the main arguments.

4.iii Key graph properties

Lemma 4.43. Suppose Gp1q, Gp2q are two skeleton graphs. Let Gp1q have ℓ vertices and Gp2q have s vertices. The
number of matchings, of size |M| “ q is:

ˆ

ℓ

q

˙ˆ

s
q

˙

q!. (4.44)

Therefore, the number of matchings is:
mintℓ,su
ÿ

q“1

ˆ

ℓ

q

˙ˆ

s
q

˙

q!. (4.45)

Proof. A matching of size q is nothing but a pairing of subsets of Vp1q, Vp2q. For this, we choose q vertices out
of the ℓ possible in Vp1q, then q vertices out of the s possible in Vp2q. Ultimately, we pair them in q! ways, since
a pairing is just an injective function from the sampled subset of Vp1q to the sampled subset of Vp2q.

When considering the symmetrized monomials PG (see eqn. 3.24) we sum over all injections π P Π|V|, so
we work at the level of all labellings of a skeleton. It is important to know the number of graphs that a skeleton
groups.

Lemma 4.46. Let G be a skeleton over ℓ vertices. Then in the current choice clarified in remark 4.7 it represents n!{pn´ℓq!

labelled graphs if we sum over it. If n " ℓ then #tπ : πpGq » Gu „ nℓ.

Proof. As per remark 4.7 we group inside the possible ways to label G all injections π P Πℓ. Then number of
injections from ℓ vertices to n destinations is n!{pn´ℓq!. The asymptotic is standard.

Remark 4.47. The size of the automorphism group (def. 4.4) of a graph depends strongly on its edges. Different graphs
have different symmetries. It is highly non-trivial. By grouping all injections in the symmetrization PG of equation 3.24
for the basis of monomials PG,π (def. 2.18) we avoid having to consider the automorphism group at the level of counting
how many graphs are inside a skeleton.

While for each skeleton we include the contribution of the automorphism group by considering all
injections, it is important to know its magnitude. This is especially because the way in which we overlook the
automorphism group will make it pop up later.

Lemma 4.48. For any non-empty graph G “ pV, Eq over ℓ vertices, we have |AutpGq| ď ℓ!.

Proof. The most symmetric scenario is when the graph is a clique G “ Kℓ, so that the connectivity of each
vertex is maximized. By definition 4.4, the automorphism group of a graph is the set of permutations
that preserve the connections. In a clique, any permutation returns the same graph, so |AutpKℓq| “ ℓ! is
maximal.

Lemma 4.49. If πp1qpGq, πp2qpGq are labellings of a skeleton G then they have the same number of connected
components.

Proof. Both graphs are isomorphic to G, so there are labellings πp1q, πp2q of G such that πpiqpGq » G for
i P t1, 2u. The graphs πp1qpGq, πp2qpGq have the same number of isolated vertices contributing in the same way
to the total number of connected components. We ignore them. Thus, there is a bijection φ between Vp1qzVp1q

iso

and Vp2qzVp2q

iso . If i
γ

Ø j for γ a path, then φpiq
γ

Ø φpjq and vice versa for φ´1 the inverse of the bijection.
Therefore, the relation i P νj ðñ j P νi in Gp1q translates into the relation γpjq P νγpiq ðñ γpiq P νγpjq and
the number of connected components is preserved.
Alternatively, we could show that Gp1q has the same number of connected components of G and the same for
Gp2q, working on the labellings.

Lemma 4.50. Let Gp1q, Gp2q be given skeletons in GpďDq. It holds that:

|MPM| “

ˇ

ˇ

ˇ
Aut

´

Gp1q
¯
ˇ

ˇ

ˇ
1

!

Gp1q “ Gp2q
)

, (4.51)
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and if Gp1q » Gp2q » G “ pV, Eq for all M P MPM we have also:

|ΠpMq| “
n!

pn ´ |V|q!
. (4.52)

Proof. (perfect matchings) Different skeletons do not admit a perfect matching. For Gp1q » Gp2q the number of
perfect matchings is the size of the automorphism group by definition. (labellings of a perfect matching) For
Gp1q » Gp2q » G the number of pairs of labellings that gives a perfect matching is the number of labellings of
the graph G. For |V| vertices, this is the number of injections from |V| to n, i.e. |Π|V|| “ n!

pn´|V|q! .

Lemma 4.53. The number of pairs of pπp1q, πp2qq P ΠVp1q ˆ ΠVp2q giving rise to the matching M Ă Vp1q ˆ Vp2q

satisfies

|ΠpMq| “
n!

pn ´ p|Vp1q| ` |Vp2q| ´ |M|qq!
. (4.54)

Proof. If the graphs and their matching are fixed, it remains to choose the vertices that are not labeled.
There are

` n
|Vp1q|`|Vp2q|´|M|

˘

ways to do so. Then, we correct by the permutations of vertices, which are

|Vp1q| ` |Vp2q| ´ |M|. The claim follows.
Alternatively, it is the number of injections from the full space of vertices of dimension n to the size of the
vertices to take, of dimension |Vp1q| ` |Vp2q| ´ |M|.

Lemma 4.55. We have:
b

pn ´ |Vp1q|q!pn ´ |Vp2q|q!

pn ´ p|Vp1q| ` |Vp2q| ´ |M|qq!
ď np|Vp1q|`|Vp2q|q{2´|M|. (4.56)

Proof. Stirling’s formula on the LHS returns the RHS. For a non-asymptotic bound, we use |M| ď min
!

|Vp1q|, |Vp2q|

)

and |Vp1q| ` |Vp2q| “ min
!

|Vp1q|, |Vp2q|

)

` max
!

|Vp1q|, |Vp2q|

)

. Let us lighten notation using a, b for the sizes
of the vertex sets and m for the size of the matching. We have:

a

pn ´ aq!pn ´ bq!
pn ´ pa ` b ´ mqq!

“

d

pn ´ aq!
pn ´ pa ` b ´ mqq!

d

pn ´ bq!
pn ´ pa ` b ´ mqq!

“

g

f

f

e

a`b´m
ź

j“a

pn ´ jq

g

f

f

e

a`b´m
ź

j“b

pn ´ jq!. (4.57)

The condition m ď a ^ b ensures that the numerator is larger than the denominator in both fractions. As
n ´ j ď n for all j in the products:

g

f

f

e

a`b´m
ź

j“a

pn ´ jq

g

f

f

e

a`b´m
ź

j“b

pn ´ jq! ď
?

na´m
a

nb´m “ n
a`b

2 ´m. (4.58)

Lemma 4.59. Recall the construction of invariant objects of subsection 4.I. In particular, the symmetric difference graph
G△, with its connected components #CC, #CCpure, the unmatched vertex sets Up1q, Up2q, semi and perfectly matched
vertices MSM, MPM and the edit distance between graphs dp¨, ¨q.
We have for any M P M:

ˇ

ˇV△
ˇ

ˇ “

ˇ

ˇ

ˇ
Up1q

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
Up2q

ˇ

ˇ

ˇ
` |MSM|, (4.60)

ˇ

ˇE△
ˇ

ˇ ě max
!

ˇ

ˇV△
ˇ

ˇ´ #CC, d
´

Gp1q, Gp2q
¯)

, (4.61)

|MSM| ě #CC ´ #CCpure, (4.62)

and
ˇ

ˇV△
ˇ

ˇ ě 2#CC. (4.63)

Proof. Consider two skeletons Gp1q, Gp2q with labellings pπp1q, πp2qq. Suppose pπp1q, πp2qq P ΠpMq.
(claim #1) The vertices in the symmetric difference V△ are of two types:

• those that are unmatched and their neighbors are unmatched;
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• those that are in the symmetric difference because they “bridge” unmatched nodes with matched nodes.

In other words, the former are vertices for which the incident edges come only form either πp1q or πp2q, not
both. Equivalently, they are those forming the Up1q, Up2q sets. The latter are vertices that have, say, incident
edges only from πp1q and some incident edges that are shared. Through the edges only in πp1q the vertex is in
the symmetric difference induced by edges. Equivalently, there exists a tuple in MSMpMq where the vertex
appears. The claim follows.
(claim #2) We prove that |E△| is larger than both quantities, hence being larger than their maximum.
By definition dpGp1q, Gp2qq “ minMPM |E1

△|, so all |E△| ě dpGp1q, Gp2qq, which verifies the first.
The edges in the symmetric difference induce the vertices in the symmetric difference. Namely, each vertex
appears at least in one edge, and is not isolated. The minimal number of edges given a number of vertices
corresponds to a tree, which has #vertices ´ 1 edges. The symmetric difference graph is induced by the
symmetric difference of edges. Its connected components are at most the sum of connected components of the
two original graphs, since it is made of the edges that appear uniquely in either. For each of these connected
components in G△, by the fact that we have no isolated nodes, there is at least a tree. Therefore, there are
|E△| ě |V△| ´ #CC edges at least. This proves the second lower bound.
(claim #3) As previously said, the symmetric difference graph has connected components arising from edges
of the two labellings that appear uniquely in either. Each connected component can be pure or non-pure. For
each non-pure connected component there is at least a vertex v‹ that is shared by both labellings. Such vertex
is necessarily in a tuple in MSM by its definition. Therefore, to each connected component that is non-pure
there is at least one semi-matched vertex. The claim follows.
(claim #4) The vertices in the symmetric difference G△ are induced by the edges in the symmetric difference
E△. Such edges will form #CC connected components, each induced by the relative edge sets that partition
E△. Since to each connected component there corresponds at least an edge, there correspond at least two
vertices. The claim follows.

Lemma 4.64. We have

|Mshadow
`

U1, U2, M
˘

| ď min
!
ˇ

ˇ

ˇ
Aut

´

Gp1q
¯
ˇ

ˇ

ˇ
,
ˇ

ˇ

ˇ
Aut

´

Gp2q
¯
ˇ

ˇ

ˇ

)

. (4.65)

Proof. Throughout the proof, we use the graph-theoretic objects defined in subsection 4.I.
(#0 conventions) We introduce some proof-specific notation. Let Mp1q and Mp2q be the semi-matched nodes of
Gp1q and Gp2q respectively. The sets Mp1q

PM, Mp2q

PM are analogous. Notice that they are sets of vertices, not sets of
pairs of vertices. We also define Bpvq :“ tv1 P V | ppv, v1q P Equ, the operator that takes a vertex and returns its
neighborhood in a generic graph. We use the shorthands:

tvp1q, Bpvp1qqu :“
!

pvp1q, vq | v P Bpvp1qq

)

(4.66)

to denote the set of edges incident to vp1q P Vp1q, and the special subset of Bpvp1qq

Bpvp1q; PMq :“
!

wp1q P Vp1q | pvp1q, wp1qq P Ep1q, and wp1q P Mp1q

PM

)

, (4.67)

which is the neighborhood of vp1q of perfectly matched vertices. Lastly, a permutation σ : V Ñ V applied to a
subset of its domain V acts element-wise, and if it is applied to a set of edges it is applied element-wise to
each entry. In equations, when we write σpEq we mean that pi, jq ÞÑ pσpiq, σpjqq for all pi, jq P E. Accordingly, a
permutation acts on a graph G “ pV, Eq as σpGq “ pσpVq, σpEqq.
(#1 reduction) For the statement to be non-trivial, we need that the perfectly matched vertices in each graph are
of the same number, and that there is at least one shadow matching. Otherwise, MPM “ H. Therefore, without

loss of generality let us assume there is at least one shadow matching M “ M Y MPM P MshadowpUp1q, Up2q, Mq,
and that |Mp1q

PM| “ |Mp2q

PM|. The set MPM contains pairs of vertices from Gp1q and Gp2q.
(#2 extended permutation) To find another shadow matching, we can only change the vertices in MPM “

tpvp1q

i , vp2q

i qu; those that are perfectly matched. The others are fixed. Since we need to return a matching, there
are two possible ways in which we can explore all candidates:

• either we permute the vertices Mp1q

PM of the first graph with a permutation rσp1q : Mp1q

PM ÞÑ Mp1q

PM;

• or we permute the vertices MPM;2 of the second graph with a permutation rσp2q : Mp2q

PM ÞÑ Mp2q

PM.
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The permutation rσp1q corresponds uniquely to a permutation σp1q over all Vp1q vertices which has as fixed
points the unmatched and semi-matched vertices. Namely, it corresponds to σp1q : Vp1q ÞÑ Vp1q such that

σp1qpvp1q

i q “ vp1q

i for all vp1q

i in Up1q, Mp1q. The same holds for rσp2q. From now on, we work on the σp1q, σp2q

extensions.
(#3 symmetry) We argue that not all permutations of this kind return shadow matchings. It is then sufficient
to show that by permuting the nodes of the first graph in all the allowed ways we have an upper bound by
|AutpGp1qq|. More explicitly, we want to show that each permutation σp1q that is of the type described in step
#2 and returns a shadow matching is an automorphism of Gp1q (def. 4.3). The result for Gp2q is symmetric, we
omit it.
(#4 relevant partitions) By construction, the vertex and edge sets of Gp1q, Gp2q admit useful partitions. For
r “ 1, 2:

Vprq “ Uprq
Y Mprq Y Mprq

PM (4.68)

Eprq “

”

Eprq
ı

U,U
Y

”

Eprq
ı

U,SM
Y

”

Eprq
ı

SM,SM
Y

”

Eprq
ı

SM,PM
Y

”

Eprq
ı

PM,PM
, (4.69)

which are respectively edges within unmatched nodes, within an unmatched node and a semi-matched node,
within semi-matched and semi-matched, within semi-matched and perfectly matched, within perfectly matched

nodes. For example, there are by construction no edges pvprq, wprqq such that vprq P Uprq and wprq P Mprq. If we
apply σp1q go Gp1q, the decomposition is analogous but tedious to write since it depends implicitly on σp1q.
Next, we show that the peculiar type of permutation required greatly simplifies the expression.
(#5 easy cases) Since σp1q has fixed points at unmatched and semi-matched vertices by step #2, we know that

σp1qpUp1q
q “ Up1q and σp2qpMp2qq “ Mp2q. Therefore:

”

σp1qpEp1qq

ı

U,U
“

”

Ep1q
ı

U,U
,

”

σp1qpEp1qq

ı

U,SM
“

”

Ep1q
ı

U,SM
, and

”

σp1qpEp1qq

ı

SM,SM
“

”

Eprq
ı

SM,SM
.

(4.70)
(#6 hard cases) The remaining sets from the decomposition of equation 4.69 are more complex. We treat them
separately. We use the notation of step #0.
(#6.1 first term) Observing that σp1q acts on vertices v P Mp1q

SM as an identity we make the following changes of
indexing:

Ep1q

SM,PM “
ď

vPMp1q

SM

tv, Bpv; PMqu

“
ď

σp1qpvqPMp1q

SM

!

σp1qpvq, Bpσp1qpvq; PMq

)

“

”

σp1qpEp1qq

ı

SM,PM
,

(4.71)

which holds since we know that semi-matched vertices are a fixed point of σp1q, so the first term is again the
set of edges between semi-matched vertices and their respective perfectly matched neighbors.
(#6.2 second term) The second term requires to use the shadow constraint, since there are no fixed-point tricks.
The set Ep1q

PM,PM is made of edges from the sub-graph of Gp1q that contains only perfectly matched vertices with

Gp2q. Then, we have Ep1q

PM,PM “ Ep2q

PM,PM. Since Ep2q

PM,PM is fixed (it is unaffected by σp1q), the conclusion is that
”

σp1qpEp1qq

ı

PM,PM
“

”

Ep2q
ı

PM,PM
“

”

Ep1q
ı

PM,PM
. (4.72)

(#7 finalization) Combining equations 4.70 - 4.71 - 4.72 with the edge decomposition of equation 4.69 for the
permuted graph σp1qpGp1qq we find that:

σp1qpEp1qq “

”

σp1qpEp1qq

ı

U,U
Y

”

σp1qpEp1qq

ı

U,SM
Y

”

σp1qpEprqq

ı

SM,SM
Y

”

σp1qpEp1qq

ı

SM,PM
Y

”

σp1qpEp1qq

ı

PM,PM

“

”

Ep1q
ı

U,U
Y

”

Ep1q
ı

U,SM
Y

”

Eprq
ı

SM,SM
Y

”

Ep1q
ı

SM,PM
Y

”

Ep1q
ı

PM,PM
.

(4.73)

This means that an edge is in Ep1q if and only if it is in σp1qpEp1qq, so σp1q is an automorphism in the sense of
definition 4.3. The claim follows by the simplifications of steps #1 - #2 - #3.
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Lemma 4.74. Consider Gp1q P GpďDq Y tHu. It holds that:
ˇ

ˇ

ˇ

!

Gp2q | dpGp1q, Gp2qq “ d
)
ˇ

ˇ

ˇ
ď pd ` Dq2d. (4.75)

Proof. Recall that dpGp1q, Gp2qq “ minMPM |E△|. If such distance is fixed at d, we need to choose how to
make the edges of Gp1q, Gp2q pair into a set of size d. In Gp1q we have |Ep1q| ď D edges, and in the symmetric
difference we have d edges. In the worst case, we have p|Ep1q| ` dq2 ď pD ` dq2 options for pairs of edges in
the symmetric difference. Since there are d such pairs, the claim follows.

Lemma 4.76. Two graphs, each with one connected component, are connected if and only if they share a vertex.

Proof. ( ùñ ) If two connected graphs are connected, for each vertex in G there is a path γ using edges in
Gp1q Y Gp2q that joins it with every vertex in Gp2q. This means there must be at least a vertex that is common
to both. Indeed, having a shared edge is weaker as it means having two shared vertices, having no shared
vertices means there is no path.
( ðù ) If two graphs share a vertex and satisfy the assumptions, then they are trivially connected.

Now that we presented all the objects we need for the basis construction, we present a guide through
the basis that will be almost orthonormal. In particular, in the next section we argue that the canonical basis
and a first modification do not exploit all the properties of the problem, and reach a final formulation in
definition 5.11.

5 construction and properties of the almost orthonormal basis

We start with a soft motivation for our final basis proposal, inspired by the arguments in the proof sketch
of subsection 4.II where we sought a sparse enough basis over labelled graphs. Throughout, we consider
problem 1.3 for the planted sub-matrix model of equation 1.6, so the distribution under H0 is such that λk ‰ 0,
i.e. there is a signal in the null distribution. We will also largely use the graph-theoretic objects defined in
subsection 4.I.

The PG,π basis of def. 2.18 is a basis (lem 3.16) but is largely not orthonormal. Let us discuss informally
why. First, we provide an example to show how easy it is to make two basis elements correlate.

Example 5.1. Consider Gp1q, Gp2q skeletons and labellings πp1q, πp2q, which may also not belong to any matching
M. Under the planted sub-matrix model of equation 1.6, a simple computation gives that EH0

”

PGp1q,πp1q PGp2q,πp2q

ı

“

λ
|E

πp1q△πp2q |
pk{nq

|V
πp1q△πp2q |. Such quantity is non-null for all graphs Gp1q ‰ Gp2q across all labellings of the two, and

non-null across all non-perfect matchings o the same Gp1q “ Gp2q graph.

Intuitively, the basis
´

1, ppPG,πqπPΠ|V|
qGPGpďDq

¯

is very dense, and regrouping by symmetries to construct
PG as in the idea of subsection 3.III will sum over a very dense matrix. However, there is an immediate
adjustment that hints at the right adjustment. We present them next.

With the intention of sparsifying the basis at the level of labelled graphs, we can just recenter each canonical
monomial from definition 2.18, and then group by symmetries. The result is a “centered basis”.

Definition 5.2 (Invariant centered monomials). Let G “ pV, Eq be a skeleton over V “ tv1, . . . , vℓu vertices.
Denote Πℓ the set of injective mappings. Define:

pP : G ˆ Rnˆn Ñ R

pG “ pV, Eq, Yq ÞÑ
ÿ

πPΠ|V|

PG,π ´ EH0

“

PG,π
‰

pG, Yq ÞÑ
ÿ

πPΠ|V|

ź

pi,jqPE

Yπpiqπpjq ´ EH0

»

–

ź

pi,jqPE

Yπpiqπpjq

fi

fl .

(5.3)

In words: we sum over the possible realizations of the skeletons a monomial arising from the product of the entries of Y
along its edges, centered.
When there is no ambiguity, we write pPGpYq “ pPG for simplicity. When writing pPG,π we consider only one term in the
sum.
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Lemma 5.4. The set of invariant centered monomials decorated with the unit function
ˆ

1,
´

pPG

¯

GPGpďDq

˙

is a basis of

invariant polynomials of degree less than D.

Proof. Since we just shift the invariant basis, we reapply lemma 3.25 to conclude.

Let us establish some algebraic properties of this object. The first moment is zero, as it is the sum of
centered random variables. In equations:

EH0

”

pPGpYq

ı

“
ÿ

πPΠ|V|

EH0

“

PG,π
‰

´ EH0

“

PG,π
‰

“ 0. (5.5)

We now move to computing the variance. The key adjustment is that when the labelled graphs will be
non-overlapping then EH0

”

pPG,πp1q
pPG,πp2q

ı

“ 0.

Lemma 5.6 (Relation to canonical basis). Suppose assumption 3.1 holds, or even just the weaker conditions in the
proof. Consider two skeletons Gp1q, Gp2q:

1. if M “ H then EH0

”

pPGp1q,πp1q
pPGp2q,πp2q

ı

“ 0;

2. otherwise if D diverges with n:

EH0

”

pPGp1q,πp1q
pPGp2q,πp2q

ı

— EH0

”

PGp1q,πp1q PGp2q,πp2q

ı

, (5.7)

and if D does not diverge we have equality up to constants.

Remark 5.8. From here onwards, the language of matchings from section 4 is relevant.

Proof. (claim #1) If M “ H then the latent variables in Gp1q and Gp2q are independent. By this fact:

EH0

”

pPGp1q,πp1q
pPGp2q,πp2q

ı

“ EH0

”

PGp1q,πp1q PGp2q,πp2q

ı

´ EH0

”

PGp1q,πp1q

ı

EH0

”

PGp2q,πp2q

ı

“ 0, (5.9)

since the first integral decouples.
(claim #2) When the matching is not empty, it induces correlations. In particular:

EH0

”

pPGp1q,πp1q
pPGp2q,πp2q

ı

“ EH0

”

PG,πp1q PG,πp2q

ı

´ EH0

”

PG,πp1q

ı

EH0

”

PG,πp2q

ı

“ λ|πp1q△πp2q|

ˆ

k
n

˙|V
πp1q△πp2q |

˜

1 ´ λ2|E|´|πp1q△πp2q|

ˆ

k
n

˙2|V|´|V
πp1q△πp2q |

¸

À λ|πp1q△πp2q|

ˆ

k
n

˙|V
πp1q△πp2q |

,

(5.10)

which is constant for all
´

πp1q, πp2q
¯

P ΠpMq. If D diverges, as λ “ o p1q , k{n “ o p1q by assumption 3.1 the
upper bound is also a lower bound asymptotically since the minus term in the parenthesis is a o p1q. By a
similar reasoning, if D does not necessarily diverge, we bound up to constants since D ě 2.

We wonder if this is enough.
The issue for the basis11 of definition 5.2 is two-fold. On one side, we are not using all the conditional

independence of the model. On the other, it has still non-negligible cross terms in the variance once we allow
for graphs that have more than one connected component. Since we want tight bounds, we need to find a
proper generalization of these basis functions that:

• are null in expectation;

• have null covariance if the induced graphs are disconnected;

• have lower covariance if the induced graphs are connected.

11Minor aspect: we always complete with the unit function.
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A solution is to center the connected components (which are independent), each by each.
In practice, we know by lem. 4.49 that the number of connected components is an invariant for graphs in a

given skeleton. Then, let G be a skeleton with m connected components and ℓ vertices. In particular, for π P Πℓ

which induces the edges T there is a decomposition T “ T1 Y ¨ ¨ ¨ Y Tm into disjoint sets where each Ts, Tr
pair not only has empty intersection, but also the vertices of the graph induced are disjoint, as a consequence
of lemma 4.76. Since disconnected graphs are independent upon conditioning, we have a decomposition of G
into independent random realizations over sub-graphs induced by tGsu

m
s“1. We use these for our corrected

monomial basis.

Definition 5.11 (Corrected invariant monomials and the corrected invariant monomials basis). Let G “ pV, Eq

be a skeleton (def. 3.21) over V “ tv1, . . . , vℓu vertices. Denote Πℓ the set of injective mappings. Define

P : G ˆ Rnˆn Ñ R

pG “ pV, Eq, Yq ÞÑ
ÿ

πPΠ|V|

PG,πpYq

pG, Yq ÞÑ
ÿ

πPΠ|V|

m
ź

s“1

pPGs ,πpYq,

pG, Yq ÞÑ
ÿ

πPΠ|V|

m
ź

s“1

ź

pi,jqPEs

Yπpiqπpjq ´ EH0

»

–

ź

pi,jqPEs

Yπpiqπpjq

fi

fl

(5.12)

where G “ pG1, . . . , Gmq is the decomposition into connected components of the graph G.
The basis of corrected invariant monomials is

´

1,
`

PG
˘

GPGpďDq

¯

.
In words: we sum over the possible realizations of the skeletons a product of monomials arising from the centered
polynomial P over the connected components. Each centered polynomial is the product over the edges of said connected
component.
When there is no ambiguity, we write PG,πpYq “ PG,π .

Lemma 5.13. The collection
´

1,
`

PG
˘

GPGpďDq

¯

is a basis of polynomials of degree less than D with domain in

t´1, 1unˆn.

Proof. If a polynomial basis is such that each term shifts by lower degree polynomials it remains a basis. More
explicitly, we reason as follows.
We use an induction argument combined with lemma 3.16. Each PG for G P GpďDq is a polynomial with
degree equal to the degree of PG, since each other term removes connected components and integrates them
separately. Let us express each PG “ PG ` rest. By induction, graphs with one connected component span the
space spanned by elements in PG that correspond to it, since PG “ PG in this case. Graphs with up to two
connected components span the orthogonal complement of the space spanned by graphs with one connected
component since each PG “ PG ` rest is such that PG is not spanned by graphs with one connected component,
and so are its linear combinations. Graphs with up to m ` 1 connected components span the orthogonal
complement of graphs with up to m connected components by the same reasoning. For each level of number
of connected components, we have spantPGu “ spantPGu, and the claim follows by lemma 3.16, which states
that the PG polynomials form a basis. In particular, the “uniqueness of the representation” is more involved in
notation but just analogous.12

The expectation over a single skeleton is again zero. Indeed, separate connected components are indepen-
dent (the latent Bernoulli random variables are):

EH0

“

PGpYq
‰

“
ÿ

πPΠ|V|

EH0

“

PG,π
‰

“
ÿ

πPΠ|V|

m
ź

s“1

EH0

”

pPGs ,π

ı

“ 0, (5.14)

where in the penultimate step we used independence of sub-graphs. Since each random variable is centered,
we can also say the following for the inner product of two pGp1q, πp1qq, pGp2q, πp2qq not necessarily in the same
equivalence class. Without loss of generality, let Gp1q “

Ťm
s“1 Gp1q

s and Gp2q “
Ťr

t“1 Gp2q

t decompose into m, r
12There can be terms where the added PG is the same but lower degree polynomials are different, but these do not break uniqueness, since

the lower degree terms by induction induce a unique representation.
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connected components forming disconnected graphs, i.e. Gp1q has m connected components and Gp2q has r
connected components. Then, suppose that there is a connected component in Gp1q, say Gp1q

s‹ that induces
a graph that is not connected to any of the others. In particular, it is by default not connected to any other
Gp1q

s where s ‰ s‹, but also not connected to any Gp2q

t for t P rrs once labelled. As a graph, its latent Bernoulli
random variables are independent of the others, and we can take out its expectation:

A

PGp1q,πp1q , PGp2q,πp2q

E

H0
“ EH0

”

PGp1q,πp1q PGp2q,πp2q

ı

“ EH0

«

m
ź

s“1

r
ź

t“1

P
Gp1q

s ,πp1q
P

Gp2q
t ,πp2q

ff

“ EH0

«

m
ź

s“1

r
ź

t“1

1ts‰s‹uP
Gp1q

s ,πp1q
P

Gp2q
t ,πp2q

ff

EH0

„

P
Gp1q

s‹ ,πp1q

ȷ

“ 0.

(5.15)

In the language of matchings, we would say that the pair pπp1q, πp2qq P ΠpMq for M R M‹. An example of
such graphs tuple is fig. 10. Thus, the alignment is non-trivial if and only if each connected component of Gp1q

is connected (shares a vertex in the induced graph) with at least one connected component of Gp2q and vice
versa. For example, see figs. 11-12. For the sake of clarity, we place this condition into a definition.

Definition 5.16 (interconnectivity). We say two graphs πp1qpGp1qq, πp2qpGp2qq are interconnected if each connected
component of πp1qpGp1qq shares a vertex with at least one connected component of πp2qpGp2qq and vice versa.

Remark 5.17. Consider two skeletons Gp1q, Gp2q. A necessary but not sufficient condition for interconnectivity of
two labellings πp1q, πp2q is that pπp1q, πp2qq P ΠpMq for some M P M. A necessary and sufficient condition for
interconnectivity is that pπp1q, πp2qq P ΠpMq for M P M‹. Indeed, the M‹ set was the set of matchings where each
connected component is matched to at least one connected component of the other graph.
When computing moments of the new basis, we will work on matchings M P M‹ which are the only non-trivial ones.

This observation induces a specific factoring in the integrals. Let Gp1q, Gp2q be again generic with m and r
connected components respectively. Suppose further that each connected component of πp1qpGp1qq is connected
to at least one connected component of πp2qpGp2qq and vice versa. In other words, let they be interconnected, i.e.
pπp1q, πp2qq P ΠpMq for M P M‹. If we take the union of graphs πp1qpGp1qq Y πp2qpGp2qq, it will induce a graph
Gπp1qYπp2q with a peculiar structure: each connected component of Gπp1qYπp2q contains vertices that belong
to at least one connected component from each original graph πp1qpGp1qq, πp2qpGp2qq. By construction, these
vertex sets intersect only inter-edge sets, i.e. there is no vertex that is shared by both Gp1q

s , Gp1q

s1 for s ‰ s1 but

there has to be at least one vertex shared between some Gp1q
s and some Gp2q

t for each tuple pπp1q, πp2qq P ΠpMq

with M P M‹ taken from any pair of equivalence classes. The random variables P
Gp1q

s ,πp1q
pYq, P

Gp2q
t ,π

pYq, once

centered, induce a “centered” version of Gπp1qYπp2q , that can be factored in its connected components.

Lemma 5.18. Consider Gp1q, Gp2q two skeletons. If pπp1q, πp2qq P ΠpMq for M P M‹, the connected components of
the graph Gπp1qYπp2q , which is the union of πp1qpGp1qq, πp2qpGp2qq, are at most minpm, rq.

Proof. Since each connected component of πp1qpGp1qq has to share a vertex with at least another one from
πp2qpGp2qq the minimal type of graph is as in fig. 11, when m “ r. If m ą r, or vice versa, we can only make
the new vertex set in πp1qpGp1qq overlap with an existing one in πp2qpGp2qq, without overlapping with any
of the old ones from πp1qpGp1qq. Thus, the number of connected components does not increase: it remains
r “ mintm, ru.

With the previous basis candidate of definition 5.2, we could upper bound the inner product of two labelled
graphs πp1qpGp1qq, πp2qpGp2qq by:

λ|πp1q△πp2q|

ˆ

k
n

˙

ˇ

ˇ

ˇ
V

πp1q△πp2q

ˇ

ˇ

ˇ

1

!

πp1qpGp1qq conn. πp2qpGp2qq

)

. (5.19)

In the new basis, it is not as immediate to say the same: since we center each connected component, the
inner product has a non-trivial expression. For Gp1q “

Ťm
s“1 Gp1q

s and Gp2q “
Ťr

t“1 Gp2q

t two skeletons and
πp1q P Π|Vp1q|, πp2q P Π|Vp2q| labellings it holds that:

A

PGp1q,πp1q , PGp2q,πp2q

E

H0
“ EH0

”

pPGp1q,πp1q pYqpPGp2q,πp2q pYq

ı

“ EH0

«

m
ź

s“1

t
ź

r“1

pP
Gp1q

s ,πp1q
pP

Gp2q
t ,πp2q

ff

. (5.20)
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In the next subsection, we propose the intuition behind the quantitative bound we establish in proposition 5.30.

5.i An informal discussion about what we want

By construction, if πp1qpGp1qq, πp2qpGp2qq have an isolated connected component in the graph Gπp1qYπp2q then the
covariance is null, i.e. the case of fig. 10. Therefore, let us suppose they are interconnected (def. 5.16). In other
words, pπp1q, πp2qq P ΠpMq for some M P M‹. Without loss of generality, let m ď r. Then Gπp1qYπp2q , the union

graph of πp1qpGp1qq, πp2qpGp2qq, factors into Gp1q

πp1qYπp2q Y ¨ ¨ ¨ Gphq

πp1qYπp2q connected components where h ď m by
lemma 5.18. Each of these is independent once conditioning on the latent variables, and the expectation of
their product decouples. For each Gpwq

πp1qYπp2q assign a set of “incident” edge sets Bwpπp1qq, Bwpπp2qq that are the
ones inducing the connected component. Then:

EH0

”

PGp1q,πp1q PGp2q,πp2q

ı

“

h
ź

w“1

EH0

”

PGp1q,Bwpπp1qqPGp2q,Bwpπp2qq

ı

. (5.21)

In other words: the labellings πp1q, πp2q are partitioned into the different connected components and for each
Bwpπp1qq we take only the labelling pertinent to the wth connected component in the union graph.
By construction, the sets in Bwpπp1qq, Bwpπp2qq only overlap in between and not within, meaning that an edge
set in Bwpπp1qq can only have shared vertices/edges with an edge set in Bwpπp2qq and vice versa. Moreover, the
pair pBwpπp1qq, Bwpπp2qqq induces the graph corresponding to the connected component Gpwq

πp1qYπp2q . When we

take the expectation of this connected component we have cancellations: each edge in Gpwq

πp1qYπp2q can appear:

1. just in πp1qpGp1q
s q for only one πp1qpGp1q

s q P Bwpπp1qq;

2. just in Gp2q

t for only one πp2qpGp2q

t q P Bwpπp2qq;

3. in a unique pair pπp1qpGp1q
s q, πp2qpGp2q

t qq.

When case #3 happens, we have Y2
ij

a.s.
“ 1 and do not integrate over it when we take the outer expec-

tation. At the same time, it appears also inside the inner expectation EH0

”

ś

pi,jqPEp1q
s

Yπp1qpiqπp1qpjq

ı

and

EH0

„

ś

pi,jqPEp2q
t

Yπp2qpiqπp2qpjq

ȷ

of the minus terms. We can see that the first term in eqn. 5.20, the one with no

inner expectations, will be just a big product in explicit form:

firstterm “ λ#tedges appearing uniquely in either Bwpπp1qq,Bwpπp2qqu

ˆ

k
n

˙#tvertices of uniquely appearing edgesu

, (5.22)

while for the others, we can see them as successive removals of connected component from either of Bwpπp1qq

or Bwpπp2qq. When we remove an edge set, we take its expectation as a single term,13 and we claim its
contribution is smaller than if it were included in the full integral. Indeed, when it interacts with the other
connected components, it has to cancel out some vertices/edges that do not cancel out when it integrates
alone. At the same time, the remaining integral also has more vertices/edges. Letting mw, rw be the number
of connected components respectively in Bwpπp1qq, Bwpπp2qq, with

řh
w“1 mw “ m and

řh
w“1 rw “ r, we have a

chain of inequalities for all S Ă Bwpπp1qq, T Ă Bwpπp2qq:

EH0

»

–

ź

sPBwpπp1qq

P
Gp1q

s ,πp1q

ź

tPBwpπp2qq

P
Gp2q

t ,πp2q

fi

fl “ EH0

»

–

ź

sPBwpπp1qq

Y˝πp1qpGp1q
s q

ź

tPBwpπp2qq

Y˝πp2qpGp2q
t q

fi

fl

ě EH0

«

ź

sPS

Y˝πp1qpGp1q
s q

ź

tPT

Y˝πp2qpGp2q
t q

ff

ˆ
ź

sRS

EH0

„

Y˝πp1qpGp1q
s q

ȷ

ź

tRT

EH0

„

Y˝πp2qpGp2q
t q

ȷ

ě
ź

sPBwpπp1qq

EH0

„

Y˝πp1qpGp1q
s q

ȷ

ź

tPBwpπp2qq

EH0

„

Y˝πp2qpGp2q
t q

ȷ

.

(5.23)

13e.g. it appears as EH0

”

ś

pi,jqPEp1q
s

Yπp1qpiqπp1qpjq

ı

in the multiplication.
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Remark 5.24. We have to be careful: while the inequality is true, there are 2rh`mh terms in each h connected component
to take into account. Then, while each is smaller, it might be that when summing they are not at all. The product structure
of eqn. 5.20 is such that for each j P rmhs, i P rrhs there are

`mh
j

˘`rh
i

˘

terms that have:

• an integral over j connected components from Bwpπp1qq and i connected components from Bwpπp2qq;

• multiplied by a product of mh ´ j split integrals of connected components from Bwpπp1qq;

• multiplied by a product of rh ´ i split integrals of connected components from Bwpπp2qq.

We need to consider the gained factor at each removal of an edge set from either Bwpπp1qq, Bwpπp2qq and show that the
sum over pi, jq P rmhs ˆ rrhs is globally contributing as a controlled multiple of the symmetric difference. In other words,
to prove for all w P rhs:

|EH0

”

PGp1q,Bwpπp1qqPGp2q,Bwpπp2qq

ı

| À f pnqλ#tedges appearing uniquely in either Bwpπp1qq,Bwpπp2qqu

ˆ

k
n

˙#tvertices of uniquely appearing edgesu
,

(5.25)
we will need to quantify how much we gain by removing a connected component, and show that jointly all terms including
the first one are f pnq times the first one, where f pnq grows slow enough to control it with vanishing terms in later results.
If it holds for all w P rhs, taking the product, it holds jointly for the full union graph and we find:

EH0

”

PGp1q,πp1q PGp2q,πp2q

ı

À

h
ź

w“1

f pnqλ#tedges appearing uniquely in either Bwpπp1qq,Bwpπp2qqu

ˆ

k
n

˙#tvertices of uniquely appearing edgesu

“ λ|πp1q△πp2q|

ˆ

k
n

˙|V
πp1q△πp2q |

¨ f pnq,

(5.26)

since the sum of uniquely appearing edges and respective uniquely appearing vertices across connected components is the
symmetric difference of πp1q, πp2q.

In the next subsection, we formalize the idea.

5.ii Formalization

We first establish a control on the decoupling of graphs arising from canonical monomials.

Lemma 5.27 (One step improvement). Recall the definition of canonical monomials (def. 2.18). Suppose Gp1q, Gp2q

are skeletons with labellings
´

πp1q, πp2q
¯

P ΠpMq, where M is the set of matched nodes. Then:

EH0

”

PGp1q,πp1q PGp2q,πp2q

ı

ě

´n
k

¯|M|

EH0

”

PGp1q,πp1q

ı

EH0

”

PGp2q,πp2q

ı

. (5.28)

Proof. On the RHS we have the symmetric difference of the graphs, which is an integral over G△. By hypothesis,
it has |M| matched nodes. On the RHS we have the product of the integrals along the two graphs, decoupled.
All the matched nodes will be free, and counted twice instead of once, i.e. once for each graph. This gives a
discount factor of pn{kq|M| between the two at least without considering edges.

Example 5.29. We visualize this reasoning in figures 7b - 7b - 8a - 8b - 9.

It remains to formalize how the P, pP of defs. 5.11 and def. 5.2 are related. In particular, we will use that the
pP basis is up to constants equal to the canonical monomial basis P of def. 2.18 when it is non-zero, and that
the P basis is null in even more instances.

Proposition 5.30. Suppose Gp1q, Gp2q are skeletons with labellings
´

πp1q, πp2q
¯

P ΠpMq. Let assumption 3.1 hold.
Then:

• if M R M‹ we have EH0

”

PGp1q,πp1q PGp2q,πp2q

ı

“ 0;

39



(a) Generic scenario before we remove one orange edge
set
The orange edge set induces an orange vertex set

that “overlaps” with some purple vertex sets.
Among these, there are necessarily shared
vertices, and there may be shared edges.

(b) Generic scenario when we remove one orange edge
set

Upon removal from the joint integration, the
shared parts become “free” and they contribute

to the integral.

(a) Minimal scenario before we remove one edge set
In the worst case, we have two edge sets inducing

vertex sets that overlap only over one vertex.

(b) Minimal scenario when we remove one edge set
Upon removal, the vertex that was shared is free
in both vertex sets, so from one, joint vertex, we

have two “free” vertices in two separate
integrals.
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Figure 9: Full image
A graphical instantiation for the formalization of the action of removing connected components from the

integral, i.e. lemma 5.27.
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• if M P MPM we have:
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

EH0

”

PGp1q,πp1q PGp2q,πp2q

ı

´ EH0

”

PGp1q,πp1q PGp2q,πp2q

ı

EH0

”

PGp1q,πp1q PGp2q,πp2q

ı

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ o p1q , (5.31)

or without taking the limit the bound is by a factor Drck{n “ o p1q;

• if M P M‹ it holds that:
ˇ

ˇ

ˇ
EH0

”

PGp1q,πp1q PGp2q,πp2q

ı
ˇ

ˇ

ˇ
ď p1 ` o p1qqEH0

”

PGp1q,πp1q PGp2q,πp2q

ı

, (5.32)

or without taking the limit the coefficient is a constant.

Proof. (claim #1) Follows by equation 5.15.
(claims #2-#3) We apply lem. 5.27 recursively on the unfolding of the P basis. The difference of the two bases
is a sum over all ways of removing connected components from the full integrals. Without loss of generality,
let m, r be the number of connected components of Gp1q, Gp2q respectively. Then:

ˇ

ˇ

ˇ
EH0

”

PGp1q,πp1q PGp2q,πp2q

ı

´ EH0

”

PGp1q,πp1q PGp2q,πp2q

ı
ˇ

ˇ

ˇ

“
ÿ

SĎrms,TĎrrs

1tS ‰ H _ T ‰ HuEH0

„

P
pGp1q

s qsRS ,πp1q
P

pGp2q
t qtRT ,πp2q

ȷ

ź

sPS

EH0

”

P
Gp1q

s ,πp1q

ı

ź

tPT

EH0

„

P
Gp2q

t ,πp2q

ȷ

“:R
(5.33)

In particular, the indicator makes sure that we do not take the full product, and we disregard the p´1q power
appearing from the subtractions. We can use lem. 5.27 recursively on each term in the sum. Element-wise, we
have:

EH0

„

P
pGp1q

s qsRS ,πp1q
P

pGp2q
t qtRT ,πp2q

ȷ

ź

sPS

EH0

”

P
Gp1q

s ,πp1q

ı

ź

tPT

EH0

„

P
Gp2q

t ,πp2q

ȷ

ď

ˆ

k
n

˙|MpS,T,rms,rrsq|

EH0

”

PGp1q,πp1q PGp2q,πp2q

ı

,

(5.34)
where |MpS, T, rms, rrsq| is the set of matched vertices arising from the recursion:

(R0) take the large symmetric difference graph between rmszS, rrszT;

(R1) for each term in S recursively apply lem. 5.27;

(R2) for each term in T recursively apply lem. 5.27.

• form MPMpS, T, rms, rrsq as the set of perfect matches between the symmetric difference of rmszS, rrszT
and the connected components S, T taken alone.

In other words, they are matches pv, v1q of the following three mutually exclusive types (see lem. 5.39#1):

(T1) v is a vertex in a c.c. in S and v1 is a vertex in a c.c. in rrszT;

(T2) v is a vertex in a c.c. in T and v1 is a vertex in a c.c. in rmszS;

(T3) v is a vertex in a c.c. in S and v1 is a vertex in a c.c. in T.

There are 2mS`mT ways to take connected components forming a big integral with |S| “ mS, |T| “ rT terms.
Moreover, mS P t0, . . . , mu, mT P t0, . . . , ru, so we can group the big sum by sizes to find:

R ď
ÿ

SĎrms,TĎrrs

1tS ‰ H, T ‰ Hu

ˆ

k
n

˙|MpS,T,rms,rrsq|

EH0

”

PGp1q,πp1q PGp2q,πp2q

ı

“ EH0

”

PGp1q,πp1q PGp2q,πp2q

ı

ÿ

SĎrms,TĎrrs

1tS ‰ H _ T ‰ Hu

ˆ

k
n

˙|MpS,T,rms,rrsq|

ď EH0

”

PGp1q,πp1q PGp2q,πp2q

ı

m
ÿ

µ“0

r
ÿ

ρ“0

1tµ ` ρ ą 0u2µ`ρ

ˆ

k
n

˙minS:|S|“µ,T:|T|“ρ |MpS,T,rms,rrsq|

.

(5.35)
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In words, we grouped by subsets of size µ, ρ and took the minimal number of matchings associated to the
operation we explained just above in such subsets. We use lemma 5.39#2 which we prove just after:

µ ` ρ ´ |MpS, T, rms, rrsq| ď 0, @S : |S| “ µ, T : |T| “ ρ, (5.36)

thanks to which (concentrating on the sum) taking S‹, T‹ the optimizers of the minimum:

m
ÿ

µ“0

r
ÿ

ρ“0

1tµ ` ρ ą 0u2µ`ρ

ˆ

k
n

˙minS:|S|“µ,T:|T|“ρ |MpS,T,rms,rrsq|

ď

m
ÿ

µ“0

r
ÿ

ρ“0

1tµ ` ρ ą 0u

ˆ

2
k
n

˙|MpS‹,T‹,rms,rrsq|

ďpD2 ` 1q

ˆ

2
k
n

˙

“ o p1q ,

(5.37)

where we used in the last step assumption 3.1, i.e. that k{n ď D´8csi for some large csi ą 0 constant, and in
particular 8csi ě 3. Putting it all together, we proved that:14

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

EH0

”

PGp1q,πp1q PGp2q,πp2q

ı

´ EH0

”

PGp1q,πp1q PGp2q,πp2q

ı

EH0

”

PGp1q,πp1q PGp2q,πp2q

ı

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2pD2 ` 1q
k
n

. (5.38)

Claim #3 follows as a special case since we assumed M P M‹ and MPM Ă M‹. Claim #2 follows by
rearranging terms and using the reverse triangular inequality on the numerator.

Lemma 5.39. The following are true in the above proof:

1. the construction of MpS, T, rms, rrsq in equation 5.34 via (R0) - (R1) - (R2) is unambiguous and in bijection with
the three types (T1) - (T2) - (T3) mentioned just after;

2. µ ` ρ ď |MpS, T, rms, rrsq| for all feasible combinations;

In particular, they hold if we take the minimum over S, T such that |S| “ µ, |T| “ ρ.

Proof. (claim #1) For given Gp1q, Gp2q connected components interact only across and not within, in the sense
that Gp1q

s , Gp1q

s1 do not have common vertices when s ‰ s1. The polynomials over s R S, t R T are all inside
the same integral. By simple algebra using def. 2.18 a product of different polynomials over the canonical
basis returns the symmetric difference graph of the underlying graphs. Therefore, in the (R0) step we are
considering the large integral. Using lemma 5.27, we can bound the product of two integrals by the integral of
the product times a power of k{n which is the number of perfect matches between the two graphs. In steps
(R1) - (R2) of the recursion we then couple all the integrals together bringing inside the same large expectation
all the terms in S, T that were integrated alone. As a result, we will have the integral over the whole product
of the two graphs Gp1q, Gp2q discounted by k{n times the sum of successive perfect matches between the graphs
explored in Gp1q, Gp2q. When a node is perfectly matched, it belongs unambiguously to two separate connected
components, one from Gp1q, one from Gp2q. Suppose such vertex is then in Gp1q

s , Gp2q

t for some s P rms, t P rrs.
It can pop out in the recursion steps (R1) - (R2) if and only if it satisfies either of the conditions #1-#2-#3

in the proof, as otherwise it is a perfectly matched node already in the symmetric difference graph of step
(R0), which does not influence the applications of lemma 5.27. This proves that there is a bijection between
the construction in the recursion (R0) - (R1) - (R2) and the criterions #1-#2-#3 for the vertices appearing in
the power. Moreover, since the vertex belongs to a unique pair, the order in which we add the connected
components does not matter in the recursion, and the expression is unambiguous.
(claim #2) The sizes µ, ρ correspond to the number of connected components in the integrals taken alone. Since
M P M‹ each connected component has at least a matched node. It follows that µ ` ρ ď MpS, T, rms, rrsq,
since:

• for at least one vertex in each c.c. in S there is a vertex in either a c.c. in T or in the symmetric difference
graph of c.c.s in rmszS, rrszT;

14Notice that in the P basis of def. 2.18 the inner product is always positive.
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• for at least one vertex in each c.c. in T there is a vertex in either a c.c. in S or in the symmetric difference
graph of c.c.s in rmszS, rrszT.

Thus, for each of the µ and for each of the ρ connected components there is a matched vertex in MpS, T, rms, rrsq

according to the three exhaustive cases in the proof.

Having this similarity of basis products we can compute the variance and the covariance. Then, we clarify
in which sense the new basis is almost orthonormal.

Definition 5.40 (Dominating term). Let G be a skeleton. Define:

νpGq :“
n!

pn ´ |V|q!
|AutpGq|. (5.41)

Let us then define our final basis.

Definition 5.42 (Corrected rescaled monomial basis). Recall the form of PG for G a skeleton from def. 5.11. Define:

rPG :“
1

a

νpGq
PG. (5.43)

We term “rescaled basis” the collection
ˆ

1,
´

rPG

¯

GPGpďDq

˙

. Since we just rescale elements, it is still a basis for invariant

polynomials of degree less than D (lemma 5.13).

Proposition 5.44 (Variance and covariance over skeleton). Consider the P basis of def. 5.11. Let assumption 3.1
hold. Then if D diverges with n:

VarH0

”

rPG

ı

“ VarH0

«

1
a

νpGq
PG

ff

— 1, (5.45)

and if D does not diverge with n we have a quantitative correction, meaning equal up to constants. Moreover, if
Gp1q ‰ Gp2q are two skeletons:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

CoVH0

»

–

1
b

νpGp1qqνpGp2qq

PGp1q PGp2q

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

À D´c dpGp1q,Gp2qq, (5.46)

where c ą 0 is a positive factor that we can choose. Later we will take c “ 4csi.

Proof. Let us work on a generic tuple Gp1q, Gp2q. We have:

CoVH0

”

rPGp1q
rPGp2q

ı

“
ÿ

MPM‹

ÿ

pπp1q,πp2qqPΠpMq

EH0

”

rPGp1q,πp1q
rPGp2q,πp2q

ı

, (5.47)

where we applied proposition 5.30#1 to remove matchings that are not in M‹. If Gp1q » Gp2q then we can have
perfect matchings, otherwise not. We distinguish the two cases.
(PM) When there are perfect matchings:

CoVH0

”

rPGp1q
rPGp2q

ı

“ CoVH0

”

rP2
Gp1q

ı

“
1

νpGp1qq
VarH0

“

PGp1q

‰

. (5.48)

The variance has form:

VarH0

”

Pp1q

G

ı

“
ÿ

MPMPM

ÿ

pπp1q,πp2qqPΠpMq

EH0

”

PGp1q,πp1q PGp1q,πp2q

ı

`
ÿ

MPM‹zMPM

ÿ

pπp1q,πp2qqPΠpMq

EH0

”

PGp1q,πp1q PGp1q,πp2q

ı

ě
ÿ

MPMPM

ÿ

pπp1q,πp2qqPΠpMq

ˆ

1 ´ Drc k
n

˙

EH0

”

PGp1q,πp1q PGp1q,πp2q

ı

looooooooooooooomooooooooooooooon

“1

´
ÿ

MPM‹zMPM

ÿ

pπp1q,πp2qqPΠpMq

ˇ

ˇ

ˇ
EH0

”

PGp1q,πp1q PGp1q,πp2q

ı
ˇ

ˇ

ˇ

“

ˆ

1 ´ Drc k
n

˙

ÿ

MPMPM

|ΠpMq| ´
ÿ

MPM‹zMPM

ÿ

pπp1q,πp2qqPΠpMq

ˇ

ˇ

ˇ
EH0

”

PGp1q,πp1q PGp1q,πp2q

ı
ˇ

ˇ

ˇ

“

ˆ

1 ´ Drc k
n

˙

n!
pn ´ |Vp1q|q!

|AutpGp1qq| ´
ÿ

MPM‹zMPM

ÿ

pπp1q,πp2qqPΠpMq

ˇ

ˇ

ˇ
EH0

”

PGp1q,πp1q PGp1q,πp2q

ı
ˇ

ˇ

ˇ

(5.49)
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where we used lemmas 4.53 - 4.50 and the bound of proposition 5.30#3. The same steps but the other inequality
of proposition 5.30#3 establish an upper bound on the variance of the form (notice we flip two signs):

VarH0

“

PGp1q

‰

ď

ˆ

1 ` Drc k
n

˙

n!
pn ´ |Vp1q|q!

|AutpGp1qq| `
ÿ

MPM‹zMPM

ÿ

pπp1q,πp2qqPΠpMq

ˇ

ˇ

ˇ
EH0

”

PGp1q,πp1q PGp1q,πp2q

ı
ˇ

ˇ

ˇ
.

(5.50)
In particular, Drc k

n ď Drc´8csi ď 1{2 once csi is large enough in assumption 3.1. If we normalize by νpGp1qq, the
first term is asymptotically — 1, or upper and lower bound by 1 ˘ c for a positive constant. What we wish to
show is that the second term is negligible.
(NO-PM) When there are no perfect matchings, i.e. when Gp1q fi Gp2q, we only have the second term in
equation 5.50, and we wish to show it is small in a proper sense.
(work on the correction term) We are then hinted to normalize the P polynomials of definition 5.11 by the
candidate dominating factor of definition 5.40, obtaining the rescaled basis of definition 5.42. For this, we want
to show that the correction term

correct :“
ÿ

MPM‹zMPM

ÿ

pπp1q,πp2qqPΠpMq

1
b

νpGp1qqνpGp2qq

EH0

”

PGp1q,πp1q PGp2q,πp2q

ı

, (5.51)

is less than D´c dpGp1q,Gp2qq for some constant c ą 0 as in the claim. By proposition 5.30#2, we have that:15

correct ď
ÿ

MPM‹zMPM

ÿ

pπp1q,πp2qqPΠpMq

1
b

νpGp1qqνpGp2qq

ˇ

ˇ

ˇ
EH0

”

PGp1q,πp1q PGp2q,πp2q

ıˇ

ˇ

ˇ

ď
ÿ

MPM‹zMPM

2
b

νpGp1qqνpGp2qq

λ|E△|

ˆ

k
n

˙|V△|

|ΠpMq|,
(5.52)

where we used that for fixed M the sets of vertices are fixed (i.e. we fix the skeletons). Using lemmas 4.50 -
4.53 - 4.55, we can bound:

1
b

νpGp1qqνpGp2qq

|ΠpMq| ď
1

b

ˇ

ˇAut
`

Gp1q
˘
ˇ

ˇ

ˇ

ˇAut
`

Gp2q
˘
ˇ

ˇ

n|Vp1q|`|Vp2q|{2´|M| “
1

b

ˇ

ˇAut
`

Gp1q
˘
ˇ

ˇ

ˇ

ˇAut
`

Gp2q
˘
ˇ

ˇ

n|Up1q|`|Up2q|{2.

(5.53)
Recall the invariant objects defined in subsection 4.I. From lem. 4.59, we recall that the following bounds hold
on the graph structure:

|E△| ě max
!

|V△| ´ #CC, dpGp1q, Gp2qq

)

(5.54)

|V△| “ |Up1q| ` |Up2q| ` |MSM| (5.55)

|MSM| ě #CC (5.56)

|V△| ě 2#CC. (5.57)

Let us rearrange terms to make some clever adjustments in the big sum so that the next steps are more explicit.
Reordering:

correct ď
2

b

ˇ

ˇAutpGp1qq
ˇ

ˇ

ˇ

ˇAutpGp2qq
ˇ

ˇ

ÿ

MPM‹zMPM

n|Up1q|`|Up2q|{2λ|E△|

ˆ

k
n

˙|V△|

“
2

b

ˇ

ˇAutpGp1qq
ˇ

ˇ

ˇ

ˇAutpGp2qq
ˇ

ˇ

ÿ

MPM‹zMPM

ˆ

λk
?

n

˙|Up1q|`|Up2q|

λ|E△|´|Up1q|´|Up2q|

ˆ

k
n

˙|V△|´|Up1q|´|Up2q|

(5.58)

We can see that each term in the sum is vanishing. We now aim to show they are globally vanishing. In
particular, we seek something explicit in the exploding factor n|Up1q|`|Up2q|, since we want to counter it, and
attempt to reorder terms to not lose any contribution that is vanishing.

15We have a control by a 1 ` Drck{n ď 2 factor.
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To continue, we exploit the graph structure. Combining the inequalities & identities above in eqns. 5.54 to 5.57

we find:

|E△| ´ |Up1q| ´ |Up2q| ě max
!

0, dpGp1q, Gp2qq ´ |Up1q| ´ |Up2q|, 1 ´ |Up1q| ´ |Up2q|

)

since |E△| ě 1; (5.59)

|MSM| ´ #CC ě 0 (5.60)

|V△| ´ |Up1q| ´ |Up2q| “ |MSM|. (5.61)

Using the signal condition of assumption 3.1:

max
"

λk
?

n
,

k
n

, λ

*

ď D´8csi , (5.62)

for some large constant csi ą 0, we can collect all powers inside a single term:

correct ď
2

b

|AutpGp1qq||AutpGp2qq|

ÿ

MPM‹zMPM

´

D´8csi
¯pow

(5.63)

pow :“ |Up1q| ` |Up2q| ` max
!

0, dpGp1q, Gp2qq ´ |Up1q| ´ |Up2q|, 1 ´ |Up1q| ´ |Up2q|

)

` |MSM|. (5.64)

Discussing the cases in the maximum some algebra shows that:

´8csipow ď ´8csi max
!

dpGp1q, Gp2qq, 1, |Up1q| ` |Up2q| ` |MSM|

)

. (5.65)

Recall the construction of shadow matchings from section 4. Starting from:

correct ď 2{
b

|AutpGp1qq||AutpGp2qq|
ÿ

MPM‹zMPM

D´8csi maxt dpGp1q,Gp2qq,1,|Up1q|`|Up2q|`|MSM|u

“ 2{
b

|AutpGp1qq||AutpGp2qq|
ÿ

pUp1q,Up2q,Mq triplets

D´8csi maxt dpGp1q,Gp2qq,1,|Up1q|`|Up2q|`|MSM|u
ˇ

ˇ

ˇ
Mshadow

´

Up1q, Up2q, M
¯
ˇ

ˇ

ˇ

ď 2
ÿ

pUp1q,Up2q,Mq triplets

D´8csi maxt dpGp1q,Gp2qq,1,|Up1q|`|Up2q|`|MSM|u

ď 2
ÿ

1ďu1ď2D
1ďu2ď2D
1ďsď2D

Nu1,u2,s ¨ D´8csi maxt dpGp1q,Gp2qq,1,u1`u2`su

(5.66)

where we used lemma 4.64, which we remind bounds the size of the set of shadow matchings by the minimal
size of the automorphism group, and grouped by sizes, with the observation that we consider graphs with less
than 2D vertices. It remains to count the number of triplets at the level of skeletons, i.e. Nu1,u2,s. For graphs
over less than D edges, and so less than 2D vertices, it is certainly less than p2Dqu1`u2`2s, where the upper
bound corresponds to choosing from 2D vertices at each vertex. Plugging it inside:

correct ď 2
ÿ

1ďu1ď2D
1ďu2ď2D
1ďsď2D

p2Dqu1`u2`2sD´8csi maxt dpGp1q,Gp2qq,1,u1`u2`su, (5.67)

where we discuss the two cases of the maximum, using D ě 2 and ´8csi ` 4 ď 0. By lemma 5.70 we find:

correct ď 2
ÿ

1ďu1ď2D
1ďu2ď2D
1ďsď2D

Dp4´8csiq maxt dpGp1q,Gp2qq,1u ď D6`p4´8csiq maxt dpGp1q,Gp2qq,1u. (5.68)

To conclude, we just need to impose that (using D ě 2):

7 ` p4 ´ 8csiq max
!

dpGp1q, Gp2qq, 1
)

ď ´4csi max
!

dpGp1q, Gp2qq, 1
)

, (5.69)

which holds for csi ě 11{4.
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Lemma 5.70. If 4 ´ 8csi ď 0, we have:

2pu1 ` u2 ` 2sq ´ 8csi max
!

dpGp1q, Gp2qq, 1, u1 ` u2 ` s
)

ď p4 ´ 8csiq max
!

dpGp1q, Gp2qq, 1
)

ď 0. (5.71)

Proof. For simplicity, let u1 ` u2 “: u and dpGp1q, Gp2qq “: d. We discuss two cases separately.
(case #1) If maxt d, 1u ě u ` s then in particular maxt d, 1u ě s and:

2u ` 4s ´ 8csi maxt d, 1u ď 2u ` 2s ` 2s ´ 8csi maxt d, 1u ď p4 ´ 8csiq maxt d, 1u. (5.72)

(case #2) If maxt d, 1u ă u ` s then:

2u ` 4s ´ 8csi maxt d, 1u ď 2u ` 4s ´ 8csipu ` sq ď 4u ` 4s ´ 8csipu ` sq “ p4 ´ 8csiqpu ` sq, (5.73)

and the condition 4 ´ 8csi ď 0 ensures that it is less than p4 ´ 8csiq maxt d, 1u.

Combining the two statements of proposition 5.44 we conclude that the rP basis of def. 5.42 is almost
orthonormal (def. 1.14) with the degree of “almost” controlled by an inverse of D factor involving the distance.
We will prove it is sufficient to control the covariance globally over the basis and make it look like an
orthonormal basis.

Remark 5.74. There is a hierarchy across the bases we consider. Let us ignore for a moment the sum over the equivalence
class. For a single edge set T induced by a labelling πp1qpGp1qq, we have the following trivial equivalences:

• if EH0

”

PGp1q,πp1q

ı

“ 0 then PGp1q,πp1q
a.s.
“ pPGp1q,πp1qpYq;

• if πp1qpGp1qq has a single connected component then pPGp1q,πp1q pYq
a.s.
“ PGp1q,πp1q pYq;

• if πp1qpGp1qq has a single connected component and EH0

”

PGp1q,πp1q

ı

“ 0 then PGp1q,πp1q “ EH0

”

PGp1q,πp1q pYq

ı

a.s.
“

PGp1q,πp1q pYq.

Alternatively for πp1q, πp2q two labellings of skeletons Gp1q, Gp2q:

• under the classic basis:

A

PGp1q,πp1q , PGp2q,πp2q

E

H0
“ λ|πp1q△πp2q|

ˆ

k
n

˙|V
πp1q△πp2q |

; (5.75)

• under the pP basis:

A

pPGp1q,πp1q , pPGp2q,πp2q

E

H0
“ λ|πp1q△πp2q|

ˆ

k
n

˙|V
πp1q△πp2q |

´ λ|πp1q|`|πp2q|

ˆ

k
n

˙|V
πp1q |`|V

πp2q |

— λ|πp1q△πp2q|

ˆ

k
n

˙|V
πp1q△πp2q |

1

!

πp1q, πp2q induce conn. graphs
)

;

(5.76)

• under the P basis:
ˇ

ˇ

ˇ

ˇ

A

PGp1q,πp1q , PGp2q,πp2q

E

H0

ˇ

ˇ

ˇ

ˇ

“ non-trivial expression

À λ|πp1q△πp2q|

ˆ

k
n

˙|V
πp1q△πp2q |

1

!´

πp1q, πp2q
¯

P πpMq, for M P M‹
)

;

(5.77)

which is larger if the indicator is non-zero, but it is a lot less frequently so.

In this perspective, we first remove correlations arising from disconnected graphs, then correlations arising from graphs
with some disconnected component.

Example 5.78. In figures 10-15 we place some examples of how different graphs correlate in the basis decomposition
we propose. We imagine there are two edge sets induced by labellings πp1q, πp2q on skeletons Gp1q, Gp2q. The vertices
they induce form sets of connected components respectively in purple and orange. They might or might not have shared
vertices, and their connections form the “overlap graph”.
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Figure 10: Null alignment

This example has
A

PGp1q,πp1q , PGp2q,πp2q

E

H0
“ 0 as there is an isolated connected component in dark purple. We

are not interested in these.

To finalize the computation we show that the basis is almost orthonormal in the sense of definition 1.14.
Having the right control of each entry (prop. 5.44#2), it is a matter of upper bounding the way to count
skeletons. The best way to see if a normalized basis is almost orthonormal in the sense of subsection 3.IV is to
use the Gershgorin interpretation, which we remind required to find a bound of the form:

sup
Gp1qPGpďDqYtHu

ÿ

Gp2qPGpďDq

Gp1q‰Gp2q

ˇ

ˇ

ˇ
CoVH0

”

ψp¨; Gp1qqψp¨; Gp2qq

ı
ˇ

ˇ

ˇ
ď

1
2

, (5.79)

or even better by some D´pow where pow is some possibly explicit control.

Remark 5.80 (Important). The corrected rescaled monomial basis of definition 5.42 is a collection of rPG polynomials
enriched with the unit function. We can write the basis into a vector ψ, where by convention the first term is ψ1 “ 1
and the others are the rPG for G P GpďDq. In particular, the order in which we write them does not matter (the outer

product G “ ψψJ is rotation invariant). A generic entry is GGp1q,Gp2q “ EH0

“

ψGp1q ψGp2q

‰

“ EH0

”

rPGp1q
rPGp2q

ı

or

G1,Gp1q “ EH0

“

ψ0ψGp1q

‰

“ EH0

”

1 ¨ rPGp1q

ı

. In the former case, we use proposition 5.44, in the latter, we simply notice

that EH0

“

ψ0ψGp1q

‰

“ 0, since the basis is centered. If N “ |GpďDq| ` 1, and we choose a reference order G1, . . . , G|GpďDq|

for the labelled graphs to form ψ the Gram matrix is:

G “

ψ1 ψ2 ψ3 ¨ ¨ ¨ ψN
¨

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‚

ψ1 G11 0 0 ¨ ¨ ¨ 0
ψ2 0 G22 G23 ¨ ¨ ¨ G2N
ψ3 0 G32 G33 ¨ ¨ ¨ G3N
...

...
...

...
...

...
ψN 0 GN2 GN3 ¨ ¨ ¨ GNN

. (5.81)

In particular:

• the off-diagonal sums of G are independent of the first row/column;
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Figure 11: Non-null minimal alignment vertex sets
Each vertex set is connected to one vertex set of the other graph. The alignment is non-trivial.

• the diagonal terms are asymptotically unity if D diverges by proposition 5.44#1, or the quantitative bound gives us
that they are bounded below by 1{2 strictly;

• proposition 5.44#2 bounds each green term in absolute value by D´4csi dpGp1q,Gp2qq;

• the Gram matrix is symmetric so the bound on the green terms is the same on the other side of the matrix.

For this reason in the following proposition we ignore the first row/column: it suffices to work out how the off-diagonal
sum over the skeletons compares with the diagonal terms.

Proposition 5.82. Suppose assumption 3.1 holds. Recall the construction of the rP basis from def. 5.42. Define the
Gram matrix:

G :“
´

EH0

”

rPGp1q
rPGp2q

ı¯

Gp1q,Gp2qPGpďDqYtHu
, (5.83)

where by H we mean that we add the constant function to the underlying basis (refer to the remark above, remark 2.20
and definition 5.42). For all Gp1q ‰ Gp2q when D diverges:

GGp1q,Gp1q — 1 and
ÿ

Gp2qPGpďDqYtHu

Gp2q‰Gp1q

ˇ

ˇ

ˇ
GGp1q,Gp2q

ˇ

ˇ

ˇ
À D´csi dpGp1q,Gp2qq. (5.84)

As a consequence the matrix is an approximate isometry. If D does not diverge, it is nevertheless diagonal dominant,
meaning that the eigenvalues are a constant multiple of unity.

Proof. The consequence is immediate for D diverging with n and for the weaker result it suffices to notice that
the quantitative bounds chain the eigenvalues into the r1{2, 3{2s strip in the worst case when D “ 2 since csi is a
large constant. We make this explicit by proving the claims in equation 5.84.
The first is true since we rescale by the dominating term νpGp1qq: it is a mere restatement of proposition 5.44.
The second claim follows by counting the number of skeletons that are at fixed distance from a given one,
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Figure 12: Non-null alignment vertex sets
Each vertex set is connected to at least one vertex set of the other graph. The alignment is non-trivial.

which is lem. 4.74. The covariance of a graph and the unit function is null (i.e. the discussion of remark 5.80).
We find:

ÿ

Gp2qPGpďDq

ˇ

ˇ

ˇ
EH0

”

rPGp1q
rPGp2q

ı
ˇ

ˇ

ˇ
À

ÿ

Gp2qPGpďDq

D´4csi dpGp1q,Gp2qq

“

D
ÿ

d“1

#
!

Gp2q | dpGp1q, Gp2qq “ d
)

D´4csid

ď

D
ÿ

d“1

pd ` Dq2dD´4csid

ď

D
ÿ

d“1

Ddp4´csiq

ď Dp4´csiq`1

ď D´csi{2,

(5.85)

where we used csi ě 10. Therefore, we have:

GGp1q,Gp1q ´
ÿ

Gp2q‰Gp1qPGpďDq

ˇ

ˇ

ˇ
GGp1q,Gp2q

ˇ

ˇ

ˇ
ě 1 ´ D´csi{2 ě

1
2

, (5.86)

since D ě 2 and csi is large enough (say, larger than 2). The eigenvalues of the Gram matrix are all in the strip
r1{2, 3{2s and get closer exponentially fast to being in r1 ´ ϵ, 1 ` ϵs. In any way, we have:

}α}2 À }α}G À }α}2, α “ pαGqGPGpďDq
, }α}G “ αJGα, (5.87)

since the eigenvalues are approximately a constant multiple of unity. The last equation is the requirement in
definition 1.14, so the basis in G is almost orthonormal.

Comparing with section 3 we have all the formal results announced. It remains to prove the main theorem.
We do so in the next section.
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Figure 13: Shared vertices depiction
We highlight how the q “ 9 number of shared vertices could be. They are in the region where the colored

vertex sets overlap. This is not sufficient to understand the number of edges in the overlap graph as discussed
in figure 6.

6 bounding the advantage: proof of the main theorem

In this final section we prove theorem 3.8.
The seemingly involved expression of the advantage in equation 3.27 simplifies greatly thanks to our

almost orthonormal basis (def. 1.14), which is the one from definition 5.42. Using proposition 5.82, we can
renormalize the coefficients:

AdvpďDqpH0, H1q “ sup
pαGqGPGpďDqYtHu

EH1

”

ř

GPGpďDqYtHu αG rPG

ı

d

EH0

„

´

ř

GPGpďDqYtHu αG rPG

¯2
ȷ

À sup
pαGqGPGpďDq

YtHu

EH1

”

ř

GPGpďDqYtHu αG rPG

ı

∥pαGqGPGpďDqYtHu∥2

“ sup
pαGqGPGpďDqYtHu :∥pαGqGPGpďDqYtHu∥2“1

EH1

»

–

ÿ

GPGpďDqYtHu

αG rPG

fi

fl ,

(6.1)

which is equation 3.38. To begin, we take out the constant function corresponding to the empty graph, which
contributes as αHEH1

“

PH

‰

“ αH ď 1. Since we want to show that the advantage is 1 ` o p1q, i.e. that weak
separation is impossible (def. 2.12), notice that the way we choose the constant function is irrelevant: in the À

step above we lost a constant, but we can just absorb it in the empty graph element of the basis to get back 1.
In other words, what matters is showing that the part of the advantage where we sum over GpďDq is vanishing.
Therefore, we move to studying the expectation under H1 of the non-trivial basis elements. This reduces to
computing the expectation under H1 of each connected component. Indeed, each labelled graph inside a
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Figure 14: Minimal tree for symmetric difference
To obtain the minimal number of edges in the symmetric difference, we add in thick colored lines all

connections within shared vertices in both edge sets (so that they do not appear in the symmetric difference).
Then, we connect the shared vertices with the non-shared vertices with black lines, then we use purple (resp.

orange) lines to form a tree on the purple (resp. orange) connected components. These types of matchings
attain the lower bound |E△| “ |V△| ´ #CC of lemma 4.59.

G P GpďDq (see defs. 3.19 - 3.21) has the same expectation. We find, using the language of section 4 and the
definition of the νpGq dominating term (def. 5.40):

EH1

”

rPG

ı

“ |Πp|V|q|EH1

”

rPG,π

ı

“ |Πp|V|q|
1

a

νpGq
EH1

«

m
ź

ℓ“1

PGℓ,π ´ EH0

”

PGℓ,π

ı

ff

“
1

a

νpGq
|Πp|V|q|

m
ź

ℓ“1

EH1

”

PGℓ,π ´ EH0

”

PGℓ,π

ıı

(6.2)

for any G P GpďDq, π P Π|V|, where in the last step we used independence. A skeleton becomes a labelled
graph by taking any injection, so |Πp|V|q| “ n!

pn´|V|q! the number of injections from |V| to n.16 Concerning the
expectation, different structures of pH0, H1q are analogous but return distinct quantities. In what follows, we
focus on testing H0 : Pθ for θ “ pk, λq against H1 : Pθ1 for θ1 “ pλ ` η, kq, which is problem 1.3 in the version
of perturbed signal strength. The analysis when we perturb k follows by the same principles (see subsec. 6.III).
Morally, the expression of the expectation under the planted sub-matrix model is generic, and we just need to
adjust the signal strength. In the spirit of equation 3.17 for all ℓ P rms:

EH1

”

PGℓ,π

ı

“ pλ ` ηq
|Eℓ|

ˆ

k
n

˙|Vℓ|

(6.3)

EH0

”

PGℓ,π

ı

“ λ|Eℓ|

ˆ

k
n

˙|Vℓ|

. (6.4)

16This is lemma 4.50#2.
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Figure 15: A redundant graph
To the graph of fig. 14 we add some redundant connections in the symmetric difference. In dashed lines we
include more connections within shared and non-shared vertices. In dotted dashed lines we add connections

that remove the tree structure in the non-shared vertices.

Combining with the explicit form of νpGq in definition 5.40 and after some algebraic manipulations we find:

EH1

”

rPG

ı

“

g

f

f

e

n!
pn´|V|q!

|AutpGq|

ˆ

k
n

˙|V|

λ|E|
m
ź

ℓ“1

´

1 `
η

λ

¯|Eℓ|

´ 1. (6.5)

If we want something simpler, we can open the product with the binomial theorem and apply a rough bound
on the geometric sum:

´

1 `
η

λ

¯|Eℓ|

´ 1 “

|Eℓ|
ÿ

t“1

ˆ

|Eℓ|

t

˙

´ η

λ

¯t
(6.6)

ď

|Eℓ|
ÿ

t“1

´

|Eℓ|
η

λ

¯t
(6.7)

ď |Eℓ|

´

|Eℓ|
η

λ

¯

η ď
λ

D
, 1 ď |Eℓ| ď D, (6.8)

where the condition on η, λ is justified in remark 3.10 and in assumption 3.7. Putting it all together:

AdvpďDqpH0, H1q ď 1 ` sup
pαGqGPGpďDq

“α:}α}
2
2“1

EH1

»

–

ÿ

GPGpďDq

αG rPG

fi

fl

ď 1 ` sup
pαGqGPGpďDq

“α:}α}
2
2“1

ÿ

GPGpďDq

αG

g

f

f

e

n!
pn´|V|q!

|AutpGq|

ˆ

k
n

˙|V|

λ|E|
m
ź

ℓ“1

|Eℓ|
2 η

λ

ď 1 `
ÿ

GPGpďDq

ˆ

k
?

n

˙|V|

λ|E|D2m
´ η

λ

¯m
,

(6.9)

where we used αG ď 1 and
a

n!{pn´|V|q!{|AutpGq| ď n|V|{2. In particular, with these two steps we completely neglect
the connectivity of the graph. We remove the dependency on the number of connections in each connected
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component and the potential discount by the size of the automorphism group, and more in general the
dependence on G inside the sum that is not possible to group by quantities related to graphs G P GpďDq. With
these simplifications, we rewrite the upper bound as

AdvpďDqpH0, H1q ď 1 `
ÿ

2ďaď2D
1ďbďD
1ďmďD

Na,b,m

ˆ

k
?

n

˙a
λbD2m

´ η

λ

¯m
, (6.10)

where:
Na,b,m :“ #

!

G P GpďDq | |V| “ a, |E| “ b, m connected components
)

. (6.11)

To upper bound further, we go step-by-step.

6.i Digression: element-wise bound

Since we want to show that the sum over G P GpďDq is small, we will first check that each term in the worst
case is small. As is evident from the expression, it depends on |V|, |E|, s, respectively the number of vertices,
edges and connected components. To understand which come into play, we discuss them separately.
To simplify matters, we will take D of the order polylogpnq and write Àlog to discard a polynomial in D with
constant degree.

Remark 6.12. Throughout, the intuition is three-fold:

• in appendix B we show that the optimal algorithm is a sum-type statistic like
ř

pi,jqPE Yij, which is the symmetriza-
tion of Yij, a “very small tree” over two vertices and many connected components;

• our new basis is not impacted by many connected components;

• the nice bounds |E| ě |V| ´ m and |V| ě 2m from lemma 4.59 are worst-case when λ ď 1, k{n ă 1 and coincide
with the optimal algorithm.

optimal algorithm The small tree corresponds to |E| “ 1, |V| “ 2, m “ 1, which gives:

λ

ˆ

k
?

n

˙2 η

λ
D2 Àlog 1 ðñ η

k2

n
Àlog 1. (6.13)

In what follows, we will show that when there is only one connected component and when there are many the
optimal algorithm is still the upper bound.

single connected component When the graph has m “ 1 connected component(s) we have:

λ|E|

ˆ

k
?

n

˙|V| η

λ
D2 ď λ|V|´1

ˆ

k
?

n

˙|V| η

λ
D2

“

ˆ

λ
k

?
n

˙|V|´2 ˆ

η
k2

n
D
˙2

.

(6.14)

Imposing that it is Àlog 1, the first term is small by assumption 3.1 since |V| ě 2, the second coincides with the
condition we got from the algorithm. Again we get ηk2

{n Àlog 1.

many connected components When m ě 1 we have:

λ|E|

ˆ

k
?

n

˙|V|
´ η

λ

¯m
D2m ď λ|V|´m

ˆ

k
?

n

˙|V|
´ η

λ

¯m
D2m

“

ˆ

λ
k

?
n

˙|V|´2m ˆ

η
k2

n
D2

˙m

.

(6.15)

Since there are no isolated vertices, |V| ě 2m, and we can use again assumption 3.1 to reduce to the optimal
algorithm condition that ηk2

{n Àlog 1 and m “ 1.
To conclude, we move to the full sum.
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6.ii Finalization

Let us group the sum in terms of |V|, |E|, s which are the influencing factors. In other words, we consider
equation 6.10. The first observation is that the cardinality of the sum in equation 6.10 is bounded by
p2Dq ¨ D ¨ D ď D4, which is polynomial in D. The size of the set Na,b,m is also bounded, but we have to be
careful and counterbalance it with our signal terms.

Lemma 6.16. It holds that Na,b,m ď D4b.

Proof. We have Na,b,m ď Na,b ď a2b ď D4b where we used D ě 2 and the constraints that a skeleton over a
vertices with b edges is an abstract graph where we need to choose where to place edges and each edge has
less than a2 choices to make. Moreover, inside GpďDq we have a ď 2D.

Combining these two estimates with equation 6.10 we find:

AdvpďDqpH0, H1q ď 1 ` D4 sup
pa,b,mq feasible

D4b`2mλb
ˆ

k
?

n

˙a
´ η

λ

¯m
, (6.17)

where by “feasible” we mean that we take into account all triplets pa, b, mq of numbers of vertices, edges
and connected components of skeletons in GpďDq. The three key feasibility conditions we use come from
lemma 4.59:

• b ě a ´ m (i.e. |E| ě |V| ´ m);

• a ě 2m (i.e. |V| ě 2m, no isolated edges).

Moreover, we use the algorithm intuition of the previous subsection. Bounding the term inside the supremum,
for all feasible triplets:

D4b`2mλb
ˆ

k
?

n

˙a
´ η

λ

¯m
“

ˆ

λ
k

?
n

˙a´2m ˆ

η
k2

n

˙m

¨ λb`m´aD4b`2m. (6.18)

An application of assumptions 3.1 - 3.7 concludes the proof. Indeed, including the D4 term from equation 6.17:

AdvpďDqpH0, H1q ď 1 ` sup
pa,b,mq feasible

D4`4b`2m´8csipa´2m`m`b`m´aq. (6.19)

Rearranging, we can use 4 ď 4b, b ě 1, and m ď b to have all terms depending on the number of edges. Then,
a simple upper bound is:

AdvpďDqpH0, H1q ď 1 ` sup
1ďbďD

D10b´8csipbq ď D10´8csi ď 1 `
1
D

, if 10 ´ 8csi ď ´1 ðñ csi ě
11
8

, (6.20)

which is the case, since csi is a large constant.

Remark 6.21. With another path, we found that the worst-case bound is at the number of edges b “ 1, which corresponds
to the optimal algorithm.

explicit route We attempt to see finely how the optimal algorithm and the assumptions come into play.
As we know, the two assumptions ensure that all terms inside the parenthesis are ď D´ fi for some fi ą 0
positive factor. To be clear, in the statement we require that they are all less than a common D´8csi . We see that
we have three signal terms, so three factors, and two annoying positive powers, namely 4b and 2m. This is an
over-determined system. We can choose two particular f1, f2 to cancel the D4b and D2m terms and then freely
choose f3 to make the quantity as small as we wish. In particular, we take into account the D4 factor outside
(from the cardinality of the sum, namely eqn. 6.17), and want to obtain that overall AdvpďDqpH0, H1q ď 1 ` 1{D.
Using the factor perspective:

AdvpďDqpH0, H1q ď 1 ` Dpow, pow :“ 4 ` 4b ` 2m ´ f1pa ´ 2mq ´ f2m ´ f3pb ` m ´ aq. (6.22)

We wish to find p f1, f2, f3q Ă R` such that pow ď ´1 for all feasible pa, b, mq.
One direct solution is f3 “ 4, which cancels the b, then f1 “ 8 and any f2 ě 6. The generic form is recovered
perhaps by regrouping pow and using some trivial bounds:

pow “ 4 ` bp4 ´ f3q ` ap f3 ´ f1q ` mp2 ` 2 f1 ´ f2 ´ f3q

ď bp4 ´ f3q ` ap f3 ´ f1q ` mp6 ` 2 f1 ´ f2 ´ f3q,
(6.23)

55



since 4 ď 4m as m ě 1. Then, using that a ě 2, b ě 1, m ě 1 we just need to enforce that all coefficients are
negative. To see that the optimal algorithm still pops up, under the condition f3 ě 4, we can use b ě a ´ m to
find:

pow ď ap´ f1 ` f3 ` 4 ´ f3q ` mp2 ` 2 f1 ´ f2 ´ f3 ` f3 ´ 4q

“ ap´ f1 ` 4q ` mp2 ` 2 f1 ´ f2 ´ 4q,
(6.24)

and for f1 ě 4 we can discard the first parenthesis to find that we just need f2 ě 2 f1 ´ 1 in the worst case
when m “ 1. Needless to say, assumption 3.1 on the null hypotheses and assumption 3.7 on the perturbation
satisfy these requirements.

6.iii Adaptation for perturbation on signal size

In this section, we computed everything explicitly for pH0, H1q as in problem 1.3 where we perturb the
signal strength λ to λ ` η. The reasoning for when we perturb the signal size from k to k ` ζ is analogous. We
find:

EH1

”

PGℓ,π

ı

“ λ|Eℓ|

ˆ

k ` ζ

n

˙|Vℓ|

, (6.25)

for each connected component, which is equation 6.3. Then, being careful with |Vℓ| ě 2 for all ℓ connected
components, the inequality in the chain starting from equation 6.6 becomes:

ˆ

1 `
ζ

k

˙|Vℓ|

´ 1 ď |Vℓ|

ˆ

|Vℓ|
ζ

k

˙2
ď D6 ζ2

k2 , under ζ ď
k

2D
. (6.26)

Again, we assumed ζ Àlog k, or precisely that ζ ď k{2D, i.e. that the perturbation is small enough as to not get
into the pure noise regime (see remark 3.10). Under the rescaled basis, we find that the advantage takes form:

AdvpďDqpH0, H1q ď 1 `
ÿ

2ďaď2D
1ďbďD
1ďmďD

Na,b,m

ˆ

k
?

n

˙a
λbD6m

ˆ

ζ

k

˙2m
, (6.27)

which is the analog of equation 6.10, with slightly changed coefficients. If we use the same intuition on
the optimal algorithm of subsection 6.I, we find that the condition ζ Àlog

a

n{λ extends nicely throughout.
Replicating subsection 6.II, the quantitative condition is that ζ

?
λ{

?
n ď D´8csi , which is in accordance with

assumption 3.7 when csi is large enough. For example, we can ask that csi ě 13{8 for this last inequality to hold.

6.iv Final remarks and extensions

our contribution is a very explicit technique to derive low-degree lower bounds for a typical problem:
the planted sub-matrix model (eqn. 1.6) in the setting of complex testing (prob 1.3). In particular, the advantage
from definition 1.10 is vanishing in the regimes of assumption 3.1 - 3.7, and no degree D polynomial can
perform weak detection (cf. definition 2.5) between H0 and H1 observations Y. Using the well-grounded
suggestion at the heart of low-degree polynomials (see sec. 2) we expect that for D «log log n we recover
known results up poly logarithmic factors. The novelty in the technique is the explicit way of recovering these
bounds via the construction of an almost orthonormal basis (def. 1.14). Using conditional independence and
symmetries in the distributions, the canonical basis of definition 2.18 turns into a basis where the correlations
are vanishing, i.e. that of definition 5.42. We hope that thanks to this new strategy finer proofs will follow for
other models.

As a matter of fact the technology of skeletons is not tailored to models as that of equation 1.6 only. Let us
briefly outline why this is the case for perturbations only on the size of the signal k into k ` ζ.
Firstly, any hypothesis test with pH0, H1q invariant to permutations admits an expression of the advantage as
in equation 3.27; we never used the model explicitly in the discussion of subsection 3.III. It is also quite natural
to translate the binary matrix case in which Y P t´1, `1unˆn to a generic observation where:

Yij “

#

1 ´ q with probability q ` Xij

´q with probability 1 ´ q ´ Xij
, p :“ q ` λ. (6.28)
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In looking for an invariant basis, the formalism of skeletons is still helpful, and in the proofs of section 5 we
have far more room in the inequalities. If we maximize the use of conditional independence, a basis like that
of definition 5.42 is almost orthonormal as long as we have an analog of lemma 5.27, and a control on the
correlation like in equation 3.17. To be precise, we can keep similar results to the proofs once we establish that
for a given model the following assumptions hold.

Assumption 6.29 (Generalization). For an observation as in equation 6.28 it holds that:

(A1) The distribution of Y is invariant to permutations σ : rns ÞÑ rns acting as σpYq “ pYσpiqσpjqqi,jPrns.

(A2) For any skeletons Gp1q, Gp2q P GpďDq and labellings pπp1q, πp2qq P ΠpMq it holds that:

ˇ

ˇ

ˇ
EH0

”

PGp1q,πp1q

ı

EH0

”

PGp2q,πp2q

ı
ˇ

ˇ

ˇ
ď cm2

ˆ

Dcm1
k
n

˙|MPM| ˇ
ˇ

ˇ
EH0

”

PGp1q,πp1q PGp2q,πp2q

ı
ˇ

ˇ

ˇ
, (6.30)

for some constants cm,i, where P is the canonical basis (def. 2.18) and MPM is the set of perfect matchings from
section 4.

(A3) For some constants cv,i where i “ 1, 2 it holds that:

EH0

”

PGp1q,πp1q PGp2q,πp2q

ı

ď cv2 pDcv1 λq
|E△|

pqrq
|Ep1q|`|Ep2q|´|E△|

ˆ

Dcv1
k
n

˙|V△|´#CC
, (6.31)

where again E△, V△, #CC are respectively edges, vertices and connected components of the symmetric difference
(see sec. 4) and:

q :“ qp1 ´ qq “ EH0

”

Y2
ij | Xij “ 0

ı

, p :“ pp1 ´ qq2 ` p1 ´ pqq2 “ EH0

”

Y2
ij | Xij “ λ

ı

, r :“
p
q

.

(6.32)

(A4) The parameters are in a region:

max
"

k
n

,
λk

?np
,

λ

q

*

ď D´8csi , (6.33)

for some large enough csi ą 0.

Coming back to previous explanations, we can make an analogy for each of them. Assumption (A1) is
a requirement on the permutation symmetry of the distribution (i.e. lemma 3.23). Moving to (A2), we are
asking that the model satisfies a bound like that of lemma 5.27, for when we wanted to make the P basis of
definition 5.11 close enough to the canonical basis of definition 2.18. In particular, we are adding some D
factors and degrading from M in lemma 5.27 to MSM Ă M only the perfect matches in (A2). Assumption (A3)
morally says that the correlation between graphs under H0 is like the symmetric difference, modulo the fact
that we rescale the matrix to take values Yij P t´q, 1 ´ qu and adding some D factors in the powers involving
the symmetric difference. The regime assumption in (A4) is also analogous to our assumption 3.1 once we
take into account the rescaling.
By working out the proofs of section 5 it only takes mechanical time to realize that under assumption 6.29

a result similar to proposition 5.82 holds for the Gram matrix of correlations. Namely, we can use the same
almost orthonormal basis (def. 1.14): that of definition 5.42 modulo an adjusted rescaling by 1{q such that the
condition of definition 1.14 holds.
The question is what kinds of models satisfy assumption 6.29#(A1) - (A2) - (A3). We provide two examples
below.

generalized planted sub-matrix Under H0 we sample a clique at random of size Binpn, k{nq and
choose to add a spike of magnitude λ in the sampled entries. Notice that by equation 6.28 we are however not
in a centered case, which is q “ 1{2, and we allow for different connection probabilities: within the clique it is p
and outside it is q. For this model, the alternative hypothesis is that we sampled from a distribution where a
fraction ϵ of the entries in the clique is removed, which morally means that ζ “ ´ϵk. It is more natural to talk
of a negative alteration rather than a positive alteration but the interpretation is analogous, as we want the
size of ζ, i.e. |ζ| which is just expressed as a portion of the size of the signal with ϵ to be small for hardness
and large for the existence of an algorithm.
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stochastic block model Under H0 we sample a random partition of rns into k groups (a multinomial)
and set Xij “ λ if pi, jq are in the same group and zero otherwise. There is a block structure in the matrix, and
we think of the perturbation in the alternative hypothesis as observing a matrix where we picked a group at
random and removed it from such group with probability ϵ. Again we have a negative perturbation that is
proportional to k.

We choose not to check explicitly assumption 6.29 for the generalized planted sub-matrix model and the
stochastic block model. Rather, we mention that for these observations the basis of definition 5.42 is again
almost orthonormal (def. 1.14) just like in the result of prop. 5.82. It then takes another computation similar to
section 6 to show the analogue of theorem 3.8. In this case, the perturbation is ϵ, and we will assume we are in
its hardness regime.

Assumption 6.34 (Generalized perturbation on the size of the signal). It holds that ϵλk2
{n

?
q ď D´8csi where csi

is the same large enough constant of assumption 6.29#(A4).

As for the easier case, it is a matter of working out the final inequalities to obtain a weak detection hardness
result in the spirit of definition 2.5 like for our main inequality: theorem 3.8.

Theorem 6.35 (Generalization of main theorem). For models and alterations as the generalized planted sub-matrix
model or the stochastic block model, suppose that assumptions 6.29#(A4) and 6.34 hold. Then:

AdvpďDqpH0, H1q ď 1 `
1
D

, for all D ě 2. (6.36)

further There are other permutation invariant models in the sense of assumption 6.29#(A1) that allow for
these bounds. It is always a matter of double-checking that the interesting regimes match the regimes allowed
by the proof computations. It is also interesting to allow for a fixed size of the signal. For example a slight

modification on the model of equation 1.6 is that |supppxq| „ Geompkq instead of xi
i.i.d.
„ Berpk{nq which adds

some correlations between entries: these can be dealt with using coupling techniques, which we do not outline
here.
Believing enough in the power of this method, one could further explore what kinds of invariances and chains
of assumptions allow going beyond permutation invariance (i.e. ass. 6.29#(A1)).
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a proofs of the basis and invariance lemmas

In this paragraph we prove some lemmas from sections 2 - 3. The idea that the projection of an optimal
separator to the class of low-degree polynomials preserves the same original properties comes from the fact
that the space of polynomials is a linear subspace, and the orthogonal projection theorem applies (see the
discussion in (Kunisky, Wein, and Afonso S. Bandeira 2019)). Some earlier works looked at distributions that
enjoy invariance properties (Kunisky, Moore, and Wein 2024; Montanari and Wein 2022; Semerjian 2024). In
particular, we could derive similar statements with more work by applying a formal version of the Hunt-Stein
theorem from (Lehmann 1970) as in Montanari and Wein (2022, lem. 4.4).

Proof of lemma 2.23. Orthonormality is immediate from the fact that the inner product is the symmetric
difference of graphs, i.e. equation 3.17 and λk “ 0. We are left to prove that it is a basis.
For a generic f , we have that there exist coefficients and powers such that:

f “ a `
ÿ

r
br

ź

pi,jqPEr

Y
β

prq

ij
ij , (A.1)

where in particular |Er| ď D. Since Yij P ˘1, we can simply set β
prq

ij ” 1. The representation:

f “ a `
ÿ

r
br

ź

pi,jqPEr

Yij, (A.2)

is written in terms of the set of monomials PG,π decorated with the unit function as follows. We set αH “ a.
Then, we take graphs G “ pV, Eq P GďD together with labellings π P ΠV such that for all r there exist a pair
pG, πq satisfying

ś

pi,jqPEr
Yij “

ś

i,jPE Yπpiq,πpjq. Ultimately, we set br “ αG,π . To ensure existence, it suffices to
remark that there are no double edges or self-loops. For uniqueness, we reason by contradiction. Suppose
there are two representations of a non-trivial polynomial f . Namely, there exist two distinct pairs of coefficients
pαH, pαG,πqG,πq and pβH, pβG,πqG,πq with which we can express f ı 0. Then:

0 ” f ´ f “ αH ´ βH ´
ÿ

G,π

pαG,π ´ βG,πqPG,π . (A.3)

The right-hand side is a polynomial and it is zero everywhere on the hypercube. We want to show it is then
zero everywhere. The simplest way to see it is to recenter the hypercube to take values t0, 1unˆn, and observe
that we can proceed by induction. Alternatively, there are standard references such as the book of O’Donnell
(2014).
In passing from equation A.1 to equation A we gain that the underlying graph is simple (not a multi-graph),
or equivalently that the edges appear in the polynomial only once in each summand. From this, we have a
precise ordering of graphs if the number of edges that appear. Starting from the smallest ones, we cancel all
coefficients by evaluating the null function f ´ f at the smallest one-edge graphs. Going up, we can proceed
to show that all two edge graphs have null coefficients by the same reasoning. By induction, the statement
holds until we have considered all possible graphs.
Consequently, all the coefficients of f ´ f are zero, reaching a contradiction as the representations of f had to
be distinct, and the decomposition is unique.

Proof of lemma 3.16. Orthogonality is lost since the symmetric difference is non-zero. The collection remains a
basis since the reasoning of the proof of lemma 2.23 does not change.

Proof of lemma 3.23. Let f ‹ be a polynomial of degree less than D attaining the maximal advantage. By invari-
ance of the probability distributions H0, H1 any permutation of f ‹ defined as the function f ‹pPYq for P a per-
mutation matrix is optimal. The “symmetrization” of the optimal function f ‹

invpYq “ 1{n!
ř

P perm. mat f ‹pPYq

is still a polynomial of degree less than D, which is invariant to permutations. Consider:

EH1

”

1
n!
ř

P perm. mat f ‹pPYq

ı

d

EH0

„

´

1
n!
ř

P perm. mat f ‹pPYq

¯2
ȷ

. (A.4)
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By invariance of H1 with respect to permutations, the numerator is equal to the numerator in the optimal
value of AdvpďDqpH0, H1q evaluated at f ‹. For the denominator, by convexity of the square function and
invariance with respect to permutations (in this case of the second moment of f ‹):

EH0

»

—

–

¨

˝

1
n!

ÿ

P perm. mat

f ‹pPYq

˛

‚

2
fi

ffi

fl

ď EH0

”

p f ‹q2
ı

. (A.5)

The argument of the advantage is larger for an invariant function. Therefore, the optimizer in the advantage is
attained by an invariant function.

Proof of lemma 3.25. Consider the space of polynomials taking values in t´1, 1unˆn of degree less than D. The
monomials PG,π and the unit function are a basis of this space by lemma 3.16. Grouping the monomials
by permutations, i.e. summing over

ř

πPΠ|V|
they form a set of polynomials invariant by permutations. We

construct the candidate basis set with these functions decorated with the unit function, and want to show the
set spans invariant polynomials of degree less than D. For f a generic permutation invariant polynomial of
degree less than D, we have in particular that it is decomposable in the PG,π basis, since it is a polynomial.
Mathematically, there exist coefficients such that:

f “ αH `
ÿ

GPGďD ,π

αG,π PG,π , (A.6)

where αH corresponds to the constant function. In particular, for any G P GďD labelled in two different ways
with πp1q ‰ πp2q P Π|V| there exists a permutation matrix P such that:

αG,πp1q “ EH0

”

f pYqPG,πp1q pYq

ı

“ EH0

”

f pPYqPG,πp1q

ı

“ EH0

”

f pYqPG,πp2q

ı

“ αG,πp2q . (A.7)

Since the coefficients are the same across π P Π|V|, we collect them and write f as a linear combination of
elements of the candidate basis:

f “ αH `
ÿ

GPGďD

ÿ

πPΠ|V|

αG,π
loomoon

αG

PG,π “ αH `
ÿ

GPGďD

αG
ÿ

πPΠ|V|

PG,π “ αH `
ÿ

GPGďD

αGPG. (A.8)

Having a decomposition, we can show uniqueness in the same way as in the proof of lemma 3.16. Therefore,
`

1, pPGqGPGďD

˘

is a basis for invariant polynomials of degree less than D.

b matching bounds

In this section we put elements of the proof of propositions 3.12 and a complete argument for proposi-
tion 3.13. Namely, we discuss what happens when we relax either of the conditions from assumption 3.1 or
assumption 3.7. The idea is that:

• if k ‰ o pnq then the signal is approximately of the size of full observation matrix; we reach an information-
theoretic threshold easily and there is no gap;

• if λk{
?

n ‰ o p1q then a line-sum statistic performs detection (with a caveat for perturbations of λ);

• if η ‰ o pn{k2q or ζ ‰ o
´b

n
λ

¯

then a global sum statistic performs detection.

To make matters clear, we repeat that we do not comment on the condition on λ because it is just to scale
everything correctly.

With results of this kind, we are certain that our main theorem 3.8 is tight up to poly-logarithmic factors. Let
us explain thoroughly the two sides of this argument. On the negative, under assumptions 3.1 - 3.7 specialized
at D «log log n our result says that no polynomial of degree D can perform weak detection in the sense of
definition 2.5. On the positive side, again up to poly-logarithmic factors, as soon as we violate either of the
conditions we show there are two options. Either there is no gap at all when we hit the information-theoretic
bound, see appendix C; or there is a working algorithm. Therefore, the low-degree conjecture of section 2

captures the expected behavior of known algorithms (see subsec. B.III for further comments).
In the two next subsections, we analyze the algorithms with concentration arguments using OP p¨q to denote a
term that is bounded with high probability. In the third subsection, we present the formal derivation for the
global sum statistic, i.e. the proof of proposition 3.13.
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Remark B.1. As n Ñ 8 poly-logarithmic factors are negligible. The claim “up to poly-logarithmic factors” is thus
rather rough for sharp, low-dimensional claims. It is somewhat standard in the low-degree method.

b.i Global sum statistic

The global sum statistic from equation 3.11:

sglobalpYq “
ÿ

i‰j

Yij, (B.2)

is able to distinguish pH0, H1q under mild conditions on the parameters. The intuition is as follows. With
high probability, X “ pxixjqi‰j concentrates since it is a matrix of Bernoulli random variables. Indeed, we have

Xij „ λBerpk2
{n2q and in particular xi

i.i.d.
„

?
λBerpk{nq. With high probability, the support of the vector x is of

size:
n
ÿ

i“1

1
?

λ
xi “ |supppxq| “ k ˘ OP

´?
k
¯

, (B.3)

so that the size of the portion of the matrix with signal is with high probability within k2 ˘ OP

´

k3{2
¯

. For large
enough k, the correction should not matter. Then, the random variable sglobalpYq has the following distribution
for the first perturbation problem:

sglobalpYq “

$

’

’

&

’

’

%

ř

i‰j
Xij“1

Rad p1`λ{2q `
ř

i‰j
Xij“0

Radp1{2q under H0

ř

i‰j
Xij“1

Rad p1`λ`η{2q `
ř

i‰j
Xij“0

Radp1{2q under H1.
(B.4)

Again, by concentration there are k2 ˘ OP

´

k3{2
¯

entries in the first sum, and n2 ´ k2 ¯ OP

´

k3{2
¯

entries in the
second. Using concentration:

ÿ

i‰j
Xij“0

Radp1{2q “ OP pnq under both H0, H1, (B.5)

since we assume that k “ o pnq (otherwise there is an information-theoretic bound). The difference is in the
two sums with the signal. Under the null and the alternative the sum is of roughly k2 ˘ OP

´

k3{2
¯

order and
the Yij are independent once the entries Xij are fixed. Using these facts:

ÿ

i‰j
Xij“1

Rad p1`λ{2q “

#

k2λ ` OP pkq under H0

k2pλ ` ηq ` OP pkq under H1
. (B.6)

If we roughly impose that the distributions are separated we wish that:

k2pλ ` ηq ´ k ´ n Álog k2λ ` k ` n (B.7)

which after simplifications up to log factors means that the sglobal statistic works when k2η Álog n which
coincides with the opposite condition of assumption 3.7.

Remark B.8. The same reasoning for a perturbation ζ on the size of the signal k as in problem 1.3 gives the feasibility
condition ζ

?
λ{

?
n Álog 1 which matches assumption 3.7.

b.ii Line-sum

Alternatively, we could check if there are “many” lines that are large. This corresponds to thresholding the
line-sum statistic from equation 3.11

slinepYq “ #

$

&

%

j :
ÿ

i‰j

Y ij ě ω

,

.

-

, (B.9)
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for some well-chosen threshold ω. The same reasoning holds on concentration of
řn

i“1 xi{
?

λ “ k ˘ OP

´?
k
¯

,
so defining the clique set C “ tj : xj “ 1u it holds that:

ÿ

i‰j

Yij “

$

’

’

’

’

&

’

’

’

’

%

ř

i‰j Radp1{2q i.i.d. if j R C under both
ř

i‰j
iPC

Radp1`λ{2q `
ř

i‰j
iRC

Radp1{2q i.i.d. if j P C under H0

ř

i‰j
iPC

Radp1`λ`η{2q `
ř

i‰j
iRC

Radp1{2q i.i.d. if j P C under H1

“

$

’

’

&

’

’

%

OP

`?
n
˘

if j R C under both

λk ` OP

´?
k
¯

` OP

`?
n
˘

if j P C under H0

pλ ` ηqk ` OP

´?
k
¯

` OP

`?
n
˘

if j P C under H1

.

(B.10)

First, for the entries to be at all visible we need up to log factors λk Álog
?

n. Secondly, we impose that there is
a clear distinction between the sums over the cliques under H0 and H1. Mathematically, we require:

pλ ` ηqk ´
?

k ´
?

n Álog λk `
?

k `
?

n. (B.11)

Reordering and using again leading orders we obtain the condition kη Álog
?

n. Notice that the condition is
η Álog

?
n{k and by k Álog

?
n (recall remark 3.6) we are not in the regime of assumption 3.7 as

?
n{k Álog n{k2.

This holds true unless we have no detection-recovery gap: in the case of a line-sum statistic we get close to a
matching algorithm for the hardness result of theorem 3.8 when λ is perturbed.
To fix this little inconsistency, we just need to realize that once the condition λk Álog

?
n holds then we can

estimate the clique with high probability. Consequently, since we expect complex testing (prob. 1.3) to be
an easier problem than estimation (prob. 1.5), complex testing should be easy in this regime in the sense of
definition C.8. In practical terms, we can identify k columns in Y where the line sum is well above the value of
a line sum without signal. These are columns j P C above. Taking the sub-matrix pYijqi,jPC P t´1, 1ukˆk we
aim to estimate the signal strength and see if it is closer to λ or to λ ` η. Since for given j P C the OP

`?
n
˘

oscillations came from entries i R C that did not have signal we know that:

ÿ

i‰j
i,jPC

Yij “

$

&

%

λk ` OP

´?
k
¯

under H0

pλ ` ηqk ` OP

´?
k
¯

under H1
, i.i.d. for all j P C . (B.12)

So if we use the signal estimator
pλpYq :“

1
k2

ÿ

jPC

ÿ

i‰j
iPC

Yij, (B.13)

then:

pλpYq “

$

&

%

λ ` OP

´

1?
k

¯

under H0

λ ` η ` OP

´

1?
k

¯

under H1
. (B.14)

To separate the distributions we need η Álog 1{
?

k. The intersection of the perturbation assumption 3.7 and
η Álog 1{

?
k is a non-empty interval when n Álog k3{2. Since we keep the condition that k{n “ o p1q from

assumption 3.1, combining these two observations complex testing (prob. 1.3) is solved with high probability
by a line sum algorithm as soon as we break the inequality λk{

?
n “ o p1q for k of small enough order with

respect to n.

Remark B.15. Contrarily, if we have λk{
?

n Álog 1 for a perturbation on k with magnitude ζ the heuristic suggests that
line-sum distinguishes when k `

?
k Àlog k ` ζ ´

a

k ` ζ which holds up to log factors when ζ Álog
?

k. Noticing that
?

k Àlog
a

n{λ the region is included in assumption 3.7. We directly have a working algorithm.

In the next subsection we discuss the weaknesses and arguments in favour of these conclusions.

b.iii Comments on optimality of global sum and line-sum statistics
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Our main theorem (thm. 3.8) is a negative result and as soon as we violate any of its assumptions we know
there exists an algorithm.
The weakness of this argument is that while there exist an algorithm, nothing tells us this should be optimal.
Formally, the Neyman-Pearson lemma ensures that if we allow for unconstrained computation time, regressing
to an information-theoretic setting as in appendix C, then we know the optimal test is a well-chosen threshold
on the likelihood ratio (Kunisky, Wein, and Afonso S. Bandeira 2019). However, once we restrict to polynomial
time algorithms there is no guarantee that the optimal algorithm is the sum or the line-sum statistic of
equations B.2 - B.9. There might as well be an algorithm that under both assumptions 3.1 - 3.7 is able to
perform weak detection (def. 2.5) for complex testing, which is problem 1.3. While this is a possibility, we
present three key arguments to argue that it is not expected.

(A1) The sum and line-sum statistics (eqns. B.2 - B.9) are optimal among invariant statistics, where by
invariance we mean invariance in the sense of lemma 3.23. Since we know the objective function in the
advantage (def. 1.10) is attained by an invariant function, we know that no function can do better than
our candidates in terms of weak separation (def. 2.12).

(A2) While one could further argue that weak separation (def. 2.12) is a sufficient condition for weak detection
(def. 2.5), and not a characterization, the wide belief is that once we restrict to degree D polynomials
these criterions become rather equivalent (see the discussion in (Kunisky, Wein, and Afonso S. Bandeira
2019), especially regarding hypercontractivity).

(A3) Lastly, the low-degree method is a heuristic, but it appears to catch the expected algorithmic thresholds
for a wide collection of problems (we mention some in subsection 1.II). Modulo some adjustments it
is well-established as a method for those that believe in it. At the very worst, it rules out thresholding
polynomials up to some degree. This is already a large class of test functions that includes spectral
methods (see (Kunisky, Wein, and Afonso S. Bandeira 2019)).

We now move to an exemplified proof via concentration inequalities for the global sum statistic of equation B.2.
This is the proof of proposition 3.13.

b.iv Formal analysis of global sum statistic under signal strength perturbations

Concentration arguments as in the previous two subsections are clean but avoid the many details. Here we
add these details for the sglobal statistic/algorithm (eqn. B.2) when we test θ “ pk, λq against θ1 “ pk, λ ` ηq in
the sense of problem 1.3. At the cost of similar arguments all the other combinations of perturbations and
thresholding statistics are analogous.

Proof of proposition 3.13. We want to bound both the probability of a type I error and of a type II error. This
means that we want to upper bound:

PH0

”

sglobalpYq ´ µ0 ě ξ
ı

, and PH1

”

sglobalpYq ´ µ0 ă ξ
ı

, (B.16)

for some well-chosen threshold ξ P
`

0, npn´1q{n2k2η
˘

, where µ0 :“ npn´1q{n2k2λ is the expectation of sglobal under
H0. Similarly, we define µ1 :“ npn´1q{n2k2pλ ` ηq, and ϕ :“ µ1 ´ µ0 ą 0. By the equation above we have two
events to consider respectively under H0 and H1:

A0 ” Apξq

0 :“
!

sglobalpYq ´ µ0 ě ξ
)

, A1 ” Apξq

1 :“ Ac
0 “

!

sglobalpYq ´ µ0 ă ξ
)

. (B.17)

While these are largely complex to analyze, we can condition on high probability events that simplify their
evaluation. Inspired by the discussion of the previous subsection we define:

B ” Bpδq :“ t||supppxq| ´ k| ď δku , C ” Cpχq :“

$

’

’

’

&

’

’

’

%

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

i‰j
xixj“0

Yij

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď χ

,

/

/

/

.

/

/

/

-

, (B.18)

where δ P p0, 1q, χ P p0, npn´1q{2q are parameters we will choose together with ξ. The following fact allows us to
decompose the probabilities.
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Fact B.19. Let P be a probability measure and A, B, C be three measurable events. Then:

P rAs ď P rA | B, Cs ` P rBcs ` P rCc | Bs . (B.20)

Proof. We just decompose the probabilities over and over. Mathematically, we have:

P rAs “ P rA | Bs P rBs ` P rA | Bcs P rBcs ď P rA | Bs ` P rBcs , (B.21)

and we bound further in this style to make C pop-up. We have:

P rA | Bs “ P rA | B, Cs P rC | Bs ` P rA | B, Ccs P rCc | Bs ď P rA | B, Cs ` P rCc | Bs . (B.22)

The claim follows.

It remains to show that this whole sum is small using concentration of measure results.
The easiest term is the unconditional probability. We have that |supppxq| „ Binpn, k{nq so that:

PH0 rBcs “ P r|Binpn, k{nq ´ k| ě δks ď 2 exp
"

´
δ2k
3

*

, (B.23)

by concentration of the binomial distribution. We can make it small upon choosing well δ.
For the conditional probabilities, we need to be more careful. The key observation is that both events

can lose the dependence structure if we take the worst-case. Let us be clearer with an explicit example.
Consider PH0 rCc | Bs. For each fixed realization of the support x the random variables Yij such that xixj “ 0
are independent Rademacher distributed random variables. The number of these pairs depends on the size of
the support, but we always have a Gaussian concentration. Assuming the size of the support is s we have that:

P rCc | |supppxq| “ ss “ P

«ˇ

ˇ

ˇ

ˇ

ˇ

s
ÿ

r“1

Radp1{2q

ˇ

ˇ

ˇ

ˇ

ˇ

ě
χ

2

ff

ď 2 exp
"

´
χ2

8s

*

, s :“
npn ´ 1q

2
´

sps ´ 1q

2
, (B.24)

where we notice that we divided by 2 since we were summing over i ‰ j but the matrix is symmetric. Therefore,
conditional on the event B, we have an overall bound by the worst size possible, which is in this case the
maximal size since:

sup
sPrkp1´δq,kp1`δqs

exp
"

´
χ2

8s2

*

“ exp
"

´
χ2

2pnpn ´ 1q ´ kp1 ´ δqpkp1 ´ δq ´ 1qq

*

ď exp
"

´
χ2

2n2

*

, (B.25)

since k{n ď D´8csi and D ě 2 under assumption 3.1. Notice that here we only apply the information-theoretic
part of the conditions (see discussion at the beginning of this section and remark 3.5).
For the other two conditional probabilities, the reasoning is analogous, but we need to make two different
bounds.

bound on null hypothesis term The following event inclusion is useful to simplify the expression:

tA0 | B, Cu “

$

’

’

’

&

’

’

’

%

ÿ

i‰j
xixj“1

Yij ´ µ0 ě ξ ´
ÿ

i‰j
xixj“0

Yij | B, C

,

/

/

/

.

/

/

/

-

Ď

$

’

’

’

&

’

’

’

%

ÿ

i‰j
xixj“1

Yij ´ µ0 ě ξ ´ χ | B, C

,

/

/

/

.

/

/

/

-

,

(B.26)

where we used in particular that event C holds. For fixed x, the sum on the last RHS is a sum of independent
Rademacher distributed random variables with mean 1`λ{2 and unit variance. If the size of the support is s we
find again:

P

»

–

sps´1q{2
ÿ

r“1

Radp1`λ{2q ´
µ0

2
ě

ξ ´ χ

2

fi

fl ď exp
"

´
pξ ´ χq2

2psps ´ 1qq

*

, @χ ă ξ, (B.27)
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where we stress that we will have to take into account the condition χ ă ξ. Taking the worst-case value among
supports allowed by event B we bound as before under assumption 3.1:

sup
sPrkp1´δq,kp1`δqs

exp
"

´
pξ ´ χq2

2psps ´ 1qq

*

ď exp
"

´
pξ ´ χq2

2n2

*

. (B.28)

Therefore, in the worst-case we have a bound of this type on PH0 rA0 | B, Cs.

bound on alternative hypothesis term We seek something similar, now using that under the H1
distribution the mean is not µ0 but rather µ1 “ µ0 ` ϕ, so we need to recenter concentration terms. Let us
establish the useful inclusion:

tA1 | B, Cu “

$

’

’

’

&

’

’

’

%

ÿ

i‰j
xixj“1

Yij ´ µ0 ´ ϕ ď ξ ´
ÿ

i‰j
xixj“0

Yij ´ ϕ | B, C

,

/

/

/

.

/

/

/

-

Ď

$

’

’

’

&

’

’

’

%

ÿ

i‰j
xixj“1

Yij ´ µ0 ´ ϕ ď ξ ` χ ´ ϕ | B, C

,

/

/

/

.

/

/

/

-

“

$

’

’

’

&

’

’

’

%

ÿ

i‰j
xixj“1

Yij ´ µ1 ď ξ ` χ ´ ϕ | B, C

,

/

/

/

.

/

/

/

-

.

(B.29)

If we fix x in the last event, and take it to have a support allowed by the event B of size s, we need to evaluate
the tail probability of a sum of i.i.d. centered Rademacher random variables. By Gaussian concentration, under
the necessary condition that ξ ` χ ´ ϕ ă 0 we find:

P

»

–

sps´1q{2
ÿ

r“1

Radp1`λ`η{2q ´
µ1

2
ď

ξ ` χ ´ ϕ

2

fi

fl ď exp
"

´
pξ ` χ ´ ϕq2

2psps ´ 1qq

*

. (B.30)

One last time, the worst-case upper bound inside the event B is by the conditions that we keep in assump-
tion 3.1:

sup
sPrkp1´δq,kp1`δqs

exp
"

´
pξ ` χ ´ ϕq2

2psps ´ 1qq

*

ď exp
"

´
pξ ` χ ´ ϕq2

2n2

*

. (B.31)

putting it all together We aim to threshold properly sglobal and show it attains a small type I and
type II error. The variables in the following bound are the threshold ξ and the conditioning events thresholds
pδ, χq. We start by combining equations B.23 - B.25 - B.28 - B.31 and fact B.19 for a valid triplet pξ, χ, δq such
that χ ă ξ, ξ ` χ ´ ϕ ă 0. In equations, the sum of type I and type II error admits the bound:

PH0

”

sglobalpYq ´ µ0 ě ξ
ı

` PH1

”

sglobalpYq ´ µ0 ă ξ
ı

“ PH0 rA0s ` PH1 rA1s

ď PH0 rA0 | B, Cs ` PH1 rA1 | B, Cs ` 2PH0 rBc | Cs ` 2PH0 rCcs

ď exp
"

´
pξ ´ χq2

2n2

*

` exp
"

´
pξ ` χ ´ ϕq2

2n2

*

` 2 exp
"

´
χ2

2n2

*

` 4 exp
"

´
δ2k
3

*

,

(B.32)

where we used that the events Bc and Cc | B do not change whether we integrate under the distribution of H0
or of H1. The remaining part of the proof is just an analysis argument to make the RHS smaller than 1 ´ Ω p1q

when the condition on the perturbation of assumption 3.7 is violated, so when ηk2
{n Álog 1 approximately.

Let us bound each term separately and then combine them. We seek to make them all less than p{4 for
some fixed p P p0, 1q that depends on pn, k, ηq. The choices we make reflect the heuristic of subsection B.I, and
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happen to be the minimum required for weak separation (def. 2.12). Taking δ “ cδ{
?

k for some cδ ą 0 we have
that:

4 exp
"

´
δ2k
3

*

“ 4 exp

#

´
c2

δ

3

+

ď
p
4

ðñ cδ ě

c

´3 ln
´ p

16

¯

. (B.33)

Letting χ “ cχn for some cχ ą 0 we have that:

2 exp
"

´
χ2

n2

*

“ 2 exp

#

´
c2

χ

2

+

ď
p
4

ðñ cχ ě

c

´2 ln
´ p

8

¯

. (B.34)

These are the decoupled terms. Concerning the coupled terms, we see that there needs to be a non-trivial
interval for ξ to exist. Combining the conditions to have our concentration inequalities such interval is:

χ ă ξ ă ϕ ´ χ “
npn ´ 1q

n2 k2η ´ χ, (B.35)

which is a non-empty interval if ϕ ą 2χ “ 2cχn. Once we impose that the interval exists, we have that
ξ ´ χ ą pcξ ´ cχqn ą 0 for some cξ ą cχ thanks to which:

exp
"

´
pξ ´ χq2

2n2

*

ď exp

#

´
pcξ ´ cχq2

2

+

ď
p
4

ðñ cξ ´ cχ ě

c

´2 ln
´ p

4

¯

. (B.36)

Using the same reasoning, we can find a ϕ{n ą cϕ ą cξ such that ϕ ´ ξ ´ χ ą pcϕ ´ cξ ´ cχqn implying:

exp
"

´
pϕ ´ ξ ´ χq2

2n2

*

ď exp

#

´
pcϕ ´ cξ ´ cχq2

2

+

ď
p
4

ðñ cϕ ´ cξ ´ cχ ě

c

´2 ln
´ p

4

¯

. (B.37)

Reordering equations B.33 - B.34 - B.36 - B.37, together with the fact that ϕ ą 2χ and ϕ ą ncϕ we see that we
want to find a p P p0, 1q for given pn, k, ηq such that the following intervals are non-empty:

c

´3 ln
´ p

16

¯

ď cδ ă 8

c

´2 ln
´ p

8

¯

ď cχ

cχ `

c

´2 ln
´ p

4

¯

ď cξ ď
ϕ

n
` cχ

cχ ` cξ `

c

´2 ln
´ p

4

¯

ď cϕ ď
ϕ

n
` cχ ` cξ .

(B.38)

The first is trivially satisfied for cδ large enough. The second includes cχ which appears in the condition

ϕ ą 2χ “ 2cχn. The last two intervals exist as soon as ϕ ą n
b

´2 ln
` p

4

˘

. Therefore, we need to impose two
conditions:

ϕ

n
ą 2cχ ě 2

c

´2 ln
´ p

8

¯

,
ϕ

n
ą

c

´2 ln
´ p

4

¯

. (B.39)

The inequality ϕ
n ą 2cχ is the opposite of the perturbation in assumption 3.7 as ϕ{n “ npn´1q{n3k2η ą cχ ą 0 is

satisfied for all n ě 2 when k2
{2nη ě cχ. The other two, for fixed pn, k, ηq identify a region p P ppc, 1q of allowed

probabilities. The expression of pc is explicit:

pc ą 8
b

e´ϕ2{8n2 , (B.40)

where the RHS is less than unity, making the interval of allowed values of p non-empty, when k2η{n ą 4
?

2 ln 8,
which is again a violation of assumption 3.7. Retracing our steps back, under the last condition there exists an
interval for cχ, and automatically equations B.39 are satisfied, which implies that all constants cχ, cξ , cϕ exist.
The constant cδ always exist for any given p, and the final probability is:

PH0

”

sglobalpYq ´ µ0 ě ξ
ı

` PH1

”

sglobalpYq ´ µ0 ă ξ
ı

ď pc “ 8
b

e´ϕ2{8n2
` ϵ ă 1, @ϵ ą 0. (B.41)

In particular, the threshold ξ is in the non-empty interval ncχ ă ξ ă ϕ ´ ncχ, and we take the constant:

cχ “

c

´2 ln
´ pc

8

¯

. (B.42)
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c average-case hardness and statistical-to-computational gaps (for unfamiliar read-
ers)

A common problem in statistics is to understand “emergence” of structure, where by emergence we mean
the statistical threshold at which the latent random variable is visible. We suppose our observation Y is for
example a random matrix, sampled from an unknown distribution, and aim to recover information about the
distribution from the data. In an ideal setting, we have all the deterministic information possible, and wish to
infer only the latent random structure.

Let us propose a motivating example. For given pk, λq P R2
`, a form of the planted sub-matrix model as

in equation 1.6 is such that there is a latent set S of around k indexes i P rns. Therefore, there is a |S | ˆ |S |

sub-matrix of Y that has morally more `1 entries. The increased number of positive entries compared to the
rest is precisely a notion of structure.

Remark C.1. Since λ enters a probability, the parameter space is without loss of generality pk, λq P R` ˆ r0, 1s. The
case in which λ ă 0 is symmetric.

what is a statistical threshold? In this statistician-friendly formulation, we know all deterministic
features of the problem: the model, the model size n, the signal size k, and the signal strength λ. What we want
to understand is the nature of S . In particular, any other formulation where we do not know more is naturally
harder to solve, in any sense possible. For the purpose of this document, we restrict to the optimistic scenario
where only the latent information is unknown. The only issue is that we do not know S a priori: it is random
and there are

`n
k
˘

possible realizations. In practice, if we plot the matrix it does not have a block structure.
Intuitively, if λ is large, i.e. we plant a strong signal, or k is “large”, i.e. we plant a “big” sub-matrix, it should
be “visible”, but we are interested in formalizing what large, big, and visible mean. For this purpose, we control
randomness by taking a setting where pk, λq vary jointly, possibly with other auxiliary parameters. Let us store
them abstractly in a vector θ P Θ Ă RK. The interpretation is that we see the planted sub-matrix problem
as a model that depends on its parameters θ and want to answer questions such as problems 1.1 - 1.3 - 1.5,
reported here informally for convenience:

(Q1) In which regions of Θ can we understand if we observed a matrix with structure or not at all?

(Q2) In which regions of Θ can we understand if we observed a matrix with large/strong structure?

(Q3) In which regions of Θ can we find the latent structure?

Remark C.2. A common trait is that the regions exhibit dependence within parameters. For example, we would have
λ ” λpnq, k ” kpnq and n, so that as n varies also pk, λq do. The simplifying approach is to take n Ñ 8, and then
potentially refine with non-asymptotic results.

A statistical threshold is the boundary at which the behavior of a problem with randomness changes.
When it is unveiled, we find well-behaved and identifiable regions of different statistical behaviors; from one
to the other, a new characteristic of the problem emerges. As an example, suppose θ ‰ θ1 where θ1 is a slight
perturbation of θ that goes just outside the region where we answer (Q1) positively. Then, we are sure that
there is not enough information in θ1. In other words, in moving from θ1 to θ in parameter space the signal
emerges from noise, and the boundary we crossed is sharp in some quantifiable sense. While the questions
above are informal, there are canonical formulations in statistics that formalize them.

We want to answer (Q1) - (Q2) - (Q3). Problems 1.1 - 1.3 - 1.5 formalize them in the language of classical
statistics, but what does it mean to “solve them well”? According to which measure of goodness?

success criterion In problems 1.1 - 1.3 - 1.5 we glissed over what “solving well” means. For estimation,
it is common practice to consider a loss with respect to the ground truth. In some cases, this is an ℓp loss.
Since there is randomness involved, we will take the expectation of it and require obtaining guarantees on the
loss over the randomness. For example:

(C1) if the loss is on average larger than a certain value, we have a negative result;

(C2) if it is smaller than a certain value, we have a positive result;

where positive and negative merely mean that we are sure to be better/worse than such loss on average. The
trick is then to understand what is the best we can do, or the least considering the trivial method, e.g. random
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guessing, and comparing. For hypothesis testing, the analog is to study the probability of making a mistake,
which is the sum of type I and type II errors.
The key aspect of the comparison step is understand what we want to study. In the next two paragraphs, we
present a seasoned and a modern view on hypothesis tests such as problems 1.1 - 1.3.

classical Statistics has long focused on universal guarantees over any possible function. For example,
studying (C1) above boils down to proving a result such as:

“For any θ P Θimp the type I and type II error are larger than 1{2 ´ o p1q as n Ñ 8”.

The formalization is:

inf
f :t´1,1unˆn ÞÑt0,1u

␣

PH0 r f pYq “ 1s ` PH1 r f pYq “ 0s
(

ě 1 ´ o p1q , @θ P Θimp, (C.3)

and tells us that for any function there is no construction that performs significantly better than random
guessing for problem configurations in Θimp. In other words, Θimp is a region of impossible problem instances,
where we cannot answer (Q1) or (Q2). An example of companion result of the (C2) type is for example:

“For any θ R Θimp there exists an explicit f ‹ (or more than one) that attains small type I and type II error as
n Ñ 8”.

In full analogy, we write this as:

inf
f :t´1,1unˆn ÞÑt0,1u

␣

PH0 r f pYq “ 1s ` PH1 r f pYq “ 0s
(

ď 1 ´ Ω p1q , @θ R Θimp, (C.4)

and f ‹ attaining it known, e.g. some complicated integral.

Remark C.5. While we only presented an example, there are many ways to write down these statements, according to
the notion of solving “well” the problem. In the positive result just above, we could have asked to be o p1q. We could have
written these down non-asymptotically with precise quantitative versions of o p¨q , O p¨q. The theory is rather flexible in
this sense.

The main bottleneck of these principles is that in many cases the optimal function f ‹ is known, explicit,
but takes exponential time to compute. Given an observation Y with n " 1, we are hopeless to have the
answer before the age of the universe. This non-practicality observation has drawn research to the scenario in
which we replace functions with algorithms.

computational bounds To capture the behavior of efficient functions, we rephrase equation C.3 as:

inf
f :t´1,1unˆn ÞÑt0,1u

f computable in poly-time

␣

PH0 r f pYq “ 1s ` PH1 r f pYq “ 0s
(

ě 1 ´ o p1q , @θ P Θalgo imp, (C.6)

and equation C.4 as:

inf
f :t´1,1unˆn ÞÑt0,1u

f computable in poly-time

␣

PH0 r f pYq “ 1s ` PH1 r f pYq “ 0s
(

ď 1 ´ Ω p1q , @θ R Θalgo imp. (C.7)

In particular, by the fact that we restrict the optimization, we have Θalgo imp Ě Θimp. With these types of
inclusions we can create a hierarchy of hardness of problems which is useful to define.

Definition C.8 (Domination). Since we look at problems over a phase diagram of parameters, two problems P1,P2 are
put in relation depending on how large an area they cover with a positive answer. Suppose two given problems P1,P2
depend on a set of parameters in RK. Given a criterion for returning a solution, e.g. a loss, they are in order of domination
P1 ą P2 if P1 is solved in a strictly larger subset of RK. In particular with this definition the unconstrained method
(eqn C.4) always dominates poly-time algorithms (eqn C.7).

When the inclusion Θalgo imp Ą Θimp is strict we say we have a statistical-to-computational gap. There
are regions of the parameter space where problem instances are solvable by a generic function but not by
algorithms. The importance of studying existence of gaps is merely practical: for a given problem, it is not
sufficient to know when it is solvable, but rather important to know when it is efficiently solvable.
Since the notion of gap is formal, in principle one can hope for an f ‹

algo optimizing equation C.7 and a negative
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result uniformly over the class of algorithms like equation C.6. However, there is no well-known formalism
that captures algorithms with functions and vice versa. In recent years, the approaches proposed consisted in
restricting to a certain “computational class”. While none of them has a precise answer,17 modulo some details
they tend to make the same predictions on the Θimp regions across interesting problems.
For the purpose of this document, we focus on the low-degree method, which we discuss at length in section 2

of the main text. It is one of the most flexible and mathematically established. Some alternatives and comments
on connections are in subsection 1.II.

17Rather, they all work with the conjecture that they are capturing algorithms under nice assumptions.
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