
Probability Theory Hybrid Notes
Course 20604, Bocconi University

Giancola Simone Maria1†

†Bocconi University, Milan

January 20, 2023

1simonegiancola09@gmail.com

mailto:simonegiancola09@gmail.com


2



Contents

List of Symbols 7

0 Read Me 9

I Measure Theoretic Probability 11

1 Classes of Sets 13

1.1 Sigma algebras, Borel sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Measures & Probablity Spaces 19

2.1 Probability & other measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 First properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Random Variables 25

3.1 Realizations over the domain, distribution, the pdf, the cdf . . . . . . . . . . . . . . . . . . . . . 25

4 Expectation 31

4.1 Building the expectation step by step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Properties of Expectation and integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Notions of convergence and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Density Functions 39

5.1 Radon-Nikodym Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Random Vectors, Transforms 45

6.1 Multivariable approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2 Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7 Uniform Integrability & Inequalities 55

7.1 More requirements for integrability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.2 Concentration inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.3 A Graph Theoretic Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3



4 CONTENTS

8 Independence & Convolutions 67

8.1 Sigma algebra approach to independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8.2 Convolutions and Radon-Nykodym again . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

9 Borel Cantelli Lemmas & Convergence 75

9.1 Borel-Cantelli Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

9.2 Convergence revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

9.3 Inner product space and Orthogonal Projection Theorem . . . . . . . . . . . . . . . . . . . . . . 80

9.4 Weak Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

10 Conditionals & Stochastic Processes 89

10.1 Constructing conditional Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

10.2 The infinite dimensional case for stochastic processes . . . . . . . . . . . . . . . . . . . . . . . . . 99

II Stochastic Processes 107

11 Martingales & Stopping Times 109

11.1 Filtrations, Stopping times and easy notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

11.2 Random Expectation and Martingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

11.3 Uniform integrability of martingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

11.4 Wiener Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

12 More Processes & Integration 127

12.1 Poisson processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

12.2 Stochastic Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

12.3 Doob’s results and Martingale Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

12.4 Exercise Session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

13 Poisson Random Measures 149

13.1 Random Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

13.2 Stones in a Field and Poisson Random Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

13.3 Properties of Poisson Random Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

14 Atomic View of Poisson Random Measures 157

14.1 Other Properties of Poisson Random Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

14.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

14.3 Arrival Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

15 Transformations & Increasing Lévy Processes 167

15.1 Stable and Gamma Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172



CONTENTS 5

16 Poisson Processes 181

17 Lévy Processes 191

17.1 Compensated sum of jumps from relaxed integrability conditions . . . . . . . . . . . . . . . . . . 194

18 Brownian Motion 199

18.1 A Different Perspective of Wiener Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

18.2 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

19 Arcsine laws, Hitting times 207

19.1 Augmentations and Hitting Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

19.2 Arcsine Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

19.3 Running Maximum and Poisson Jumps to interpret Hitting Times . . . . . . . . . . . . . . . . . 215

20 Path Properties of Wiener processes 219

20.1 Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

III Additional Material 223

21 Recap of Part II 225

21.1 Results Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

21.1.1 Martingales and Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

21.1.2 Random Measures and Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

21.1.3 Continuous Time Processes and Path Properties . . . . . . . . . . . . . . . . . . . . . . . 238

21.2 Examples Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

21.2.1 Counting process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

21.2.2 Random Walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

21.2.3 Bayesian Mean Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

21.2.4 Branching Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

21.2.5 Poisson Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

21.2.6 Stones in a field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

21.2.7 Gamma process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

21.2.8 Stable process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

21.2.9 Wiener Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

21.2.10Cauchy Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

21.2.11Miscellaneous Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

22 Itô Integration 277

22.1 Constructive Definition of the Itô Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278



6 CONTENTS

22.2 Properties of the Itô Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

A Sets, Measures, Probability 289

A.1 The p-system extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

A.2 More about measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

A.3 More about integrals of measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

B Transforms, Kernels, Product Spaces 295

B.1 Combining measures through kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

B.2 Noteworthy results at divergent sizes & Fubini’s Theorem . . . . . . . . . . . . . . . . . . . . . . 297

C Miscellaneous Results 299

C.1 Martingales & Stopping times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

C.2 Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

C.3 Laplace, More filtration types, Poisson vs Martingale . . . . . . . . . . . . . . . . . . . . . . . . . 301

C.4 More about characteristic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

D Completing Chapter 18 and 19, Brownian Motion 305

D.1 More about augmented filtrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305



List of Symbols

N = N ∪∞ naturals and infinity
N∗ = N \ {0} naturals without zero
n,N,N countable collection
I,T uncountable collection
⊂ subset proper and not
E sample space
A algebra
C p-system
σ(·) generated sigma algebra
d(·, ·) distance
B(·) Borel sigma algebra
(E,E) measurable space
µ measure
δx(·) Dirac measure
(E,E, µ) measure space
Leb Lebesgue measure
(Ω,F,P) probability space
X random variable
PX distribution r.v.
FX cumulative distribution function
E expectation
P̂·(t) laplace transform
Φ·(t) characteristic function
G(·, ·) Erdős Renyi random graph
P⋆(·) convolution
⋆ convolution operation
P→ convergence in probability
Lp→ convergence in in Lp
w→,

d→ weak convergence in distribution
XG best predictor conditional
X∞ infinite countable sequence
Cn(·) finite dimensional base cylinders
Γ stochastic matrix
CT (·) measurable base cylinders
P class of probability distributions
θ· shift operator
B semialgebra

7



8 List of Symbols



Chapter 0

Read Me

Content The following document contains:

• redacted notes from a semester course I attended at Bocconi University
• interesting results I found along the way
• expansions I added to prove results not proved in class, and understand better the flow of lectures

For these reasons, it is slightly more than a course, while being mostly based on the course books [Çin11], [Ver18]
for Chapter 7 and [BZ99] for Chapter 22. Occasionally exercises are taken from [Dur19]. Some results come from
random internet sources.

Why hybrid I am used to taking notes by hand, but I love LATEX, so this is a hybrid document with scans of
the original notes for the proofs of the third part.

Structure Each Chapter is highly schematic. The reasons are many:

• I like to think schematically
• the handwritten part is the result of a rewriting of a lecture but needs to be studied, not presented
• it is easier to cite results atomically

About the last point, I have implemented a LATEX-like numbering for handwriting, which is mirrored in the
PC-typed part of each Chapter, to allow the reader to go back and forth and find proofs easily. At the same
time, I can cite with references any result inequivocably.
In terms of choice of boxes, the first Chapters make a heavy use of Theorems instead of Propositions. After
reading about the approach of the author of [Çin11], I chose instead to highlight as Theorems only the most
important results.

Colors Writing by hand, I am used to thinking in colors. In the LATEX-part Definitions, Theorems, Observations
and Examples are distinguished by a color and a symbol in front, in the scanned part titles are highlighted with
the same colors. For the sake of avoiding too many colors, I did not highlight Corollaries and Lemmas in LATEX.

Appendix In the appendix there are only results which were not covered in class but end up being useful for
an improved understanding of concepts. For the sake of time they will most likely have proofs in the handwritten
version even at the end.

How this doc evolves If time permits, I will add more and more parts to study for the exam. Probably, the
proofs of the appendix will only be on paper.
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Chapter 1

Classes of Sets

1.1 Sigma algebras, Borel sets

♠ Definition 1.1 (Sample Space E). All possible events of a random experiment.

♠ Definition 1.2 (Partition). A partition for a set E is a collection of disjoint subsets that covers the set.
Namely {Ai}i∈I such that:

1. Ai ̸= ∅ ∀i
2. Ai ∩Aj = ∅ ∀i, j
3.
⋃
i∈I Ai = E

♢ Observation 1.3 (Why sets?). When doing probability we need structure.

♠ Definition 1.4 (Algebra A ). An algebra of a set E is a collection of subsets {Ai}i∈I Ai ⊂ E such that:

1. E ∈ A
2. closed under complements A ∈ A ⇐⇒ Ac ∈ A
3. closed under finite intersection

{Ak}nk=1 ⊂ A , n ∈ N \ {∞} =⇒
n⋂
k=1

Ak ∈ A

♣ Theorem 1.5 (Finite union in algebra closedness). An algebra is closed under finite unions.

A algebra {Ai}ni=1, n ∈ N =⇒
n⋃
i=1

Ai ∈ A

Proof. By De Morgan’s laws
n⋃
i=1

Ai =

( n⋂
i=1

Aci

)c
Where

⋂n
i=1A

c
i ∈ A by Def. 1.4#3 (finite intersection) and

(⋂n
i=1A

c
i

)c
∈ A by Def. 1.4#2 (complements).

♠ Definition 1.6 (Sigma Algebra). A sigma algebra is an algebra as in Definition 1.4 that allows for countable
unions closedness, extending the finite union of requirement #3 to possibly infinite but countable. Namely:

E σ-algebra (An) ⊂ E =⇒
⋃
n

An ∈ E

Lemma 1.7 (Countable intersection in σ-algebra closedness).

(An) ⊂ E =⇒
⋂
n

An ∈ E

13
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Proof. Similarly to Theorem 1.5, we have that countable intersections are allowed once we allow for countable
unions.

♠ Definition 1.8 (p-system, also π-system C). A p-system of a set E is a collection of subsets that is closed
under intersections.

∀A,B ∈ C =⇒ A ∩B ∈ C

♡ Example 1.9 (Basic algebras). The following examples are found throughout textbooks.

• (discrete σ-algebra) for E, set E = 2E, its power set. There are situations in which the construction reaches
paradoxical results, but we will not see them. Most of the times we do not work with it.

• (trivial σ-algebra) for E, choose E = {∅,E}

♣ Theorem 1.10 (σ-algebra intersection). Let {Ei}i∈I be a collection of σ-algebras on the same space E, then
their intersection E =

⋂
i∈I Ei is a sigma algebra as in Definition 1.6.

Proof. We check the requirements of Definition 1.6.

1. E ∈ Ei∀i =⇒ E ∈ E

2. Ac ∈ Ei∀i ⇐⇒ A ∈ Ei∀i ⇐⇒ A ∈ E which means ⇐⇒ Ac ∈ E

3. (An) ⊂ Ei∀i =⇒
⋃
nAn ∈ Ei∀i =⇒

⋃
nAn ∈ E

So that E is a σ-algebra.

♠ Definition 1.11 (Generated σ-algebra σ(·)). A generated σ-algebra for a collection of sets C is the smallest
σ-algebra containing it. Namely:

σ(C) :=
⋂
i∈I

Ei where ∀i ∈ I C ⊂ Ei

We may occasionally denote it as A (C) as well. Note that by Theorem 1.10, σ(C) is a well defined σ-algebra.

♣ Theorem 1.12 (Properties of generated algebras). consider a collection of subsets C for E, then:

1. there always exists a generated σ-algebra
∃σ(C) ∀C

2. if C is a σ-algebra, then its generated one is itself

C σ-algebra =⇒ σ(C) = C

Proof. (Claim #1)(basic) let E ̸= ∅. In any case, we have that C ⊂ 2E the power set. So it always holds that
A (C) = σ(C) ⊂ 2E guaranteeing existance.
(Claim #1)(advanced) we did not consider the case in which E = ∅ and trivially C = ∅ again. There, we
make use of two basic facts:

• if we are within E = ∅, it tautologically holds that ∅c = ∅
• the power set of the empty set is the empty set set, i.e. {∅}. This holds since S ⊂ ∅ =⇒ S = ∅ (i.e. empty

set is subset of all sets), which means S ∈ 2∅ =⇒ S = ∅

and eventually we have σ(C) = σ({∅}) = {∅, Ec} = {∅, ∅}, which is the trivial σ-algebra.
(Claim #2) let C be a σ-algebra. Then for the set I where elements Ei are such that C ⊂ Ei:

σ(C) =
⋂
i∈I

Ei =

( ⋂
i∈I′

Ei

)
∩ C = C

♢ Observation 1.13 (Why σ(C)?). We will show that a property that holds for C will hold for σ(C) up to
reasonable conditions.
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♡ Example 1.14 (Easy σ(C)). The trivial σ-algebra is σ(C) = {∅, E} generated by C = {E}.
The easiest possible structure which is not trivial is generated by C = B for B ⊂ E and is:

σ(C) =

{
∅, B,Bc, E

}
For a partition of E C = {A,B,C} we have instead that:

σ(C) =

{
∅, E,A,B,C,A ∪B,B ∪ C,A ∪ C

}
Where intersections are ok as it is a partition. And complements are unions of other elements, namely:

• C = (A ∪B)c

• Cc = A ∪B
• and so on . . .

♠ Definition 1.15 (Distance d(·, ·)). A distance is a function d : E × E → R+ satisfying ∀x, y, z ∈ E:

1. symmetry d(x, y) = d(y, x)

2. uniqueness of elements d(x, y) = 0 ⇐⇒ x = y

3. triangle inequality d(x, y) ≤ d(x, z) + d(z, y)

♠ Definition 1.16 (Open set). A set A is open if for each element belonging to it there exists a neighborhood
contained in A.

A open ⇐⇒ ∀x ∈ A ∃Nx ⊂ A

Throughout the course, we will focus on metric spaces, and the neighborhood will be induced by the distance d
from Definition 1.15.

♠ Definition 1.17 (Borel σ-algebra B(·)). For a collection of open sets in E, a Borel sigma algebra is the sigma
algebra generated by them.

B(E) = σ({Ai}i∈I) {Ai}i∈I open, Ai ⊂ E

Lemma 1.18 (Strength of algebras). It holds:

Borel σ-algebra ⊂ σ-algebra ⊂ algebra

Proof. Trivial

Lemma 1.19 (Open sets of R representation). We have:

U ⊂ R open =⇒ U =
⋃
i∈I

(ai, bi) I countable

Proof. Let U ⊂ R be open, with x ∈ U , which is irrational or rational.
If x is rational define Ix =

⋃
I open,x∈I⊂U I, which is an open interval subset of U .

If x is irrational, since U is open ∃ϵ > 0 : (x − ϵ, x + ϵ) ⊂ U where y ∈ Q falls inside it. With the same
construction, it holds x ∈ Iy.
For x arbitrary, x ∈ Iq where q ∈ U ∩Q so that:

U ⊂
⋃

q∈U∩Q
Iq (1.1)

Yet Iq ⊂ U∀q ∈ U ∩Q so:

U ⊃
⋃

q∈U∩Q
Iq (1.2)

Equality holds by double inclusion, and U ∩Q is countable.
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♡ Example 1.20 (Borel σ of R = E generators). Define a collection of subsets:

C =

{
U ⊂ R | U open

}
: σ(C) = B(R)

Which follows by Definition 1.17.
Now build a second collection of subsets:

I :=

{
(a, b) : −∞ < a < b <∞

}
⊂ B(R) as (a, b) ∈ B(R)∀a, b =⇒ σ(I) ⊂ σ(C) = B(R)

On the other hand, for U ∈ σ(C) notice that by Lemma 1.19:

U =
⋃
i∈I

(ai, bi) ∈ σ(I) I countable

By I being a countable set. Hence, we have σ(C) = B(R) ⊂ σ(I).
Eventually, B(R) = σ(I).

♣ Proposition 1.21 (Borel σ-algebra generators). One can show that letting I be either of:

{(a, b) : −∞ < a < b <∞}
{(a, b] : −∞ < a ≤ b <∞}
{[a, b] : −∞ < a < b <∞}
{(−∞, x] : −∞ < x <∞}

Are all such that:

σ(I) = B(R)

♢ Observation 1.22 (About I∗). The interval I∗ = {(−∞, x] : −∞ < x <∞} of Proposition 1.21 is a p-system
(Def. 1.8). For such p-system we see that as for the others σ(I∗) = B(R). However, it comes with even nicer
properties. These are explored further in Appendix A, and used in later claims.

♢ Observation 1.23 (Algebra and p-systems). Notice that C is not necessarily an algebra (Def. 1.4). Indeed,
it is not guaranteed that the first requirement (E ∈ I) holds.

♢ Observation 1.24 (About unions of σ-algebras). In Theorem 1.10, we show that intersections of σ-algebras
are σ-algebras. For what concerns unions, this is not guaranteed.

♡ Example 1.25 (Two counterexamples to justify Observation 1.24). Let Ai = {j}ij=1, and Ei = σ({Ai}) for
i ∈ N∗. Assume by contradiction that E =

⋃
i∈N∗ Ei is a σ-algebra. We have that:

• ∀i {i} ∈ Ei,Ei ⊂ E =⇒ {i} ∈ E

• N∗ =
⋃∞
i=1{i} ∈ E by countable union =⇒ ∃i : N∗ ∈ Ei since it must come from some of the algebras used

in the union for which N∗ ⊂ Ei.

However, we reached a contradiction since N∗ is never inclued in any Ei.
An even easier example is for Ω = {1, 2, 3} and the two σ-algebras:

E = {∅, {1}, {2, 3},Ω} F = {∅, {2}, {1, 3},Ω}

Their intersection is not a σ-algebra since:

{1, 2} /∈ E ∪ F = {∅, {1}, {2}, {1, 3}, {2, 3},Ω}
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Chapter Summary

Objects:
• algebras and σ-algebras as collection of subsets

– with the sample space
– closed under complements
– closed under countable/uncountable union

• p-systems as collections of subsets closed under intersection
• generated σ-algebra, the smallest σ-algebra containing a set
• open sets induced by a distance
• Borel σ-algebra, a σ-algebra generated by open sets

Results:
• closedness under countable/uncountable union is equivalent to closedness under countable/uncount-

able intersection for algebras/σ-algebras
• an arbitrary intersection of σ-algebras is a σ-algebra
• the generated σ-algebra always exists and is equivalent to the generating set if the generating set is

a σ-algebra
• a countable collection of open sets covers any open set of R
• the Borel σ-algebra or R is generated by collections of intervals, in particular by the p-system:

I = {(−∞, x] : x ∈ R}

• a p-system is not necessarily an algebra
• unions of σ-algebras are not necessarily σ-algebras
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Chapter 2

Measures & Probablity Spaces

2.1 Probability & other measures

♠ Definition 2.1 (Measurable Space (E,E)). A measurable space is a tuple E,E where E is a σ-algebra of E
(Def. 1.6). Whenever possible, we consider a Borel σ algebra 1.17, denoted as B(E).

♠ Definition 2.2 (Measure µ). For a measurable space (E,E) a measure is a map µ : E → R+ such that:

1. µ(∅) = 0

2. countable additivity of disjoint collections

∀(An) ⊂ E Ai ∩Aj = ∅ countable disjoint µ

( ∞⋃
n=1

An

)
=

∞∑
n=1

µ(An)

We say a measure is finite when µ(E) <∞. If a measure has total weight 1, then it is a probability measure
(shorthand is p.m.).

Next, we provide some examples which will be useful in the future.

♠ Definition 2.3 (Point mass, dirac measure δx(·)). Define:

∀x ∈ E ∀A ∈ E µ(A) := δx(A) =

{
1 x ∈ A

0 else

♠ Definition 2.4 (Counting measure). Let D ⊂ E be a countable subset of the sample space. Then let the
measure be the sum of Dirac measures restricted to the countable subset:

∀A ∈ E ν(A) := |A ∩D| =
∑
x∈D

δx(A)

♠ Definition 2.5 (Discrete measure). Let D ⊂ E be a countable subset. Set m : D → R+ to be the mass at a
point, independent from the set where it lies. A discrete measure is constructed as:

µ(A) =
∑
x∈D

m(x)δx(A) ∀A ∈ E

We will formalize this notion in Chapter 5.
Observe that for a counting measure ν(A) (def. 2.4) and a discrete measure µ, we have that:

∀A ∈ E ν(A) = 0 =⇒ µ(A) = 0

This peculiarity is given a definition below.

19
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♠ Definition 2.6 (Absolutely continuous measure ≪). For two measures µ, ν we say that µ is absolutely
continuous with respect to ν and write µ≪ ν if:

∀A ∈ E ν(A) = 0 =⇒ µ(A) = 0

♠ Definition 2.7 (Measure Space (E,E, µ)). We call a measure space a triplet (E,E, µ) where the tuple (E,E)

is measurable (Def. 2.1) and µ is a measure on E (Def. 2.2).

♠ Definition 2.8 (Lebesgue measure Leb). The practical definition for a Lebesgue measure is that of a measure
(Def. 2.2) defined on the measure space (R,B(R)) for which:

Leb((a, b)) = Leb([a, b)) = Leb([a, b]) = Leb((a, b]) = b− a ∀a ≤ b

The more involved Definition is made via the concept of outer Lebesgue measure Leb∗ (Def. 4.14), which for sets
E that satisfy the Carathéodory criterion:

Leb∗(A) = Leb∗(A ∩ E) + Leb∗(A ∩ Ec) ∀A ⊂ R

builds a σ-algebra of those sets E which are Lebesgue measurable with measure Leb∗(E) = Leb(E).
It is rather easy to check that with the former definition it is a well defined measure, and that the extensions
follow as areas. For the R2 case we have for example:

µ((a1, b1)× (a2, b2)) = (b1 − a1)(b2 − a2)

♠ Definition 2.9 (Probability space (Ω,F,P)). A probability space (Ω,F,P) is a measure space where the
measure is a probability measure. Namely we have that F is a σ-algebra of Ω (Def. 1.6) and P is a measure with
total mass 1 meaning:

1. P[A] ∈ [0, 1] ∀A ∈ F

2. P(Ω) = 1

3. countable additivity of disjoint collections:

(An) ⊂ F disjoint =⇒ P

[⋃
n

An

]
=
∑
n

P[An]

2.2 First properties

Most of the results we introduce extend to general measure, and are shown in Appendix A.

♣ Theorem 2.10 (Monotonicity). For a probability space (Ω,F,P) we have:

∀A,B ∈ F A ⊂ B P(A) ≤ P(B)

Proof. Notice that by A ⊂ B =⇒ B = A ∪ (Ac ∩B). Then by Definition 2.9#3 we have:

P[B] = P[A] + P[Ac ∩B] ≥ P[A]

Where in the inequality we use the fact that the p.m. assigns positive measure to any Borel set (Def. 2.9#1).

♣ Theorem 2.11 (Inclusion Exclusion formula). Finite size unions (NB not necessarily disjoint) of collections
of sets (An) ⊂ F where n ∈ N in a probability space satisfy the relation:

P

[
n⋃
i=1

Ai

]
=

n∑
i=1

P[Ai]−
∑
i<j

P[Ai ∩Aj ] +
∑
i<j<k

P[Ai ∩Aj ∩Ak] + . . .+ (−1)n−1P

[
n⋂
i=1

Ai

]

Proof. We proceed by induction.
(base case) for n = 2 the statement is trivial as {A,B} are such that:

A ∪B = (A \B) ∪ (B \A) ∪ (A ∩B) = (A ∩Bc) ∪ (B ∩Ac) ∪ (A ∩B)
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Where the events are disjoint. Additionally notice that:

A = (A ∩Bc) ∪ (A ∩B) B = (B ∩Ac) ∪ (B ∩A)

again, disjoint. Using Definition 2.9#3 we have that when switching to the p.m.:

P[A ∪B] = P[A ∩Bc] + P[B ∩Ac] + P[A ∩B]

= P[A]− P[A ∩B] + P[B]− P[A ∩B] + P[A ∩B]

= P[A] + P[B]− P[A ∩B]

(induction assumption) assume the result is true ∀n.
(inductive step) wts the claim holds for n+ 1. Now:

P
[ n+1⋃
i=1

Ai

]
= P

[ n⋃
i=1

Ai ∪An+1

]

= P
[
B ∪An+1

]
where B =

n⋃
i=1

Ai

= P[B] + P[An+1]− P[B ∩An+1] base case

The last term is inspected below:

P
[
An+1 ∩

n⋃
i=1

Ai

]
= P

[ n⋃
i=1

An+1 ∩Ai
]

=

n∑
i=1

P[An+1 ∩Ai]−
∑
i<j

P[(An+1 ∩Ai) ∩Aj ] + · · ·+ (−1)n−1P[(An+1 ∩A1) ∩A2 · · · ∩An]

Using the fact that intersection distributes over unions, and applying the inductive hypothesis over n for the
intersections. Plugging this back into the main calculation, we collect it with the result of:

P[B] = P
[ n⋃
i=1

Ai

]
Which itself is split according to the inductive hypothesis. For a general index r we have:

(−1)r−1
∑

I⊂[1,...,n],|I|=s

P
[ r⋂
i=1

Ai

]
+ (−1)r−2

∑
J⊂[1,...,n−1],|J|=s−1

P
[ r−1⋂
i=1

Ai ∩An+1

]
Where the sums range over all possible choices of indices in the brackets where the collection has the size specified.
This turns out being equal to:

(−1)r−1
∑

I⊂[1,...,n+1],|I|=r

P
[ r⋂
i=1

Ai

]
Which is exactly what we need to complete the claim.

♢ Observation 2.12 (Limits of sequences of sets). Recall that:

• (An) non decreasing =⇒ ∃ lim
n→∞

An :=
⋃∞
n=1An = A

• (An) non increasing =⇒ ∃ lim
n→∞

An :=
⋂∞
n=1An = A

♣ Theorem 2.13 (Continuity of P). In a probability space (Ω,F,P) a non decreasing sequence of events has a
limiting measure.

(An) ⊂ F (An) ↗ A =⇒ lim
n→∞

P[An] = P[A]

Proof. We proceed using the additivity of P (Def. 2.9#3), aiming to build a sequence of disjoint sets.
Imagine a sequence (Bn)n∈N such that:

B1 = A1, B2 = A2 \B1 = A2 ∩Bc1, B3 = A3 \B2, Bn = An \Bn−1
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We have that such sets are all pairwise disjoint F-sets:

Bi ∩Bj = ∅∀i ̸= j and An, An−1 ∈ F∀n =⇒ Bn ∈ F

Additionally:

An =

n⋃
k=1

Bk ∀n

A = lim
n→∞

An =
⋃
n

An

= lim
n→∞

n⋃
k=1

Bk =

∞⋃
k=1

Bk

Which, passed to the probability measure:

P[A] = P[ lim
n→∞

An]

= P

[⋃
n

Bn

]

=

∞∑
k=1

P[Bk] disjoint sets 2.9#3

= lim
n→∞

n∑
i=1

P[Bi]

= lim
n→∞

P

[
n⋃
i=1

Bi

]
again disjoint sets

= lim
n→∞

P[An]

Lemma 2.14 (Continuity of P II). A non increasing sequence of events has a limit as well.

(An) ⊂ F (An) ↘ A =⇒ lim
n→∞

P[An] = P[A]

Proof. Notice that (An)n∈N non increasing ⇐⇒ (Acn)n∈N non decreasing. So that we apply Theorem 2.13 to
the complements to get:

lim
n→∞

P[Acn] = P[Ac] =⇒ lim
n→∞

P[An] = lim
n→∞

1− P[Acn] = 1− P[A] = P[Ac]

♡ Example 2.15 (Limits of sets). Two instructive facts are:

• An = (0, 1 + 1
n ] → (0, 1] =

⋂∞
n=1(0, 1 +

1
n ]

• An = (0, 1− 1
n ] → (0, 1) =

⋃∞
n=1(0, 1−

1
n ]

♢ Observation 2.16 (Kolmogorov’s approach in reality). This construction is in high contrast with subjective
probabilities, especially considering the continuity property of Theorem 2.13. It is a nice mathematical construc-
tion for improved tractability though.

♣ Theorem 2.17 (Boole’s Inequality (subadditivity property)). Consider a countable collection of subsets of E
in the σ-algebra (An) ⊂ F, then:

P
[⋃
n

An

]
≤
∑
n

P[An]
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Proof. Again, we aim to construct pairwise disjoint sets.
Let C1 = A1, Cn = An ∩Acn−1 ∩ · · · ∩Ac1 ∀n ≥ 2. Clearly the sets are disjoint and decreasing and Cn ⊂ An∀n.
Also:

n⋃
k=1

Ck =

n⋃
k=1

Ak

Then:

P

[
n⋃
k=1

Ck

]
= P

[
n⋃
k=1

Ak

]

=

n∑
k=1

P[Ck] disjoint sets, Def. 2.9#3

≤
n∑
k=1

P[Ak] monotonicity, Thm. 2.10

So that applying the limit:

lim
n→∞

P

[
n⋃
k=1

Ak

]
= P

[⋃
n

An

]
Continuity on (Cn), Thm. 2.13

≤ lim
n→∞

n∑
k=1

P[Ak]︸ ︷︷ ︸
≥0∀i

previous argument

=

∞∑
k=1

P[Ak] by sum of positive elements is defined at limit

Lemma 2.18 (Boole’s plus inclusion exclusion). Using Theorems 2.11, 2.17 we can say that for all finite collec-
tions of subsets {Ai}ni=1 ⊂ F, where finiteness comes from the inclusion exclusion requirement, we have:

−
∑
i<j

P[Ai ∩Aj ] +
∑
i<j<k

P[Ai ∩Aj ∩Ak] + . . .+ (−1)n+1P

[
n⋂
i=1

Ai

]
≤ 0
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Chapter Summary

Objects:
• the measurable space (E,E, µ) for a sample space, a σ-algebra on it and a valid measure
• dirac measure, counting measure, discrete measure, and Lebesgue measure
• notion of limit of monotonic sequences of sets

Results
• monotonicity

∀A,B ∈ F A ⊂ B µ(A) ≤ µ(B)

• inclusion-exclusion formula

P

[
n⋃
i=1

Ai

]
=

n∑
i=1

P[Ai]−
∑
i<j

P[Ai ∩Aj ] +
∑
i<j<k

P[Ai ∩Aj ∩Ak] + . . .+ (−1)n−1P

[
n⋂
i=1

Ai

]

trick: induction
• continuity of Probability

(An) ⊂ F (An) ↗ A =⇒ lim
n→∞

P[An] = P[A]

trick: Bn = Bn−1 \An
• Boole’s inequality

P
[⋃
n

An

]
≤
∑
n

P[An]

trick: Cn = An ∩Acn−1 ∩ · · · ∩Ac1 sequence



Chapter 3

Random Variables

3.1 Realizations over the domain, distribution, the pdf, the cdf

Assumption 3.1 (Setting). The probability space is always (Ω,F,P).

♠ Definition 3.2 (Random variable X, r.v.). For a measurable space (E,E) (Def. 2.1), a random variable is a
function from the probability space to E, X : Ω → E such that it satisfies the measurability condition:

X−1(A) = {ω ∈ Ω | X(ω) ∈ A} ∈ F ∀A ∈ E (3.1)

♣ Theorem 3.3 (p-systems sufficiency). Let C be a p-system (Def. 1.8) such that σ(C) = E. Then:

X r.v. ⇐⇒ X−1(A) ∈ F ∀A ∈ C

Namely, the measurability condition of Equation 3.1 needs to be checked for the sets belonging to the p-system
only, where clearly C ⊂ E.

Proof. In general, Section A.1, in particular, Theorem A.4, Proposition A.8.

Assumption 3.4 (Measurable spaces in the course). Throughout the course, we will restrict to cases in which
E is one of the following:

• random variables E = R
• random vectors E = Rd
• discrete time stochastic processes E = R∞

• continuous time stochastic processes E = RT

♡ Example 3.5 (Random variables check I, constant). Consider E = R,E = B(R) so that the p-system is:

C = {(−∞, x], x ∈ R} σ(C) = B(R)

We know the condition is:

X : Ω → R r.v. ⇐⇒ X−1((−∞, x]) = {ω ∈ Ω : X(ω) ∈ (−∞, x]} ∈ F ∀x ∈ R

Applying it to the easiest case where X(ω) = k ∀ω ∈ Ω where k ∈ R = E we have that:

X−1((−∞, x]) = {ω ∈ Ω : X(ω) ≤ x} =

{
∅ x < k

Ω x ≥ k

So that ∀x ∈ R it holds X−1((−∞, x]) ∈ {∅,Ω} where both ∅,Ω ∈ F making it always a r.v. with respect to any
σ-algebra of the space Ω.

♡ Example 3.6 (Random variables check II). In a similar fashion, we consider more elaborate examples:

25
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• (indicator function) Let A ⊂ Ω and X = 1A so that:

X(ω) = 1A (ω) =

{
1 ω ∈ A

0 otherwise

Using the condition derived before for E = R we check that:

X−1((−∞, x]) =


∅ x ≤ 0

Ac x ∈ [0, 1)

Ω x ≥ 1

Where as before ∅,Ω ∈ F for any σ-algebra, while we have that Ac ∈ F ⇐⇒ A ∈ F by the very Definition
1.4#2. An indicator r.v. is valid if and only if the event is in the σ-algebra of Ω considered.

• (simple random variable) Suppose {A1, . . . , An} is a partition of Ω into F-sets, namely:

Ai ∈ F∀i, Ai ∩Aj = ∅∀i ̸= j,

n⋃
i=1

Ai = Ω

then for different realizations x1 ̸= x2 ̸= · · · ̸= xn set:

X(ω) =

n∑
k=1

xk1Ak
(ω) =⇒ ∀ω ∈ Ak X(ω) = xk ⇐⇒ X−1({xk}) = {ω ∈ Ω : X(ω) = xk}

using the approach we outlined:

X−1((−∞, x]) =
⋃

k:xk≤x

Ak =


∅ x < xk∀k
Ω x ≥ xk∀k
a finite union otherwise

Again, Ω, ∅ ∈ F, and finite unions belong by definition to a σ-algebra provided that the elements Ak ∈ F.

♠ Definition 3.7 (Simple random variable). A random variable is said to be simple when it can be decomposed
as a linear combination of indicators of a finite partition (Def. 1.2) of the Ω space.

X(ω) =

n∑
k=1

xk1Ak
(ω) where {Ak}nk=1 partition Ω

♡ Example 3.8 (Random variables check III). Let Ω = {H,T}∞ where ω = (ω1, . . .) such that ωn ∈ {H,T}∀n ≥
1. The σ-algebra is:

F = σ

(
{ω ∈ Ω : ωn = w}, n ∈ N, w ∈ {H,T}

)
For all n ≥ 1 the map:

ω → Xn(ω) =

{
1 ωn = H

0 ωn = T

is a random variable since

∀A = (−∞, x] X−1
n (A) =


∅ A ∩ {0, 1} = ∅
Ω A ∩ {0, 1} = {0, 1}
{ω ∈ Ω : ωn = H} A ∩ {0, 1} = {1}
{ω ∈ Ω : ωn = T} A ∩ {0, 1} = {0}

Which are all in F since they generate it.

♣ Theorem 3.9 (Operations of random variables). For two random variables X,Y on E = R, we have that:

1. X + Y is a r.v.
2. min{X,Y } is a r.v.
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Proof. The strategy is proving the measurability condition of Equation 3.1.
(Claim #1) we have that:

{X + Y ≥ x} = {X > x− Y } =
⋃
q∈Q

{X > q > x− Y }

=
⋃
q∈Q

(
{X > q} ∩ {Y > x− q}

)
=
⋃
q∈Q

(
{X ≤ q}c︸ ︷︷ ︸

∈F

∩{Y ≤ x− q}c︸ ︷︷ ︸
∈F

)
∈ F

where we are allowed to express the union over rationals since rationals are dense in R (Prop. 18.15).
We have a countable union of intersections of sets in F, so by Theorem 1.10 and the definition of σ-algebra
itself (Def. 1.6) we have that the element is in F making X + Y a r.v.
(Claim #2) by direct computation:{

ω ∈ Ω : min{X(ω), Y (ω)} ≤ x

}
= {ω ∈ Ω : X(ω) ≤ x}︸ ︷︷ ︸

∈F

∩{ω ∈ Ω : Y (ω) ≤ x}︸ ︷︷ ︸
∈F

∈ F ∀x ∈ R

where we have just checked the measurability condition for arbitrary x ∈ R.

♢ Observation 3.10 (new random variables). Using Theorem 3.9 we can say that the following are r.v.s:

• Sn(ω) =
∑n
k=1Xk(ω) ∀n

• lim
n→∞

Sn(ω)

n

♢ Observation 3.11 (A taste of the Law of Large Numbers, LLN). Following Obs. 3.10 can equivalently say
that lim supnXn and lim infnXn are r.v.s. And that the set:

Λ =

{
ω ∈ Ω | lim

n

Sn
n

= p ∈ [0, 1]

}
∈ F

=

{
ω ∈ Ω | lim sup

n

Sn
n

= lim inf
n

Sn
n

}
Has, under precise conditions, limiting measure P[Λ] = 1

♠ Definition 3.12 (Distribution of a random variable, pushforward measure PX = P ◦ X−1). Let X be a
r.v. (Def. 3.2) from the probability space (Ω,F,P) to the measurable space (E,E). Then define the pushforward
measure PX = P ◦X−1 as:

PX(A) := P [{ω ∈ Ω | X(ω) ∈ A}] = P[X ∈ A] = P
[
X−1(A)

]
A ∈ E

♢ Observation 3.13 (P vs P). We recognize that:

• P is a p.m. on (Ω,F)

• PX is a p.m. on (E,E)

♠ Definition 3.14 (Equality in Distribution d
=). We say two r.v.s X,Y are equal distribution when their

distributions are equal for all the sets of the σ-algebra over which they are defined.

X
d
= Y ⇐⇒ PX(A) = PY (A) ∀A ∈ E

♣ Theorem 3.15 (Sufficient condition for Equality in distribution). Given two random variables X,Y taking
values on (E,E), and a p-system C (Def. 1.8) such that: σ(C) = E we establish that:

PX(A) = PY (A) ∀A ∈ C =⇒ X
d
= Y

Where the opposite direction is trivial, and equality over the p-system is equivalent to equality over the whole
σ-algebra.

Proof. Proposition A.29.
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♠ Definition 3.16 (Cumulative distribution function FX). For E = R in the simplest case, and a p-system of
intervals:

C = {(−∞, x] | x ∈ R} where σ(C)
Prop.1.21

= B(R)

Define the map FX : R → R+ as:
FX(x) := PX((−∞, x]) = P[X ≤ x]

By virtue of Theorem 3.15, we can check equality in distribution for the generating p-system C and assert:

X
d
= Y ⇐⇒ FX(x) = FY (x) ∀x ∈ R

♣ Theorem 3.17 (Properties of FX). A cdf as in Def. 3.16 has the following properties:

1. monotone non decreasing
FX(x) ≤ FX(y) ∀x ≤ y

2. has limits:
lim

n→−∞
FX(x) = 0 lim

n→∞
FX(x) = 1

3. right continuity
lim
h↓0

FX(x+ h) = FX(x) ∀x ∈ R

Proof. (Claim #1) observe that x < y correspond to sets of the p-system such that Ax ⊂ Ay. By monotonicity
(Thm. 2.10) we have that:

FX(x) = P[Ax] ≤ P[Ay] = FX(y)

(Claim #2) The following limits on Ω subsets hold:

{ω ∈ Ω : X(ω) ≤ x} x→−∞→ ∅ {ω ∈ Ω : X(ω) ≤ x} x→∞→ Ω

With corresponding p.m. transferred to the distribution FX → 0, FX → 1.
(Claim #3) Consider a the set where xn = x+ h : h ↓ 0:

An = {ω ∈ Ω : X(ω) ≤ xn}, xn ↓ z =⇒
⋂
n

An = {ω ∈ Ω : X(ω) ≤ x}

Here it holds that:

• xn ↓ x =⇒ X(ω) ≤ x, xn ↘ x

• X(ω) ≤ x =⇒ X(ω) ≤ xn ∀n

So that:

FX(xn) = PX((−∞, xn]) = P[X ≤ xn] = P[ω ∈ An]

n→∞→ P
[⋂
n

An

]
= P[X ≤ x] = PX((−∞, x]) = FX(x)

by the continuity of P (Thm. 2.13).

♢ Observation 3.18 (Intuition for no left continuity). Claim #2 2 of Theorem 3.17 does not necessarily mean
that the distribution function is also left continuous. Consider limh→0+ FX(x− h) and FX(x). The two are not
necessarily equal, since we might have that for ω ∈ An where xn → a− the countable union never attains the
value. Namely:

an /∈
⋃
n

An = (−∞, an)

♠ Definition 3.19 (Probability of random variable realization). By Theorem 3.17 and Observation 3.18 we
write:

P[X = x] := FX(x)− FX(x−) FX(x−) := lim
h↑0

FX(x− h)

Notice that if FX is continuous (right and left) at x then P[X = x] = 0, while if it is not, such value is positive
by Theorem 3.17#1.



3.1. REALIZATIONS OVER THE DOMAIN, DISTRIBUTION, THE PDF, THE CDF 29

♢ Observation 3.20 (Journey so far). We have shown that we can construct a chain:

X r.v.⇝ PX on (R,B(R))⇝ FX on R

How do we define a p.m. on E = R, is it unique? Often r.v.s are artifacts and we do not have them at the start
of the process; what happens more often is that we have a distribution. The next set of results sheds a light on
the relations between these objects.

♣ Theorem 3.21 (F,P identification). Let F : R → R+ satisfy the properties of Theorem 3.17, then:

=⇒ ∃!P on (R,B(R)) : P((−∞, x]) = F (x) ∀x ∈ R

Proof. We are working with a finite measure so we can safely assume that is is σ-finite. Then, Example C.18 is
a direct proof using arguments from Section C.2.

♣ Theorem 3.22 (Identification F,X). For F satisfying the properties of Theorem 3.17 we have:

=⇒ ∃(Ω,F,P) X : Ω → R : F (x) = FX(x) ∀x ∈ R

where we take simply Ω = [0, 1], its borel σ-algebra B([0, 1]) and the Lebesgue measure for the r.v.:

X(ω) = inf{z ∈ R : F (z) ≥ ω}

Proof. With the claimed form, we notice that:

{ω ∈ [0, 1] : X(ω) ≤ x} = {ω ∈ [0, 1] : ω ≤ F (x)}

Implying that:

FX(x) = P[X ≤ x] = Leb

(
{ω ∈ [0, 1] : ω ≤ F (x)}

)
= Leb([0, F (x)])

= F (x)− 0 = F (x) ∀x ∈ R

♢ Observation 3.23 (Takeaway). We have shown:

• F ⇝ FX ⇝ PX ⇝ X by Theorems 3.21, 3.22
• X ⇝ PX ⇝ FX ⇝ F with the properties of Theorem 3.17

Therefore, it is enough to use F (x) to refer to a random variable.
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Chapter Summary

Objects:
• random variable X : Ω → E such that the measurability condition is verified:

X−1(A) = {ω ∈ Ω | X(ω) ∈ A} ∈ F ∀A ∈ E

• pushforward measure PX = P ◦X−1

• equality in distribution
X

d
= Y ⇐⇒ PX(A) = PY (A) ∀A ∈ E

• cumulative distribution function FX(x) = PX((−∞, x]) ∀x ∈ R
Results:

• checking generator p-system is enough for d
=

• checking generator p-system is enough for measurability
• defining properties of FX :

– monotone non decreasing
FX(x) ≤ FX(y) ∀x ≤ y

– has limits:
lim

n→−∞
FX(x) = 0 lim

n→∞
FX(x) = 1

– right continuity
lim
h↓0

FX(x+ h) = FX(x) ∀x ∈ R

• F valid identifies a unique P

• F valid identifies a random variable and a measurable space
The conclusion is that we can work with F satisfying the defining properties.



Chapter 4

Expectation

We aim to describe the uncertain realization of a r.v. with a reasonable interpretation. By the results of Section
3, for a probability space (Ω,F,P) over which we define a r.v. X : Ω → E on (E,E) we can have two notions of
integral: ∫

Ω

X(ω)P(dω) or

∫
E

xPX(dx)

Where the latter is equivalent by the very last results of the previous Chapter.

We refer to both as expectations of r.v.s and will use a constructive approach to build their most general form.

4.1 Building the expectation step by step

♠ Definition 4.1 (Expectation of a simple random variable). For a simple r.v. (Def. 3.7) we naturally define
its integral as: ∫

Ω

X(ω)P(dω) :=
n∑
k=1

xkP[Ak]

Where {Ak}nk=1 ⊂ F is a finite partition of Ω.

♠ Definition 4.2 (Expectation of non negative random variable). For a r.v. X : Ω → R+ we can always find
a monotone sequence (Xn)(ω) ↗ X(ω) ∀ω ∈ Ω where Xn is simple ∀n as in Def. 3.7. This result is shown in
Theorem A.18. Then:

∀n ≥ 1

{∫
Ω
Xn(ω)P(dω) =

∑n
k=1 xkP[Ak] Def. 4.1∫

Ω
Xn(ω)P(dω) ≤

∫
Ω
Xn+1(ω)P(dω) Xn ≤ Xn+1

Which identifies a non decreasing sequence of integrals that has a limit (see Obs 2.12)

∃ lim
n→∞

{(∫
Ω

Xn(ω)P(dω)
)
n

}
For the expectation of a non negative random variable, we use such limit:∫

Ω

X(ω)P(dω) := lim
n→∞

{(∫
Ω

Xn(ω)P(dω)
)
n

}
♢ Observation 4.3 (Getting to the general formula, properties of functions). Observe that for a function, and
thus any r.v. X, we have that X = X+ −X− where:

X+ = max{0, X} = X ∧ 0

X− = −min{0, X} = X ∨ 0

Where both are positive r.v.s.

31
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♠ Definition 4.4 (Expectation of a random variable E). Using the construction of Obs. 4.3 we can eventually
state that:

E[X] :=

∫
Ω

X(ω)P(dω) =
∫
Ω

X+(ω)P(dω)−
∫
Ω

X−(ω)P(dω)

Which is well defined whenever the integrability condition holds, namely that at least one of the two
integrals is not ∞. If this condition was not verified, we would have an undefined form ∞−∞. Notice that if
one of the two diverges, and the other does not, the integral is well defined.
Use as shorthand for simplicity: ∫

Ω

XdP and

∫
R
xdP

♠ Definition 4.5 (Space of integrable r.v.s L1(Ω,F,P)). We say X : Ω → E defined on the probability space
(Ω,F,P) and taking values in (E,E) is integrable if:

E [|X|] <∞

We denote the collection of such r.v.s as L1(Ω,F,P). Notice that this is stronger than the existance of the integral,
which in the class L1(Ω,F,P) is always finite.

♢ Observation 4.6 (Expected value and integrability). Notice that the condition is equivalent to requiring that
the positive and negative parts do not diverge together as in Definition 4.4. Namely:

∄E[X] if
∫
Ω
X+dP = ∞ ∧

∫
Ω
X−dP = ∞

E[X] = ∞ if
∫
Ω
X+dP = ∞ ∧

∫
Ω
X−dP <∞

E[X] = −∞ if
∫
Ω
X+dP <∞ ∧

∫
Ω
X−dP = ∞

X ∈ L1(Ω,F,P) else

4.2 Properties of Expectation and integral

♣ Theorem 4.7 (Properties of E). Let X be a r.v. (Def. 3.2). The conditions can hold in the a.s. case or
∀ω ∈ Ω, depending on the formulation.

1. positivity for positive r.v.

P[X ≥ 0] = 1 =⇒ E[X] ≥ 0

2. monotonicity 
P[X ≥ Y ] = 1

∃E[X],E[Y ]

Y ∈ L1(Ω,F,P)
=⇒ E[X] ≥ E[Y ]

3. linearity {
∃E[X]

Y ∈ L1(Ω,F,P)
=⇒ E[aX + bY ] = aE[X] + bE[Y ] ∀a, b ∈ R

4. equality respect {
∃E[X],E[Y ]

P[X = Y ] = 1
=⇒ E[X] = E[Y ]

Proof. For all the results we have the a.s. hypothesis which allows us to reduce integrals over Ω to integrals
over the set where the hypothesis holds. This is the basic trick to prove all the statements. We can use the
approximation via simple functions and thus express the integral as we wish.
(Claim #1) We have X = X+ so that ∫ XdP = ∫ X+dP ≥ 0
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(Claim #2) It holds:∫
XdP−

∫
Y dP = E[X]− E[Y ]

= lim
n→∞

∫
X+
n dP− lim

n→∞

∫
X−
n dP− lim

n→∞

∫
Y +
n dP+ lim

n→∞

∫
Y −
n dP Def. 4.4

= lim
n→∞

∫
(X+

n − Y +
n )dP− lim

n→∞
(X−

n − Y −
n )dP

=

∫
X − Y dP

≥ 0

Where the last passage follows from Claim #1 with the fact that P[X − Y ≥ 0] = 1. We could have
(Claim #3) with arguments similar to #2 we have:

E[aX + bY ] = aE[x] + bE[Y ]

This time we require the integrability of at least one to make the integral not a undecidable form.
(Claim #4) by observing that P[X = Y ] = 1 ⇐⇒ P[X − Y = 0] = 1 use claims #1,#3 to get the claim:

E[X]− E[Y ] = E[X − Y ] =

∫
X − Y dP =

∫
0dP = 0

♠ Definition 4.8 (Expectations of functions of random variables). Recall PX = P ◦ X−1 induced on (E,E).
Consider h : R → R where h(X) = Y and h is measurable (satisfies Eqn. 3.1). Y is a r.v. with expectation:

E[h(X)] =

∫
Ω

h(X(ω))P(dω) :=
∫
Ω

h+(X(ω))P(dω) +
∫
Ω

h−(X(ω))P(dω)

Which is meaningful if the expectation of the positive and the negative part are not both infinite. When h is also
integrable, we may state it as h ∈ L1(R,B(R),PX) or h(X) ∈ L1(Ω,F,P). The extension to h mapping to other
measurable spaces is trivial.

♣ Theorem 4.9 (Law of the unconscious statistician). Let X : Ω → E be a r.v. Then for a measurable map h:

∃E [h(X)] =⇒ E[h(X)] =

∫
Ω

h(X(ω))P(dω) =
∫
E

h(x)PX(dx)

Additionally, one can prove:

h ∈ L1(R,B(R),PX) ⇐⇒ h ◦X ∈ L1(Ω,F,P)

Proof. In this case, the result holds by a more refined version of the change of variable method in integrals for a
pushforward measure.

♠ Definition 4.10 (Notation for expectation of h). We let:

PX(h) := E[h(X)] =

∫
E

h(x)PX(dx)

which is meaningful if h is measurable, namely:

h−1(A) = {x ∈ R | h(x) ∈ A} ∈ F ∀A ∈ B(R)

establishing a chain of measurable pushforwards.

♣ Theorem 4.11 (Equality in probability law characterization). In the context of probability and Borel measures
over X in a metric space:

∀h ∈ C+
b (R) PX(h) = P(h) =⇒ PX = P

The result can be extended, but since we work with probability measures, it is sufficient.
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Proof. By assumption for continuous and bounded functions h:

PX(h) =

∫
R
h(x)PX(dx) =

∫
R
h(x)P(dx) = P(h)

Notice also that ∀a < b it holds that:

1(a,b)(x) = lim
n→∞

hn(x) hn(x) = n(x− a)1(a,a+ 1
n ) (x) + 1(a+ 1

n ,b−
1
n ) + n(b− x)1(b− 1

n ,b)
(x)

Where hn is continuous and bounded ∀n, approaching the indicator of any interval. Our assumption on the
integrals also holds there and we can state that PX(hn) = P(hn) for all n. More precisely, the former, by using
the results of Theorem 4.7 takes form:

PX(hn) = n

∫
(a,a+ 1

n ]

(x− a)PX(dx) + PX

[(
a+

1

n
, b− 1

n

)]
+ n

∫
[b− 1

n ,b)

(b− x)PX(dx)

In the above Equation, we have that:

•
(
a, a+

1

n

]
↘ ∅

•
[
b− 1

n

)
↗ ∅

• h is continuous
• ∀x ∈

(
a, a+

1

n

]
n(x− a) < 1

• ∀x ∈
[
b− 1

n

)
n(b− x) < 1

These facts, which hold by construction and assumption, imply with continuity Thm. 2.13 that:

n

∫
(a,a+ 1

n ]

(x− a)PX(dx) ≤
∫
(a,a+ 1

n ]

PX(dx) = PX

((
a, a+

1

n

])
n→∞→ 0

n

∫
[b− 1

n ,b)

(b− x)PX(dx) ≤ n

∫
[b− 1

n ,b)

PX(dx) = PX

([
b− 1

n
, b

))
n→∞→ 0

Thus, in the limit the expression approaches PX((a, b)) and makes it such that :

lim
n→∞

∫
hn(x)PX(dx) = lim

n→∞
PX(hn) = PX((a, b)) = P((a, b)) = lim

n→∞
P(hn(x)) = lim

n→∞

∫
hn(x)P(dx)

We have just proved that any non negative continuous and bounded function, expressed as the limit of our bar
function, reduces to evaluating probabilities of simple intervals for both measures (red). That is, if two p.m.s are
equal over h functions as hypothesized, then they are equal over all intervals (a, b) by the arbitrariness of a, b.
Eventually, over the σ-algebra:

σ({(a, b) : −∞ < a < b <∞}) = B(R)

the two measures agree, and by Theorem 3.15 they are equal.

Lemma 4.12 (Full Characterization of equality in distribution). Let X,Y be positive r.v.s on (R,B(R)). The
following are equivalent:

1. X d
= Y

2. E
[
e−rX

]
= E

[
e−rY

]
∀t ∈ R+, the Laplace transforms, which we will introduce in the next chapter

3. E [f ◦X] = E [f ◦ Y ] ∀f ∈ Cb(R)
4. E [f ◦X] = E [f ◦ Y ] ∀f bounded Borel
5. E [f ◦X] = E [f ◦ Y ] ∀f positive Borel

Proof. [Çin11], Example II.2.34.

♡ Example 4.13 (Examples of E). We provide two basic cases:
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• For D ⊂ Ω countable such that D = {ω1, ω2, . . .} with law P =
∑
n πnδωn

such that
∑
n πn = 1 and

πn ≥ 0∀n if we define
X : Ω → R ωn → xn ∈ R =⇒ PX =

∑
n

πnδxn

which for h : R → R has expectation:

E[h(X)] = PX(h) =
∑
n

h(X(ωn))πn =
∑
n

h(xn)πn

the expectation of a discrete r.v.
• For Ω = [0, 1] instead, with law P = Leb it holds:

E[h(X)] =

∫
h(X(ω))dP(dω) =

∫
[0,1]

h(x)Leb(dx) =

∫ 1

0

h(x)dx if Riemann integral exists

♠ Definition 4.14 (Outer Lebsegue measure). This is better explained in appendix C
Let E ⊂ R and define:

Leb∗(E) = inf

∞∑
k=1

l(Ik)

Where {Ik} is countable and covers E, namely E ⊂
⋃∞

1 Ik

Lemma 4.15 (Countable sets have Leb∗ = 0). If E is countable then Leb(E) = 0

Proof. Let E = {ek}∞k=1 countable and ϵ > 0. Then:

∀k ∈ N Ik =
(
ek −

ϵ

2k
, ek +

ϵ

2k

)
Such collection is countable and covers E, namely

⋃
k Ik ⊃ E, by dyadics (rationals) being dense in R (again

Prop. 18.15). Clearly:

0 ≤ Leb(E) <
∑
k

ℓ(Ik) =
∑
k

ϵ

2k
= ϵ

∑
k

1

2k
= ϵ

1
2

1− 1
2

= ϵ ∀ϵ > 0

Implying that Leb(E) = 0.

Corollary 4.16 (Countable sets and outer measure). establish that:

1. any outer measure giving zero to singletons satisfies Lemma 4.15
2. Leb∗(Q) = 0

Proof. Both claims follow directly by Lemma 4.15.

♢ Observation 4.17 (Lebesgue vs Riemann integral). Observe that Riemann integrable =⇒ Lebesgue integrable
and not the opposite. A counterexample is:

h(x) =

{
1 x ∈ Q ∩ [0, 1]

0 else

Then, the discontinuities are dense in [0, 1] (see Prop. D.3), so the Riemann sum does not converge. Contrarily:∫ 1

0

h(x)Leb(dx) =

∫
q∈Q

h(x)Leb(dx) = 0

By Corollary 4.16.
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4.3 Notions of convergence and results

♠ Definition 4.18 (Almost sure a.s. convergence a.s.→ ). Let (Xn)n≥1 be a countable series on (Ω,F,P). The
diverging limit lim

n→∞
Xn has many notions since Xn(ω) requires a qualification.

We say Xn
a.s.→ X if P[ lim

n→∞
Xn = X] = 1. However, notice that we implicitly assume that:

P[ lim
n→∞

Xn = X] = P [{ω ∈ Ω | Xn(ω) = X(ω)}]

is well defined, which holds if and only if:

{ω ∈ Ω | Xn(ω) = X(ω)} ∈ F

To explain this, we start from the definition of limit:

∀ϵ > 0 ∃n0 = n0(ϵ) | ∀n>n0 |Xn −X| < ϵ

Then in set notation we say:

⋂
ϵ>0

∞⋃
n0=1

∞⋂
n=n0

{ω ∈ Ω | |Xn(ω)−X(ω)| < ϵ}︸ ︷︷ ︸
∈F as Xn,X r.v.⋂

ϵ>0

∞⋃
n0=1

∞⋂
n=n0

{ω ∈ Ω | |Xn(ω)−X(ω)| < ϵ}︸ ︷︷ ︸
∈F as n0,n countable⋂

ϵ>0

∞⋃
n0=1

∞⋂
n=n0

{ω ∈ Ω | |Xn(ω)−X(ω)| < ϵ}︸ ︷︷ ︸
/∈F as ϵ>0 uncountable

Where, however, by the rationals being dense in R+ (again, see Prop. 18.15), we can replace the last intersection
with one ranging over rationals 1

k ∈ Q, k ∈ N+, eventually concluding:

⋂
k∈N+

∞⋃
n0=1

∞⋂
n=n0

{
ω ∈ Ω | |Xn(ω)−X(ω)| < 1

k

}
∈ F

♢ Observation 4.19 (Interpreting a.s.→ ). We can see Xn
a.s.→ X as Xn being convergent to X for all ω but those

that have null measure (negligible).

♠ Definition 4.20 (Increasingly and decreasingly a.s. notation). We denote:

1. Xn(ω) ≤ Xn+1(ω) ∀ω and Xn
a.s.→ X with the symbol Xn ↗ X a.s.

2. Xn(ω) ≥ Xn+1(ω) ∀ω and Xn
a.s.→ X with the symbol Xn ↘ X a.s.

♣ Theorem 4.21 (Monotone Convergence Theorem). It holds that in a monotone convergence regime we can
exchange the limit and the integral:{

(Xn)n≥1 : P[Xn ≥ 0] = 1 ∀n
Xn ↗ X a.s.

=⇒ lim
n→∞

E[Xn] = E[X] a.e.

Proof. See Theorem A.46.

Corollary 4.22 (Countable sum monotone convergence). With the assumptions of Theorem 4.21 we can say:

E

[∑
n

Xn

]
=
∑
n

E[Xn] a.e.
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Proof. Let Sn =
∑n
k=1Xk. By Xk ≥ 0 we have that Sn+1 ≥ Sn ∀n. By assumption, the sequence is strictly

increasing to a limit.

Sn ↗ S =

∞∑
k=1

Xk

Moving to the expectation:

E[ lim
n→∞

Sn] = E[S]

= lim
n→∞

E[Sn] Monotone conv Thm. 4.21

= lim
n→∞

n∑
k=1

E[Xk] linearity Thm. 4.7#3

=

∞∑
k=1

E[Xk]

Eventually:

E[S] = E

[∑
n

Xn

]
=
∑
n

E[Xn]

♢ Observation 4.23 (Commenting Corollary 4.22). Thanks to the Monotone convergence Theorem result, we
can expand the linearity of integrals to infinite instances subject to convergence of the sum.

♣ Theorem 4.24 (Dominated Convergence Theorem). Let (Xn)n≥1 be such that:
P[Xn ≤ Y ] = 1 ∀n ≥ 1

Y ∈ L1(Ω,F,P)
Xn

a.s.→ X

Then:

1. Xn, X ∈ L1(Ω,F,P)
2. lim

n→∞
E[Xn] = E[X]

Proof. Both claims follow by Theorem A.51.

♢ Observation 4.25 (On Theorem 4.21). A sketch of the proof is:

lim
n→∞

E[Xn] = E[ lim
n→∞

Xn]

=

∫
Ω

lim
n→∞

Xn(ω)P[dω]

=

∫
{ω∈Ω:Xn(ω)=X(ω)}

lim
n→∞

Xn(ω)P[dω]

+

∫
{ω∈Ω:Xn(ω)̸=X(ω)}

lim
n→∞

Xn(ω)P[dω]︸ ︷︷ ︸
=0

by a.s. conv. hypothesis

=

∫
{ω∈Ω:Xn(ω)=X(ω)}

lim
n→∞

Xn(ω)P[dω]

=

∫
{ω∈Ω:Xn(ω)=X(ω)}

X(ω)P[dω]

=

∫
Ω

X(ω)P[dω]

= E[X]
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Corollary 4.26 (Bounded Convergence Theorem). Let (Xn)n≥1 be such that:
P[Xn ≤ b] = 1 ∀n ≥ 1

b <∞
Xn

a.s.→ X

Then precisely:
lim
n→∞

E[Xn] = E[X]

Proof. Apply Theorem 4.24 with Y = b ∈ R a constant r.v.

Chapter Summary

Objects:
• constructive definition of the integral:

– simple functions
– positive functions using monotone approximation
– general functions using X = X+ −X− decomposition

• space of integrable random variables L1(Ω,F,P)
• the P(h) notation
• almost sure convergence, as equality almost everywhere

Xn
a.s.→ X ⇐⇒ P

[
lim
n→∞

Xn = X
]
= 1

Results:
– properties of expectations:

∗ positivity
∗ monotonicity
∗ linearity
∗ equality a.s. implies equality of integrals

tricks: be careful with the hypothesis, and use the decomposition and the a.s. conditions
– law of the unconscious statistician
– equality in distribution is implied by equality over C+

b functions for Borel probability measures
in a metric space

– monotone convergence Theorem
tricks: can exchange if the sequence converges, used to prove linearity of expectation for
countable sums

– dominated convergence Theorem
trick: need to assume integrability of the almost sure dominator, and convergence to something

– bounded convergence Theorem



Chapter 5

Density Functions

5.1 Radon-Nikodym Perspective

♢ Observation 5.1 (Setting and goal). We aim to provide an alternative formulation of PX . For simplicity
recall the definition of absolute continuity (Def. 2.6 and of sigma finite measure (Def. A.26).

♡ Example 5.2 (Absolutely continuous measures). To refresh the concept of ≪ (Def. 2.6) we provide an
example. Let µ =

∑
j≥0 δj and ν = δ0 + δ1. Then:

∀A ∈ B(R) µ(A) = 0 =⇒ {0, 1, . . .} ∩A = ∅ =⇒ ν(A) = 0 =⇒ ν ≪ µ

While the opposite does not hold. A trivial counterexample is the set A = {2} ∈ B(R).

♠ Definition 5.3 (Mutual Absolute Continuity ∼). If µ≪ ν and ν ≪ µ then we say µ ∼ ν.

♡ Example 5.4 (Mutual absolute continuity w.r.t. Leb). Consider two measures:

ν = Leb µ = e−|x|Leb ∀x ∈ R

Then:

µ(A) =

∫
A

e−|x|Leb(dx) = 0 ⇐⇒ ν(A) =

∫
A

Leb(dx) = 0 ∀A ∈ B(R)

which holds by e−|x| > 0∀x ∈ R. We then say µ ∼ ν.

♡ Example 5.5 (Leb is σ-finite but not finite). The Lebesgue measure restricted to the positive half line
(R+,B(R+)) is such that Leb(R+) = ∞, so it is not finite.
However, letting En = [n− 1, n) ∀n ∈ N∗ we have:⋃

n∈N∗

En = R+ Ei ∩ Ej = ∅ ∀i ̸= j Leb(En) = 1 ∀n ∈ N∗

So it is σ-finite in the sense of Definition A.26, since it has a countable partition of finite measures decomposition.
It is rather trivial to show that this also holds for the Lebesgue measure on R.

♡ Example 5.6 (Counting measure is σ-finite). Take E = R for simplicity. The counting measure (Def. 2.4)
is constructed from countable set D ⊂ R. We have by definition:

ν(A) = |A ∩D| ≤ |D| ∀A ∈ B(R) (5.1)

The sets |A ∩D| are countable. We now take for the space R = D ∪ (R \D) two subpartitions:

• D is partitioned into singletons since it is countable, call them (An)

• R \D, is partitioned into intervals of the form [m,m+1), which cover it by countable union. We call these
(Bm)

39
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It holds that
∀m,n ν(An) = 1 ν(Bm) = 0 (5.2)

All are finite and the union of the partitions is(⋃
n

An

)
∪

(⋃
m

Bm

)
= R (5.3)

Thus the counting measure is σ-finite provided that D is countable, which is a requirement of the definition we
gave (Def. 2.4).

♣ Theorem 5.7 (Radon-Nikodym Theorem). Let µ, ν be two σ-finite measures (Def. A.26) on (E,E), and ν

be such that ν ≪ µ (Def. 2.6). Then:

∃p : E → R+ measurable function s.t. ν(A) =

∫
A

p(x)µ(dx) ∀A ∈ E (5.4)

Where p is almost everywhere unique on the µ measure, meaning that that for another measurable function
q satisfying Equation 5.4 it holds:

µ ({x ∈ E | q(x) ̸= p(x)}) = 0

♢ Observation 5.8 (About the assumptions). Notice that we require both measures to be σ-finite since it is not
obvious that a measure absolutely continuous wrt a σ-finite measure is itself σ-finite. Counterexamples are found
easily. Let µ = Leb and ν ≪ µ where:

ν(A) =

{
0 µ(A) = 0

∞ else

The measure ν is not σ-finite since:

• we can cover null-sets of Leb with a countable union, thus having finite (null) measures for each null set of
Leb

• we cannot cover the whole R with finite measures since each other set has infinite measure by construction

However, in the context of probability, since we work with ν a probability measure, we get σ-finiteness for free!
In other words, this comment is just stated to specify that the Theorem is well defined, but in practical terms for
the course we never have to check σ-finiteness of the measure we want to express.

♠ Definition 5.9 (Radon Nikodym derivative of ν w.r.t µ, aka density function p). In the context of Theorem
5.7 we often denote the resulting density function as:

p(x) =
dν

dµ
(x) (5.5)

This is not a formal definition but rather a symbol.

♢ Observation 5.10 (Link with pmf). Recall from Example 5.5 that for D ⊂ E a countable subset the counting
measure (Def. 2.4):

µ(·) =
∑
x∈D

δx(·)

is σ-finite. Then for a r.v. X taking values inside D we have that:

PX ≪ µ
Rad.Nyk.Thm

=⇒
Thm.5.7

∃p : E → R+

satisfying:

PX(A) =

∫
A

p(x)µ(dx) ∀A ∈ B(E)

= P[X ∈ A]

=
∑

x∈A∩D
p(x)
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Where:
p(x) =

dPX
dµ

(x) = P[X = x]

With the usual pmf properties. Namely: 
p(x) ≥ 0 ∀x
p(x) = 0 ∀x /∈ D∑
p(x) = 1

♠ Definition 5.11 (Discrete random variable characterization). We say a random variable X : Ω → E is
discrete when it is absolutely continuous with respect to the counting measure (Def. 2.4).

♢ Observation 5.12 (Link with pdf). Similarly to what we did in Obs. 5.10, for a random variable X with
probability distribution PX ≪ Leb we can say by the Radon Nikodym Theorem (Thm. 5.7) that there is an almost
everywhere unique function p such that:

PX(A) =

∫
A

p(x)Leb(dx) ∀A ∈ B(E)

With classic properties of a pdf : {
p(x) ≥ 0 ∀x ∈ R∫
R p(x)dx = 1

♠ Definition 5.13 (Continuous random variable characterization). X : Ω → E is said to be continuous when it
is absolutely continuous with respect to the Lebesgue measure (Def. 2.8).

♡ Example 5.14 (Degenerate distribution). Let x0 ∈ E and X : Ω → E with pushforward measure:

PX(A) = P ◦X−1(A) = δx0
(A) ∀A ∈ E

We say X is a degenerate at x0 r.v.
For E = R it holds that:

PX((−∞, x]) = FX(x) = 1[x0,∞) (x)

Notice that PX ≪ µ =
∑
j≥0 δj the counting measure. By Theorem 5.7 we can derive a Radon Nikodym derivative:

p(x) =
dPX
dµ

(x) =

{
1 x = x0

0 x ̸= x0
PX(A) =

∫
A

p(x)µ(dx) ∀A ∈ B(R)

Where:
PX(R) =

∫
R
p(x)µ(dx) = 1 · δx0 + 0 · δ1 + 0 · δ2 + · · ·

So that in general the expectation of a function h : R → R where h(X) ∈ L1(R,B(R),PX) is:

E[h(X)] =

∫
R
h(X)PX(dx) PX(dx) = p(x)µ(dx)

=

∫
R
h(x)p(x)µ(dx) p(x) = δx0

=

∫
R
h(x)δx0

⊗ (δx0
(dx) + δ1(dx) + δ2(dx) + · · · )︸ ︷︷ ︸

=µ(dx)

=

∫
R
h(x) · 1 · δx0

= h(x0)

♡ Example 5.15 (Poisson distribution). Let ν =
∑
x∈N∗ δx be the counting measure. A r.v. X is saif to be

Poisson with mean λ > 0 if:

PX ≪ ν P[X = x] = p(x) =
dPx
dν

(x) =
λxe−λ

x!
1N∗ (x)
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So that:

∀A ∈ B(R) PX(A) =

∫
A

p(x)ν(dx) =
∑

x∈A∩N∗

λxe−λ

x!

∀h : R → R, h(X) ∈ L1 E[h(X)] =

∫
R
h(x)PX(dx) =

∫
R
h(x)p(x)ν(dx) =

∞∑
x=0

h(x)
λxe−λ

x!

♡ Example 5.16 (Binomial distribution). Let n ∈ N, π ∈ [0, 1]. Consider νn =
∑n
x=0 δx, the counting measure

(Def. 2.4) on Dn = {0, . . . , n}. A r.v. X has binomial distribution, and we say X ∼ Binom(n, π) if PX ≪ νn
and:

P[X = x] = p(x) =
dPX
dνn

(x) =

(
n

x

)
πx(1− π)n−x1Dn

(x)

where for Borel sets A ∈ B(R):

PX(A) =

∫
A

p(x)dνn(x) =
∑

x∈A∩{0,...,n}

(
n

x

)
πx(1− π)n−x

♡ Example 5.17 (Gamma distribution). Let α, β > 0. A r.v. X has distribution Gamma(α, β) where α is the
shape and β is the scale if PX ≪ Leb and:

p(x) =
dPX
dLeb

(x) =
βα

Γ(α)
xα−1e−βx1(0,∞) (x)

where at the denominator we are using the Gamma function

Γ(α) =

∫ ∞

0

xα−1e−xdx α > 0

of which the nicest property is Γ(α+ 1) = αΓ(α).
The probability law is recovered as:

PX(A) =

∫
A

p(x)dx =

∫
A∩(0,∞)

βα

Γ(α)
xα−1e−βxdx ∀A ∈ B(R)

It is also recognized that:

• for α = 1 we recover the exponential distribution Exp(β)

• for α =
n

2
, β =

1

2
we obtain the chi-square distribution with n degrees of freedom χ2

n

♡ Example 5.18 (Normal/Gaussian distribution). Let m ∈ R and σ > 0. A r.v. X is normally distributed with
mean m and variance σ2 if PX ≪ Leb and:

p(x) =
dPX
dLeb

(x) =
1

σ
√
2π
e−

(x−m)2

2σ2 x ∈ R

with law:
PX(A) =

∫
A

p(x)dx =

∫
A

1

σ
√
2π
e−

(x−m)2

2σ2 dx ∀A ∈ B(R) (5.6)

♠ Definition 5.19 (Absolutely continuous function). In the context of functions, we establish absolute continuity
for F : R → R when:

∀ϵ > 0 ∃δ > 0 s.t.

{
∀{(ai, bi] : i = 1, . . . , k} disjoint∑k
i=1(bi − ai) < δ

=⇒
k∑
i=1

|F (bi)− F (ai)| < ϵ

♣ Proposition 5.20 (Distribution function absolute continuity). For P on (R,B(R)) such that P ≪ Leb with
Radon Nikodym derivative p it holds that:

1. F the distribution function is absolutely continuous (Def. 5.19) and:

F (b)− F (a) =

∫ b

a

p(x)dx ∀a < b
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2. F is differentiable almost everywhere with respect to the Lebesgue measure:

Leb ({x ∈ R | ∄F ′(x)}) = 0

3. F has derivative almost everywhere p namely:

F ′ = p a.e. s.t. Leb ({x ∈ R | F ′(x) ̸= p(x)}) = 0

♠ Definition 5.21 (Transformations of random variables). For a r.v. X on (E,E) and a measurable function
f : E → H (Def. A.7) mapping to another measurable space (H,H) we can define the counterimage of f as:

f−1(B) = {x ∈ E : f(x) ∈ B} ∈ E ∀B ∈ H

So the map ω → Y (ω) = f(X(ω)) is a r.v. taking values in (H,H) and we can evaluate:

PY (B) = P[Y ∈ B] = P[f(X) ∈ B] = P[X ∈ f−1(B)] = PX(f−1(B)) ∀B ∈ H

Eventually concluding that PY = PX ◦ f−1 where f−1 is the counterimage and not properly the inverse of
f .
When we work in a Euclidean space E = Rd the formulae to make this change of variable are well known.

Chapter Summary

Objects:
• absolute continuity
• σ-finite measures
• Radon Nikodym derivative p(x) =

PX

µ
(x)

• discrete and continuous random variables
• absolute continuity
• transformations of random variables

Results:
• the Lebsgue measure and the counting measure are σ-finite
• Radon Nikodym Theorem, for two σ-finite measures with ν ≪ µ:

∃p : E → R+ measurable function s.t. ν(A) =

∫
A

p(x)µ(dx) ∀A ∈ E

almost everywhere unique with respect to µ
• a probability measure absolutely continuous to the Lebesgue measure has an absolutely continuous

cdf, differentiable almost everywhere, with a.e. derivative p, the Radon Nikodym derivative
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Chapter 6

Random Vectors, Transforms

6.1 Multivariable approach

♠ Definition 6.1 (Random vector). We let n = 2, the definition naturally extends for n > 2. A random vector
is a tuple of r.v.s (X,Y ) on (Ω,F,P) taking values on (R,B(R)) such that taken jointly they are measurable.
Namely:

(X,Y ) : Ω → R2 (X,Y )−1(A) = {ω ∈ Ω | (X(ω), Y (ω)) ∈ A} ∈ F ∀A ∈ B(R2)

♣ Proposition 6.2 (Inherited properties of random vectors). Drawing from Theorem 3.21 we have that:

1. Recalling that like in Prop. 1.21 it holds: C = {(−∞, x] × (−∞, y], x, y ∈ R} : σ(C) = B(R2) we can
establish validity by checking the p-system only:

(X,Y ) r.v. ⇐⇒ (X,Y )−1(A) = {ω ∈ Ω | X(ω) ≤ x, Y (ω) ≤ y} ∈ F ∀A ∈ C

2. Unique identification of p.m. and cdf:

A→ PX,Y (A)︸ ︷︷ ︸
on (R,B(R2))

= P[{ω ∈ Ω | (X(ω), Y (ω)) ∈ A}]︸ ︷︷ ︸
on (Ω,F)

⇐⇒ PX,Y ((−∞, x]× (−∞, y]) = P[X ≤ x, Y ≤ y]︸ ︷︷ ︸
=FX,Y (x,y)

♢ Observation 6.3 (About PX,Y ). Also the marginals are uniquely identified by the joint as:

PX(A) = PX,Y (A× R) ∀A ∈ B(R)
PY (A) = PX,Y (R×A) ∀A ∈ B(R)

In general, the opposite is not true, as we need a well specified dependence structure to conclude how they mix.

♣ Proposition 6.4 (Cumulative distribution function FX,Y properties inherited). Similarly to Theorem 3.17,
we have that given a tuple (X,Y ) and their cdf FX,Y : R2 → R+:

1. lim
x→−∞

FX,Y = 0 and lim
y→−∞

FX,Y = 0

2. lim
x→∞

FX,Y = FY and lim
y→∞

FX,Y = FX

3. lim
x→∞

lim
y→∞

FX,Y = lim
y→∞

lim
x→∞

FX,Y = lim
x,y→∞

FX,Y = 1

Proof. All Claims follow by reasoning as in the one dimensional case, using the fact that the Borel sets either go
to ∅, X, Y,Ω.

♣ Proposition 6.5 (Cumulative distribution right continuity component wise). Right continuity holds compo-
nent wise:

∀(x, y) ∈ R2 lim
h↓0

FX,Y (x+ h, y) = lim
h↓0

FX,Y (x, y + h) = FX,Y (x, y)

Proof. Again, the proof is the same as in the one dimensional case, Theorem 3.17#3.

45
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♣ Proposition 6.6 (Cumulative distribution quasi monotonicity). Instead of being increasing, with more than
one r.v. the cdf becomes quasi motononic, meaning that for (X,Y ) we have:

FX,Y (x2, y2)− FX,Y (x2, y1)− FX,Y (x1, y2) + FX,Y (x1, y1) ≥ 0 ∀x2 ≥ x1, y2 ≥ y1

Proof. The most intuitive proof is graphical. Consider Figure 6.1. For a rectangle in B(R2) the area must be
non negative (since we are working with a measure), and we establish that:

FX,Y (x2, y2)− FX,Y (x2, y1)− FX,Y (x1, y2) + FX,Y (x1, y1) ≥ 0 ∀x2 ≥ x1, y2 ≥ y1

x

y

−4−3−2−1 0 1 2 3 4 5 6 7 8 9 10

−4
−3
−2
−1
0
1
2
3
4
5
6
7
8
9
10

(x1, y1) (x2, y1)

(x2, y2)(x1, y2)

Figure 6.1: An example of measurable rectangle in B(R2)

♢ Observation 6.7 (Extending to bigger random vectors and the identification issue). We can easily extend
these results to n > 2 sizes, either countably or uncountably ∞ as well. In Theorems 3.21,3.22 we proved that a
general distribution function F satisfying certain properties identifies a unique probability law and a probability
space with a random variable, can we do the same for general dimensions?

♣ Theorem 6.8 (Random vector identification via F ). A function F : R2 → R+ satisfying Propositions 6.4,
6.5 and 6.6 has a unique identified probability distribution PX for a r.v. X on (R2,B(R2))

Proof. This is the same as Theorem 3.21 for random variables.

♠ Definition 6.9 (Independence ⊥⊥). We say that two r.v.s (X,Y ) respectively on (E,E) and (H,H) are inde-
pendent if PX,Y = PX × PY . Namely:

PX,Y [A×B] = P[X ∈ A, Y ∈ B] = P[X ∈ A]P[Y ∈ B] = PX(A)PY (B) ∀A ∈ E, B ∈ H

We write explicitly X ⊥⊥ Y . Similarly a collection of r.v.s {Xi, i ∈ I} is an independency if:

∀k ≥ 2 i1 ̸= . . . ̸= ik PXi1
,...,Xik

=
k×
j=1

PXij

♢ Observation 6.10 (About independence). We can easily check by Theorem 6.8 that:

X ⊥⊥ Y ⇐⇒ FX,Y (x, y) = FX(x)FY (y) ∀x, y ∈ R

In case of independence, we can also recover inequivocably the joint distribution by multiplying the marginals:

X ⊥⊥ Y =⇒ ∃!PX,Y on (E ×H,E⊗H)
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6.2 Transforms

♠ Definition 6.11 (Laplace transform P̂·(t)). For a positive r.v. X : P[X ≥ 0] = 1 we let:

P̂X(t) = E[e−tX ] =

∫
R+

e−txPX(dx) P̂X(0) = 1 ∀t ≥ 0

For a non a.s. positive r.v., the definition is called two-sided Laplace transform and involves a modulus of t.

♣ Theorem 6.12 (Laplace transform distribution characterization). It holds:

PX = PY ⇐⇒ P̂X(t) = P̂Y (t) ∀t ≥ 0

♢ Observation 6.13 (Getting back PX). There are inverse transformations from the laplace to the probability
law.

♣ Proposition 6.14 (Independence sum factorizes in Laplace). For independent r.v.s satisfying the conditions
of Def. 6.11 we have:

X ⊥⊥ Y =⇒ P̂X+Y (t) = P̂X(t)P̂Y (t)

Proof. We proceed by just applying the Definition of Laplace transform.

P̂X+Y (t) = E
[
e−t(X+Y )

]
= E

[
e−tXe−tY

]
= E

[
e−tX

]
E
[
e−tY

]
= P̂X(t)P̂Y (t)

Where we splitted the expectations since we have by hypothesis X ⊥⊥ Y .

Lemma 6.15 (A useful identity in calculus). For a positive r.v. X : P[X ≥ 0] = 1, realized at x ≥ 0 we have:

e−tx =

∫ ∞

t

xe−xwdw

Proof. This is just a nice observation in calculus.

e−tx = −e−xw
∣∣∣∣w=∞

w=t

= x

 − 1

x
e−xw

∣∣∣∣w=∞

w=t︸ ︷︷ ︸
fund Thm. calculus

 = x

∫ ∞

t

e−xwdw =

∫ ∞

t

xe−xwdw

where we used the fact that e−xw is continuous.

♣ Theorem 6.16 (Connection of Laplace & moments). Consider an integrable positive random variable X :

P[X ≥ 0] = 1, X ∈ L1(Ω,F,P) the moments can be recovered as:

1. mean
d

dt
P̂X(t)

∣∣∣∣
t=0

= −E[X]

2. higher moments up to higher integrability E[Xn] <∞

dn

dtn
P̂X(t)

∣∣∣∣
t=0

= (−1)nE[Xn]

Proof. (Claim #1) We proceed step by step.

P̂X(t) = E[e−tX ] =

∫
R+

e−txPX(dx)

=

∫
R+

∫ ∞

t

xe−xwdwPX(dx) Lem. 6.15

=

∫ ∞

t

∫
R+

xe−xwPX(dx)dw Fubini Thm. B.30

=

∫ ∞

t

E[Xe−wX ]dw
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Now by X ∈ L1 we can say that ∃dP̂X for a.e. t ∈ (0,∞) wrt Leb.
We would like to use again the fundamental Theorem of Calculus. Since we will show continuity in Lemma
6.26#1, it is possible to make the classic trick:∫ ∞

t

E[Xe−wX ]dw = −
∫ t

∞
E[Xe−wX ]dw = −

(∫ c

∞
E[Xe−wX ]dw +

∫ t

c

E[Xe−wX ]dw

)
c ∈ (t,∞)

where the first term is constant when differentiating by t. We are now in the position to apply the fundamental
Theorem of calculus, slightly adatped to Measure theory1:

dP̂X(t)

dt
= −E[Xe−tX ]

evaluated at t = 0 is by continuity:

d

dt
P̂X(t)

∣∣∣∣
t=0

= lim
t↓0

d

dt
P̂X(t)

= lim
t↓0

−E
[
Xe−tX

]
Xe−tX ≤ X ⇐⇒ e−tX ≤ 1, X ≥ 0 ∀t ≥ 0

= −E
[
lim
t↓0

Xe−tX
]

dom. conv. Thm. 4.24 as X ∈ L1

= −E[X]

(Claim #2) similarly obtained by the same arguments recursively.

♠ Definition 6.17 (Characteristic function Φ·(t)). For a real r.v. X on (R,B(R)) and any argument t ∈ R
define:

ΦX(t) = E
[
eitX

]
=

∫
R
eitxPX(dx) =

∫
R
cos(tx)PX(dx) + i

∫
R
sin(tx)PX(dx)

Where in the last passage we use Euler’s identity eitx = cos(tx) + i sin(tx)

♣ Theorem 6.18 (Characteristic function distribution characterization).

PX = PY ⇐⇒ ΦX(t) = ΦY (t) ∀t ∈ R

♣ Theorem 6.19 (Existance of ΦX(t)). The characteristic function always exists X =⇒ ∃ΦX(t)

Proof. Notice that |ΦX(t)| is such that:

|ΦX(t)| =
∣∣E[eitX ]

∣∣
=

∣∣∣∣∫
R
eitXPX(dx)

∣∣∣∣
≤
∫
R
|eitX |PX(dx)

=≤
∫
R
PX(dx) |eitx| = | cos(tx) + i sin(tx)| =

√
cos2(tx) + sin2(tx) = 1

= 1

Which means that the characteristic function is finite and always exists by being a finite expectation in terms of
the probability law.

♣ Proposition 6.20 (ΦX(t) real condition). A symmetric random variable has real Characteristic function:

X : PX(A) = PX(−A) ∀A ∈ B(R) =⇒ ΦX(t) ∈ R ∀t ∈ R
1we did not go much deep into this
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Proof. We aim to evaluate the characteristic function of a symmetric r.v.:

ΦX(t) =

∫
R
eitxPX(dx)

=

∫
R
cos(tx)PX(dx) + i

∫
R
sin(tx)PX(dx) Euler’s formula and linearity

Where the complex part is:∫
R
sin(tx)PX(dx) =

∫
R−

sin(tx)PX(dx) +

∫
R+

sin(tx)PX(dx)

=

∫ 0

∞
sin(−tx)P−X(−dx) +

∫ ∞

0

sin(tx)PX(dx) Ch. integration index

=

∫ 0

∞
− sin(tx)P−X(−dx) +

∫ ∞

0

sin(tx)PX(dx) sin(−tx) = − sin(tx)

=

∫ 0

∞
− sin(tx)(−P−X(dx)) +

∫ ∞

0

sin(tx)PX(dx) P−X(−dx) = −P−X(dx)

= −
∫ ∞

0

sin(tx)(P−X(dx)) +

∫ ∞

0

sin(tx)PX(dx) Ch. integration index

= −
∫ ∞

0

sin(tx)PX(dx) +

∫ ∞

0

sin(tx)PX(dx) Symmetry −X d
= X

= 0

So that ΦX(t) ∈ R ∀t ∈ R.

♣ Proposition 6.21 (Properties of ΦX(t) similar to P̂X(t)). We have that:

1. X ⊥⊥ Y =⇒ ΦX+Y (t) = ΦX(t)ΦY (t)

2.
dn

dtn
ΦX(t) = inE[Xn] ∀n ≥ 1

Proof. Both Claims are as those of Theorem 6.16 and Proposition 6.14.

♠ Definition 6.22 (Probability Generating Function, PGF). For a discrete r.v. (Def. 5.11) X : Ω → N∪{∞} =

N we say the PGF is:

E
[
zX
]
=

∞∑
n=0

znP[X = n]

Which uniquely determines PX since it is the power series expansion of the coefficients of P[X = n]

♡ Example 6.23 (Gamma distribution). Let X ∼ Gamma(α, β) α > 0, β > 0.
(△ moments closed form) wts that ∃E[Xp] ∀p > −α.

E[Xp] =

∫
R+

xp
βα

Γ(α)
xα−1e−βxdx

=
βα

Γ(α)

∫
R+

xpxα−1e−βxdx

=
βα

Γ(α)

Γ(α+ p)

βα+p

∫
R+

βα+p

Γ(α+ p)
xp+α−1e−βxdx︸ ︷︷ ︸

gamma density

=
βα

Γ(α)

Γ(α+ p)

βα+p

=
Γ(α+ p)

Γ(α)
β−p domain is α+ p > 0 ⇐⇒ p > −α

Where if α, p ∈ N can be further simplified by the well known property that αΓ(α) = Γ(α+ 1)∀α ∈ N:

p = n ∈ N, α ∈ N =⇒ E[Xn] =
Γ(α+ n)

Γ(α)
β−p =

∏n−1
j=0 α+ j

βp
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(□ rescaling) a new r.v. of the form Y = βX can be characterized in its distribution using Theorem 4.11 via
bounded continuous positive borel functions and their expectations:

h : R → R+ E[h(Y )]

If such integral is equal in h ∈ Cb to a well known distribution, we are done.

E[h(Y )] = PY (h)

=

∫
R
h(y)PY (dy)

=

∫
R
h(βx)PX(dx)

=

∫
R+

h(βx)
βα

Γ(α)
xα−1e−βxdx let y = βx, dy = βdx

=

∫
R+

βα

Γ(α)
h(y)

(
y

β

)α−1

e−y
1

β
dy

=

∫
R+

1

Γ(α)
h(y)yα−1e−ydy

Where we find the expectation of a Beta(α, 1) = Gamma(α, 1) distribution.

♢ Observation 6.24 (About Example 6.23). The result Y = βX ∼ Gamma(α, 1) justifies why we call the β
parameter scale.

♡ Example 6.25 (Independent Gammas). Consider X ∼ Gamma(α1, 1), Y ∼ Gamma(α2, 1) with X ⊥⊥ Y ⇐⇒
PXPY = PX,Y . Define the joint distribution of two new r.v.s:

(S,Z) =

(
X + Y,

X

X + Y

)

Usually, their distribution is extracted with transforms, now we wish to do so using the result of Theorem 4.11
with bounded continuous positive Borel functions h : R → R+. Namely, we check:

PS,Z(h) =

∫
R2

h(s, z)PS,Z(ds, dz) s = x+ y, z =
x

x+ y
, h ∈ Cb(R)

Applying a change of variable we see that:

{
x = sz

y = s(1− z)
J =

∂x∂s ∂x

∂z
∂y

∂s

∂y

∂z

 s.t. |J| = | − s| = |s|

Further, notice that:

(X,Y ) ∈ R+ × R+ =⇒ (S,Z) ∈ R+ × [0, 1] =⇒ |s| = s



6.2. TRANSFORMS 51

So that the expectation becomes:

PS,Z(h) =

∫
R+

∫
R+

h

(
x+ y,

x

x+ y

)
PX,Y (dx, dy) PX,Y = PXPY

=

∫
R+

∫
R+

h

(
x+ y,

x

x+ y

)
1

Γ(α1)
xα1−1e−x

1

Γ(α2)
yα2−1e−ydxdy

=

∫
R+

∫ 1

0

h(s, z)
1

Γ(α1)
(sz)α1−1e−sz

1

Γ(α2)
(s(1− z))α2−1e−s(1−z)s dsdz

=

∫
R+

∫ 1

0

h(s, z)
1

Γ(α1)Γ(α2)
sα1−1zα1−1e−sz−sz+ssα2−1(1− z)α2−1s dsdz

=

∫
R+

∫ 1

0

h(s, z)
1

Γ(α1)Γ(α2)
zα1−1(1− z)α2−1︸ ︷︷ ︸

Beta Kernel

sα1+α2−1e−s︸ ︷︷ ︸
Gamma kernel

dsdz

=

∫
R+

∫ 1

0

h(s, z)
1

Γ(α1 + α2)
sα1+α2−1e−s

Γ(α1 + α2)

Γ(α1)Γ(α2)
zα1−1(1− z)α2−1 dsdz

=

∫
R+

∫ 1

0

h(s, z)PS(ds)PZ(dz)

Where we see that S ⊥⊥ Z as the laws factorize and S ∼ Gamma(α1 + α2, 1), Z ∼ Beta(α1, α2).

Lemma 6.26 (Properties of P̂X(t)). Consider an integrable r.v. X ∈ L1. For a Laplace transform as in Def.
6.11:

1. P̂X(t) is decreasing and continuous in t

2. lim
t→∞

P̂X(t) = 0

3. lim
t→0

P̂X(t) = 1

Proof. We always use the X ≥ 0 a.s. condition.
(Claim #1) follows as e−tx ≤ 1∀t ≥ 0, so by dominated convergence (Thm. 4.24):

lim
h↓0

P̂X(t+ h) = P̂X(t)∀t > 0

For h ↑ 0 observe that e−tx ≥ 0∀x, t and apply the same reasoning.
Moreover, by e−tx being decreasing in t, the integral is decreasing in t by monotonicity (Thm. 4.7#2).
(Claim #2, #3) Again by dominated convergence:

lim
t→0

E
[
e−tX

]
= E

[
lim
t→0

e−tX
]
= E[1] = 1

lim
t→∞

E
[
e−tX

]
= E

[
lim
t→∞

e−tX
]
= E[0] = 0

♣ Theorem 6.27 (Laplace transform and seemingly exponential distribution connection). It holds:

X : P[X ≥ 0] = 1 =⇒ For P̂X(t) ∃PT ≪ Leb p(t) =

∫
(0,∞)

xe−xtPX(dx)

Proof. Let F (t) = 1− P̂X(t), by Lemma 6.26, F (t) satifies the properties of a distribution function, and we can
say it identifies a unique probability law by Theorem 3.21. The distribution indexed by T with such cdf is:

P[T > t] =

{
1 t < 0

P̂X(t) t ≥ 0

Where the random variable exists by Theorem 3.22.
It is also useful to recall the result of Lemma 6.15, namely e−tx = ∫∞t xe−sxds. For positive times t ≥ 0 we then
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say:

P[T > t] = E[e−tX ]

=

∫
(0,∞)

∫ ∞

t

xe−sxdsPX(dx)

=

∫ ∞

t

∫
(0,∞)

xe−sxPX(dx)ds Fubini Thm. B.30

= −
∫ t

∞

∫
(0,∞)

xe−sxPX(dx)ds

Which is nothing but the representation of Radon Nykodym theorem (Thm. 5.7) for PT ≪ Leb with derivative:

dPT
dLeb

(t) =

∫
(0,∞)

xe−txPX(dx)

♣ Theorem 6.28 (Laplace transform is a random variable). By the result of Theorem 6.27 we conclude:

X : P[X ≥ 0] = 1 =⇒ T =
Y

X
identified by P̂X(t), X ∼ PX , Y ∼ Exp(1), X ⊥⊥ Y

Proof. We restart from what we had at the end of Theorem 6.27 to get:

PT (h) =

∫
R+

h(t)PT (dt) h : R → R+ positive bounded continuous

=

∫
R+

h(t)

∫
(0,∞)

xe−txPX(dx)dt let tx = y, dt = dy
1

x

=

∫
R+

∫
(0,∞)

h
(y
x

)
xe−y

1

x
PX(dx)dy

that implies:

PT (h) = PX,Y (h) =

∫
R2

+

h
(y
x

)
e−yPX(dx)dy

meaning that X ⊥⊥ Y and Y ∼ NegExp(1).

♡ Example 6.29 (Laplace transform of Gamma random variable has Pareto distribution). Let X ≥ 0 a.s. and
X ∼ Gamma(α, β), α, β > 0. The Laplace transform is:

P̂X(t) = E
[
e−tX

]
=

∫
e−tx

βα

Γ(α)
xα−1e−βxdx

=
βα

Γ(α)

∫
xα−1e−(β+t)xdx

=
βα

Γ(α)

Γ(α)

(β + t)α
using gamma density identity

=

(
β

β + t

)α
Which, by the identification via Laplace function (Thm. 6.12) suggests that T is a r.v. with Pareto distribution,
i.e. T ∼ Pareto(α, β).

♡ Example 6.30 (Independent Gammas and Laplace). Let X ∼ Gamma(α, β), Y ∼ Γ(γ, β), X ⊥⊥ Y . The
Laplace transform of their sum is:

P̂X+Y (t) = P̂X(t)P̂Y (t) Prop. 6.14

=

(
β

β + t

)α(
β

β + t

)γ
Ex. 6.29

=

(
β

β + t

)α+γ
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So that again, by Laplace characterization (Thm. 6.12), the sum of two Gamma independent r.v.s is Pareto
distributed as T ∼ Pareto(α+ γ, β) and clearly X + Y ∼ Gamma(α+ γ, β)

♡ Example 6.31 (Theorem 6.27 for a Gamma gives Pareto by Theorem 6.28). Let X ∼ Gamma(α, β) so that
T = X

Y is by Theorem 6.27:

PT (dt) =

∫
(0,∞)

xe−txPX(dx)dt =
βα

Γ(α)

∫
(0,∞)

xe−xtxα−1e−βxdxdt =
αβα

(β + t)α+1
1(0,∞) (t) dt

Which is the pdf of a heavy tailed Pareto distribution.

♠ Definition 6.32 (Integral transforms of random vectors). Let X = (X1, . . . , Xd)
T be a r.v. on (Rd,B(Rd)).

It is clear that ∀t ∈ Rd the inner product is:

tTX =

d∑
j=1

tjXj

so that there is a natural definition of characteristic function and Laplace transform:

• ΦX(t) = E
[
eit

TX
]
=
∫
Rd e

itT xPX(dx) t ∈ R

• provided that P[Xi ≥ 0] = 1∀i then P̂X(t) = E
[
e−t

TX
]
=
∫
R×d

+
e−t

T xPX(dx) t ∈ R+

♢ Observation 6.33 (Characteristic function of random Gaussian). Recall that for X ∼ N(m,σ2) the charac-
teristic function is:

ΦX(t) = e−itm−σ2

2 t
2

♠ Definition 6.34 (Multivariate Gaussian distribution). We say X ∼ Nd(m,Σ) where m ∈ Rd and Σ ∈ Rd×d
is non negative definite if and only if:

∀t ∈ Rd


ΦX(t) = E

[
eit

TX
]
= exp

{
imt −

σ2
t

2

}
mt = mT t =

∑d
j=1mjtj

σ2
t = tTΣt =

∑d
j

∑d
i σijtitj

♢ Observation 6.35 (Comments about the Definition). Notice that:

• σii = V [Xi], σij = CoV [Xi, Xj ],mi = E[Xi] ∀i, j
• Σ ⪰ 0 (non negative definite) means either of two cases:

– Σ ≻ 0 =⇒ λTΣλ > 0 ∀λ ⇐⇒ ∃Σ−1 so that PX ≪ Lebd and we have a representation via Radon
Nikodym (Thm. 5.7):

dPX
dLebd

(x) =
det(Σ)−

1
2

2π
d
2

exp

{
−1

2
(x−m)TΣ−1(x−m)

}
– Σ ⪰ 0 =⇒ ∄Σ−1 =⇒ PX is concentrated on a hyperplane of dimension d′ < d

♣ Proposition 6.36 (Orthogonality characterizes independence in Gaussian random vectors). Let X ∼ Nd(m,Σ).
Then

Σ = σT Id ⇐⇒ Xi ⊥⊥ Xj ∀i ̸= j

Proof. By the above observation we notice that:

Σ = σT Id =⇒ ∃Σ−1 = (σ−1)T Id =⇒ ∃ dPX
dLebd

We can write down the characteristic transform as:

ΦX(t) = exp

i∑mjtj −
1

2

∑
j

t2jσjj

 =
∏
j

exp

{
imjtj −

1

2
t2jσjj

}
=
∏
j

ΦXj
(t)

so that by Proposition 6.21#1 and its trivial opposite the claim is verified. Namely we use: integral transform
decouples implies independence and the opposite.



54 CHAPTER 6. RANDOM VECTORS, TRANSFORMS

Chapter Summary

Objects:
• random vectors via joint measurability
• independence as factorization of laws
• Laplace transform for positive r.v.s

P̂X(t) = E[e−tX ] =

∫
R+

e−txPX(dx) P̂X(0) = 1 ∀t ≥ 0

• characteristic function for r.v.s on R, t ∈ R

ΦX(t) = E
[
eitX

]
=

∫
R
eitxPX(dx) =

∫
R
cos(tx)PX(dx) + i

∫
R
sin(tx)PX(dx)

• probability generating function
• extension of characteristic function and Laplace transform to the multidimensional case via inner

products
• multivariate Gaussian distribution via Characteristic function

Results:
• random vectors inherit most of the properties of random variables
• the Laplace transform:

– characterizes distribution functions
– factorizes sums of independent variables
– its nth-derivative gives a closed form expression of the nth-moment
– is decreasing and continuous in t
– has limt→0 equal to 1 and limt→∞ equal to 0

– has a a.e. unique distribution function T which is absolutely continuous to the Lebesgue
measure and has a Radon Nikodym derivative involving PX

– can be seen as a random variable which is the fraction of the original random variable and a
negative exponential with parameter 1.

• the characteristic function:
– characterizes distributions
– always exists
– is real valued for symmetric random variables
– factorizes sums of independent variables
– its nth-derivative gives a closed form expression of the nth-moment

• independence in Gaussian random vectors is characterized by a diagonal variance-covariance matrix



Chapter 7

Uniform Integrability & Inequalities

This Chapter is mostly based on [Ver18].

7.1 More requirements for integrability

Lemma 7.1 (integrability characterization).

X ∈ L1(Ω,F,P) ⇐⇒ lim
k→∞

E
[
|X|1(k,∞)(|X|)

]
= 0

⇐⇒ ∀ϵ > 0∃k0 = k0(ϵ) | ∀k > k0 E
[
|X|1(k,∞)(|X|)

]
< ϵ

Proof. ( =⇒ ) let X ∈ L1(Ω,F,P) which means E[|X|] <∞. Notice that two trivial facts are:

|X|1(k,∞) (|X|) ≤ |X| ∀k > 0 lim
k→∞

1(k,∞) (|X|) = 0

Using these two:

lim
k→∞

E[|X|1(k,∞) (|X|)] = E[|X| lim
k→∞

1(k,∞) (|X|)] dominated conv. Thm. 4.24

= E[|X| · 0]
= 0

( ⇐= ) We notice another trivial fact:

|X| = 1(−∞,k) (|X|) |X|+ 1[k,∞) (|X|) |X| ≤ k + 1[k,∞) (|X|) |X|

So that by monotonicity (Thm. 4.7#2):

E[|X|] ≤ k + E[|X|1[k,∞) (|X|)]︸ ︷︷ ︸
→0 by hyp

<∞ =⇒ X ∈ L1(Ω,F,P)

The second inequality statement is an implication of the hypothesis of finite limit.

♢ Observation 7.2 (About Lemma 7.1). Consider an uncountable collection C = {Xi, i ∈ I} for an arbitrary
set I. In such a case, it might be that k(i)0 is divergent for some i.

♠ Definition 7.3 (Uniform Integrability). For a collection of r.v.s C = (Xi)i∈I on the probability space (Ω,F,P)
we say it is uniformly integrable if:

∀ϵ > 0 ∃K > 0 sup
X∈C

{
E
[
|X|1(K,∞) (|X|)

]}
< ϵ

More precisely:

55
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• |C| <∞∧Xi ∈ L1(Ω,F,P) ∀i =⇒ C u.i. with K∗ = max
C

{KX}
• If C = (Xn)n∈N is countably or uncountably infinite, then we reformulate the definition as:

lim
k→∞

sup
n≥1

E
[
|Xn|1(k,∞)(|Xn|)

]
= 0

Remark 1 (Norm bounds VS uniform integrability Def. 7.3). Notice that a u.i. collection of r.v.s is L1-bounded.
Indeed:

E [|X|] = E
[
|X|1(0,k](|X|)

]
+ E

[
|X|1(k,∞))(|X|)

]
≤ k + h(k) h(k) = E

[
|X|1(k,∞)(|X|)

]
=⇒ sup

C

E|X| ≤ sup
C

k + h(k)

≤ 1 + k for k | h(k) ≤ 1

<∞

Where we exploit the fact that h(k) → 0 as k → ∞ which is obtained by the assumption of uniform Integrability
(Def. 7.3). This means that the whole collection of variables has an L1 norm that is finite for each norm, and
we can choose a value such that all of the collection norms are below it.

7.2 Concentration inequalities

♣ Theorem 7.4 (Markov’s inequality). For a r.v. X from (Ω,F,P) on (R,B(R)), an increasing measurable
function f : R → R+ and b ∈ R with f(b) ̸= 0, we have that:

P[X > b] ≤ 1

f(b)
E[f(X)]

Proof. We go on by simple computation:

P[X > b] =

∫ ∞

b

PX(dx) ≤
∫ ∞

b

f(x)

f(b)
PX(dx)

f(x)

f(b)
≥ 1∀x ≥ b & monotonicity 4.7#2

=
1

f(b)

∫ ∞

b

f(x)PX(dx)

≤ 1

f(b)

∫
R+

f(x)PX(dx) X ≥ 0 a.s.

=
1

f(b)
E[f(x)]

Corollary 7.5 (Chebyshev’s inequality). Let X be such that E[X] = m and V [X] = σ2, then:

P[|X −m| > ϵ] ≤ 1

ϵ2
σ2

Proof.

P[|X −m| > ϵ] = P[(X −m)2 > ϵ2] ≤ E[(X −m)2]

ϵ2
Markov’s Thm. 7.4

=
V [X]

ϵ2
=
σ2

ϵ2
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Lemma 7.6 (Convexity Implication by Hardy, Littlewood, Polya). We characterize convexity of a function
f : X → R by:

{
f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2)

∀x1, x2 ∈ X, ∀t ∈ (0, 1)
⇐⇒


f(x) ≥ f(x0) + (x− x0)f

′
r(x0)

f ′r(x0) := lim
h↓0

f(x0 + h)− f(x0)

h

∀x ∈ X,x0 ∈ X

♣ Theorem 7.7 (Jensen’s Inequality). For a convex function f : R → R and integrable r.v.s X, f(X) ∈
L1(Ω,F,P) the following inequality holds:

E[f(X)] ≥ f (E[X])

Proof. Using Lemma 7.6 with x0 = f (E [X]) we have:

E[f(x)] ≥ E[f(E[X])] + E[X − E[X]]︸ ︷︷ ︸
=E[X]−E[X]=0

f ′r (E[X])

= f (E[X])

Notice that we required also f(X) ∈ L1 otherwise the expression E [f ′r (E [f(X)])] might have led to an undecidable
form when multiplied with X − E [X].

Corollary 7.8 (Concave Jensen’s Inequality). For f : R → R concave the opposite sign of Theorem 7.7 is
verified:

E[f(X)] ≤ f (E[X])

♢ Observation 7.9 (Intro to concentration inequalities). We wish to find an upper bound for the Probability of
deviating from the mean. The desired result is similar to the negative exponential convergence rate of the CLT,
but at finite n. Indeed we know that at the limit any mean distribution will converge to a normal, but wish to do
so at a finite sample size.

♣ Theorem 7.10 (Hoeffding’s Inequality, One sided, symmetric Bernoullis). For symmetric iid Bernoulli r.v.s:

Xi
iid∼ Bern±1

(
1

2

)
=⇒ ∀t ≥ 0 P

[
1√
n

∑
Xi ≥ t

]
≤ e−

t2

2

Proof. (△ idea and a simple fact) Notice that:

E[Xi] = 0∀i =⇒ E

[
1√
n

n∑
i=1

Xi

]
= 0
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The strategy is using Markov’s inequality, a monotonic transformation and a Taylor hyperbolic expansion.
(□ preliminary computation) We have:

P
[

1√
n

∑
Xi ≥ t

]
= P

[
e

1√
n

∑
Xi ≥ et

]
x→ ex increasing

= P
[
e
λ 1√

n

∑
Xi ≥ eλt

]
∀ λ > 0

≤ e−λtE
[
e
λ 1√

n

∑
Xi

]
Markov’s Thm. 7.4

= e−λt
n∏
i=1

E
[
e
λ 1√

n
Xi

]
Xi ⊥⊥ Xj ∀i ̸= j iid

= e−λt
n∏
i=1

e
λ 1√

n
1

2︸︷︷︸
=P[Xi=1]

+e
−λ 1√

n
1

2︸︷︷︸
=P[Xi=0]

= e−λt
n∏
i=1

1

2

(
e
λ 1√

n + e
−λ 1√

n

)
= e−λt

n∏
i=1

cosh
λ√
n

coshx =
1

2
(ex + e−x)

= e−λt
(
cosh

λ√
n

)n
(⃝ Taylor hyperbolic computation) notice that the Taylor series of the hypoerbolic cosine is, using the
simple inequality (2n)! ≥ 2nn!:

coshx =

∞∑
n=0

x2n

(2n)!
≤

∞∑
n=0

x2n

2n(n)!
=

∞∑
n=0

(
x2

2

)n
n!

= e
x2

2

Where in the last passage we recognize the Taylor series of the exponential.
(▽ inequality) Applying ⃝ to □ we get:

P
[

1√
n

∑
Xi ≥ t

]
≤ e−λt

(
e

λ2

2n

)n
= exp

{
−λt+ λ2

2

}
∀λ > 0

Where the RHS depends on λ. To find the tighthest bound, we minimize it wrt λ to find:

min
λ>0

exp

{
−λt+ λ2

2

}
= min

λ>0
−λt+ λ2

2
FOC

∂

∂λ
= 0 ⇐⇒ t = λ

=⇒ min
λ>0

exp

{
−λt+ λ2

2

}
= exp−t

2+ t2

2 = e−
t2

2

=⇒ P
[

1√
n

∑
Xi ≥ t

]
≤ e−

t2

2

♢ Observation 7.11 (About Theorem 7.10). We are restricting our analysis to one sided identically distributed
r.v.s! It is possible to generalize further the bound.

Corollary 7.12 (Two sided Hoeffding’s inequality, symmetric Bernoulli). Extending the result of Theorem 7.10:

Xi
iid∼ Bern±1

(
1

2

)
=⇒ ∀t ≥ 0 P

[
1√
n

∣∣∣∑Xi

∣∣∣ ≥ t

]
≤ 2e−

t2

2

Proof. Observe that {Xi} symmetric =⇒ −Xi
d
= Xi ∀i and in general |X| = X+ +X−. Then:

P
[

1√
n

∣∣∣∑Xi

∣∣∣ ≥ t

]
≤ P

[
1√
n

∑
|Xi| ≥ t

]
= P

[
1√
n

∑
Xi ≥ t

]
+ P

[
1√
n

∑
−Xi ≥ t

]
≤ 2e−

t2

2
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Where the first passage is by monotonicity of probability (Thm. 2.10) and the triangle inequality, and the second
passage is using the general fact to split the sum into disjoint events that both the positive and the negative sum
are less than t. This last event has a greater probability than their sum being less than t. The last inequality
follows by using the symmetry argument of Hoeffding’s inequality for the second term, and the usual inequality
for the first term.

♢ Observation 7.13 (About Hoeffding’s inequality Thm. 7.10 and 7.12). Additionally:

• Hoeffding’s Inequality tells how much mass is farther than t

• is tighter than Chebyshev’s bound from Cor. 7.5
• it is possible to ignore the 2 coefficient in front of the two sided inequality as t→ ∞

What about going beyond Bernoulli r.v.s?

Assumption 7.14 (Boundedness of random variables). We assume there exists finite m,M such that:

P[m ≤ X ≤M ] = 1

Which is an a.s. bound for any r.v. considered.

Lemma 7.15 (Moments of buonded random variables).

X as in Ass. 7.14 =⇒ ∀n ∈ N ∃E[Xn]

Proof. Note that the moments are always bounded in powers [mn,Mn] by monotonicity of expectation (Thm.
4.7#1), which means that they are always finite.

Lemma 7.16 (Symmetrization argument). A r.v. X satisfying Ass. 7.14 is such that:

E
[
eλ(X−E[X])

]
≤ e

λ2(M−m)2

2 ∀λ > 0

Proof. (△ independent copies approach) Let X ′ d= X, X ′ ⊥⊥ X be an independent copy. By Lemma 7.15 it
always has moments. Then:

E
[
eλ(X−E[X])

]
= E

[
eλ(X−E[X′])

]
λ > 0, X ′ d= X

= E [f(E[X ′])] f(y) = eλ(X−y) convex

≤ E

 E[f(X ′)]︸ ︷︷ ︸
deterministic

 Jensen’s Thm. 7.7

= E[f(X ′)]

= E
[
eλ(X−X′)

]
(□ introducing a Bernoulli) Now notice that X d

= X ′ =⇒ X − X ′ d
= X ′ − X

d
= −(X − X ′) so that the

difference of independent copies is symmetric. Thanks to this, if ε ∼ Bern±1

(
1
2

)
is a symmetric Bernoulli then:

X −X ′ d= ε(X −X ′)

Plugging this back into the inequality of △:

E
[
eλ(X−E[X])

]
≤ E

[
eλ(X−X′)

]
= E

[
eλε(X−X′)

]
= E

[
E[eλε(X−X′)|X,X ′]

]
Where we anticipate the intuitive use of the iterated law of Expectation.
Notice that inside the expectation we are fixing X,X ′, so that they are not random. This is useful since we can
apply the hyperbolic reasoning in the proof of Hoeffing’s inequality (Thm. 7.12) to the last form wrt ε:

E
[
eλε(X−X′)|X,X ′

]
=

1

2
eλ(X−X′) +

1

2
e−λ(X−X′) ≤ e

λ2(X−X′)2
2
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where the last inequality follows again by the reasoning of the proof cited above with Taylor’s expansions.
(⃝ boundedness finalization) Up to now, we have not exploited Assumption 7.14. Notice that:

P[m ≤ X ≤M ] = P[m ≤ X ′ ≤M ] ⇐⇒ P[|X −X ′| ≤M −m] = 1 = P[(X −X ′)2 ≤ (M −m)2]

Which means that the maximum distance between X and X ′ is necessarily less than |M −m|. Plugging this into
the result of □ it is trivial to conclude that:

E
[
eλ(X−E[X])

]
≤ E

[
exp

{
λ2(X −X ′)2

2

}]
≤ e

λ2(M−m)2

2

♣ Theorem 7.17 (Hoeffding’s general inequality for bounded random variables). Assume independence (Def.
6.9) and that Ass. 7.14 holds. Then:

∀t ≥ 0 P

[
n∑
Xi − E[Xi] ≥ t

]
≤ exp

{
− t

2
∑n

(Mi −mi)2

}

Proof. (△ improving the parametric bound) Recalling the proof of Hoeffding’s one sided Inequality (Thm.
7.10) we have:

P
[∑

Xi − E[Xi] ≥ t
]
≤ e−λtE

[
eλ(

∑
Xi−E[Xi])

]
∀λ > 0

= e−λt
n∏
i=1

E
[
eλ(Xi−E[Xi])

]
independence

≤ e−λt
n∏
i=1

exp

{
λ2(Mi −mi)

2

2

}
symmetrization, Lem. 7.16

= exp

{
−λt+ 1

2
λ2

n∑
i=1

(Mi −mi)
2

}
∀λ > 0

(□ best overall λ) To obtain the tightest bound we search:

λ∗ = argmin
λ>0

exp

{
−λt+ 1

2
λ2

n∑
i=1

(Mi −mi)
2

}
= argmin

λ>0
−λt+ 1

2
λ2

n∑
i=1

(Mi −mi)
2 = argmin

λ>0
F

The FOC suggests:

∂

∂λ
F = −t+ λ(

∑
(Mi −mi)

2) = 0,
∂2

∂λ2
F ≥ 0 =⇒ λ∗ =

t∑
(Mi −mi)2

(⃝ non parametric bound) Plugging the λ∗ from □ into the inequality of △:

P
[∑

Xi − E[Xi] ≥ t
]
≤ exp

{
− t2∑

(Mi −mi)2
+

t2

2
∑

(Mi −mi)2

}
= exp

{
− t2

2
∑

(Mi −mi)2

}
∀t ≥ 0

♢ Observation 7.18 (About Thm. 7.17). Dependence on n in the RHS is highlighted by
∑n

(Mi−mi)
2. Indeed,

we did not normalize by 1√
n
.

Lemma 7.19 (Hoeffding’s Lemma). Let X be a bounded r.v.:

X : E[X] = 0 P[m ≤ X ≤M ] = 1, m,M ∈ R =⇒ ∀λ ∈ R E
[
eλX

]
≤ exp

{
λ2(M −m)2

8

}
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Proof. (△ preliminary bound) Notice that V [X] = E[X2] ≤ E[(X − c)2] ∀c ∈ [m,M ]. In particular, for the
midpoint c = M+m

2 we obtain:

V [X] ≤ E

[(
X − M +m

2

)2
]
≤ (M −m)2

4

By the simple fact that for X ∈ [m,M ] we have:

X2 − (m+M)X ≤ 0 =⇒
(
X − M +m

2

)2

= X2 − (M +m)X +
(m+M)2

4
≤ (M −m)2

4

Simply since the maximum of X2 − (m+M)X is at zero in the midpoint.
(□ another preliminary bound) let f(λ) = logE[eλX ]. Then:

f ′(λ) =
EXeλX

EeλX
f ′′(λ) =

EX2eλX

EeλX
− (EXeλX)2

(EeλX)2

Also, f ′′(λ) = V [U ] where U is such that:

PU (du) =
eλuPX(du)∫M
m
eλxPX(dx)

P[m ≤ U ≤M ] = 1 =⇒ f ′′(λ) = V [U ] ≤ (M −m)2

4

(⃝ final computation) Notice further that f(0) = f ′(0) = 0 and by the fundamental Theorem of calculus:

f(λ) = f(0) +

∫ λ

0

f ′(µ)dµ =

∫ λ

0

∫ µ

0

f ′′(s)dsdµ ≤ λ2(M −m)2

8

Which helps us in computing:

ef(λ) = elog Eeλx

= Eeλx ≤ e
λ2(M−m)2

8

Corollary 7.20 (Hoeffding’s Bounded inequality improved). Using Lemma 7.19 we improve the result of Theo-
rem 7.17 as:

P
[∑

Xi − E[Xi] ≥ t
]
≤ exp

{
− 2t2∑

(Mi −mi)2

}
Proof. By direct application of Hoeffding’s Lemma (Lem. 7.19) above.

♡ Example 7.21 (Algorithm runs, applying Hoeffding’s inequality). Consider an algorithm A for a decision
problem. For each stage, the decision d ∈ {0, 1} is positive or negative. Assume further we have a better than
guessing performance:

P[succes] =
1

2
+ δ δ ∈

(
0,

1

2

)
We run such procedure many times, and make the final decision based on a majority vote. The question we ask
is:

Fix ϵ > 0, how many runs n are needed to have P[correct] ≥ 1− ϵ?

Notice that success and fail denote the decision of A while correct and wrong denote the ground truth.
We proceed by setting:

Xi =

{
1 w.p. 1

2 − δ (fail)

0 w.p. 1
2 + δ (success)

=⇒ Sn =

n∑
i=1

Xi = #fails

With Xi ∼ Bern
(
1
2 − δ

)
so that E[Xi] =

1
2 − δ∀i and the natural bounds could be mi = 0,Mi = 1∀i.

Applying Hoeffding’s (Cor. 7.20) we get that:

P
[∑

Xi − E [Xi] ≥ t
]
≤ exp

{
−2t2

n

}
∀t > 0
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Then for all positive t:

P
[
1

n

∑
Xi ≥

1

2
− δ +

t

n

]
≤ exp

{
−2t2

n

}
since we just exploited the fact that E [Xi] =

1

2
− δ. Picking t = nδ > 0 we can recover the estimate on the

probability that the majority of the votes is fail as:

P
[
1

n

∑
Xi ≥

1

2
− δ + δ

]
≤ exp

{
−2t2

n

}
We want to find a value of runs n such that 1

nSn ≥ 1
2 has a small probability of occurrence ϵ. This holds if and

only if:

n :
1

n
(n− Sn) ≥

1

2

has high 1− ϵ probability. In other words, for t = nδ:

P
[
1

n

∑
Xi ≥

1

2

]
= P

[
1

n
Sn ≥ 1

2

]
≤ exp

− 2t2

n︸︷︷︸
t=nδ

 < ϵ

is equivalent, after adapting for our carefully chosen t, to:

exp

{
−2n2δ2

n

}
< ϵ ⇐⇒ n >

1

2δ2
log

[
1

ϵ

]
= − 1

2δ2
log[ϵ]

♣ Theorem 7.22 (Chernoff’s bound). For an independency (Def. 6.9) of finite Bernoulli r.v.s {Xi}ni=1, where
Xi ∼ Bern(pi) assign the symbols Sn :=

∑
Xi, µ = E[Sn] =

∑
pi. Then:

P[Sn ≥ t] ≤ e−µ
(eµ
t

)t
∀t ≥ µ

Proof. We have:

P[Sn ≥ t] = P
[
eλSn ≥ eλt

]
∀λ > 0, x→ ef(x) increasing

≤ e−λtE
[
eλSn

]
Markov’s Thm. 7.4

= e−λt
n∏
i=1

E
[
eλXi

]
independence

= e−λt
n∏
i=1

pie
λ + 1− pi Bernoulli

= e−λt
n∏
i=1

1 + pi(e
λ − 1)

≤ e−λt
n∏
i=1

epi(e
λ−1) 1 + x ≤ ex∀x x = pi(e

λ − 1)

= e−λt+µ(e
λ−1) ∀λ > 0

Now notice:
0 < λ∗ = log

t

µ
= arg min

λ∈R+

e−λt+µ(e
λ−1)

and conclude that:

P[Sn ≥ t] ≤ exp

{
− log

[
t

µ

]
t+ µ

t

µ
− µ

}
= exp{−µ} exp

{(
log
[µ
t

]
+ 1
)
t
}

= exp{−µ}
(eµ
t

)t
∀t ≥ µ
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♢ Observation 7.23 (About Chernoff’s bound Thm. 7.22). The bound is even more than exponential with a
e−t log(t) rate.

♢ Observation 7.24 (There is a two sided bound). For now, we just considered the case t ≥ µ, and not the
other side.

♣ Theorem 7.25 (Two sided Chernoff’s inequality). With the assumptions of Theorem 7.22 we further conclude
that for {Xi}ni=1, Xi

ind∼ Bern(pi), Sn =
∑
Xi, µ = E[Sn]:

=⇒ ∃c > 0 : ∀δ ∈ (0, 1) P[|Sn − µ| ≥ δµ] ≤ 2e−c
µδ2

2

Proof. We first split the sum into two terms:

P[|Sn − µ| ≥ δµ] = P[Sn ≥ (1 + δ)µ] + P[Sn ≤ (1− δ)µ]

(△ first term) a direct application of Chernoff’s bound (Thm. 7.22) is possible.
(□ second term) The focus is moved to the second term.

P[Sn ≤ (1− δ)µ] = P[−Sn ≥ −(1− δ)µ]

= P[−λSn ≥ −λ(1− δ)µ] ∀λ > 0

= P
[
e−λSn ≥ e−λ(1−δ)µ

]
≤ eλ(1−δ)µE

[
e−λSn

]
Markov’s Thm. 7.4

= eλ(1−δ)µ
n∏
i=1

E
[
e−λXi

]
indepedence

= eλ(1−δ)µ
n∏
i=1

pie
−λ + 1− pi

≤ eλ(1−δ)µe−µ(1−e
λ) Like proof of Thm. 7.22

As a minimizer, we choose λ∗ = − log(1− δ) so that eventually:

P[Sn ≤ (1− δ)µ] ≤ exp {− log[1− δ](1− δ)µ− µ(1− 1 + δ)}
= exp {(1− δ)µ(− log[1− δ])− µδ}

= exp{−δµ}
(
exp log

{
1

1− δ

})(1−δ)µ

= e−δµ
(

1

1− δ

)(1−δ)µ

(⃝ back to main problem) collecting the results of △,□ we get to:

P[|Sn − µ| ≥ δµ] ≤ e−µ
(

e

1 + δ

)(1+δ)µ

+ e−δµ
(

1

1− δ

)(1−δ)µ

=
eδµ

(1 + δ)(1+δ)µ
+

e−δµ

(1− δ)(1−δ)µ

Where it is possible to notice that:

eδµ

(1 + δ)(1+δ)µ
≤ eδµe−µ(1+δ)

δ

1 + δ
2

log(1 + x) ≥ x

1 + x
2

, x = δ

= e−
−µδ2

2+δ

Reasoning similarly with the inequality log(1− δ) ≥ −δ+ δ2

2

1−δ ∀δ ∈ (0, 1) we get:

e−δµ

(1− δ)(1−δ)µ
≤ e

−µδ2

2

Recollecting again the conclusion follows:

∃c > 0 : ∀δ ∈ (0, 1) P[|Sn − µ| ≥ δµ] ≤ 2e−c
−µδ2

2

Where the c is extracted since we could make the bound tighter in principle.
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7.3 A Graph Theoretic Application

♠ Definition 7.26 (Erdős-Renyi model for random graphs G(·, ·)). Consider a set V of vertices where |V | = n

and connections between edges (i, j) ∈ V ×V taking place with propability p independently. We refer to this model
as G(n, p) and further notice that the single connections have a Bernoulli distribution:

X
(i)
j =

{
1 ifi ∼ j

0 else
∀i ̸= j

♠ Definition 7.27 (Degree di and average degree d). For a graph G(n, p) define:

• the number of incident to node i edges as di =
∑
j ̸=iX

(i)
j where di ∼ Bin(n− 1, p)

• the average degree d := E[di] = (n− 1)p

♠ Definition 7.28 (Dense random graph). A random graph G(n, p) is dense when:

d ≥ C log(n) C ∈ R

♠ Definition 7.29 (Almost regular random graph). A random graph G(n, p) is almost regular when:

P

[
n⋂
i=1

{|di − d| > ϵ}

]
≤ 1− ϵ ∀ϵ > 0

In plain text, there is a high probability that the degrees of nodes are close to their mean.

Lemma 7.30 (Dense random graphs almost regularity). Consider a dense (Def. 7.28) random graph G(n, p)

(Def. 7.26), then:

∀ϵ > 0, δ > 0 ∃C ∈ R : d ≥ C log(n), P

[
n⋂
i=1

{|di − d| > δd}

]
≤ 1− ϵ

With C satisfying:

C >
1

cδ2
+ log

(
2

ϵ

)
1

cδ2 log(n)

Where the small c comes from the Chernoff Bound (Theorem 7.25).

Proof. (△ setting) We make a direct application of the two sided Chernoff’s bound from Theorem 7.25, where
Xi ⇝ di and µ⇝ d.
(□ starting point and another fact) it follows that for some c > 0, ∀δ ∈ (0, 1)

P[|di − d| ≥ δd] ≤ 2e−
dδ2

2

Additionally, by De Morgan’s laws:

(
n⋂
i=1

{|di − d| ≥ δd}

)c
=

n⋃
i=1

{|di − d| < δd}
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And we aim to find a ϵ bound on P.
(⃝ finalizing the bound) in the context of □ it holds:

P

[
n⋃
i=1

|di − d| ≥ δd

]
≤

n∑
i=1

P
[
|di − d| ≥ δd

]
Boole’s Thm. 2.17

≤
n∑
i=1

2 exp

{
−cdδ

2

2

}
Chernoff’s Thm. 7.25

= 2n exp

{
−cdδ

2

2

}
≤ 2n exp

{
−cδ

2

2
C log[n]

}
Dense G s.t. ∃C : d ≤ C log[n]

= 2n
1

ncC
δ2

2

= 2n1−cC
δ2

2

Now, setting this < ϵ ∀ϵ > 0, we note that such threshold is ϵ = δd and we want it to be controlled by C which
is our coefficient of interest (we want to prove its existance):

2n1−cC
δ2

2 < ϵ ⇐⇒ C >
1

cδ2
+ log

[
2

ϵ

]
1

cδ2 log[n]

Existance of a C means that the graph is almost regular.
Summarizing we proved existance of C with constant c from Chernoff’s bound and fixed ϵ, δ.
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Chapter Summary

Objects:
• uniform integrability for an arbitrary collection C = {Xi, i ∈ I}

∀ϵ > 0 ∃K > 0 lim
k→∞

sup
X∈C

{
E
[
|X|1(K,∞) (|X|)

]}
= 0

• Graph Theory:
– random graphs, degree of a node and average degree of a graph
– dense random graphs

G(n, p) : d ≥ C log(n) C ∈ R

– almost regular random graphs

G(n, p) : P

[
n⋂
i=1

{|di − d| > ϵ}

]
≤ 1− ϵ ∀ϵ > 0

Results:
• integrability characterization:

X ∈ L1(Ω,F,P) ⇐⇒ lim
k→∞

E
[
|X|1(k,∞)(|X|)

]
= 0

• Markov’s inequality

f increasing, f(b) ̸= 0 =⇒ P[X > b] ≤ 1

f(b)
E[f(X)]

trick: we almost always start from this inequality with the increasing function eλx for some λ > 0

• Chebyshev’s inequality
• Jensen’s inequality

f convex, X ∈ L1 =⇒ E[f(X)] ≥ f (E[X])

• Hoeffding’s inequality

Xi
iid∼ Bern±1

(
1

2

)
=⇒ ∀t ≥ 0 P

[
1√
n

∑
Xi ≥ t

]
≤ e−

t2

2

trick: Markov’s + assumptions + hyperbolic trigonometry + Taylor’s + find the best λ.
• Hoeffding’s two sided inequality

trick: triangle inequality + symmetry of Bernoulli
• symmetrization argument for bounded random variables

trick: Jensen’s on an independent copy inside the expectation, attach a Bernoulli, optimize for λ
• Hoeffding’s general inqequality for bounded random variables

trick: just apply previous facts
• Hoeffding’s inequality improved via Hoeffding’s Lemma

trick: just apply the Lemma
• Chernoff’s bound
• two sided Chernoff’s bound
• dense random graphs are almost regular



Chapter 8

Independence & Convolutions

8.1 Sigma algebra approach to independence

♠ Definition 8.1 (σ-algebra generated by a random variable). Let X be a r.v. (Def. 3.2) on (Ω,F,P) taking
values on the measurable space (E,E). The idea of a generated σ-algebra (Def. 1.11) is that of the smallest
σ-algebra containing the generator. We extend this to r.v.s as follows:

• consider a collection of σ-algebras {Gi, i ∈ I} such that Gi ⊂ F ∀i
• these include all the possible σ-algebras that satisfy the measurability condition of Eqn. 3.1:

∀i, ∀A ∈ E X−1(A) ∈ Gi

Then we naturaly define the σ algebra generated by X as:

σ(X) =
⋂
i∈I

Gi

Where the arbitrary intersection of σ-algebras is a σ-algebra by Theorem 1.10.

♣ Theorem 8.2 (σ(X) characterization). We identify σ(X) as the set of counterimages of X in E:

σ(X) = {X−1(A), A ∈ E}

Proof. Let G = {X−1(A) : A ∈ E} which is a σ-algebra. We prove G ⊂ σ(X) and G ⊃ σ(X).
(⊂) If F′ is a σ-algebra making X measurable it then X−1(A) ∈ F′∀A ∈ E. Clearly then G ⊂ F′ =⇒ G ⊂ σ(X).
(⊃) σ(X) is necessarily included in the counterimages G by the definition of σ(X).

♢ Observation 8.3 (Intuition for σ(X) of Def. 8.1). We can intepret F as full information on events, and
σ(X) ⊂ F as the information learnt from X.

It may be useful to compare the following examples with what we derived in Chapter 3 when constructing random
variables.

♡ Example 8.4 (Intuitive σ(X)). We provide two examples.
(trivial σ-algebra) Let X(ω) = k∀ω ∈ Ω, this is a non informative r.v. X : Ω → R. Indeed:

∀B ∈ B(R) X−1(B) =

{
∅ k /∈ B

Ω k ∈ B
=⇒ σ(X) = {X−1(A) : A ∈ B(R)} = {Ω, ∅}

(simple σ-algebra) Let c1, c2 ∈ R, A ∈ F and X = 1Ac1 + 1Acc2. Then, ∀B ∈ B(R) we have:

X−1(B) =


∅ c1, c2 /∈ B

Ω c1, c2 ∈ B

A c1 ∈ B, c2 /∈ B

Ac c1 /∈ B, c2 ∈ B

=⇒ σ(X) = {X−1(B) : B ∈ B(R)} = {∅,Ω, A,Ac}

67
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♡ Example 8.5 (More advanced σ(X)). Let X(Ω) = {x1, x2, . . .} be a countable collection of discete realizations
xn ∈ R∀n. Then, the sets {An} =

{
X−1(xn)

}
form a partition of Ω into F-sets. It follows:

∀B ∈ B(R) X−1(B) =
⋃

n:xn∈B
An {n : xn ∈ B} ≠ ∅ =⇒ X−1(B) ̸= ∅

And the σ-algebra generated is:

σ(X) = {X−1(B), B ∈ B(R)} =

{ ⋃
n:xn∈B

Ai ∀B ∈ B(R)

}

Lemma 8.6 (σ-algebra by partitions). Let C = {Ci, i ∈ I} be a countable partition of Ω into F-sets. By
Definition 1.11 and Example 8.5 we can think of its generated σ-algebra as collections of unions of sets Ci. The
claim is that this holds if and only if X takes a single value in each of the partitioning sets Ci:

X : σ(X) = σ(C) =⇒
Ex.8.5

∀B ∈ B(R) ∃IB ⊂ I | X−1(B) =
⋃
i∈IB

Ci ⇐⇒ X(ω) = xi∀ω ∈ Ci, ∀i

Proof. ( =⇒ by contradiction) suppose ∃C ∈ C : ω1 ̸= ω2 ∈ C, c1 = X(ω1) ̸= X(ω2) = c2. Then:

A1 = X−1({c1}) ∈ σ(X) = σ(C) =⇒ A1 =
⋃
i∈IA1

Ci =⇒ A1 ⊃ C

So that A1 is single valued A1 = X−1({c1}) but covers the whole C. We have found a contradiction.
( ⇐= ) let X be such that ∀Ci ∈ C, i ∈ I the maps X(Ci) = {xi} are disjoint atoms. We prove both directions
of inclusion:

• (⊂) ∀B ∈ B(R) X−1(B) =
⋃
i:xi∈B Ci ∈ σ(C) =⇒ σ(X) ⊂ σ(C)

• (⊃) X−1({xi}) = ci∀i =⇒ C ⊂ σ(X) =⇒ σ(C) ⊂ σ(X)

Where the first implication is by C being a part of the options in σ(X) and the second is by trivial
implication.

♣ Theorem 8.7 (Characterizing r.v. measurability by σ(X)). Let X,Y be r.v.s on (Ω,F,P) taking values on
(R,B(R)). Then:

Y measurable w.r.t. σ(X) i.e. ∀A ∈ E Y −1(A) ∈ σ(X) ⇐⇒ Y = f(X) f : R → R deterministic

Proof. [Çin11](Thm. II.4.4). See Proposition 12.40 for an idea.

♢ Observation 8.8 (Statistical models & Theorem 8.7). Classical assumptions for regression aim at applying
Theorem 8.7. In other words, while it is not possible to check measurability over the whole σ(X), with Y = f(X)+ϵ

we assume measurability up to a ϵ relaxation.

♠ Definition 8.9 (Independence of σ-algebras). For n ≥ 1 a finite collection {G1, . . . ,Gn} where Gk ⊂ F ∀k, is
an independency (a collection of independent objects) when:

∀Ak ∈ Gk, ∀i P

[
n⋂
k=1

Ak

]
=

n∏
k=1

P[Ak]

For an uncountable collection {Gt, t ∈ T} such that Gt ⊂ F ∀t we say it is an independency if ∀n ≥ 1 and distinct
times t1 ̸= . . . ̸= tn the finite subcollection {Gti}ni=1 is an indepencency in the above sense. Namely:

∀Ati ∈ Gti , ∀i P

[
n⋂
i=1

Ati

]
=

n∏
i=1

P[Ati ]

Lemma 8.10 (Independence characterizations by p-systems). Let G1,G2 ⊂ F, consider their generating p-systems
(Def. 1.8) C1,C2 : σ(C1) = G1 and σ(C2) = G2. Then:

G1 ⊥⊥ G2 ⇐⇒ C1 ⊥⊥ C2

i.e. P[I ∩H] = P[I]P[H] ∀I ∈ C1, H ∈ C2
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Proof. Use Proposition A.29.

♠ Definition 8.11 (Independence of random variables revisited). A collection {Xi}i∈I is an independence if
{σ(Xi)}i∈I is an independence in the sense of Definition 8.9. The next proposition recovers this result.

♣ Proposition 8.12 (Independence is factorization, old is new). For a finite collection:

{σ(Xi)}ni=1 indepencency ⇐⇒ P[Xi ≤ xi ∀i] =
n∏
i=1

P[Xi ≤ xi] ∀xi ∈ R∀i

Proof. ( ⇐⇒ together) Let {Xi}ni=1 be independent and measurable. Then:

∀A1 ∈ σ(X1), . . . ,∀An ∈ σ(Xn) P

[
n⋂
i=1

Ai

]
=

n∏
i=1

P[Ai]

⇐⇒ Ai = X−1
i (Bi) : Bi ∈ B(R) ∀i Thm. 8.2

⇐⇒ P[X1 ∈ B1 ∩ · · · ∩Xn ∈ Bn] =

n∏
i=1

P[Xi ∈ Bi]

⇐⇒ PX1,...,Xn
=

n×
i=1

PXi

⇐⇒ P[X1 ≤ x1, . . . , Xn ≤ xn] =

n∏
i=1

P[Xi ≤ xi] ∀x1, . . . , xn ∈ R Lem. 8.10

♣ Proposition 8.13 (Measurable functions independence). Consider a finite collection of independent r.v.s
Xi ⊥⊥ Xj ∀i ̸= j, i = 1, . . . , n and correspondent measurable functions fi where fi(Xi) = Yi∀i. Then:

Yi ⊥⊥ Yj ∀i ̸= j, i = 1, . . . , n

Proof. Apply the approach of Proposition 8.12.

♡ Example 8.14 (Some independence structures). We provide two examples.

• Let (An) ⊂ F,Gn = {∅, An, Acn,Ω}∀n so that we could say Gn = σ(1An
)∀n. To check independence of the

sequence of events it is sufficient to check that all the indicators are since:

(An)n independency
Thm. 8.12⇐⇒ (Gn)n independency

Lem. 8.10⇐⇒ (1An
)n independency

• to establish that X ⊥⊥ (Yt)t∈T a stochastic process on an arbitrary index set T it suffices to check:

σ(X) ⊥⊥ σ

(
n⋃
i=1

σ(Yi)

)
∀{Yi}ni=1 ⊂ (Yt)t∈T, ∀n

Which is the second case of Definition 8.9.

8.2 Convolutions and Radon-Nykodym again

♠ Definition 8.15 (Convolution P⋆(·), ⋆). Given two independent r.v.s X,Y taking values in a general Eu-
clidean Borel space (Rd,B(Rd)) we define their convolution as:

P⋆(H) = (PX ⋆ PY )(H) ∀H ∈ B(Rd)

=

∫
Rd

PY [H − x]PX(dx) H − x := {y | x+ y ∈ H} = {y | ∃h ∈ H : y = h− x}
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♣ Proposition 8.16 (Convolution is independent sum in P space). An intepretation of convolution is:

P∗[H] = P[X + Y ∈ H] = PX+Y [H] ∀H ∈ B(Rd)

Proof. By simply carrying out computations one gets:

PX+Y (H) =

∫
H

dPX+Y

=

∫
B

PX,Y (dx, dy) simplex B = {(x, y) : x+ y ∈ H}

=

∫
Rd

∫
{y:x+y∈H}

PY (dy)PX(dx) independence

=

∫
Rd

PY (H − x)PX(dx) H = {(x, y) : x+ y ∈ H}

= P∗
X,Y (H) ∀H ∈ B(Rd)

♣ Proposition 8.17 (Symmetry of convolution). The ⋆ operation is symmetric for independent r.v.s:

(PX ⋆ PY )(H) = (PY ⋆ PX)(H) ∀H ∈ B(Rd)

Proof. Again, by independence:

(PX ⋆ PY )(H) =

∫
B

PX,Y (dx, dy) B = {(x, y) : x+ y ∈ H}

=

∫
Rd

∫
{x:x+y∈H}

PX(dx)PY (dy)

=

∫
Rd

PX(H − y)PY (dx)

= (PY ⋆ PX)(H) ∀H ∈ B(Rd)

Corollary 8.18 (Implications of Radon Nikodym Theorem and F, P identification). Using Theorems 3.21, 3.22,
Radon Nikodym (Thm. 5.7), Proposition 5.20, symmetry of convolution (Prop. 8.17) and Fubini’s Theorem B.30
we reach the following conclusions:

1. Radon Nikodym absolute continuous convolution representation

PX ≪ λ, PY ≪ µ, p =
dPX
dλ

, q =
PY

µ
=⇒ PX+Y (H) =

∫
R
p(x)

∫
H

q(y − x)µ(dy)λ(dx)

2. Sum cdf representation as a convolution in trivial euclidean space

d = 1, H = (−∞, z] =⇒ FX+Y (z) = P[X + Y ≤ z] =

∫
R
FY (z − x)PX(dx)

3. Claim 1 in the Lebesgue case

d = 1, PX ≪ Leb, PY ≪ Leb =⇒ P∗ ≪ Leb, p∗(z) =

∫
R
q(z − x)p(x)dx

where we could also state the same result for measures absolutely continuous to the counting measure

Proof. (Claim #1) we make an instrumental application of Radon Nikodym Theorem, granted by the assump-
tion of absolute continuity. Indeed, we have a representation of the convolution as:

PX+Y (H) = (PX ⋆ PY )(H) =

∫
Rd

PY (H − x)PX(dx)

=

∫
Rd

∫
H

PY (d(y − x))PX(dx) =

∫
Rd

p(x)

∫
H

q(y − x)µ(dy)λ(dx)
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(Claim #2)

FX+Y (z) = PX+Y ((−∞, z]) =

∫
R
p(x)

∫ z

−∞
q(y − x)µ(dy)λ(dx)

=

∫
R
p(x)

∫ z−x

−∞
q(y)µ(dy)λ(dx) ch. variable

=

∫
R
p(x)FY (z − x)λ(dx)

=

∫
R
FY (z − x)PX(dx) Rad. Nyk. representation

(Claim #3) we inspect the cdf of the sum to get that:

FX+Y (z) =

∫
R

∫ z−x

−∞
q(y)dyp(x)dx ≪ Leb hypothesis and previous Claims

=

∫
R

∫ z

−∞
q(y − z)︸ ︷︷ ︸

≥0

p(x)︸︷︷︸
≥0

dydx ch. var.

=

∫ z

−∞

∫
R
q(y − z)p(x)dxdy Fubini Thm. B.30

So that PX+Y ≪ Leb clearly by being an integral wrt dy = Leb and we can eventually conclude that the density
of the convolution is:

p∗(z) =
PX+Y

dLeb
(z) = F ′

X+Y (z) =

∫
R
q(z − x)p(x)dx

almost everywhere, by Proposition 5.20#1,#2,#3.

♢ Observation 8.19 (About Corollary 8.18). In Claim 3 we conclude that the sum of absolutely continuous
independent random variable distribution is absolutely continuous and has a precise density.

♡ Example 8.20 (Triangular distribution sum of uniforms). Let X,Y ind∼ Unif(0, 1). Clearly PX ≪ Leb,PY ≪
Leb and by Radon Nikodym Thm. 5.7 the densities take form:

p(x) = 1[0,1] (x) q(y) = 1[0,1] (y)

By the just proved Corollary 8.18#3 we can further say that:

p∗(z) =

∫
R
q(z − x)p(x)dx =

∫
R
1[0,1] (z − x)1[0,1] (x) dx

=

∫
R
1[z−1,z] (x)1[0,1] (x) 0 ≤ z − x ≤ 1 ⇐⇒ x ≥ z − 1, x ≤ z

=

∫ 1

0

1[z−1,z] (x)

Four cases can be recognized:

• z < 0 =⇒ p∗(z) = 0

• z > 2 =⇒ p∗(z) = 0

• z ∈ [0, 1] =⇒ p∗(z) =
∫ z
0
dx = z

• z ∈ [1, 2] =⇒ p∗(z) =
∫ 1

z−1
dx = 2− z

The density has a representation:

p∗(z) = 1(−∞,0] (z) · 0 + 1[0,1] (z) · z + 1[1,2] (z) · (2− z) + 1(2,∞) (z) · 0
= 1[0,1] (z) · z + 1[1,2] (z) · (2− z)

Which is the shape of a triangular distribution centered at 1.
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♡ Example 8.21 (Poisson distribution convoluted). Let X ⊥⊥ Y,X ∼ Po(λ), Y ∼ Po(µ). Their sum is trivially
absolutely continous wrt the counting measure, namely X + Y ≪ ν =

∑
j≥0 δj. The density of the convolution

(equivalently, sum) is the probability law at a singleton1:

p∗(z) = PX+Y ({z}) =
∫
R
p(x)q(z − x)ν(dx) Z = X + Y ∈ N

We keep an indicator for natural numbers that restricts the density to its domain in the background. This value
is regarded as 1{0,1,...} (z).
The density becomes:

p∗(z) = 1{0,1,...} (z)

∞∑
x=0

λxe−λ

x!

µz−xe−µ

(z − x)!
1{0,1,...} (z − x)

= 1{0,1,...} (z)

∞∑
x=0

1[0,z] (x)
λxµz−xe−(µ+λ)

x!(z − x)!
1{0,1,...} (z − x) = 1[0,z] (x)

= 1{0,1,...} (z)
e−(µ+λ)

z!

z∑
x=0

λxµz−xz!

x!(z − x)!

= 1{0,1,...} (z)
e−(µ+λ)

z!

∑
x=0

z
z!

x!(z − x)!︸ ︷︷ ︸
=(zx)

λxµz−x
z∑
x=0

(
z

x

)
λxµz−x = (λ+ µ)z

Which implies that X + Y ∼ Pp(λ+ µ).

♡ Example 8.22 (Gamma convolutions). Let X ⊥⊥ Y,X ∼ Gamma(α, γ), Y ∼ Gamma(β, γ). Now X+Y ≪ Leb

and the density of the convolution takes form:

p∗(z) =

∫
R
p(x)q(z − x)dx

=

∫
R

γα

Γ(α)
xα−1e−γx1(0,∞) (x)

γβ

Γ(β)
(z − x)βe−γ(z−x)1(0,∞) (z − x) dx

=
γα

Γ(α)

γβ

Γ(β)

∫
R
xα−1(z − x)β−1e−γ(z−x)e−γx1(0,∞) (x)1(0,∞) (z − x) dx

=
γα+β

Γ(α)Γ(β)

∫
R
xα−1(z − x)β−1e−γz1(0,z] (x) dx

=
γα+β

Γ(α)Γ(β)
e−γz

∫ z

0

xα−1(z − x)β−1dx let w =
x

z
, dw =

dx

z

=
γα+β

Γ(α)Γ(β)
e−γz

∫ 1

0

(wz)α−1(z(1− w))β−1zdw

=
γα+β

Γ(α)Γ(β)
e−γzzα+1−1+β−1

∫ 1

0

(w)α−1(1− w)β−1︸ ︷︷ ︸
Beta kernel

dw

=
γα+β

Γ(α)Γ(β)
e−γzzα+β−1Γ(α)Γ(β)

Γ(α+ β)

=
γα+β

Γ(α+ β)
e−γzzα+β−1

So that X + Y ∼ Gamma(α+ β, γ).

♡ Example 8.23 (Bernoulli trials convolutions). Let X ∼ B(p), p ∈ [0, 1]. Below are some important informa-
tion about Bernoulli r.v.s

p(x) = PX({x}) = px(1− p)1−x1[0,1] (x) E[X] = E[X2] = · · · = p,

V [X] = p(1− p) P̂X(t) = pe−t + 1− p, E[zX ] = 1− p+ pz

1discrete measures have non zero measure at singletons
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We consider X1
iid∼ B(p). The density of the convolution (sum) is:

p∗(z) = PX+Y ({z}) =
∑
x

q(z − x)p(x) =

1∑
x=0

q(z − x)px(1− p)1−x

= q(z − 1)p+ q(z)(1− p) q(·) is still a function!

= pz−1(1− p)2−z1{0,1} (z − 1)︸ ︷︷ ︸
=q(z−1)

p+ pz(1− p)1−z1{0,1} (z)︸ ︷︷ ︸
=q(z)

(1− p)

= pz(1− p)2−z1{1,2} (z) + pz(1− p)2−z1{0,1} (z)

=

(
2

z

)
pz(1− p)2−z1{0,1,2} (z)

Which implies that Z ∼ Binom(2, p). Induction is straigthforward and we add that:

{Xi}ni=1 independency =⇒ Sn =

n∑
i=1

Xi ∼ Binom(n, p)

Chapter Summary

Objects:
• σ algebra generated by a random variable, the smallest σ-algebra containing all the measurable sets
• sigma algebras are independent if the laws of finite subcollections factorize
• convolution, P∗(H) = (PX ⋆ PY )(H) =

∫
Rd PY (H − x)PX(dx) where H − x = {y : x+ y ∈ H}

Results:
• σ(X) = {X−1(A), A ∈ E} is the σ-algebra generated by the random variable X
• a random variable Y is measurable with respect to a σ-algebra σ(X) if and only if it is a deterministic

function of X
• random variables form an independency in the σ-algebra sense if and only if laws of random variables

factorize
• P∗(H) = PX+Y (H) ∀H ∈ B(Rd)
• convolution is symmetric
• Radon Nikodym + convolution:

– Radon Nikodym absolute continuous convolution representation

PX ≪ λ, PY ≪ µ, p =
dPX
dλ

, q =
PY

µ
=⇒ PX+Y (H) =

∫
R
p(x)

∫
H

q(y − x)µ(dy)λ(dx)

– Sum cdf representation as a convolution in trivial euclidean space

d = 1, H = (−∞, z] =⇒ FX+Y (z) = P[X + Y ≤ z] =

∫
R
FY (z − x)PX(dx)

– Claim 1 in the Lebesgue case

d = 1, PX ≪ Leb, PY ≪ Leb =⇒ P∗ ≪ Leb, p∗(z) =

∫
R
q(z − x)p(x)dx

similar for the counting measure
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Chapter 9

Borel Cantelli Lemmas & Convergence

9.1 Borel-Cantelli Lemmas

♢ Observation 9.1 (Recap on Limits of sets). Recall Observation 2.12:

• An ⊂ An+1∀n =⇒ lim
n→∞

An =
⋃∞
n=1An

• An ⊃ An+1∀n =⇒ lim
n→∞

An =
⋂∞
n=1An

♠ Definition 9.2 (lim supn infinitely often i.o.). For a sequence of sets, we establish the equivalence:

lim sup
n

An = True ⇐⇒ ∞ many An occurr (An i.o.)

Namely:

lim sup
n

An =
⋂
N≥1

∞⋃
n=N

An = {An i.o.}

Or ∀N ∃n > N : An occurs

♠ Definition 9.3 (lim infn eventually). Similarly, for a sequence of sets:

lim inf
n

An = True ⇐⇒ all An but finitely many occurr (An eventually)

Namely:

lim inf
n

An =
⋃
N≥1

∞⋂
n=N

An

Or ∃N : ∀n ≥ N An occurs.

♠ Definition 9.4 (Conciliating the usual limit). Clearly:

1. lim supnAn ̸= lim infnAn =⇒ ∄ limnAn
2. lim supnAn = lim infnAn = A =⇒ ∃ limnAn = A

♣ Proposition 9.5 (Facts about lim sup & lim inf). Definitions 9.2 and 9.3 are nested and make sense in the
σ-algebra construction

1. ∃ lim infnAn =⇒ ∃ lim supnAn i.e. lim supnAn ⊃ lim infnAn
2. the events are well defined:

(An)n≥1 ⊂ (Ω,F,P) =⇒ lim inf
n

An ∈ F lim sup
n

An ∈ F

Proof. (Claim #1) trivial, lim inf is i.o. after N in Definition 9.3.
(Claim #2) holds by countable intersections and unions closedness in F (Def. 1.6, Lem. 1.7).

75
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♣ Theorem 9.6 (First Borell Cantelli Lemma, BC1). Consider a probability space (Ω,F,P) and a sequence of
sets (An)n≥1 ∈ F. Then: ∑

n≥1

P[An] <∞ =⇒ P[lim sup
n

An] = 0

Proof. ∀N > 1 let GN =
⋃∞
n=N An =⇒ GN ⊃ GN+1. By properties of sets then:

∃G = lim
N→∞

GN =
⋂
N≥1

GN =
⋂
N≥1

∞⋃
n=N

An = lim sup
n

An

And further at finite N :

P[GN ] = P

[ ∞⋃
n=N

An

]
≤

∞∑
n=N

P[An] Boole’s Thm. 2.17

Moving to the limit then:

P[lim sup
n

An] = P
[
lim
N→∞

GN

]
= lim
N→∞

P[GN ] continuity Thm. 2.13

≤ lim
N→∞

∞∑
n=N

P[An]

= 0

∞∑
n=1

P[An] <∞ ⇐⇒ lim
N→∞

∞∑
n=N

P[An] = 0

Lemma 9.7 (BC1 equivalent statement). For Theorem 9.6 we could equivalently conclude:

P[lim sup
n

An] = 0 ⇐⇒ P[lim inf Acn] = 1

Proof. It holds that P[lim supnAn] = 0 ⇐⇒ P[(lim supnAn)
c] = 1 so:

P

 ⋃
N≥1

∞⋂
n=N

An

c = 1 lim sup Def. 9.2

= P

 ⋃
N≥1

∞⋂
n=N

Acn

 De Morgan’s Laws

= P [lim inf Acn] lim inf Def. 9.3

♣ Theorem 9.8 (Second Borel Cantelli Lemma, BC2). Consider (Ω,F,P), (An)n≥1 ∈ F. Then:

(An)n≥1 independent︸ ︷︷ ︸
Def.8.9

∑
n≥1

P[An] = ∞ =⇒ P[lim sup
n

An] = 1

Proof. (△ aim) wts P[(lim supnAn)
c] = 0 which is equivalent.

(□ the inner intersection) Recall that by Definition of lim inf:

lim inf
n

Acn =
⋃
N≥1

∞⋂
n=N

Acn
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We focus on the intersection:

P

[
N+j⋂
n=N

Acn

]
=

N+j∏
n=N

P[Acn] indepedence

=

N+j∏
n=N

1− P[An]

≤
N+j∏
n=N

e−P[An] 1− x ≤ e−x∀x x = P[An]

= exp

{
−
N+j∑
n=N

P[An]

}

Clearly then ∀N ≥ 1 at the limit:

P

[ ∞⋂
n=N

Acn

]
= lim
j→∞

P

[
N+j⋂
n=N

Acn

]
continuity Thm. 2.13

≤ lim
j→∞

exp

{
N+j∑
n=N

−P[An]

}

= 0

∞∑
n=1

P[An] = ∞

=⇒ 0 ≤ P

[ ∞⋂
n=N

Acn

]
≤ 0 =⇒ P

[ ∞⋂
n=N

Acn

]
= 0

(⃝ final claim) By the result of □ we conclude:

0 ≤ P
[
lim inf

n
Acn

]
positivity of probability

= P

 ⋃
N≥1

∞⋂
n=N

Acn

 lim inf Def. 9.3

≤
∑
N≥1

P

[ ∞⋂
n=N

Acn

]
Boole’s Thm. 2.17

= 0 sum of zeroes

Which, by squeezing, proves the objective in △.

9.2 Convergence revisited

♡ Example 9.9 (Almost sure convergence by BC1). Consider a sequence (Xn)n∈N and a r.v. X where:

∀ϵ > 0
∑
n

P [|Xn −X| ≥ ϵ] <∞

Let An = {ω ∈ Ω : |Xn(ω)−X(ω)| > ϵ}, by BC1 (Thm. 9.6) and Lemma 9.7 it holds that:

P
[
lim sup

n
An

]
= 0 P

[
lim inf

n
Acn

]
= 1
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The latter is for fixed ϵ > 0. Letting the property for all ϵ > 0 we have an equivalent expression:

⇐⇒ P

 ⋃
N≥1

∞⋂
n=N

{ω ∈ Ω : |Xn(ω)−X(ω)| < ϵ}︸ ︷︷ ︸
=Ac

n

 ∀ϵ > 0 ⇐⇒ ∀ϵ ∈ Q+, see below

P

 ⋂
ϵ∈Q+

⋃
N≥1

∞⋂
n=N

{ω ∈ Ω : |Xn(ω)−X(ω)| < ϵ}


=P

⋂
ϵ>0

⋃
N≥1

∞⋂
n=N

{ω ∈ Ω : |Xn(ω)−X(ω)| < ϵ}

 rationals are dense in R+ Prop. 18.15

Which means that we have proved an ⇐⇒ relation between the first and the third statement. Additionally, this
is also equivalent to Xn

a.s.→ X, being in line with Definition 4.18.

♡ Example 9.10 (Negative exponential random variables). Let (Xn)n∈N be iid and such that PXn
≪ Leb with

density:
p(x) = λe−λx1R+

(x) =⇒ Xn ∼ NegExp(λ)

in the usual sense.
(△ aim) we want to find for a fixed α > 0 the i.o. occurence of:

P
[
lim sup

n

{
Xn

log n
> α

}]

(□ solution) define An =

{
ω ∈ Ω :

Xn(ω)

log n
> α

}
which are independent sets by construction. Then:

P[An] = P[Xn > α log n] =

∫ ∞

α logn

λe−λxdx = e−αλ logn =
1

nαλ

and sum of these events is parameter dependent

∑
n

P[An] =
∑
n

1

nαλ
=

{
<∞ αλ > 1

∞ αλ ≤ 1

So that in conclusion:

P
[
lim sup

n

{
xn
log n

> α

}]
=

{
0 αλ > 1 BC1 Thm. 9.6
1 αλ ≤ 1 BC2 Thm. 9.8

♡ Example 9.11 (Coin tossing). Let P[H] ∈ (0, 1) =⇒ P[T ] > 0. Consider as space Ω = {H,T}∞ and a
realization s ∈ {H,T}k for some k > 0. Clearly s = (s1, . . . , sk).
(△ aim) define an event that checks for correspondence at arbitrary n:

An = {ω ∈ Ω : (ωn, . . . , ωn+k−1) = s}

We look for the probability that this event happens i.o.
(□ solution) Notice that the sequence (An)n∈N is not independent since the events overlap. Contrarily:

B1 = {ω ∈ Ω : (ω1, . . . , ωk) = s},
B2 = {ω ∈ Ω : (ωk+1, . . . , ωk+k+1) = s},
. . . = . . .

Bj = {ω ∈ Ω : (ω(j−1)k+1, . . . , ωjk) = s}

Are non overlapping, independent and such that:

{Bn i.o. =⇒ An i.o.} =⇒ lim sup
n

Bn ⊂ lim sup
n

An =⇒ P
[
lim sup

n
Bn

]
≤ P

[
lim sup

n
An

]
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Where the last passage is by monotonicity (Thm. 2.10). Let:

psj =

{
P[H] sj = H

P[T ] sj = T
=⇒ psj > 0 ∀sj

Then:

P[Bn] =
k∏
j=1

psj > 0 ∀n, ∀k, Kost wrt n

=⇒
∑
n

P[Bn] =
∑
n

kost = ∞

=⇒ P[lim sup
n

Bn] = 1 BC2 Thm. 9.8

≤ P[lim sup
n

An] = 1 by above result

and we have proved △.

♢ Observation 9.12 (Limit notions in P spaces). Recall that the usual definition of limits in metric spaces is:

xn → x as n→ ∞ if ∀ϵ > 0 ∃n0 = n0(ϵ) : ∀n > n0 |xn − x| < ϵ

In a P space this can have different meanings, we already mentioned one in Definition 4.18.

♠ Definition 9.13 (Convergence in Probability P→). For (Xn)n≥1, X on (Ω,F,P) taking values on (R,B(R))
we say that Xn converges in Probability to X and write Xn

P→ X when:

∀ϵ > 0 lim
n→∞

P[|Xn −X| > ϵ] = 0

While for a general space (E,E) we use the suitable d(Xn, X) notion.

♣ Proposition 9.14 (Almost sure & probability convergence). Compare Definitions 4.18 and 9.13 for (Xn)n≥1, X.
Then:

Xn
a.s.→ X =⇒ Xn

P→ X

And not the opposite

Proof. ( =⇒ ) recall that by the results of Example 9.9 and the definition of a.s.→ (Def. 4.18):

Xn
a.s.→ X ⇐⇒ P[|Xn −X| > ϵ i.o.] = 0

Where we notice that by squeezing

0 = P[|Xn −X| > ϵ i.o.]

= P
[
lim sup

n
{|Xn −X| > ϵ}

]
lim sup Def. 9.2

≥ lim sup
n

P[|Xn −X| > ϵ] Fatou’s Lem. A.49

≥ lim inf
n

P[|Xn −X| > ϵ] lim sup ≥ lim inf

≥ 0 positivity

So that lim sup = lim inf = lim and they are all null. Clearly then:

∀ϵ > 0 lim
n→∞

P[|Xn −X| > ϵ] = 0
Def. 9.13⇐⇒ Xn

P→ X

(opposite by counterexample) Let Ω = [0, 1],F = B([0, 1]),P = Leb. In such a probability space, define:

A1 = [0, 1], A2 =

[
0,

1

2

]
, A3 =

[
1

2
, 1

]
, A4 =

[
0,

1

3

]
, A5 =

[
1

3
,
2

3

]
, . . .
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By construction An → ∅ =⇒ Leb(An) → 0, yet ∀ω ∈ Ω such ω ∈ ∞-many An and ∞-many Acn. Then:

P[lim sup
n

An] = P[lim sup
n

Acn] = 1 = Leb([0, 1])

And for Xn = 1An
by Leb(An) → 0 we have:

P[|Xn| > ϵ] = P[An] = Leb(An) → 0 =⇒ Xn
P→ 0

but by the previous point Xn = 0 ∞-many times and 1 ∞-many times so:

P[Xn = 1 i.o.] = 1 Xn(ω) → 1

P[Xn = 0 i.o.] = 1 Xn(ω) → 0

And we cannot have Xn
a.s.→ 0.

♣ Proposition 9.15 (Continuous functions and probability convergence).

(Xn)n≥1, X : Xn
P→ X, f : E → E continuous =⇒ f(Xn)

P→ f(X)

Proof. Fix ϵ > 0, and ∀δ > 0 consider:

Bδ = {x ∈ E, x /∈ Df | ∃y ∈ E : |x− y| < δ, |f(x)− f(y)| > ϵ}

Namely, points mapping outside ϵ in f and inside δ in the X r.v. realization. 2Here Df are discontinuity points.
By the continuity of f we have Bδ → ∅ as δ → 0.
Now let |f(x)− f(xn)| > ϵ. Then, either:

• |X −Xn| ≥ δ

• x ∈ Df

• x ∈ Bδ

So that:

P[|f(X)− f(Xn)| > ϵ] ≤ P[|Xn −X| > δ] + P[X ∈ Bδ] + P[X ∈ Df ] = 0

Since:

• P[|Xn −X| > δ]
n→∞→ 0∀δ by Xn

P→ X

• P[X ∈ Bδ]
δ→0→ 0 by Bδ → ∅

• P[X ∈ Df ] = 0 by Df = ∅ (f is continuous)

We conclude that:
∀ϵ > 0 lim

n→∞
P[|f(X)− f(Xn)| > ϵ] = 0 =⇒ f(Xn)

P→ f(X)

9.3 Inner product space and Orthogonal Projection Theorem

♠ Definition 9.16 (Lp space and its pseudonorm). Extend Definition 4.5 to:

∀p ≥ 1 Lp(Ω,F,P) =
{
X : Ω → E : E[|X|p] =

∫
E

|x|pPx(dx) <∞
}

And endow it with a pseudonorm ∥·∥p : Lp(Ω,F,P) → R+ such that:

∥X∥p = (E [|X|p])
1
p where ∥X∥p = 0 ⇐⇒ P[X = 0] = 1 in line with Ass.9.17
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Assumption 9.17 (Quotiented norm space). The (pseudo)normed space (Lp, ∥·∥p) is such that there is a quotient
Y (thus the pseudo in front) which established the uniqueness property of the norm outside of negligible sets.
Namely:

Lp(Ω,F,P) \ Y : Y = {X : P[X = 0] = 1 i.e. X
a.s.
= 0}

So that the r.v.s are split into classes (collections) and:

X,Y ∈ same class ⇐⇒ ∥X − Y ∥p = 0

⇐⇒ P[X − Y = 0] = 1

⇐⇒ X
a.s.
= Y

≠⇒ X(ω) = Y (ω)∀ω ∈ Ω

♠ Definition 9.18 (Lp convergence
Lp→). Consider (Xn)n≥1, X where X ∈ Lp(Ω,F,P). Define:

Xn
Lp→ ⇐⇒ ∀n ≥ 1 ∥Xn −X∥p → 0 as n→ ∞

⇐⇒ lim
n→∞

E [|Xn −X|p] = 0 Def. 9.16

Notice that Lp convergence implies convergence of the means by the reverse triangle inequality. Indeed

| ∥Xn∥Lp
− ∥X∥Lp

| ≤ ∥Xn −X∥Lp

n→∞→ 0 =⇒ E [|Xn|p]
n→∞→ E [|X|p]

We also specify that Lp convergence implies that the limit is almost surely unique, by the quotiented space dis-
cussion of Assumption 9.17.

♣ Proposition 9.19 (Lp and probability convergence).

Xn
Lp→ X =⇒ Xn

P→ X

And not the opposite

Proof. ( =⇒ ) We trivially have that:

0 ≤ P[|Xn −X| > ϵ] ∀ϵ > 0

≤ E[|Xn −X|p]
ϵp

Markov’s Thm. 7.4, g(x) = xp, p ≥ 1

n→∞→ 0 as n→ ∞ by hypothesis Lp convergence

=⇒ lim
n→∞

P[|Xn −X| > ϵ] = 0∀ϵ > 0 =⇒ Xn
P→ X

(opposite by counterexample) let Ω = [0, 1],F = B([0, 1]),P = Leb. In this probability space define events:

En =

[
0,

1

n

]
, Xn = n1En =⇒ Leb(En) =

1

n
→ 0

It holds

P[|Xn − 0| > ϵ] = P[n1En
> ϵ] = P[En] = Leb(En)

n→∞→ 0 =⇒ Xn
P→ X = 0
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Where the red equality follows from:

P[n1En > ϵ] = P [{ω ∈ Ω : n1En(ω) > ϵ}]

= P

{ω ∈ En : n1En
(ω)︸ ︷︷ ︸

=1

> ϵ} ∪ {ω ∈ Ecn : n1En
(ω)︸ ︷︷ ︸

=0

> ϵ}

 disjoint

= P

{ω ∈ En : n1En
(ω)︸ ︷︷ ︸

=1

> ϵ}

+ P

{ω ∈ Ecn : n1En
(ω)︸ ︷︷ ︸

=0

> ϵ}


︸ ︷︷ ︸

=0

since ϵ > 0

= P

{ω ∈ En : n1En
(ω)︸ ︷︷ ︸

=1

> ϵ}


= P [{ω ∈ En : n > ϵ}]
= P[n1En

> ϵ]

= P[En] ϵ > 0 arbitrary

However, in norm:

∥Xn − 0∥1 = E[Xn] = nP[En] = nE[1En
] = n

1

n
= 1 ̸= 0 =⇒ Xn not

Lp→ 0

♢ Observation 9.20 (The L2 special case). If p = 2 square integrable r.v.s are of great interest since we can
naturally identify an inner product. The converse is not true in general. The sufficient condition for the inner
product existance to hold in L2 is that it satisfies the parallelogram law. We do not go much deeper into this
matter, and just take it as granted.

♠ Definition 9.21 (Inner product on L2 quotiented space ⟨·, ·⟩). The inner product is a function ⟨·, ·⟩ : L2×L2 →
R defined as:

⟨X,Y ⟩ =
∫
E×E

xyPX,Y (dxdy) = E[XY ]

♣ Proposition 9.22 (Basic properties of ⟨·, ·⟩). Some trivial properties are reported below for X,Y, Z ∈ L2 and
c1, c2 ∈ R.

1. symmetry ⟨X,Y ⟩ = ⟨Y,X⟩
2. positivity and nullity in quotient space ⟨X,X⟩ ≥ 0 and ⟨X,X⟩ = 0 ⇐⇒ P[X = 0] = 1

3. linearity ⟨c1X + c2Y, Z⟩ = c1⟨X,Z⟩+ c2⟨Y, Z⟩

Proof. (Claim #1) trivial by Definition 9.21.
(Claim #2) we have:

⟨X,X⟩ =
∫
E

x2PX(dx) := ∥X∥22 ≥ 0

Which is null ⇐⇒ P[X = 0] = 1 by Definition 9.18 and Assumption 9.17.
(Claim #3) this follows by linearity of the integral. Indeed:

⟨c1X + c2Y,Z⟩ =
∫
E×E

(c1x+ c2y)zPX+Y,Z(dx, dy, dz)

= c1

∫
E×E

xzPX,Z(dx, dz) + c2

∫
E×E

yzPY,Z(dy, dz)

= c1⟨X,Z⟩+ c2⟨Y,Z⟩

♠ Definition 9.23 (Norm induced by inner product). The inner product and the norm in L2 follow the relation:√
⟨X,X⟩ = ∥X∥2 =

√
E[X2]
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♣ Proposition 9.24 (Joint properties of ∥·∥2 and ⟨·, ·⟩). Definitions 9.21, 9.23 allow to obtain nice results
∀X,Y ∈ L2:

1. Cauchy-Schwarz inequality ⟨X,Y ⟩ ≤ ∥X∥2 ∥Y ∥2
2. triangle inequality ∥X + Y ∥2 ≤ ∥X∥2 + ∥Y ∥2
3. distance d(X,Y ) = ∥X − Y ∥2 =

√
⟨X − Y,X − Y ⟩

4. variance covariance relation:

E[X] = E[Y ] = 0 =⇒


⟨X,Y ⟩ = CoV (X,Y )

∥X∥2 =
√
V [X]

∥Y ∥2 =
√
V [Y ]

5. angle (correlation) Pythagora’s Theorem
E[X] = E[Y ] = 0

∥X∥2 ̸= 0

∥Y ∥2 ̸= 0

=⇒ cos(θ) =
⟨X,Y ⟩

∥X∥2 ∥Y ∥2
= corr(X,Y )

Proof. (Claims #1, #2) easy, there are many proofs online. Consider the inner product:

⟨X − tY,X − tY ⟩ = ∥X − tY ∥22 ≥ 0 ∀t ≥ 0

positive by Prop. 9.22#2. Expanding the expression by linearity (Prop. 9.22#3) we get:

⟨X − tY,X − tY ⟩ = ⟨X,X⟩ − 2t⟨X,Y ⟩+ t2⟨Y, Y ⟩ ≥ 0 ∀t
⇐⇒ 4⟨X,Y ⟩ − 4⟨X,X⟩⟨Y, Y ⟩ ≤ 0 positivity of parabula ∀t is negative delta
⇐⇒ ⟨X,Y ⟩ − ⟨X,X⟩⟨Y, Y ⟩ ≤ 0

⇐⇒ ⟨X,Y ⟩ ≤ ∥X∥2 ∥Y ∥2 norm notation

With this equality in hand, it is rather easy to derive the triangle inequality:

∥X + Y ∥22 = ⟨X + Y,X + Y ⟩
= ⟨X,X⟩+ ⟨X,Y ⟩+ ⟨Y,X⟩+ ⟨Y, Y ⟩ linearity, Prop. 9.22#3
= ⟨X,X⟩+ 2⟨X,Y ⟩+ ⟨Y, Y ⟩ symmetry, Prop. 9.22#1

≤ ∥X∥22 + ∥Y ∥22 2 (∥X∥2 + ∥Y ∥2) Cauchy-Schwarz, Claim #1

= (∥X∥2 + ∥Y ∥2)
2

Which, by an application of the square root returns the triangle inequality.
(Claim #3) simply a distance notion.
(Claim #4) it holds:

CoV [X,Y ] = E[XY ]−E[X]E[Y ]︸ ︷︷ ︸
=0

= ⟨X,Y ⟩

∥X∥2 =
√

E[X2] =
√

E[X2]− E2[X] =
√
V [X] same for Y

(Claim #4) trivially by Claims #1,#2,#3:

cos(θ) =
⟨X,Y ⟩

∥X∥2 ∥Y ∥2
=

CoV [X,Y ]√
V [X]V [Y ]

= corr(X,Y )

♢ Observation 9.25 (Remarks about θ and Pythagora’s Theorem from Proposition 9.24). The notion of angle
and correlation is strongly linked with moments of r.v.s:

• θ is the angle between X and Y in an abstract space
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• if we let θ = π
2 then cos(θ) = 0 and necessarily ⟨X,Y ⟩ = 0 which is a notion of orthogonality.

We can see that then:

∥X + Y ∥22 = E[(X + Y )2]

= E[X2] + 2E[XY ] + E[Y 2]

= ⟨X,X⟩+ 2⟨X,Y ⟩+ ⟨Y, Y ⟩

= ∥X∥22 + ∥Y ∥22 Pythagora’s

So that if also E[X] = E[Y ] = 0:

V [X + Y ] = E[(X + Y )2] = ∥X∥22 + ∥Y ∥22
Prop. 9.24#4

= V [X] + V [Y ]

♠ Definition 9.26 (Cauchy Sequence). For a normed space (X, ∥·∥X) a Cauchy sequence (Xn)n≥1 satisfies the
property:

lim
n→∞

lim
m→∞

∥Xn −Xm∥ = 0

♠ Definition 9.27 (Complete space). A normed space (X, ∥·∥X) is said to be complete when every Cauchy
sequence is convergent. Namely:

∃X ∈ X : X = lim
n→∞

∥Xn −X∥ = 0 ∀(Xn)n≥1 Cauchy

♣ Theorem 9.28 (L2 is a complete space). The normed space (L2(Ω,F,P), ∥·∥2) is complete in the sense of
Definition 9.27.

♢ Observation 9.29 (Why L2?). Many useful properties arise when considering square integrable r.v.s:

• L2 is complete with respect to its natural norm
• we can easily identify notions of angle, scalar multiplication, addition, correlation, distance and variance.

♠ Definition 9.30 (Complete subspace). A subspace K ⊂ L2 is said to be complete if it is complete in the sense
of Definition 9.27:

∀(Xn)n≥1 ⊂ K Cauchy ∃X ∈ K : ∥Xn −X∥2 → 0 as n→ ∞

♣ Theorem 9.31 (Orthogonal projection Theorem). For a complete subspace K ⊂ L2(Ω,F,P) and ∀X ∈ L2

there exists an element of the subspace Y ∈ K such that the following statements hold:

1. ∥X − Y ∥2 = inf{∥X −W∥2 :W ∈ K}
2. (X − Y ) ⊥⊥ Z ∀Z ∈ K i.e. ⟨X − Y, Z⟩ = 0 ∀Z ∈ K

3. if ∃Y ′ ∈ K : ∥X − Y ∥2 = ∥X − Y ′∥2 =⇒ P[Y = Y ′] = 1

Proof. (Claim #1) Let ∆ = inf{∥X −W∥2 :W ∈ K} and (Yn)n∈N ⊂ K be such that ∥Yn −X∥2 → ∆.
The parallelogram law holds ∀U, V ∈ L2. Namely:

∥U + V ∥22 + ∥U − V ∥22 = 2 ∥U∥22 + 2 ∥V ∥22

Apply such rule to U = X − Yn+Ym

2 and V = Yn−Ym

2 to get:

∥X − Ym∥22 + ∥X − Yn∥22 = 2

∥∥∥∥X − Yn + Ym
2

∥∥∥∥2
2

+ 2

∥∥∥∥Yn − Ym
2

∥∥∥∥2
2

Which reordering gives: ∥∥∥∥Yn − Ym
2

∥∥∥∥2
2

=

∥∥∥∥Yn − Ym
2

∥∥∥∥2
2

+ ∥X − Yn∥22 − 2

∥∥∥∥X − Yn + Ym
2

∥∥∥∥2
2

Here, by Yn+Ym

2 ∈ K we also have for free that
∥∥X − Yn+Ym

2

∥∥2
2
≥ ∆2.

So, for n,m large enough we get:

∥Yn − Ym∥22 ≤ 2
(
∆2 +

ϵ

2

)
− 2∆2 = ϵ ∀ϵ > 0
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So that (Yn)n∈N is Cauchy in K and it has a limit Y ∈ K by completeness, with ∥Y − Yn∥2 → 0.
Using the triangular inequality:

∥X − Y ∥2 ≤ ∥X − Yn∥2 + ∥Y − Yn∥2 → ∆ =⇒ ∥X − Y ∥2 → ∆ by construction

(Claim #2) it holds ∀Z ∈ K,∀t ∈ R that:

Y + tZ ∈ K =⇒ ∥X − Y − tZ∥22 ≥ ∥X − Y ∥22 =⇒ ∥X − Y ∥22 + t2 ∥Z∥22 − 2t⟨X − Y, Z⟩ ≥ ∥X − Y ∥22 ∀t ∈ R

The positivity of the parametric parabula in t (equivalently, negativity of the Delta of the parabula) implies that
⟨X − Y,Z⟩ = 0.
(Claim #3) by the quotient space speicification in Assumption 9.17.

♢ Observation 9.32 (About the assumptions). We assume the subspace to be complete, providing a more general
notion of orthogonal projection theorem. In the classical statement, one requires the subspace to be closed, which
implies by the completeness of L2 that is is also complete. With a closed subspace there are more guarantees in
for the infimization to be attained, but one must be careful on the assumptions.

9.4 Weak Convergence

♠ Definition 9.33 (Weak convergence in distribution w→,
d→). For a sequence of r.v.s (Xn)n≥1 on a probability

space (Ω,F,P) taking values on (R,B(R)) recall that PXn
= P ◦ X−1

n ∀n and that we can uniquely identify
distribution functions of the form:

x→ FXn
(x) = PXn

((−∞, x])

We then say that weak convergence in distribution Xn
w→ X or PXn

w→ Px is verified when:

FXn(x) → FX(x) ∀x ∈ R x continuity point of FX

Where we can extend properly to general (E,E) spaces.
Sometimes, we denote weak convergence in distribution with the symbol d→.

♣ Proposition 9.34 (Equivalent definition of weak convergence). For simplicity denote as Pn the probability
law of an r.v. Xn from a sequence of r.v.s. Then:

(Pn)n≥1 : Pn
w→ PX ⇐⇒

∫
R
f(x)Pn(dx) →

∫
R
f(x)PX(dx) as n→ ∞

∀f : R → R bounded continuous, i.e. f ∈ Cb(R)

Proof. Similar to Theorem 4.11, but with the limits. This requires the use of Portmonteau’s Theorem.

♡ Example 9.35 (Uniform distribution discrete convergence). Let Xn ∼ Unif
({

1
n ,

2
n , . . . , 1

})
, which means

the probability law is:

Pn =
1

n

n∑
j=1

δ j
n

For f ∈ Cb(R) it holds:∫
R
f(x)Pn(dx) =

n∑
j=1

1

n
f

(
j

n

)
Pn ≪ ν the counting measure

n→∞→
∫ 1

0

f(x)dx Riemann sums

=

∫ 1

0

f(x)Leb(dx)

Which is the integral of f wrt a r.v. X ∼ Unif(0, 1). By Proposition 9.34 we have that Xn
d→ X ∼ Unif(0, 1).
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♢ Observation 9.36 (About Definition 9.33). The statement ∀x ∈ R x continuity point means that we check
the limit at the induced cdf only for those points in which it is continuous, and not at the jumps.

♡ Example 9.37 (An example for Observation 9.36). We need to specify the check at continuity points. To
convince the reader, let n ≥ 1 and Pn = δ 1

n
. The cdf is:

Fn(x) = 1[ 1n ,∞) (x) =

{
0 x < 1

n

1 x ≥ 1
n

Which, at the limit:

lim
n→∞

Fn(x) = lim
n→∞

1[ 1n ,∞) (x) =


0 x < 0

0 x = 0

1 x > 0

Where x = 0 is not a continuity point. How could we check weak convergence if at this point it does not converge?
Truth is that the Leb measure ignores these singularities and allows us to define an integral for these steep jumps
ignoring their presence.

♣ Proposition 9.38 (Notable facts about weak convergence). It holds that:

1. (weakness) all the other convergences we consider imply weak convergence
2. (a partial converse) if Pn

w→ δx0 which is equivalent to Xn
w→ X : P[X = x0] = 1 then Xn

P→ X

3. (uniqueness) if Pn
w→ P and Pn

w→ Q then P
d
= Q

Proof. (Claim #1) given Propositions 9.14, 9.19, it suffices to prove that convergence in probability implies
weak convergence. The strategy is the following:

FXn
(x) = P[Xn ≤ x,X ∈ R] for x a continuity point of FX

= P[Xn ≤ x,X ≤ x+ ϵ] + P[Xn ≤ x,X > x+ ϵ]

≤ P[X ≤ x+ ϵ] + P[|Xn −X| > ϵ]

Also, by similar reasonings:
P[X ≤ x− ϵ] ≤ P[Xn ≤ x] + P[|Xn −X| > ϵ]

Combining the two we get:

P[X ≤ x− ϵ]− P[|Xn −X| > ϵ] ≤ P[Xn ≤ x] ≤ P[X ≤ x+ ϵ] + P[|Xn −X| > ϵ]

which by hypothesis for n→ ∞ is such that:

FX(x− ϵ) = P[X ≤ x− ϵ] = lim
n→∞

P[Xn ≤ x] = FX(x+ ϵ) =⇒ P[Xn ≤ x] = FXn(x) = FX(x) (9.1)

by the continuity of FX at x.
(Claim #2) by hypothesis FXn

→ 1Xn
(x0). Observe that for ϵ > 0 it holds that:

P[|Xn − x0| > ϵ] = P [{Xn < x0 − ϵ}}+ P [{Xn > x0 + ϵ}]
= FXn(x0 − ϵ) + 1− FXn(x0 + ϵ) disjoint events
n→∞→ 0 + 1− 1

= 0

which is the definition of convergence in Probability we gave by the arbitrariness of ϵ.

♣ Theorem 9.39 (Continuity theorem). Consider a sequence of r.v.s (Xn). If:

ΦXn
(t)

n→∞→ ϕ(t) ∀t ∈ R (9.2)

Then TFAE:

1. Xn
w→ X in the sense of Definition 9.33
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2. ϕ = ΦX the characteristic function of some r.v. X, (i.e. there is a law P with X ∼ P)
3. ϕ is continuous of t
4. ϕ is continuous at t = 0

♣ Theorem 9.40. Central Limit Theorem (CLT) For (Xn)n∈N iid with E [Xn] = µ and V [Xn] = σ2 < ∞ it
holds:

Sn =

n∑
i=1

Xi Zn =
Sn − nµ

σ
√
n

w→ Z Z ∼ N(0, 1)

Proof. (△ characteristic function facts) observe that for a random variable with mean µ and finite variance
σ2, by Proposition 6.21, the characteristic function is such that:

Φ′(0) =
d

dt
Φ

∣∣∣∣
t=0

= iE [X] = iµ Φ′′(0) =
d2Φ

dt2

∣∣∣∣
t=0

= i2E
[
X2
]
= −σ2 − µ2

(□ the sequence) in our case, the sequence is not Xn, but its normalized version Wn =
Xn − µ

σ2
, which is such

that:

E [Wn] = 0 V [Wn] = 1

Moreover, a sequence of (Wn)n∈N is an independency, by Xi being iid. From △, we have:

Φ′
W (0) = 0 Φ′′

W (0) = −1

If we do a second order Taylor expansion around 0 of ΦW we would get that:

ΦW (t) = ΦW (0) + Φ′
W (0)t+

1

2
Φ′′
W (0)t2 + o(t2) t→ 0

= 1− t2

2
+ o(t2) t→ 0

(⃝ characteristic argument) moving to:

Zn =
Sn − nµ

σ
√
n

=

∑n
i=1Wi√
n

(9.3)

it holds:

ΦZn
= E

[
eitZn

]
= E

[
e
it

∑n
i=1 Wi√

n

]
=
(
E
[
e
it

W1√
n

])n
iid

=

(
ΦW

(
t√
n

))n
n→∞
≈

(
1− t2

2n
+ o(t2)

)n
n→ ∞ =⇒ t√

n
≈ 0

n→∞→ e−
t2

2 definition of e

Where the last term is the characteristic function of a standard normal Z ∼ N(0, 1). By the continuity theorem
(Thm. 9.39), we have that:

Zn
w→ Z
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Chapter Summary

Objects:
• lim sup, infinitely often
• lim inf, eventually
• convergence in probability
• Lp pseudo-normed quotiented space
• convergence in Lp
• inner product notion
• L2 complete space
• weak convergence

Results:
• First Borel Cantelli Lemma: ∑

n≥1

P[An] <∞ =⇒ P[lim sup
n

An] = 0

• Second Borel Cantelli Lemma:

(An)n≥1 independent
∑
n≥1

P[An] = ∞ =⇒ P[lim sup
n

An] = 1

• almost sure convergence by first Borel Cantelli Lemma
• convergence relations: 

Lp→ =⇒ P→
a.s.→ =⇒ P→

⇝
P→ =⇒ w→

• classic inner product and norm properties for L2

• orthogonal projection theorem. For a complete subspace K there exists a projection
– infimizing the norm
– with an orthogonal difference
– almost surely unique

• weak convergence is characterized by Cb(R) functions
• convergence pointwise of the characteristic function is the starting condition to establish 4 equivalent

conditions
• the CLT is based on the above point



Chapter 10

Conditionals & Stochastic Processes

10.1 Constructing conditional Probabilities

♢ Observation 10.1 (The best predictor principle). Let X be a squared integrable r.v. (Def. 3.2, Def. 9.16),
i.e. X ∈ L2(Ω,F,P) : E[|X|2] <∞. The aim is finding a best predictor under the pseudonorm. For p = 2, it is
easily found to be:

min
a∈R

E[∥X − a∥22] = min
a∈R

E[(X − a)2] = E[(X − E[X])2]

♠ Definition 10.2 (Desired best predictor notion in L2: XG). For X ∈ L2(Ω,F,P) and a σ-algebra (Def. 1.6)
G ⊂ F of information we define:

XG = E[X|G]

Where:

1. full determination by G

XG G-measurable ⇐⇒ X
−1

G (A) = {ω ∈ Ω : XG(ω) ∈ A} ∈ G ∀A ∈ E

2. XG is the best predictor among the G-measurables

∀Y G-measurable
∥∥X −XG

∥∥2
2
= E[(X −XG)

2] ≤ E[(X − Y )2] = ∥X − Y ∥22
♣ Proposition 10.3 (Unconditional case of Definition 10.2). It holds that E[X] (Def. 4.4) satisfies the conditions
by its formulation and the comments of Observation 10.1.

♢ Observation 10.4 (About Definition 10.2). The approach is laid out after a remark on the first arguments.

1. in Lp there might not be a unique ∥·∥p minimizer, so we need more specification
2. from now on, we will focus on a.s. positive r.v.s, where P[X ≥ 0] = 1. For arbitrary r.v.s the positive negative

part decomposition (Obs. 4.3) holds, and we can extend the notions easily. Namely, ∀X ∈ L2 X
+ ∈ L2

and X− ∈ L2.
3. the construction will follow a bottom up approach.

♠ Definition 10.5 (Step 1, conditional on event). Set X ∈ L2 : P[X ≥ 0] = 1 and H ∈ F. Then:

• if ω ∈ H =⇒ consider the restriction
P

P[H]
: H ∩ F → R+ where P[H] > 0. This is a p.m. on H ∩ F, the

F-sets which are subsets of H. We then define:

XH = E[X|H] =

∫
H

X(ω)
P[dω]
P[H]

which is deterministic. Notice that:

XH : E
[(
X −XH

)2
1H

]
= min

a∈R

{
(X − a)21H

}
89
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• on the opposite, if P[H] = 0 =⇒ E[(X − a)21H ] = 0 ∀a ∈ R =⇒ XH = E[X|H] = c ∈ R arbitrary.
Indeed, in this case:

0 = E
[(
X −XH

)2
1H

]
=

∫
H

(
X −XH

)2
dP = min

a∈R

∫
H

(X − a)2dP = 0

♠ Definition 10.6 (Step 2, simple σ-algebra). For X ∈ L2(Ω,F,P) positive and G = {Ω, ∅, H,Hc} where H ∈ F

and P[H] ∈ (0, 1) we can similarly define:

XG = E[X|G](ω) = 1H(ω)

∫
H

X(ω)
P[dω]
P[H]

+ 1Hc(ω)

∫
Hc

X(ω)
P[dω]
P[Hc]

So that XG is a r.v., and is G-measurable since it depends on H,Hc

♣ Proposition 10.7 (Step 2 is valid). Definition 10.6 satisfies the requirements in the sense of Definition 10.2,
especially #2.

Proof. For G = {∅,Ω, H,Hc}:

∂

∂Y
(−2XY + Y 2) = −2X + 2Y = 0 ⇐⇒ X = Y, Y G-measurable

we know that:

• ω ∈ H =⇒ E[X|G] =
∫
H
X(ω)P[dω]P[H] is the best predictor for H

• ω ∈ Hc =⇒ E[X|G] =
∫
Hc X(ω) P[dω]

P[Hc] is the best predictor for Hc

where by best we mean that the following equality holds:

min
Y ∈G

E
[
(X − Y )

2
]
= E

[(
X −XG

)2]

♠ Definition 10.8 (Step 3, elaborated G). Again X ∈ L2 positive and G = σ({Hn : n ≥ 1} where {Hn} partition
Ω into F-sets. Then:

XG(ω) = E[X|G](ω) =
∑
n≥1

1Hn
(ω)

∫
Hn

X
dP

P[Hn]
if P[Hn] > 0∀n

While if there are sets with zero measure, the integral of that set becomes an arbitrary constant:

if ∃n∗ : P[Hn∗ ] = 0 =⇒ replace

∫
Hn

X
dP

P[Hn]
with c ∈ R

♢ Observation 10.9 (About the conditional expectation). Notice that, differently from the unconditional case,
the conditional expectation is a random variable dependent on Ω. Loosely, the Ω dependence is translated into
which Hn set the ω will fall into.

♣ Proposition 10.10 (Properties arising from Definition 10.8). For XG as in Def. 10.8 we have that:

1. ∀ω ∈ Hn P[Hn]XG =
∫
Hn

XdP =⇒ E[XG1Hn
] = E[X1Hn

]

2. ∀V G-measurable positive E[V XG] = E[V X]
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Proof. (Claim #1) We work out the formula:

E
[
1HnXG

]
=

∫
Ω

1Hn(ω)XG(ω) P[dω]

=

∫
Hn

XG(ω) P[dω] bring indicator in integration

=

∫
Hn

 1

P[Hn]

∫
Hn

X P[dω]︸ ︷︷ ︸
hyp.

 P[dω] ∀ω ∈ Hn

=
1

P[Hn]

∫
Hn

(∫
Hn

X P[dω]
)

P[dω]

=
1

P[Hn]

∫
Hn

E [1Hn
X]︸ ︷︷ ︸

deterministic

P[dω]

=
1

P[Hn]
E [1Hn

X]

∫
Hn

P[dω]

=
1

P[Hn]
E [1HnX]P[Hn]

= E [1Hn
X]

And we have proved the claim.
(Claim #2) it holds that ∀G ∈ G the set is a union of disjoint elements of the partition, namely G =

⋃
i∈IG Hi.

For this reason, any G-measurable event V takes the form of a simple random variable:

V =
∑
n≥1

an1Hn
an ≥ 0

Or is approached monotonically by such sum. Then, by Claim #1:

#1 ⇐⇒
∑
n≥1

anE[XG1Hn ] =
∑
n≥1

anE[X1Hn ]

⇐⇒ E

∑
n≥1

anXG1Hn

 = E

∑
n≥1

anX1Hn

 linearity of expectation, Thm. 4.7#3

⇐⇒ E[XGV ] = E[XV ] monotone conv. Cor. 4.22

where the if and only if conditions holds since in principle Claim #2 is stronger, but ends up being equivalent.

♠ Definition 10.11 (Characterizing conditionals in L1 by the previous Proposition). For X ∈ L1 positive and
G ⊂ F we choose to define them usign the results of Proposition 10.10, which are independent of p. Thus XG is
a valid conditional expectation when:

1. XG is G-measurable
2. The equivalent properties 2 ⇐⇒ 1 of Proposition 10.10 hold. For reference, we choose that ∀G ∈ G:

E[1GXG] = E[1GX] ⇐⇒
∫
G

XGdP =

∫
G

XdP

A r.v. in L1 is the minimal working example we require, otherwise we would just say that the expectation is
infinite.

♠ Definition 10.12 (Conditionals in Lp). The result of Prop. 10.10 suggests defining a valid conditional for
X ∈ Lp(Ω,F,P), G ⊂ F as a r.v. satisfying:

1. G-measurability
2. identity with target r.v. in the conditioned σ-algebra

∀G ∈ G

∫
G

XGdP =

∫
G

XdP
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♣ Theorem 10.13 (Uniqueness up to equivalences of conditional Characterization). Definition 10.12 holds up
to equivalences, meaning:

XG, X
′
G sat. Def. 10.12 ⇐⇒ P[XG = X

′
G] = 1, i.e. XG = X

′
G a.s.

Proof. (△ strategy) We proceed by contradiction, assuming that P[XG −X
′
G > 0] > 0.

(□ building the sets) Consider the events:{
XG > X

′
G +

1

n

}
↘
{
XG > X

′
G

}
Then the corresponding sets Gn, G ∈ G have the same behavior:

Gn =

{
ω ∈ Ω | XG > X

′
G +

1

n

}
↘
{
ω ∈ Ω | XG > X

′
G

}
Where (Gn)n∈N is monotonically decreasing. By continuity of Probability (Thm. 2.13) it holds that by the
assumption in △:

lim
n→∞

P[Gn] = P[ lim
n→∞

Gn] = P[G] > 0

(⃝ expectation properties) By #2 of Definition 10.12 we have that:∫
Gn

XGdP =

∫
Gn

X
′
GdP ⇐⇒ 0 =

∫
Gn

(XG −X
′
G)dP ∀Gn ∈ G

>

∫
Gn

1

n
dP XG −X

′
G >

1

n
in Gn, and monotonicity 4.7#2

=
1

n

∫
Gn

dP

=
1

n
P
[
XG > X

′
G +

1

n

]
Gn construction

> 0 △ assumption

We have now contradicted △ since we would break the conditional expectation construction. Similarly one can
prove that P[XG < X

′
G] > 0 reaches a contradiction.

Eventually, it must be the case that P[XG = X
′
G] = 1.

♣ Theorem 10.14 (Existance and equivalence to Radon Nikodym derivative). For:

X ∈ L1(Ω,F,P), P[X ≥ 0] = 1, G ⊂ F =⇒ ∃XG =
dQ

dPG

where

{
G→ Q(G) =

∫
G
XdP

PG[G] = P[G] ∀G ∈ G

Proof. (△ Q map features) focus on:

G→ Q(G) =

∫
G

XdP

It is a finite measure on (Ω,G) since:

• (nullity) Q(∅) = 0

• (countable additivity) ∀(Gn) ⊂ G of disjoint sets:

Q

(⋃
n

Gn

)
=
∑
n

Q(Gn)

by linearity of the expectation (Thm. 4.7#3)
• (finiteness) Q(G) <∞∀G ∈ G since Q(Ω) = E[X] <∞

(□ PG map features) PG is the restriction of P and is a probability measure on (Ω,G). Indeed:

• it is defined as PG[G] = P[G] ∀G ∈ G
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• is has maximum measure 1 at PG[Ω] = P[Ω] = 1

(⃝ absolute continuity argument) It holds that while restricted to G, the measures PG,P are equivalent by
construction. Moreover:

• in the restricted space (Ω,G) we have that Q≪ PG (absolute continuity, Def. 2.6).

∀G ∈ G : PG[G] = P[G] = 0 =⇒ Q(G) =

∫
G

XPG(dω) = 0

• by the result of △, Q is σ-finite (Def. A.26).

By these two properties we can use Radon Nikodym Thm. 5.7 and state that:

∃f : E → R+ G-measurable s.t. G→ Q(G) =

∫
G

fdPG, f =
dQ

dPG

(▽ back to expectation) To conclude, we notice that our function f , the Radon Nikodym derivative of the
expectation wrt the restriction, satisfies the requirements for being a conditional expectation (Def. 10.12#1#2),
since it is G-measurable as stated in ⃝ and it is such that:

∀G ∈ G

∫
G

fdPG = Q(G) =

∫
G

XdP =⇒ f = E [X|G]

So, an expectation exists, and it is a.s. equal to such Radon Nikodym derivative by the previous result (Thm.
10.13):

∃XG
a.s.
=

dQ

dPG

♢ Observation 10.15 (About Theorem 10.14). We show the existance since Q(G) =
∫
G
XdP is σ-finite (Def.

A.26) and equality by the Radon Nikodym Theorem (Thm. 5.7).
An important consequence of this result is that by the almost sure equivalence we are happy with finding
any version of the conditional expectation, which will differ from the other only by a negligible (zero measure)
set.

Corollary 10.16 (L2 existance on the orthogonal projection). Using Theorems 9.31, 10.13, 10.14 we conclude
that for X ∈ L2 positive and G ⊂ F it holds that:

1. the complete subspace is induced by G:

∃E[X|G] = arg inf
W∈K

∥X −W∥22 K = L2(Ω,G,P) a.s.

2. the decomposition is:
X = XG + X̃ X̃ ⊥⊥ (X −XG)

Proof. (Claim #1) Notice that the space is such that K = L2(Ω,G,PG) ⊂ L2(Ω,F,P) which is complete in the
sense of Definition 9.27 since we can safely assume it is closed (if you have doubts, check this stack question).
Then, by Theorem 9.31 it holds that:{

∃Y ∈ K : Y = arg infW∈K ∥X −W∥22
∀Z ∈ K ⟨X − Y,Z⟩ = 0

Clearly, ∀G ∈ G we have 1G ∈ K so that:

⟨X − Y,1G⟩ =
∫
G

(X − Y )dP = 0

⇐⇒
∫
G

XdP =

∫
G

Y dP

⇐⇒ Y
a.s.
= XG Def. 10.12, Thm. 10.13

⇐⇒ XG = arg min
W∈K

∥X −W∥22 min attained by K closed

https://math.stackexchange.com/questions/2430754/showing-that-a-subset-of-l2-omega-mathcalf-p-is-a-closed-linear-space
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(Claim #2) we just remark that:

X = XG + X̃ X̃ = X −XG = X − Y =⇒ ⟨X̃,X −XG⟩ = 0

Where in the implication we used again Theorem 9.31#2.

♡ Example 10.17 (Linear regression graphically for Corollary 10.16). Now Y is not an element of the space
but rather the target of a regression task.
We have for K = L2(Ω,G,P) that:

• X −XG = X̃ ⊥⊥ L2(Ω,G,P)
• the angle is θ =

π

2
for any vector in the subspace vs X̃

In a linear regression task, we would have:

L2(Ω,G,P) = col ({X1, . . . , Xn})

the column space of the matrix X, and a solution finds:

E[Y |X] = arg min
Ŷ ∈K

∥∥∥Y − Ŷ
∥∥∥2
2

The minimum norm element in L2.

♣ Proposition 10.18 (Properties of XG I). Recognize that:

1. no information
G = {∅,Ω} =⇒ XG = E[X] a.s.

2. full information
G = F =⇒ E[X|G] = X a.s.

3. Law of iterated expectation
since Ω ∈ G =⇒ E[XG] = E[X]

Proof. (Claim #1) Recall that by Definition 10.12 need to check measurability and:∫
G

XdP =

∫
G

XGdP ∀G ∈ G

We recognize two cases:

• G = ∅ =⇒
∫
∅XdP = 0 and any conditional would be satisfactory

• G = Ω =⇒
∫
Ω
XdP = E[X] = E [X]

∫
Ω
dP =

∫
Ω
E [X] dP =⇒ XG

a.s.
= E[X] since it satisfies the

requirements by the trivial fact that E [X], a constant, is G-measurable for free

And conclude that XG
a.s.
= E[X].

(Claim #2) We impose E[X|G] = E[X|F] to be F-measurable. Then:

XF = E[X|F] ⇐⇒ ∀G ∈ F

∫
G

XdP =

∫
G

E[X|F]dP Thm. 10.14⇐⇒ X
a.s.
= E[X|F]

(Claim #3) For G ⊂ F it is always the case that Ω ∈ G. So:

E[XG] =

∫
Ω

XGdP =

∫
Ω

XdP = E[X] a.s.

♣ Proposition 10.19 (Linearity of XG and identity to random variable). Two important and widely used
properties are:

1. measurability implies a.s. full knowledge

X G-measurable =⇒ XG = X a.s.
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2. linearity
a, b ∈ R =⇒ E[aX + bY |G] = aXG + bY G

Proof. (Claim #1) The hypothesis is that X is G-measurable. Then, by the measurability condition of Equation
3.1:

X−1(A) = {ω ∈ Ω | X(ω) ∈ A} ∈ G ∀A ∈ E

And we have that by Def. 10.12: ∫
G

XdP =

∫
G

XGdP ∀G ∈ G =⇒ XG
a.s.
= X

since X itself satisfies the requirements for being a conditional probability X is a version of the expectation.
(Claim #2) Let a, b ∈ R, then it follows that E[aX + bY |G] is such that:∫

G

E [aX + bY |G] dP =

∫
G

aX + bY dP ∀G ∈ G

= a

∫
G

XdP+ b

∫
G

Y dP linearity, Thm. 4.7#3 or Prop. A.47

= a

∫
G

E[X|G]dP+ b

∫
G

E[Y |G]dP

=

∫
G

aE[X|G] + bE[Y |G]dP ∀G ∈ G

So that we have E[aX + bY |G] = aE[X|G] + bE[Y |G]

♣ Proposition 10.20 (Monotonicity, Monotone & Dominated convergence for XG). Other inherited properties
from normal expectations include:

1. monotonicity
Y ≤ X a.s. =⇒ Y G ≤ XG a.s.

2. monotone convergence
0 ≤ Xn ↗ X a.s. =⇒ E[Xn|G] ↗ XG

3. dominated convergence

(Xn)n≥1 : Xn
a.s.→ X, |Xn| ≤ Y ∀n, Y ∈ L1(Ω,F,P) =⇒ E[Xn|G]

a.s.→ XG

Proof. (Claim #1) Let Z := E[X − Y |G] and G = {ω ∈ Ω : Z < 0}. Clearly G ∈ G as E[X − Y |G] is G-
measurable. We aim to show that G has measure zero and do so by contradiction. Letting P[G] > 0 it holds that
the random variable:

−Z1G = E[Y −X|G]1G ≥ 0

Indeed if 1G = 1 then Z ≤ 0 and the r.v. is positive, otherwise 1G = 0 and we are again nonnegative. Such r.v.
has probability of being positive:

P[(−Z)1G > 0] = P[{(−Z)1G > 0} ∩G] + P[{(−Z)1G > 0} ∩Gc]
= P[G ∩G] + P[∅]
= P[G] > 0 assumption

Then: ∫
G

(−Z)dP =

∫
G

E[Y −X|G]dP

=

∫
Ω

E[Y −X|G]1GdP

> 0



96 CHAPTER 10. CONDITIONALS & STOCHASTIC PROCESSES

Which is incontradiction with the definitional assumption that:∫
G

E[X − Y |G]dP =

∫
G

ZdP =

∫
Ω

Z1GdP =

∫
G

X − Y dP ≥ 0

Because on one side we have Z1G ≥ 0 and on the other −Z1G > 0. This contradicts the assumption P[G] > 0

and we conclude that P[G] = 0.
(Claim #2) By monotonicity (Prop. 10.20#1), since Xn+1 ≥ Xn we have that E [Xn+1|G] ≥ E [Xn|G] ∀n,
with a limit by the very monotonicity:

Xcandidate = lim
n→∞

E [Xn|G]

We have measurability for free since Xcandidate is the limit of measurable functions (Thm. A.16). By Definition
10.12#2 we further have that: ∫

G

E [Xn|G] dP =

∫
G

XndP ∀n ≥ 1

Which leads to the following chain of equalities for arbitrary G ∈ G:

lim
n→∞

∫
G

E [Xn|G] dP =

∫
G

lim
n→∞

E [Xn|G] dP mon. conv. Thm. 4.21 for E [Xn|G]

=

∫
G

XcandidatedP

=

∫
G

XdP

=

∫
G

lim
n→∞

XndP hypothesis Xn ↗ X

= lim
n→∞

∫
G

XndP reverse mon. conv.

Where, the first and the last term are equal and squeeze the central ones. We conclude that necessarily it holds
Xcandidate = E [Xn|G] ↗ E [X|G] almost surely. (Claim #3) similar to Claim #2.

♣ Theorem 10.21 (Towering property). A peculiar property of conditionals is:

H ⊂ G ⊂ F σ-algebras =⇒ E
[
E[X|G]

∣∣∣∣H] = E
[
E[X|H]

∣∣∣∣G] = E[X|H] a.s.

Proof. (△ strategy) denoting the triple equality as 1 = 2 = 3 we prove 1 = 3 , 2 = 3 =⇒ 1 =

2 .(
2 = 3

)
Consider:

E
[
E[X|H]

∣∣∣∣G]
There H ⊂ G and E[X|H] is H-measurable by Definition 10.12#1. So:

(E[X|H])
−1

(A) = {ω ∈ Ω : E[X|H](ω) ∈ A} ∈ H ∀A ∈ E
H⊂G
=⇒ (E[X|H])

−1
(A) ∈ G∀A ∈ E

So that E[X|H] is G-measurable and by Proposition 10.18#3 we get:

E[X|H] = E
[
E[X|H]

∣∣∣∣G](
1 = 3

)
by definition of conditional expectation:

E
[
E[X|G]

∣∣∣∣H] ⇐⇒


∫
H
E
[
E[X|G]

∣∣∣∣H] dP =
∫
H
E[X|G]dP ∀H ∈ H

E
[
E[X|G]

∣∣∣∣H] H-measurable
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Notice that H ∈ H =⇒ H ∈ G so that:∫
H

E
[
E[X|G]

∣∣∣∣H] dP =

∫
H

XdP ∀H ∈ H Def. 10.12#2 on E[X|G]

=

∫
H

E[X|H]dP ∀H ∈ H Def. 10.12#2 on X

Since the arguments of the first and third integral are H-measurable by definition 10.12#1 we conclude that:

E
[
E[X|G]

∣∣∣∣H] a.s.= E[X|H]

♢ Observation 10.22 (About the equalities with conditionals). Notice that all the = statements are almost
sure a.s.

= whenever we condition on G ⊂ F. Sometimes this will be omitted.
Additionally, notice that the symbol ⊂ does not necessarily mean strictly a subset, since in all the reasoning of
the course there would be no distinction.

♣ Proposition 10.23 (Properties of XG (II)). Other important results are:

1. conditional determinism

X G-measurable, G ⊂ F, Y : Y X ∈ L1(Ω,F,P) =⇒ E[XY |G] = XE[Y |G] a.s.

2. X ignores F-sets to which it does not belong:

H ⊥⊥ σ(σ(X) ∪ G) =⇒ E[X|σ(G ∪H)] = E[X|G]

Proof. (Claim #1) Let Y,X be a.s. positive for simplicity. The general case follows.
Suppose X ∈ G+ (i.e. positive G-measurable function) and Y ∈ F+. Then Y G = E [Y |G] is G-measurable positive
as well and:

E [V · (XY )] = E [(V ·X)Y ] = E
[
(V ·X)Y G

]
= E

[
V · (XY G)

]
Where the middle equality sign follows from an application of Proposition 10.10#2 after noticing that V ·X ∈ G+,
and the definitional property of Y G to be equal to Y under the integral over each G-set. Hence:

XY G = XE [Y |G]

is an almost sure version of E [XY |G].

♠ Definition 10.24 (Specifying conditional probabilities). Let X = 1A, A ∈ F, then:

P[A|G] := E[1A|G]

Where by Definition 10.12

1. 1A G-measurable
2. ∀G ∈ G

∫
G
E[1A|G]dP =

∫
G
1AdP = P[A ∩G]

Meaning that:

P[A|G] : ∀G ∈ G

∫
G

P[A|G]dP = P[A ∩G]

♣ Proposition 10.25 (Trivial properties of conditional probability). Notice that for Definition 10.24:

1. almost sure positivity P[A|G] ≥ 0 a.s. ∀A ∈ F

2. almost sure normalization P[Ω|G] = 1 a.s.

3. almost sure countable additivity:

{An} pairwise disjoint F-sets =⇒ P

⋃
n≥1

An

∣∣∣∣G
 =

∑
n≥1

P[An|G]
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Proof. All claims are trivial by the construction P[A|G] := E[1A|G].

♢ Observation 10.26 (Link with usual definition). Definition 10.24 looks like P[A|B] = P[A∩B]
P[B]

♡ Example 10.27 (Linking old & new). For G = σ(B) = {∅,Ω, B,Bc} consider a function f : Ω → R.
Moreover:

ω → f(ω) = 1B (ω)
P[A ∩B]

P[B]
+ 1Bc (ω)

P[A ∩Bc]
P[Bc]

∀B : P[B] > 0

Now recognize that f is G-measurable since:{∫
B
fdP =

∫
B

P[A∩B]
P[B] dP = P[A ∩B]∫

Bc fdP =
∫
Bc

P[A∩Bc]
P[Bc] dP = P[A ∩Bc]

So that f a.s.
= P[A|G] by Definition 10.12#2.

Contrarily, if P[B] = 0 we just replace the function with:

ω → f(ω) = c1B (ω) + P[A ∩Bc]1Bc (ω)

and again {∫
B
fdP = cP[B] = 0 = P[A ∩B]∫

Bc fdP = P[A ∩Bc]P[Bc] = P[A ∩Bc]

Guaranteeing f a.s.
= P[A|G].

♣ Proposition 10.28 (Easy conditional probability properties). Other results that can be quickly recovered
include:

1. G = F =⇒ P[A|G] = 1A a.s.

2. A ∈ F, A ⊥⊥ G =⇒ P[A|G] = P[A] a.s.

Proof. (Claim #1) let G = F so that:
P[A|G] = P[A|F] ∀A ∈ F

And the condition
∫
G
1AdP =

∫
G
P[A|F]dP, after noticing that 1A is F-measurable ensures that:

P[A|F] = E[1A|F]
a.s.
= 1A Prop. 10.19#1

(Claim #2) By independence, probabilities decouple A ⊥⊥ G =⇒ P[A ∩G] = P[A]P[G] ∀G ∈ G. Then:

P[A ∩G] = P[A]P[G] =
∫
G

P[A]dP =

∫
G

P[A|G] ∀G ∈ G =⇒ P[A] a.s.= P[A|G]dP

♢ Observation 10.29 (Is P(·|G) a probability measure?). Is A→ P[A|G] a p.m. on (Ω,F)?
Proposition 10.25 suggests yes but almost surely.
For this reason, we consider N ∈ F : P[N ] = 0 and state that ∀ω ∈ N c P[·|G](ω) is a p.m. on (Ω,F). This
allows to define:

N = {A ∈ F : either 1, 2, 3 Prop.10.25 fail on A}

Such set may be uncountable, which would mean that
⋃
A∈N A /∈ F or P

[⋃
A∈N A

]
≤ 0, and we wish to avoid

these pathological cases, even though they almost never happen.

♣ Theorem 10.30 (Avoidance of pathological negligible sets). For Y a r.v. on (Ω,F,P) taking values on
(R,B(R)) and PY [B|G] = P[Y −1(B)|G] = P[{ω ∈ Ω : Y (ω) ∈ B}|G] ∀B ∈ B(R) we have that there exists
∃QG(B;ω) such that:

1. ω → QG(B;ω) measurable ∀B ∈ B(R)
2. B → QG(B;ω) is a p.m. on (R,B(R)) ∀ω ∈ Ω
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3. QG(B;ω) = PY [B|G] a.s. ∀B ∈ B(R) which holds if and only if:∫
A

QG(B;ω)P[dω] = P[Y −1(B) ∩A] ∀A ∈ F, ∀B ∈ B(R)

4. QG(·;ω) is the conditional distribution of Y given G

Corollary 10.31 (Enlarging Theorem 10.30). We can state the same results also if Y is on a complete (Def.
9.27) separable metric space (Y,B(Y)). We do not expand on this topic, but hint that it is a complete space with
distinguishable elements and a metric.

10.2 The infinite dimensional case for stochastic processes

♠ Definition 10.32 (Infinite countable sequence of random variables X∞). We define X∞ = (Xn)n≥1 where
X∞ : Ω → R∞ and:

1. measurability holds:
{ω ∈ Ω : X∞(ω) ∈ B} ∈ F ∀B ∈ B(R∞)

2. probability
PX∞(B) = P [{ω ∈ Ω : X∞(ω) ∈ B}] ∀B ∈ B(R∞)

♢ Observation 10.33 (Characterizing X∞). We aim to find a way to construct a valid probability measure on
R∞ without starting from the abstract space (Ω,F,P). While for finite dimensions N < ∞ we could use the cdf
on RN and Theorems 3.21, 3.22, in the case of ∞ dimensions we make use of projections.

♠ Definition 10.34 (Cylinders with finite dimensional base Cn(·)). Fix the first n coordinates, and make a
projection with respect to this finite dimensional set of R∞:

Cn(B) = {x = (x1, . . .) ∈ R∞ : (x1, . . . , xn) ∈ B} ∀n ≥ 1,∀B ∈ B(Rn)

Lemma 10.35 (Generating set of infinite Borel set).

B(R∞) = σ

⋃
n≥1

{Cn(B) : B ∈ B(Rn)}


In other words, the generating σ-algebra is composed of measurable finite base cylinders.

Lemma 10.36 (Induced finite probability measure by P on the cylinder). for P a p.m. on (R∞,B(R∞)) it holds
that:

1. ∀B ∈ B(Rn) Pn(B) = P(Cn(B)) induced is a p.m. on (Rn,B(Rn)) ∀n
2. P induces a sequence of p.m.s (Pn)n≥1

Proof. (Claim #1) a map of the form B → Pn(B) = P(Cn(B)) for all B ∈ B(Rn) is always a valid p.m.
(Claim #2) let B ∈ B(Rn) then:

Pn+1(B × R) = P(Cn+1(B × R)) Claim #1
= P ({x ∈ R∞ : (x1, . . . , xn) ∈ B, xn+1 ∈ R}) Def. 10.34
= P ({x ∈ R∞ : (x1, . . . , xn) ∈ B}) xn+1 is arbitrary
= P(Cn(B))

= Pn(B) Claim #1

♠ Definition 10.37 (Kolmogorov Consistency). For (Pn)n≥1 on (Rn,B(Rn)) such that Pn+1(B×R) = Pn(B) ∀B ∈
B(Rn) ∀n ≥ 1.
Namely, we have that the second condition of Lemma 10.36 is satisfied by construction on Cn(B).
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♢ Observation 10.38 (About Definition 10.37 and Lemma 10.36). The question we try to answer is if starting
from this consistency condition is enough to define a probability measure at the limit that is non ambiguous.

♣ Theorem 10.39 (Kolmogorov Extension Theorem). Consider a sequence of r.v.s (Xn)n∈N on a standard
measurable space (E,E) (Def. A.22). Then:

(Pn)n≥1 consistent (Def. 10.37) =⇒ ∃!P on

(
×
n

En,
⊗
n

En

)

such that P(Cn(B)) = Pn(B) ∀B ∈
n⊗
i=1

En,∀n ≥ 1

♢ Observation 10.40 (About the hypothesis). We assumed the space to be standard (Def. A.22). Thank to
this, we can include in the result any space which is equal to a Euclidean space up to isomorphisms, thus the
discussion about cylinders in Euclidean spaces. In the more general setting of a measurable space the statement
becomes existance only.

♢ Observation 10.41 (Advantage of the extension). Now Pn(B) = P[(x1, . . . , xn) ∈ B] is useful and a shared
consistency for all n means that we work with a unique measure in the background. This sufficient condition is
nice and there are many laws that obey it.

♡ Example 10.42 (Exchangeable sequence). Consider a sequence (Xn)n∈N in {0, 1}∞ and a probability measure
Q on ([0, 1],B([0, 1])). Assume further that ∀n ≥ 1 Pn is a probability law on {0, 1}∞ defined as:

Pn({x1, . . . , xn}) =
∫
[0,1]

θ
∑
xi(1− θ)n−

∑
xi1{0,1}n (x1, . . . , xn)Q(dθ)

The sequence (Pn)n∈N is consistent in the sense of Definition 10.37 and by Theorem 10.39 we have:

∃!P on ({0, 1}∞ ,B ({0, 1}∞)) : P(Cn(B)) = Pn(B) ∀n ≥ 1,∀B ∈ B({0, 1}n)

Now notice that the elements of (Xn)n∈N are conditionally on θ independent. Namely, specifying θ they are
independent. The law P is said to be exchangeable since:

(X1, . . . , Xn)
d
= (Xπ(1), . . . , Xπ(n)) ∀π ∈ {permutations}

And the dependence structure is:{
P[X1 = x1, . . . , Xn = xn|θ = θ̃] = θ̃

∑
xi(1− θ̃)n−

∑
xi

θ̃ ∼ Q

♡ Example 10.43 (The iid case). Let Ω = {0, 1}∞, θ ∈ (0, 1) and:

Pn({(x1, . . . , xn}) = θ
∑
xi(1− θ)n−

∑
xi1{0,1}n (x1, . . . , xn)

We know Pn is a p.m., and wish to check its consistency:

Pn+1(A× {0, 1}) =
∑

(x1,...,xn+1)∈A×{0,1}

θ
∑n+1 xi(1− θ)n+1−

∑n+1 xi

=
∑
A

θ
∑n xi(1− θ)n−

∑
xi

∑
xn+1=0,xn+1=1

θxn+1(1− θ)1−xn+1

= Pn(A) ∀A ∈ B({0, 1}n),∀n

Thanks to this consistency, we apply Kolmogorov’s extension Thm. 10.39 to conclude:

∃!P on {0, 1}∞ : P(Cn(A)) = Pn(A) ∀A ∈ B({0, 1}n),∀n

♠ Definition 10.44 (Stochastic Matrix Γ). For E = {ξ1, . . . , ξN} and E = Pow(E) = 2E, a stochastic matrix
is a matrix Γ:

RN × RN ∋ Γ =

p1,1 . . . p1,N
...

...
...

pN,1 . . . pN,N

 {
pij ≥ 0 ∀i, j∑
j pij = 1 ∀j
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♠ Definition 10.45 (Probability sequence in (E,E)). Let π be a p.m. on E such that π(ξi) = πi and π⃗ =

(π1, . . . , πN )T. Then, (Pn)n≥1 is such that Pn is a p.m. on×n

i=1
E ∀n where:{

P1({ξi}) = πi ∀i
Pn({(ξi1 , . . . , ξin)}) = πi1pi1,i2 · . . . · pin−1,in

For n ≥ 2 and {i1, . . . , in} ∈ {1, . . . , N}n

Lemma 10.46 (Applying Kolmogorov Extension Theorem). Using Theorem 10.39 we conclude that for a se-
quence of probabilities (Pn)n≥1 as in Definition 10.45 it holds that:

1. positivity Pn ≥ 0∀n
2. normalization ∑

(i1,...,iN )∈{1,...,N}n

Pn({ξi1 , . . . , ξin)}) = 1

3. consistency is satisfied (Def. 10.37)
∀A ∈ En let Dn,A = {(i1, . . . , iN ) : (ξi1 , . . . , ξin) ∈ A} then

Pn+1(A× E) =
∑

i⃗∈Dn,A

N∑
in+1=1

πi1pi1,i2 · . . . · πin,in+1 = Pn(A)

4. (Kolmogorov’s Theorem)

∃!P on

(
×
n

En,
⊗
n

En

)
such that P(Cn(A)) = Pn(A) ∀A ∈

n⊗
i=1

Ei

5. (Direct implication of 4)

∃(Xn)n≥1 : Ω → E∞ : P[X1 = ξi1 , . . . , Xn = ξin ] = Pn({ξi1 , . . . , ξin})

Proof. (Claims #1, #2) follows by π⃗,Γ construction where Γ = {pij}i=1,...,N,j=1,...,N

(Claim #3) algebra
(Claims #4,#5) just an application of the Theorem and a direct implication of it.

♢ Observation 10.47 (Interpreting Lemma 10.46). We have that:

πi = P[X1 = ξi]︸ ︷︷ ︸
initial state

∀i pnij = P[Xn = ξj |Xn−1 = ξi]︸ ︷︷ ︸
one step transitions

∀n ≥ 2,∀i, j

And (Xn)n≥1 is the classic Markov Chain!

♣ Proposition 10.48 (Markov property). For a Markov Chain it holds:

∀n, i P[Xn+1 = ξin+1 |X1 = ξi1 , . . . , Xn = ξin ] = P[Xn+1 = ξin+1 |Xn = ξin ]

Proof. just observe that:

P[Xn+1 = ξi,n+1|(X1, . . . , Xn) = ξ⃗i] =
πi1pi1,i2 · · · pin,in+1

πi1pi1,i2 · · · pin−1,in

= pin,in+1

♣ Theorem 10.49 (Chapman Kolmogorov equations). For a Markov Chain (Xn)n≥1 with stochastic matrix
(Def. 10.44) Γ we have that:

q⃗n =

P[Xn = ξ1]
...

P[Xn = ξN ]

 is such that

{
q⃗n+1 = Γq⃗n ∀n
P[Xn+1 = ξj ] =

∑N
ℓ=1 pℓ,jP[Xn = ξℓ] ∀j
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Proof. For arbitrary n, i, j it holds:

pnij = P[Xn+1 = ξj |X1 = ξ1] = P[Xn+k = ξj |Xk = ξk] ∀k ≥ 2, k ∈ N

Which we could also express equivalently

pnij =
∑
I

pi,i2 · · · pin,j I =
{
(i2, . . . , in) ∈ {1, . . . , N}n−1

}
The last form induces a recursive representation:

P[Xn+1 = ξj |Xn = ξi] =

N∑
ℓ=1

piℓpℓj

And iterating:

P[Xn=1 = ξj |X1 = ξi] =

n∑
ℓ=1

pni,ℓpℓ,j =⇒ P[Xn=1 = ξj ] =

n∑
ℓ=1

pℓ,jP[Xn = ξℓ]

Which is equivalent to:
q⃗n+1 = ΓT q⃗n

♠ Definition 10.50 (The
(
RT,B

(
RT)) space). Let T be an arbitrary index, typically T ⊂ R. Then we define

the tuple
(
RT,B

(
RT)) as always recalling that:

RT =
∏
t∈T

R = {f : T → R}

Such a space is potentially uncountably infinite.

♠ Definition 10.51 (Class of cylinders with measurable base CT (·)). Just like in Definition 10.34 we let:

Ct⃗(B) =
{
(xt)t∈T : (xt1 , . . . , xtn) ∈ B, t⃗ = (t1, . . . , tn)

}
∀t ∈ Tn,∀n ≥ 1,∀B ∈ B(Rn)

CT =
{
Ct⃗(B) B ∈ B(Rn),∀n where t⃗ = (t1, . . . , tn) : tk ∈ T, |⃗t| = n

}
Lemma 10.52 (Generating set of ∞ Borel uncountable is countable). Just like Lemma 10.35

σ(CT) = B(RT) ∀T

♠ Definition 10.53 (Class of consistent Probability distributions P).

P = {Pt1,...,tn : n ≥ 1, t1, . . . tn ∈ T}

where Pt1,...,tn satisfies the consistency condition of Definition 10.54.

♠ Definition 10.54 (Kolmogorov Consistency). Like in Definition 10.37 conclude that the fundamental condition
is:

∀n ≥ 1, t1, . . . , tn ∈ T t′1, . . . , t
′
k ∈ {t1, . . . , tn} : Ct1,...,tn(Bn) = Ct′1,...,t′k(Bk)

it holds Pt1,...,tn(Bn) = Pt′1,...,t′k(Bk)

We are enforcing equivalence of probability laws by the projections up to permutations of the indexes, aiming to
see if this is a sufficient condition for having a unique probability measure in the background.

♣ Theorem 10.55 (Kolmogorov Extension Theorem, uncountable version). Consider a sequence of r.v.s (Xn)n∈N
on a standard measurable space (E,E) (Def. A.22). Then, the uncountable versions for spaces as in Definition
10.50 of Theorem 10.39 is stated as follows.
A class P as in Def. 10.53 satisfying the consistency version of Def. 10.54 is such that:
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1. unique infinite law

∃!P on σ(CT) = B(RT) ∀Bn ∈ B(Rn),∀n ≥ 1, ∀t1, . . . , tn ∈ T such that P(Ct1,...,tn(Bn)) = Pt1,...,tn(Bn)

2. unique stochastic process

∃!stochastic process (Xt)t∈T : P[(Xt1 , . . . , Xtn) ∈ B] = Pt1,...,tn(B)

♢ Observation 10.56 (About the hypothesis). We assumed the space to be standard (Def. A.22). In the more
general setting of a measurable space the statement becomes existance only.

♣ Theorem 10.57 (Ionescu-Tulcea Theorem). Another important result is that of the uniqueness of the law on
Ω given some almost always verified conditions. For measurable spaces (En,En)n∈N consider

• a p.m. µ on (E0,E0)

• Transition Kernels Kn for n = 1, . . . where ∀n ∈ N∗ we have:

Kn+1 :
(
F 0
n ,F

0
n

)
= (E0 × · · · × En,E0 ⊗ · · · ⊗ En) → (En+1,En+1)

Denoting:

• the current space:

(F 0
n ,F

0
n) =

(
n×
0

Et,

n⊗
0

Et

)
• the total space:

(Ω,F) =
⊗
n∈N

(En,En)

• the nth outcome
ω = (xn)n∈N ∈ Ω : Xn : Ω → En Xn(ω) = xn

• the chain of outcomes up to the nth

Yn = (X0, . . . , Xn) : Ω → F 0
n

Then, the distribution of Yn is given by the concatenation of the kernels:

πn(dx0, . . . , dxn) = µ(dx0)K1(x0; dx1) · · ·Kn(xn−1; dxn)

where we identify cylinders with base B ∈ F0
n by the following principle:

Fn = σ
(
(Yn)n∈N

)
s.t. Fn ∋ H = {Yn ∈ B} = B × En+1 × · · ·

Looking for a law P on the infinite space (Ω,F), we find that:

∃!P s.t. P[H] = πn(B) ∀H ∈ Fn, base B ∈ F0
n

Where the regularity condition is sufficient for uniqueness, and reasonable to ensure non ambiguity at the nth

trial.
For a more articulated argument, see [Çin11](VI.4).

We are now in the position to loosely define a stochastic process.

♠ Definition 10.58 (Stochastic process). For a given probability space (Ω,F,P) and a measurable space (E,E)

a stochastic process is a collection of r.v.s indexed by an arbitrary index T. If we can endow T with an order we
will have a sequence:

(Xt)t∈T Xt : Ω → E ∀t ∈ T

The most common case is T ⊂ R where we interpret the index as Time or Position.

♠ Definition 10.59 (Continuous time Markov Process). Let T = (0,∞) and π be a p.m. on R. For (s, t) ∈ T

with s < t define the Markov transition kernels on R × B(R)(Def. B.13, with weight 1) with the symbols Ps,t.
We have by definition:
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• x→ Ps, t(x,A) is B(R) measurable for any A ∈ B(R)
• A→ Ps,t(x,A) is a p.m. on R for any x ∈ R

For distinct ordered times 0 = t0 < t1 < · · · < tn we set:

Pt0=0,t1,...,tn(dx0, . . . , dxn) = π(dx0)P0,t1(x0, dx1) · · ·Ptn−1,tn(xn−1, dxn)

Where the transition probabilities satisfy the Chapman-Kolmogorov equation just like the discrete case (Thm.
10.49):

Ps,u(x,B) =

∫
R
Ps,t(x, dy)Pt,u(y,B)

The family

P = {Pt1,...,tn : n ≥ 1, t1, . . . , tn ∈ (0,∞) = T}

is consistent in the sense of Definition 10.54, and by Kolmogorov extension (Thm. 10.55) corresponds to a unique
p.m. P on

(
R(0,∞),B

(
R(0,∞)

))
.

Moreover, on some probability space (Ω,F,P) there exists a process (Def. 10.58) (Xt)t∈R+
with law P such that:

• for any A ∈ B(R)

P[X0 ∈ A] = P
({

(xt)t∈R+
: x0 ∈ A

})
= π(A)

• for the algebra generated by the past items of the process, namely Ft = σ ({Xs : 0 ≤ s ≤ t}) for positive
t ∈ R+ is holds for any s < t that:

P [Xt ∈ A|Fs] = P [Xt ∈ A|Xs] = Ps,t(Xs, A) ∀A ∈ B(R)

We call such stochastic process with state space (R,B(R)) with transition kernels (Ps,t)0≤s<t a Markov process.

♠ Definition 10.60 (Homogeneous Markov Process). A Markov Process as in the above definition with Ps,t =

Pt− s. That is, the kernels depend only on the difference between the times considered.

♠ Definition 10.61 (Gaussian process). For functions

• m : T → R
• k : T× T → R is a positive definite function. That is, ∀p ≥ 1, all c ∈ Rp and t1, . . . , tp ∈ T it holds:

∑
i,j

cicjk(tj , tj) > 0

A stochastic process (Xt)t∈T is Gaussian and we write (Xt)t∈T ∼ GP (m, k) if:
∀n ≥ 1, t = (t1, . . . , tn) ⊂ T the vector:

X = (Xt1 , . . . , Xtn) ∼ N (m,K) m = m(t) =

m(t1)
...

m(tn)

 K = K(t, t) =


k(t1, t1) k(t1, t2) · · · k(t1, tn)

k(t2, t1) k(t2, t2) · · · k(t2, tn)
...

...
. . .

...
k(tn, t1) k(tn, t2) · · · k(tn, tn)


which means that for any finite collection of time points the vector arising from the process is a multivariate
normal with parameters depending on the function specified. The positive definiteness of the function is enforced
to ensure that the covariance matrix is well defined.
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Chapter Summary

Objects:
• conditional expectation XG for X ∈ L1 at least and G ⊂ F:

– G-measurability
– E[1GXG] = E[1GX] ⇐⇒

∫
G
XGdP =

∫
G
XdP for all G ∈ G

• conditional probability as P[A|G] = E [1A|G]
• infinite sequences, infinite countable base cylinders in (R∞,B (R∞))

• Kolmogorov Consistency in (R∞,B (R∞)) as projection consistency
• infinite sequences and infinite countable base cylinders in

(
RT,B

(
RT))

• Kolmogorov consistency in
(
RT,B

(
RT)) is projection and permutations

• a Stochastic process as a collection of r.v.s on (Ω,F,P) indexed by T
• Gaussian process, uniquely identified by functions m, k

Results:
• conditional expectation

– uniqueness almost surely
– given X ∈ Lp(Ω,F,P), P[X ≥ 0] = 1, G ⊂ F existance and a.s. equivalence to Radon Nikodym

derivative of:

∃XG =
dQ

dPG

where

{
G→ Q(G) =

∫
G
XdP

PG[G] = P[G] ∀G ∈ G

– orthogonal projection decomposition as X = XG + X̃ where X −XG ⊥⊥ G

– no information, full information, iterated expectation
– measurability implies full knowledge
– linearity, monotonicity, monotone convergence, dominated convergence
– towering property:

H ⊂ G ⊂ F σ-algebras =⇒ E
[
E[X|G]

∣∣∣∣H] = E
[
E[X|H]

∣∣∣∣G] = E[X|H] a.s.

– conditional determinism
– conditional probability is an almost sure (random) probability measure

• processes construction:
– Kolmogorov extension on (R∞,B (R∞)) to unique P on standard measurable spaces
– Kolmogorov extension on

(
RT,B

(
RT)) to unique P on standard measurable spaces

– Ionescu-Tulcea Theorem
– in simple words, we can always refer to a unique probability measure at the infinite space when

talking about processes during the course
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Chapter 11

Martingales & Stopping Times

11.1 Filtrations, Stopping times and easy notions

♠ Definition 11.1 (Background notation). Assume that we are now in a probability space (Def. 10.45) (Ω,H,P).
We will index sequences by a countable collection N = {0, 1, 2, . . .} or an uncountable collection such as R+ or a
generic T.
A stochastic process will be an indexed sequence of random variables (Def. 10.58).
Occasionally, we might denote measurable functions over a measurable space (E,E) with the symbol f ∈ E and
accordingly with signs ± for negative and positive cases.

♠ Definition 11.2 (Filtration). For an index set T a filtration is a sequence (Ft)t∈T such that:

1. Ft ⊂ H ∀t and Ft is a σ-algebra (Def. 1.6) ∀t
2. Fs ⊂ Ft ∀s < t

Intuitively, it is a sequence of increasing information in the probability space.

♠ Definition 11.3 (Filtration generated by a random variable). Given a stochastic process (Xt)t∈T the filtration
generated by it is denoted as:

Ft = σ({Xs : s ≤ t})

Which can be seen as a flow of information accumulated at each time point.

♢ Observation 11.4 (About Definition 11.3). Recall that a σ-algebra is a synonym of information, any random
variable generating it is clearly measurable with respect to it. For an intuition, come back to Theorem 8.2.
For this reason, Ft could be seen as the collection of random variables V such that ∀ω ∈ Ω V (ω) is known at
latest by time t ∈ T.

♡ Example 11.5 (A random experiment). Let Ω = {ω = (ωn)n∈N : ωn ∈ {A,B,C,D,E}∀n}. We could express
this as:

Ω = {A,B,C,D,E}N

Further define Xn := Xn(ω) = ωn∀n and the realization space becomes E = {A,B,C,D,E}, the outcome of
the nth trial. While the master σ-algebra would be H = σ

(
(Xn)n∈N

)
at n = 3 the information is X1(ω) =

ω1, X2(ω) = ω2, X3(ω) = ω3 so that the filtration at n = 3 is a collection

F3 = {V (ω) = f(ω1, ω2, ω3)} = {V (ω) = f(X1, X2, X3)} f : E × E × E → R

i.e. all the deterministic functions of random information solely concerning ω1, ω2, ω3. An example of such
functions could be a counter of how many vowels after n = 3 have occurred.

♠ Definition 11.6 (Finer, coarser filtration). Consider F = (Ft)t∈T,G = (Gt)t∈T to be two filtrations. We say
F is finer (coarser) than G is ∀t ∈ T Ft ⊃ (respectively, ⊂) Gt.

♠ Definition 11.7 (Stochastic process adapted to filtration). Consider a filtration F = (Ft)t∈T and a stochastic
process X = (Xt)t∈T taking values on (E,E). We say that X is adapted to F if ∀t Xt measurable w.r.t. F&E

109
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♣ Proposition 11.8 (Equivalent statements for filtrations and adaptedness). Consider a stochastic process
X = (Xt)t∈T and a filtration F = (Ft)t∈T. Then:

1. X adapted to F (Def. 11.7) ⇐⇒ ∀t, s ≤ t, f ∈ E f ◦Xs ∈ Ft
2. since G = σ(X) =⇒ X adapted G we have that:

X adapted F ⇐⇒ F finer G

Proof. (Claim #1)( =⇒ ) let f ∈ E so that f : E → E and f ◦Xs : Ω → E. By the fact that f is deterministic
and Xs ∈ Fs ⊂ Ft∀s ≤ t we have that trivially f ◦Xs ∈ Ft∀s ≤ t.,
( ⇐= ) let f ◦Xs = Xs then Xs ∈ Ft∀s ≤ t, ∀E and Definition 11.7 holds.
(Claim #2) Assuming G = σ(X).
( =⇒ ) X adapted to F ⇐⇒ ∀t,Xt ∈ Ft so that ∀tFt ⊃ Gt =⇒ F is finer than G.
( ⇐= ) F finer than G means ∀tFt ⊃ Gt so the assumption that X is adapted to G trivially transfers to being
also adapted to F.

♠ Definition 11.9 (Stopping times). For a filtration F a stopping time with respect to it is a random function
T : Ω → T ∪ {∞} such that:

{T ≤ t} ∈ Ft ∀t ∈ T

Which is equivalent to requiring the process Zt = 1{T≤t} ∈ Ft for all t ∈ T.
In the special case in which T = N or N the condition reduces for Ẑn = Zn − Zn−1 to:

Ẑn = 1{T=t} ∀t ∈ T

♢ Observation 11.10 (Interpreting stopping times). A random time seen as signal of occurence of a random
event. The term stopping comes from the measurability with respect to the filtration. Namely, the information
flow allows to detect whether the event has happened or not at any time point.

♡ Example 11.11 (The alarm clock metaphor). Recall Example 11.5 and let:

T (ω) := inf {n ∈ N : Xn(ω) ∈ A} , ω ∈ Ω

T (ω) can be interpreted as the first time of entrance in A. T is a stopping time since ∀n ∈ N if we assume X is
adapted to F then we have:

{T ≤ n} =

n⋃
k=0

{Xk ∈ A}︸ ︷︷ ︸
∈Fk⊂Fn

∈ Fn

Instead L = max {0, sup {n ≤ 5 : Xn(ω) ∈ A}} is not a stopping time since X4(ω) ∈ A,Xt(ω) /∈ A mean L = 4

but F4 is not sufficient to conclude at t = 4.

♠ Definition 11.12 (Notation for max and min). Implement a widely used notation for the aggregators:

min{a, b} = a ∧ b
max{a, b} = a ∨ b

♠ Definition 11.13 (Counting process (Nt)t∈T). Let ) < T1 < T2 < . . . be random times of the form Tn : Ω →
T = R+ such that limn→∞ Tn = +∞.
These can be seen as a sequence of distinct arrival times.
A counting process is a stochastic process (Def. 10.58) of the form:

Nt =
∑
n

1[0,t](Tn)

♣ Proposition 11.14 (Properties of (Nt)t∈T). The map t→ Nt is:

1. right continuous
2. increasing in t

3. has jumps of size 1

4. N0 = 0, Nt <∞∀t ∈ R+, limt→∞Nt = ∞
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Proof. Trivial, but recognize that:

• the jumps of size one property is due to T = R+ so that the simultaneity of random times has negligible
probability

• the finiteness for finite times is due to the fact that to have countably infinite arrival times (i.e. Nt = +∞)
one must have t = ∞ ∈ R+, violating the assumption that t ∈ R+.

♡ Example 11.15 (Some stopping & not stopping times). we provide three examples:

• Let F = σ({Nt}). If we denote as Tk the kth occurrence time in [0, t] we can safely say that it is a stopping
time of F since:

∀k ≥ 1, k ∈ N,∀t ∈ R+ {Tk ≤ t} = {Nt ≥ k} ∈ Ft

since N is adapted to F by construction
• The first time that an interval a passes without an arrival, namely:

T = inf {t ≥ a : Nt = Nt−a} a > 0

Needs the formalism of stopped filtration (Def. 11.19) and we will show it is a stopping time in Example
11.27.

• instead a random time such as the time of last arrival before b > 0:

L = inf {t : Nt = Nb} b > t

is not a stopping time since we need the information from the interval [t, b] to establish what occurs at time
t.

♢ Observation 11.16 (About stopping times). Recall Definition 11.9. The maps are of the form T : Ω →
T ∪ {∞} so the realization may be unbounded, and for some ω it might be that T (ω) = ∞. Consider Example
11.11. It could be that ∄ω : Xn(ω) ∈ A∀n ∈ N =⇒ T (ω) = ∞.

♠ Definition 11.17 (End of time information F∞, extended filtration (Ft)t∈T). We define F∞ = limt→∞ Ft =∨
t Ft, where the union symbol is different as it is over σ-algebras.

Then, the extended filtration is a filtration which accounts for P[T = ∞] > 0:

(Ft)t∈T T = T ∪ {∞}

♢ Observation 11.18 (About end of time and extended filtrations). Notice that:

1. (Ft)t∈T and T a stopping time ⇐⇒ T stopping for (Ft)t∈T
2. X a stochastic process adapted (Def. 11.7) to F is extended onto T with any X∞ ∈ F∞

♠ Definition 11.19 (Stopped filtration FT at T , past until T ). For F a filtration on T, extended to T, and T
a stopping time, the stopped filtration is defined as:

FT =
{
H ∈ H : H ∩ {T ≤ t} ∈ Ft ∀t ∈ T

}
Lemma 11.20 (Properties of FT ). A stopped filtration FT is such that:

1. FT is a σ-algebra (Def. 1.6)
2. FT ⊂ F∞ ⊂ H ∀t

Proof. (Claim #1) we check the requirements according to the definition. Indeed F is a sequence of σ-algebras
and T is a stopping time for the filtration.

• the whole sample space is included
Ω︸︷︷︸

∈Ft

∩{T ≤ t}︸ ︷︷ ︸
∈Ft

∈ Ft
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• complements are included{
H ∈ FT ⇐⇒ H ∩ {T ≤ t} ∈ Ft∀t ∈ T
Hc ∈ FT ⇐⇒ Hc ∩ {T ≤ t} ∈ Ft∀t ∈ T

=⇒ H ∩ {T ≤ t}, Hc ∩ {T ≤ t} ∈ Ft∀t

since if H ∈ FT then the intersection with {T ≤ t} is either the whole set, an empty set or a subset for
r < t. So that in the three cases ordered:

– Hc has a null intersection
– Hc is the whole set
– Hc is the remaining set {T ∈ [0, r ∧ t]}

By Ft being a σ-algebra and T being a stopping time they all belong to Ft and so to FT .
• countable unions are shown following the same arguments so that

∀t ∈ T
⋂
n

Hn ∩ {T ≤ t} ∈ Ft

(Claim #2) For T : Ω → T ∪ {∞} and F∞ = limt→∞ Ft we can safely say that by F a filtration and T a
stopping time:

P[T ≤ ∞] = 1, Fs ⊂ Ft ∀t ∈ T =⇒ FT ⊂ F∞

And also:
F∞ =

⋃
t

Ft︸︷︷︸
⊂H∀t∈T

⊂ H

since a union of subsets of H is again a subset of H

♡ Example 11.21 (Events in stopped filtrations). Given T : Ω → T an event H = {T ≤ r} is such that:

∀t ∈ T H ∩ {T ≤ t} = {T ≤ r} ∩ {T ≤ t} = {T ≤ (r ∧ t)} ∈ Fr∧t ⊂ Fr

And we can further say that T is FT -measurable as ∀r we have H ∈ Fr, with H ∈ FT as well.

♢ Observation 11.22 (σ-algebras as collections of measurable random variables). See that:

FT = {V : Ω → R | ∀ω ∈ Ω V (ω) = f(T (ω)), f deterministic}

♣ Theorem 11.23 (Formalizing Observation 11.22). Drawing from the previous comment, for a stopped filtration
FT , with stopping time T , index T, and filtration F:

1. stopped filtration filtration identification

V ∈ FT ⇐⇒ V 1T≤t ∈ Ft∀t ∈ T

2. stopped filtration identification for a discrete process

N = T V ∈ FT ⇐⇒ V 1T=t ∈ Ft∀t ∈ T

Which are both an extension of the comments of adaptedness from Definition 11.7 for deterministic times.

Proof. (Claim #1) let V ≥ 0 a.s. wlog with Xt = V 1{T≤t}. Then:

∀r ∈ R+,∀t ∈ T {V > r} ∩ {T ≤ t} = {Xt > r}

and we have that

{V > r} ∈ FT∀r ∈ R+
Def. 11.7⇐⇒ {Xt > r} ∈ Ft∀r, ∀t
⇐⇒ V ∈ FT ⇐⇒ Xt ∈ Ft∀t ∈ T

(Claim #2) for T = N it holds:

V 1{T=n} =

{
Xn −Xn−1 n ∈ N
X∞ −

∑
nXn −Xn−1 n = ∞

Which gives us:
V ∈ FT ⇐⇒ V 1{T=n} ∈ Fn ∀n ∈ N
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♠ Definition 11.24 (F processes collection). Using the same notation for positive measurable functions as f ∈ E

we let:
F =

{
right continuous processes on T adapted to F

}
Where F is extended to T.
This means that X ∈ F whenever:

1. X = (Xt)t∈T is adapted to F = (Ft)t∈T
2. t→ Xt(ω) where Xt : T → R is right continuous ∀ω ∈ Ω

♢ Observation 11.25 (Justifying the X ∈ F notation). Let N = T, then requirement #2 from Definition 11.24
holds since n→ Xn(ω) is continuous on the discrete topology N. This allows us to conclude that:

X ∈ F ⇐⇒ Xn ∈ Fn ∀n ∈ N

♣ Theorem 11.26 (Comparing different stopping times). Let S, T be stopping times of a filtration F (Def.
11.9), where S ≤ T almost surely, meaning S(ω) ≤ T (ω)∀ω ∈ Ω. Then:

1. S ∧ T , S ∨ T are stopping times of F
2. specifically S ≤ T =⇒ FS ⊂ FT
3. FS∧T = FS ∩ FT

4. V ∈ FS =⇒


V 1S≤T ∈ FS∧T

V 1S=T ∈ FS∧T

V 1S<T ∈ FS∧T

Proof. (Claim #1) Assume S, T are stopping times for F. Then, by the fact that Ft is a σ-algebra:{
{S ∧ T ≤ t} = {S ≤ t} ∪ {T ≤ t} ∈ Ft

{S ∨ T ≤ t} = {S ≤ t} ∩ {T ≤ t} ∈ Ft

and both are stopping times.
(Claim #2) Let V ∈ FS , by Theorem 11.23#1 it holds that V 1{S≤t} = Xt is a process with index t ∈ T. X
is adapted to F and is right continuous, so we can write X ∈ F in the sense of Definition 11.24. By S ≤ T we
can say that XT = V 1{S≤T} = V is such that XT ∈ FT by [Çin11](Thm. V.1.14). Then S ≤ T is a sufficient
condition for FS ⊂ FT .
(Claim #4) the claim is equivalent to proving:

H ∈ FS =⇒ H ∩ {S ≤ T}, H ∩ {S < T}, H ∩ {S = T} ∈ FS∧T

By Claim #1 S ∧ T is a stopping time so XS∧T ∈ FS∧T [Çin11](Thm. V.1.14). Moreover:

XS∧T = V 1{S≤S∧T} =⇒ V 1{S≤T} ∈ FS∧T

For V = 1 it holds that:
{S ≤ T} ∈ FS∧T , {S ≥ T} ∈ FS∧T by symmetry

So that all of the following belong to FS∧T with the indicators:

{S = T} = {S ≤ T} ∩ {S ≥ T}, {S < T} = {S ≤ T} \ {S = T}, {S > T} = {S ≥ T} \ {S = T}

(Claim #3)(⊂) since S ≤ T we have S ∧ T ≤ S, T so that by Claim #2:

FS∧T ⊂ FS ,FT =⇒ FS∧T ⊂ FS ∩ FT

(⊃) conversely, let H ∈ (FS ∩ FT ). By Claim #4 it holds:{
H ∈ FS =⇒ H ∩ {S ≤ T} ∈ FS∧T

H ∈ FT =⇒ H ∩ {T ≤ S} ∈ FS∧T
=⇒ (H ∩ {S ≤ T})∪(H ∩ {T ≤ S}) = H ∈ FS∧T =⇒ FS∩FT ⊂ FS∧T

Eventually we proved by double inclusion and FS ∩ FT = FS∧T .
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♡ Example 11.27 (Counting process from Definition 11.13). This Example will be expanded across the lectures.
(△ setting) Consider the counting process on T = R+ from Definition 11.13. If we consider H ∩ {S < T} we
could tell if H and S < T happened in FS∧T . For any t it holds that:

∃k : Tk(ω) ≤ t < Tk+1(ω)

Recall also that all of these Tk are stopping times of F = σ({Nt}t≥0).
We set T0 = 0 for convenience, and consider the random time:

τ = inf {t ≥ a : Nt = Nt−a} a > 0

denoted in blue for convenience. Before this Example, the symbol T was used, but here we wish to distinguish
many objects that are similar in notation. After this Example, we will not use the symbol τ .
We want to show that τ is a stopping time in the sense of Definition 11.9.
(□ solution) Notice that ∀ω we have for some k:

τ(ω) = Tk(ω) + a k ∈ N∗ ⇐⇒ {τ ≤ t} =
⋃
k≥1

{{τ = Tk + a} ∩ {τ ≤ t}}

Where the union over k statement comes from the fact that we have ∃k as a condition. Recall the objects of
Theorem 11.23, visualizing them as T = Tk+1, S = Tk + a : S ≤ T . Be careful as it may lead to confusion, left is
old and red, right is this Example. It holds:

τ stopping ⇐⇒ {τ = Tk + a} ∩ {τ ≤ t} ∈ Ft k ∈ N∗

Using Theorem 11.23#1, we need to check that V = {τ = Tk + a} ∈ FTk+a ⊂ FT to conclude.
To clear out why, recognize that it is equivalent to {τ = Tk + a}1{Tk+a≤t} = {τ ≤ t} ∈ Ft∀t ∈ T by the very
Theorem invoked.
For this purpose, observe that for any k:

{τ = Tk + a} = {T1 − T0 ≤ a, . . . , Tk − Tk−1 ≤ a}︸ ︷︷ ︸
∈FS ,S=Tk+a

∩{Tk + a <

T=Tk+1︷ ︸︸ ︷
Tk+1 }︸ ︷︷ ︸

S<T

By Theorem 11.26#4 we will have that:

H ∈ FS =⇒ H ∩ 1{S<T} ∈ FS∧T

Where S = Tk + a, T = Tk+1, H = {T1 − T0 ≤ a, . . . , Tk − Tk−1 ≤ a}. Eventually:

{τ = Tk + a} ∈ FTk+a∧Tk+1
= FTk+a = Fτ ⇐⇒ {τ = Tk + a} ∩ {τ ≤ t} ∈ Ft ∀k, ∀t

⇐⇒ {τ ≤ t} ∈ Ft ∀t

11.2 Random Expectation and Martingales

♢ Observation 11.28 (Recapping conditional expectation). For X ∈ L1(Ω,H,P) (Def. 4.5) and F a σ-algebra
(Def. 1.6) where F ⊂ H we defined:

XF = E[X|F] = EF[X]

where by Definition 10.12:

1. XF is F-measurable (Eqn. 3.1)
2. E[V X] = E[V XF] ∀V F-measurable positive

Where #2,#1 ⇐⇒ XF is the best approximation in L2(Ω,H,P), namely:

E
[(
X −XF

)2] ≤ E
[
(X − Y )

2
]

∀Y F-measurable

♢ Observation 11.29 (Properties of EF inherited by E). Comparing Chapter 4 with Chapter 10, notice that
some properties carried over by the fact that F is simply a σ-algebra:
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• monotonicity (Prop. 10.20, #1)
• linearity (Prop. 10.19, #2)
• monotone convergence (Prop. 10.20, #2)
• dominated convergence (Prop. 10.20, #3)
• Fatou’s lemma (Lem. A.49)

♢ Observation 11.30 (Peculiar properties of EF). There are also properties which are specific to the construction
of conditional expectation, among which we saw:

• unconditioning (Prop. 10.18, #3)
• conditional determinism (Prop. 10.23, #1)
• towering property (repeated conditioning) (Thm. 10.21)

♠ Definition 11.31 (Expectation in Filtration Et). Given a filtration F = (Ft)t∈T (Def. 11.2) use as notation:

Et[X] := E[X|Ft] = EFt [X] = XFt t ∈ T

♣ Proposition 11.32 (Repeated conditioning of Et). For X ≥ 0 a.s. it holds that:

Et [Es[X]] = Es∧t[X] ∀s, t ∈ T

Proof. Notice wlog s ≤ t =⇒ Fs ⊂ Ft and the result is an application of the towering property (Thm. 10.21).

♠ Definition 11.33 (Expectation with respect to stopped filtration ET ). Given FT a stopped filtration (Def.
11.19), recalling that FT is a σ-algebra (Lem. 11.20, #1), simply define:

ET [X] := E[X|FT ] = EFT
[X] = XFT

♣ Theorem 11.34 (Properties of ET ). Consider X,Y,W ≥ 0 a.s. and S, T stopping times (Def. 11.9) of a
filtration F (Def. 11.2). Then:

1. Projection defining property

ET [X] = Y ⇐⇒ Y ∈ FT E[V X] = E[V Y ] ∀V FT -measurable positive

2. unconditioning
E [ET [X]] = E[X]

3. repeated conditioning/towering
ESET [X] = ES∧TX

4. conditional determinism
ET [WX] =WET [X] ∀W FT -measurable

Proof. (Claims #1#2#4) hold trivially by Observations 11.29, 11.30.
(Claim #3) for S ≤ T by Theorem 11.26#2 it holds FS ⊂ FT . However, we are not given this condition and
we want to show in general that:

ETESX = ESETX = ES∧TX

For arbitrary S, T , wlog we know S ∧ T ≤ T so that ES∧TETX = ES∧TX by Towering. For this reason, we set
Y := ETX and the claim is equivalent to showing:

ESY = ES∧TY ESETX = ES∧TETX = ES∧TX

Where the RHS of the first is well defined if ES∧TY ∈ FS∧T ⊂ FS so that Def. 10.12#1 is satisfied. We are left
to show that Claim #1 holds, namely:

E[V Y ] = E[V ES∧TY ] ∀V ∈ F+
S

Fix V ∈ F+
S , by Theorem 11.26#4 it holds that V 1{S≤T} ∈ FS∧T . Moreover, the defining property of expectation

gives:
E
[
V 1{S≤T}Y

]
= E

[
V 1{S≤T}ES∧T [Y ]

]
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Additionally, by Y ∈ FT we also get again by Theorem 11.26#4 that :

E
[
V 1{T≤S}Y

]
= E

[
V ES∧T [Y 1{T≤S}]

]
= E

[
V 1{T≤S}ES∧T [Y ]

]
adding the last two results together gives the claim:

E[V Y ] = E[V ES∧T [Y ]] ∀V ∈ F+
S

♠ Definition 11.35 (Martingales). For T = R+ and F a filtration, possibly extended to T a F-martingale is a
stochastic process X = (Xt)t∈T such that:

1. X is adapted to F (Def. 11.7)
2. ∀t Xt is integrable ⇐⇒ E[|Xt|] <∞∀t ⇐⇒ Xt ∈ L1 ∀t
3. martingale equality

Es[Xt −Xs] = 0 ∀s < t, ∀t

♠ Definition 11.36 (Submartingale, supermartingale). we recognize two additional options for the last property:

• a submartingale satisfies Definition 11.35 but has ≥ in the martingale equality
• a supermartingale satisfies Definition 11.35 but has ≤ in the martingale equality

♢ Observation 11.37 (About martingales). If X is an F-submartingale then it tends to increase over time.
The other options follow trivially.

♣ Proposition 11.38 (Best guess of future is present characterizes martingale equality). It holds that:

Def. 11.35#3 ⇐⇒ Es[Xt] = Xs ∀s < t

Proof. By linearity of expectation and conditional determinism Xs ∈ Fs we have ES [Xt] = Es[Xs] = Xs.

♣ Proposition 11.39 (Martingale implies stationarity).

X F-martingale =⇒ E[Xt] = E[X0]∀t ∈ T

Proof. Use the martingale equality (Def. 11.35#3):

E [Es[Xt −Xs]] = E [Xt −Xs] unconditioning Prop. 10.18#3
= E[Xt]− E[Xs] linearity
= 0 E[0] martingale equality

So that E[Xt] = E[X0]∀t ∈ T.

♣ Proposition 11.40 (Discrete time martingale check). For a discrete process over T = N it is sufficient to
check for one step forward the martingale equality if the other two conditions are satisfied (integrability and
adaptedness):

En[Xn+k −Xn] = 0 ∀k > 0,∀n ∈ N ⇐⇒ En[Xn+1 −Xn] = 0 ∀n

Proof. ( =⇒ ) trivial direction.
( ⇐= ) we work by induction on k with the assumption that:

En[Xn+1 −Xn] = 0∀n

(Base case) for k = 1 it holds:

En[Xn+2]− En[Xn]︸ ︷︷ ︸
=Xn

= En[Xn+1+1 −Xn] = En[Xn+1+1 −Xn+1 +Xn+1 −Xn]

= En[Xn+2 −Xn+1]− En[Xn+1 −Xn]︸ ︷︷ ︸
=0

= En[Xn+2]− En[Xn+1]
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Observe that by the towering property and n < n+ 1:

En[Xn+2 −Xn+1] = En [En+1[Xn+2 −Xn+1]]

= En[0] hypothesis
= 0

which holds by the arbitrariness of n.
(induction assumption) assume it is true ∀k.
(inductive step) for k + 1, doing the same trick we have:

En[Xn+k+1]− En[Xn] = En[Xn+k+1 −Xn] = En[Xn+k+1 −Xn+k +Xn+k −Xn]

= En[Xn+k+1 −Xn+k] + En[Xn+k −Xn]︸ ︷︷ ︸
=0

= En [En+k[Xn+k+1]− En[Xn+k]]

= En[0] hypothesis

and we have proved the claim.

Corollary 11.41 (Jensen’s for martingales). This is a Corollary of Theorem 7.7.
For a martingale X and a convex function f : R → R then:

f ◦Xt integrable ∀t ∈ T =⇒ f ◦X submartingale

Proof. The process (Yt)t∈T = (f(Xt))t∈T is such that by Jensen’s Inequality (Thm. 7.7) Et[f(X)] ≥ f(Et[X]) so
that:

Es[f(Xt)] ≥ f(Es[Xt]) = f(Xs) ∀s < t, ∀t

Where the first is an application of Jensen’s and the second is the martingale property. So Es[Yt] ≥ Ys and the
process (Yt)t∈T = (f ◦Xt)t∈T is a submartingale since it is trivially adapted to F and integrable by hypothesis.

♡ Example 11.42 (Some submartingales applying Corollary 11.41).

(|Xt|)t∈T ,
(
X+
t

)
t∈T ,

(
X−
t

)
t∈T , E[|Xt|p] <∞∀t =⇒ (|Xt|p)t∈T

♢ Observation 11.43 (Submartingales linearity). Observe that X,Y F-submartingales =⇒ aX + bY, (Xt ∧
Yt)t∈T are submartingales.

♡ Example 11.44 (Sum of independent random variables martingale). Let (Xn)n∈N be an independency where
E[Xn] = 0∀n. The sum r.v. is such that S0 = 0, Sn = Sn−1+Xn∀n ≥ 1, and the underlying filtration is generated
by the process itself F = σ

(
(Xn)n∈N

)
. Then:

• (Sn)n∈N = S is adapted to F trivially
• E[Sn] = E [

∑n
k=1Xk] = 0∀n =⇒ E[|Sn|] <∞ so that Sn ∈ L1(Ω,H,P) for all n

• using Proposition 11.40 we only check the martingale for one step forward:

En[Sn+1 − Sn] = En[Xn+1] recursion

= E[Xn+1] independence hyp.

= 0 hypothesis

So (Sn)n∈N is a martingale.

♢ Observation 11.45 (A counterintuitive process failing to be a martingale). The process
(
1
nSn

)
n∈N has mean

0 but is not a martingale in general, we will see conditions for it to satisfy the other two requirements of Definition
11.35, namely adaptedness and integrability.

♡ Example 11.46 (Product of independent random variables martingale). Let:

• R1, R2, . . . be independent and such that E[Rk] = 1 and V [Rk] <∞ ∀k
• M0 = 1 and Mn =Mn−1Rn =M0R1R2 · · ·Rn



118 CHAPTER 11. MARTINGALES & STOPPING TIMES

We check that M is a martingale with respect to its natural filtration according to Definition 11.35.
(adaptedness)Clearly (Mn)n∈N is adapted to F = σ ((Mn)n∈N).
(integrability) Observe that:

E[|Mn|] = E [|Mn−1Rn|] = E

[∣∣∣∣∣M0

n∏
k=1

Rk

∣∣∣∣∣
]

Where by induction we can show that:

• E[|M1|] = E[|M0R1|] = E[|R1|] <∞ by hypothesis
• one step forward

E[|M2|] = E[|M0R1R2|] M0R1R2 =M1R2

≤
√

E[|M2
1 |]E[|R2

2|] Cauchy-Schwartz

=
√

E[R2
1]E[R2

2]

<∞ by V [Rk] <∞∀k

• naturally iterate

So that E[Mn] <∞∀n.
(martingale equality) Using Proposition 11.40 we check only for k = 1 increments:

En[Mn+1] = En[MnRn+1] =MnEn[Rn+1] since Mn ∈ Fn and deterministic conditioning

=MnE[Rn+1] remove n since Rn+1 ⊥⊥ Rn

=Mn · 1 hypothesis

And the claim holds: (Mn)n∈N is a martingale.

♢ Observation 11.47 (Interpreting the model of the example). If Rn > 0 a.s. ∀n then (Mn)n∈N can be thought
of as a stock price. Accordingly, the return is Rn+1 = Mn+1

Mn
and the growth is Rn+1 − 1.

If (Mn)n∈N is not a martingale then it is either a submartingale or a supermartingale. With the assumption
that prices are perfect this does not make sense, as it would imply a rush to buy/sell, inducing a trend in
(Mn)n∈N. It is then possible to characterize market equilibrium for a process as it being a martingale.

11.3 Uniform integrability of martingales

♠ Definition 11.48 (Uniformly integrable martingale). We define e u.i. martingale as in Definition 7.3 with
as arbitrary index set T. Namely:

(Xt)t∈T lim
b→∞

sup
t

E|Xt|1[b,∞) (|Xt|) = 0

♢ Observation 11.49 (Improving the remark below Def. 7.3). Recall that:

X = (Xt)t∈T ⊂ L1(Ω,F,P) ≠⇒ X u.i =⇒ sup
t
E [|Xt|] <∞.

Since:
X u.i.

Def. 7.3⇐⇒ lim
k→∞

sup
t≥1

E
[
|Xt|1(k,∞)(|Xt|)

]
= 0 =⇒ sup

t
E [|Xt|] <∞

Where in the last implication we applied the remark below Def. 7.3.

Remark 2 (About uniformly integrable martingales, ctd). If a martingale is over a finite set n ≤ N , denoted as
(Xn)n≤N , then all elements are integrable by Definition 11.35#2 and the process is trivially uniformly integrable.

♣ Proposition 11.50 (Uniformly integrable martingale by integrable random variable). Let Z ∈ L1(Ω,H,P)
and F a filtration.

=⇒ X = (Xt)t∈T : Xt = Et[Z] ∀t ∈ T uniformly integrable martingale
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Proof. (△ setting) we aim to prove the three requirements for a martingale in Definition 11.35 and uniform
integrability at last.
Xt ∈ Ft since Xt = Et[Z]∀t ∈ T. This satisfies the adaptedness requirement.
(□ integrability) consider Xt, then:

|Xt| = |Et[Z]| = f (Et[Z]) f convex
≤ Et[|Z|] Jensen’s Thm. 7.7

so that in expectation, reapplying Jensen’s and using the monotonicity (Thm. 2.10) the unconditioning properties
(Thm. 10.18#3) we get:

E[|Xt|] ≤ E[Et[|Z|]] = E[|Z|] <∞ by hypothesis

(⃝ martingale equality) we check that by the towering property (repeated conditioning, Thm. 10.21):

Es[Xt] = Es[Et[Z]] = Es∧t[Z] = Es[Z] = Xs

eventually, by △,□,⃝ the process (Xt)t∈T is a martingale in the sense of Definition 11.35.
Uniform integrability follows by the below Lemma.

To prove this result, we need a Theorem from the book, which is reported in the Appendix.

Lemma 11.51 (A more general result). It actually holds that:

Z ∈ L1(Ω,H,P) =⇒ K = {X | X = EG[Z], G ⊂ H} uniformly integrable

Proof. Start with observing that if Z ∈ L1 then trivially the collection {Z} is uniformly integrable.
By Theorem C.1 there exists a convex positive increasing coercive function in R, namely:

f : R → R+ convex, increasing, lim
x→∞

f(x)

x
= ∞

such that E[f ◦ |Z|] <∞.
(△ aim) we want to show that the collection K is uniformly intergrable using this fact.
For X = EG[Z] where G ⊂ H it holds by Jensen’s (Thm. 7.7) on the modulus:

|X| = |EG[Z]| ≤ EG[|Z|]

moreover by f being convex and increasing and applying Jensen’s to f :

f ◦ |X| ≤ f ◦ EG[Z] ≤ EG[f ◦ |Z|]

Eventually:

E[f ◦ |X|] ≤ E [EG[f ◦ |Z|]] Monotonicity 2.10
= E[f ◦ |Z|] unconditioning 10.18#3
<∞ hypothesis

So that K is uniformly integrable since its modulus is bounded by above by an integrable r.v.

♡ Example 11.52 (A uniformly integrable martingale: Bayes mean estimation). Let Zi
iid∼ N(0, 1), and θ ∈

L1(Ω,H,P) such that θ ⊥⊥ Zi∀i.
Define Yi = Zi + θ

iid∼ N(θ, 1) and aim to infer θ from a set of observations Y = {Yi}ni=1.
Why is θ random? We use a bayesian approach and assign a prior π(A) = P[θ ∈ A] such that Yi|θ

iid∼ N(θ, 1).
Further assume the joint distribution (Y, θ) is absolutely continuous (Def. 2.6) wrt Leb and that θ ∼ N(µ0, σ

2
0).

Using Bayes theorem we can estimate:

πn(A) = P[θ ∈ A|Y1 = y1, . . . , Yn = yn]
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By Ionescu-Tulcea Thm. 10.57 construct also the (unique) space:

(R∞ ×Θ,B(R∞)⊗B(Θ),P)

so that it is possible to work with a filtration F = σ((Yn)n∈N). By Proposition 11.50 since θ ∈ L1:

θ̂n = E[θ|Y] = En[θ] such that
(
θ̂n

)
n∈N

uniformly integrable

Thanks to the θ ∼ N assumption we can explicitly compute the posterior distribution as:

πn(θ) ∝ π(θ)
∏

p(yi|θ)

∝ exp

{
− 1

2σ2
n

(θ − µn)
2

}
=⇒ θ|Y ∼ N(µn, σ

2
n)

µn = σ2
n

(
µ0

σ2
0

+ ny

)
σ2
n =

(
1

σ2
0

+ n

)−1

Where θ̂n = σ2
n

(
1
σ2
0
µ0 + ny

)
and θ̂0 = µ0, with the martingale equality satisfied, meaning E[θ̂n] = µ0 ∀n. We

prove uniform integrability in the next exercise.

♡ Example 11.53 (Uniform integrability of θ̂ process). Using Lemma 11.51. We have:

θ̂n = σ2
n

(
µ0

σ2
0

+ nY

)
Y ∼ N

(
θ,

1

n

)
and for f(x) = x2 convex positive increasing and coercive:

E
[
f(|θ̂n|)

]
= E

[
θ̂2n

]
= V

[
θ̂n

]
−
(
E
[
θ̂n

])2
= V

[
θ̂n

]
− µ2

0

<∞ ⇐⇒ V
[
θ̂n

]
<∞

where we aim to find an upper bound for the variance. First notice that by the variance decomposition:

Y
(n)|θ ∼ N

(
θ,

1

n

)
V
[
Y

(n)
]
= E

[
V
[
Y

(n)
]]

+ V
[
E
[
Y

(n)
]]

= E
[
1

n

]
+ V [θ] =

1

n
+ σ2

0

Such variance is by the first term in the addition being constant:

V [θ̂n] = n2σ4
nV
[
Y

(n)
]

V
[
Y

(n)
]
=

1

n
+ σ2

0

= n2σ4
n

(
1

n
+ σ2

0

)
= n2σ4

n

(
1 + σ2

0n

n

)
= nσ4

n

(
1 + σ2

0n
)

σ2
n =

(
1

σ2
0

+ n

)−1

=
σ2
0

nσ2
0 + 1

=
n(1 + σ2

0n)σ
2
0

(1 + nσ2
0)

2
=

nσ2
0

1 + nσ2
0

≤ σ2
0 = V [θ0]

So that the variance is finite ∀n and E[f(θ̂n)] < ∞ for f convex and positive. Then,
(
θ̂n

)
n∈N

is a uniformly
integrable martingale.
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♡ Example 11.54 (Branching Process, a uniformly integrable martingale). The following is a discrete time
biological model for population evolution. We interpret Zn as the size of a population, which starts at Z0 = 1,
has no overlapping generations and lifetimes of unit one. At n + 1, the population is an offspring of the nth

generation only. We denote:

Z0 = 1, Z1 = ξ
(1)
1 , Z2 =

Z1∑
i=1

ξ
(2)
i

And assume: {
ξ
(n)
i , i ≥ 1, n ≥ 1

}
iid E[ξ(n)i ] = µ ≥ 0, pk := P

[
ξ
(n)
i = k

]
, k ≥ 0

where pk is referred to as the offspring distribution. The underlying filtration is generated by the sizes of past
families as Fn = σ

({
ξ
(m)
i , i ≥ 1,m ≤ n

})
.

(△ aim) we want to show that
(
Zn
µn

)
n∈N

is a martingale.

(□ solution) This is equivalent to showing that another process satisfies the martingale equality:(
Zn
µn

)
n∈N

⇐⇒ En[Zn+1] = µZn

Which follows by simple computation. Adaptedness and integrability are trivial. Maybe it is useful to notice that
E
[
|ξ(n)i |

]
= E

[
ξ
(n)
i

]
by positivity. The above formula can be checked for one time step only by Proposition 11.40.

Then:

En[Zn+1] = En
[(
ξ
(n+1)
1 + · · ·+ ξ

(n+1)
Zn

)
1{Zn>0}

]
recursion hypothesis

= En

[ ∞∑
k=1

(
ξ
(n+1)
1 + · · ·+ ξ

(n+1)
Zn

)
1{Zn=k}

]

=

∞∑
k=1

En

(ξ(n+1)
1 + · · ·+ ξ

(n+1)
Zn

)
1{Zn=k}︸ ︷︷ ︸

∈Fn

 linearity, Prop. 10.19#2

=

∞∑
k=1

1{Zn=k}En
[(
ξ
(n+1)
1 + · · ·+ ξ

(n+1)
k

)]
conditional determ. Prop. 10.23#1

=

∞∑
k=1

1{Zn=k}

(
En
[
ξ
(n+1)
1

]
+ · · ·+ En

[
ξ
(n+1)
k

])
linearity

=

∞∑
k=1

1{Zn=k}kµ E
[
ξ
(n+1)
i

]
= µ ∀i

= µ

∞∑
k=1

1{Zn=k}k

= µZn ∀n

Clearly (Zn)n∈N is a martingale for µ = 1, a submartingale for µ < 1 and a supermartingale for µ > 1. For free,

we also get that
(
Zn
µn

)
n∈N

is a martingale since:

En
[
Zn+1

µn+1

]
=

1

µn+1
µZn =

Zn
µn

= En
[
Zn
µn

]

11.4 Wiener Processes

♠ Definition 11.55 (Wiener process W ). A stochastic process W = (Wt)t∈R+
is Wiener with respect to the

filtration F if:

1. W is adapted to F (Def. 11.7)
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2. Gaussian intervals

Es[f(Ws+t −Ws)] =

∫
f(x)

1√
2πt

e−
1
2tx

2

dx ∀s, t, ∀f ∈ E+

Where E+ is to be intended as positive Borel functions mapping to R.
3. W0 = 0

♣ Proposition 11.56 (Definitional implications of Wiener process). We have that by requirement 2 of a Wiener
process W :

1. Markov
Ws+t −Ws ⊥⊥ Fs ∀s

2. stationarity
Ws+t −Ws ⊥⊥ s ∀s

3. normality
Ws+t −Ws ∼ N(0, t) ∀t ̸= 0

Proof. (Claims #1, #2, #3) the statement is ∀f ∈ E+, this includes indicator functions. Using indicators, we
can state:

PWt+s−Ws(A) = E [1A ◦ (Wt+s −Ws)]

= E [Es [1A ◦ (Wt+s −Ws)]]

= E
[
Ex∼N(0,1) [1A]

]
Def. 11.55#2

= E
[∫

A

dPX(t)

]
X(t) ∼ N(0, t)

=

∫
A

dPX(t) ∀A ∈ E

This means that the integrals agree on every Borel set, and the two are equal in distribution in the sense of
Definition 3.14. This proves claim #3 directly, and indirectly ensures independence from s and Fs since we
notice that the filtration has no influence on the distribution.

♢ Observation 11.57 (About the third result). For 0 < t0 < t1 < . . . < tn we implement Kolmogorov’s
Extension 10.39 to identify a single probability law, and decorate this result with Proposition 11.56:

P
(
(Wt)t∈T

)
⇐⇒ P(Wt1 , . . . ,Wtn) ⇐⇒ P(Wt1 −Wt0 , . . . ,Wtn −Wtn−1

) Claim 3

⇐⇒
n−1∏
k=1

P(Wtk+1−Wtk
) Claim 2

Where for each interval we have that N(0, ti+1 − ti) is the distribution.

♢ Observation 11.58 (About the proof). Notice that in principle having ∀f ∈ E+ makes the result definitional.
Indicators are measurable and we recover the definition of equality in probability law. Using Theorem 4.11 is not
as fast since we would need to check that continuous bounded functions are in E+ and then assessing equality of
the integrals.

♣ Proposition 11.59 (Martingale characterization of Wiener Process, exponential).

W = (Wt)t∈R+ Wiener︸ ︷︷ ︸
Def. 11.55

⇐⇒ Mt = erWt− 1
2 r

2t F-martingale︸ ︷︷ ︸
Def. 11.35

∀r ∈ R

Proof. ( =⇒ ) Let W be a Wiener process. The adaptedness of (Mt)t∈T is trivial. We check the other two
requirements of Definition 11.35.
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(△ integrability) we get:

E[|Mt|] = E[Mt] Mt > 0∀t

= E
[
exp

{
rWt −

1

2
r2t

}]
= E

[
exp

{
r(Wt −W0)−

1

2
r2t

}]
W0 = 0

=

= e−
1
2 r

2tE [exp {r(Wt −W0)}]

= e−
1
2 r

2tE [E0 [exp {r(Wt −W0)}]] use Def. 11.55#2

= e−
1
2 r

2t

∫
R
erx

1√
2πt

e−
1
2tx

2

dx is the mgf, general case: mgf(r) = eµr+
σ2r2

2

= e−
1
2 r

2te
1
2 r

2t = 1 <∞

using the Mgf of a normal distribution.
(⃝ martingale equality) an equivalent solution for s < t is:

Es[Mt] =Ms ⇐⇒ MsEs
[
Mt

Ms

]
=Ms ⇐⇒ Es

[
Mt

Ms

]
= 1

Which if we expand properly

Es
[
Mt

Ms

]
= Es

[
exp

{
rWt −

1

2
r2t− rWs +

1

2
r2s

}]
= e−

1
2 r

2(t−s)Es [exp {r(Wt −Ws)}]

= e−
1
2 r

2(t−s)Es [f(Wt −Ws)]

= e−
1
2 r

2(t−s)Es
[
erZ
]

Z ∼ N(0, t− s) by Wiener Def. 11.55#2

= e−
1
2 r

2(t−s)e+
1
2 r

2(t−s) mgf of normal
= 1

which proves the martingale equality.
( ⇐= ) to prove the reverse, let M be a martingale. Then Es

[
Ms

Mt

]
= 1∀s < t so that:

Es [exp {r(Ws+t −Ws)}] = e
1
2 r

2t ∀r ∈ R ⇐⇒ Es[f(Wt+s −Ws)] = E [f(X)] X ∼ N(0, t)

As per Def. 11.55. The if and only if condition holds by a Theorem similar to the Laplace characterization (Thm.
6.12) for moment generating functions.

♢ Observation 11.60 (About Wt). Notice that by Definition 11.55#3 it is always safe to assume that Wt ∼
N(0, t) by Prop. 11.56#3. We will avoid doing this calculation every time.

♢ Observation 11.61 (Exponential Martingale as stock). Let r ∈ R, the exponential martingale we proved is
the continuous time version of Example 11.46 with:

Rn = exp

{
r (Wn+1 −Wn)−

1

2
r2(n+ 1− n)

}
= exp

{
r (Wn+1 −Wn)−

1

2
r2
}

♣ Proposition 11.62 (Wiener processes are martingales).

W = (Wt)t∈R+
Wiener︸ ︷︷ ︸
Def. 11.55

=⇒ W F-martingale︸ ︷︷ ︸
Def. 11.35

Proof. Adaptedness follows by Definition 11.55#1.
(△ integrability) trivially

E[|Wt|] <∞
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by the fact that it reduces to a N(0, t) random variable.
(□ martingale equality) for s < t:

Es[Wt −Ws] = E[Wt −Ws] Wt −Ws ⊥⊥ Fs Def. 11.56#1
= 0 Wt −Ws ∼ N(0, t− s) Prop. 11.56 #3

So that W is an F-martingale.

♣ Proposition 11.63 (Martingale characterization of Wiener process, square).

W = (Wt)t∈R+
Wiener︸ ︷︷ ︸
Def. 11.55

=⇒ Yt =W 2
t − t F-martingale︸ ︷︷ ︸

Def. 11.35

Proof. ( =⇒ )(△ adaptedness) Yt is adapted to Ft trivially.
(□ integrability) follows by the triangle inequality:

E[|Yt|] = E[|W 2
t − t|] ≤ E[|W 2

t |] + E[|t|] <∞

Where the first term is finite since the variance and mean of the Wiener process is well defined via its normal
distribution.
(⃝ martingale equality) let s < t. The aim is reducing the expression to differences Wt −Ws to exploit the
property of Wiener processes. This is easily done as:

Es [Yt − Ys] = Es
[
W 2
t −W 2

s − t+ s
]

= Es
[
W 2
t −W 2

s − t+ s± 2WsWt ± 2W 2
s

]
= Es

[
(Wt −Ws)

2
+ 2Ws (Wt −Ws)− t+ s

]
= Es

[
(Wt −Ws)

2
]
+ 2WsEs [Wt −Ws]− t+ s linearity and conditional determinism

= E
[
(Wt−s)

2
]
+ 2WsEs [Wt −Ws]− t+ s E

[
(Wt−s)

2
]
= V [Wt−s]− (E [Wt−s])

2

= t− s+ 2Ws E [Wt −Ws]︸ ︷︷ ︸
=0

−t+ s Wt −Ws ∼ N(0, t− s) ⊥⊥ Fs

= 0

Following the Wiener properties of Proposition 11.56, linearity of the expectation, and conditional determinism
(Prop. 10.23#1).
By △,□,⃝ the process (Yt)t∈T is a F-martingale.

♣ Theorem 11.64 (Combination of Wiener martingale characterization). It actually holds that W is Wiener
if and only if:

1. W is an F-martingale
2. Yt =W 2

t − t is an F-martingale

Namely, the two previous results together characterize Wiener processes.
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Chapter Summary

Objects:
• filtrations and random times:

– filtration F a sequence of increasing σ-algebras and its properties
– stopping times, measurable random functions with respect to a filtration
– the counting process Nt =

∑
n 1[0,t] (Tn) for (Tn)n∈N arrival random times

– the end of time filtration
– the stopped filtration, for T a stopping time and F a filtration extended to T

FT =
{
H ∈ H : H ∩ {T ≤ t} ∈ Ft ∀t ∈ T

}
• martingales

– conditional expectation with respect to a filtration recap
– Et notation, ET notation
– martingale as an adapted integrable process that tends to be stable over time
– uniformly integrable martingales

(Xt)t∈T lim
b→∞

sup
t

E|Xt|1[b,∞) (|Xt|) = 0

– Wiener process, a stochastic process adapted to F and starting at 0 such that:

Es[f(Ws+t −Ws)] =

∫
f(x)

1√
2πt

e−
1
2tx

2

dx ∀s, t, ∀f ∈ E+

Results:
• filtrations and random times

– the stopped filtration is a σ-algebra and FT ⊂ F∞ ⊂ H

– it holds V ∈ FT ⇐⇒ V 1{T≤t} ∈ Ft∀t ∈ T and just the equality indicator needs to be checked
for discrete processes.

– the algebra of deterministic times extends to random stopping times (measurability grants this)
– the counting process with arrival stopping times is such that T = inf{t ≥ a : Nt = Nt−a} for
a > 0 is a stopping time.

• martingales
– all the properties of conditional expectation naturally extend to Et
– for the stopped filtration expectation, we only need to prove the projection property since
S ≤ T is more articulate

– martingale implies stationary
– Jensen’s for martingales: for f convex and f ◦X integrable the process f ◦X is a submartingale
– if Z ∈ L1 then Et[Z] is a u.i. martingale
– Wiener processes are stationary, Markovian and normal at interval differences
– W is Wiener if and only if the exponential process is a martingale
– W is Wiener if and only if both W and W 2

t − t are a martingale, but with the only if direction
we can say that a Wiener process is a martingale
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Chapter 12

More Processes & Integration

12.1 Poisson processes

♢ Observation 12.1 (Recap of Counting process). Recall Definition 11.13. (Nt)t∈T starts at N0 = 0, is right
continuous, increasing, with jumps of size 1. Using the notion of distinct arrival times 0 < T1 < T2 < . . . it can
be seen as:

Nt =

∞∑
n=1

1[0,t] (Tn)

♠ Definition 12.2 (Poisson Process Pois(c)). A counting process (Nt)t∈T is Poisson with rate c > 0 with respect
to a filtration F (Def. 11.2) when:

1. N is adapted to F (Def. 11.7)
2. increments are Poisson distributed in expectation:

Es [f(Ns+t −Ns)] =

∞∑
k=0

e−ct(ct)k

k!
f(k) ∀s, t, f ∈ E+

Where, as usual, by f ∈ E+ we mean a positive measurable function in (R,B(R)), the space where the process
takes values on.

♣ Proposition 12.3 (Definitional Properties of Pois(c)). Definition 12.2 has some direct implications. For
N ∼ Pois(c) it holds that:

1. markov property
Ns+t −Ns ⊥⊥ Fs ∀s, t

2. stationarity
(Nt)t∈T ⊥⊥ t

3. Poisson increments
Nt+s −Ns ∼ Po(ct)

Proof. Follow the approach of Proposition 11.56.

♣ Theorem 12.4 (Pois(c) characterization). For a counting process N (Def. 11.13) and a filtration F over
which it is a Poisson process we can see that:

N ∼ Pois(c) ⇐⇒ (Nt − ct)t∈T F-martingale (Def. 11.35)

Proof. ( =⇒ )(△ adaptedness) we have Nt− ct ∈ Ft∀t ∈ T since Nt ∈ Ft by the Poisson process being adapted
to the filtration (Def. 12.2#1) so adaptedness is verified.
(□ integrability) by the triangle inequality and the integrability of Nt we have:

E[|Nt − ct|] ≤ E[|Nt|] + E|ct| <∞

127



128 CHAPTER 12. MORE PROCESSES & INTEGRATION

Which follows by E [|Nt|] = E [Nt] <∞, a result of Proposition 11.14.
(⃝ martingale equality) By Proposition 12.3#3 we have Es[Nt+s −Ns] = ct so that for s < t:

Es[Nt + ct−Ns − cs] = Es[Nt −Ns]− c(t− s)

= c(t− s)− c(t− s) Prop. 12.3#3
= 0

By △,□,⃝ The process (Nt − ct)t∈T is a F-martingale.
( ⇐= ) shown in Proposition C.28.

12.2 Stochastic Integrals

♠ Definition 12.5 (Predictable process). A natural process (Fn)n∈N is predictable with respect to (Fn)n∈N when
F ∈ F0 and Fn+1 ∈ Fn ∀n, where by ∈ we mean measurable with respect to (see Def. 11.1 for context).

♢ Observation 12.6 (Interpreting integration of Example 11.46 and Observation 11.47). For (Rn)n∈N inde-
pendent and positive with E[Rn] = 1 and V [Rn] <∞ ∀n, recalling Observation 11.47 we can characterize a stock
price in equilibrium as a martingale where:

M0 = 1 Mn =M0

n∏
k=1

Rk Rn+1 =
Mn+1

Mn

Further, denote Fn+1 as the number of shares over the interval (n, n+ 1] so that:

(Mn+1 −Mn)Fn+1 := profit or loss over (n, n+ 1]

The martingale (Mn)n∈N with respect to F satisfies the martingale equality En[Mn+1 −Mn] = 0 ∀n.
If we assume further that (Fn)n∈N is predictable wrt F (Def. 12.5) letting:

• X0 =M0F0 be the initial price times number of shares
• (Xn)n∈N : ∀n Xn = X0M0 +

∑n
m=1(Mm −Mm−1)Fm

We can see this as a model for the portfolio value, as stochastic integral of (Fn)n∈N with respect to (Mn)n∈N.

♠ Definition 12.7 (Steltjes-Lebesgue integral). For (Fn)n∈N a random function and (Mn)n∈N a signed measure
with mass Mn −Mn−1 ∀n and M0 = 1 we define:

X = (Xn)n∈N : X =

∫
FdM

⇐⇒ Xn =

∫
[0,n]

FdM =M0F0 +

n∑
m=1

(Mm −Mm−1)Fm

A series of increasing in n integrals.

♡ Example 12.8 (An investment strategy). Let T be the random time to exit the market. Assume T is a
stopping time wrt (Fn)n∈N as per Definition 11.9.
Let Fn = 1[0,T ] (n) be a random indicator. Then:

Xn =

∫
[0,n]

FdM

=

∫
[0,n]

1[0,T ]dM

=

∫
1[0,n]1[0,T ]dM

=

∫
1[0,n∧T ]dM

=Mn∧T

=

{
Mn n < T

MT n ≥ T
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Namely, the simplest strategy one can think of invest everything up to time T , and sell right after. With perfectly
shared information, there is no profit or loss.
We will show in Corollary 12.10 that up to reasonable conditions this is again a martingale.

♣ Theorem 12.9 (Martingality of integral for bounded processes). For X as in Definition 12.7 with (Fn)n∈N
bounded (i.e. P[|Fn| ≤ b] = 1 for some b ∈ R) it holds that:

1. (Mn)n∈N martingale =⇒ X martingale
2. (Mn)n∈N submartingale, (Fn)n∈N positive ∀n =⇒ X submartingale

Proof. (Claim #1) recall X =
∫
FdM and proceed as follows.

(△ integral expression) for all n it holds:

Xn =

∫
[0,n]

FdM =

n∑
m=1

(Mm −Mm−1)Fm +M0F0

where {F0, . . . , Fn} ⊂ Fn by the fact that F is a filtration and F is predictable (Def. 12.5). The same holds for
{Mm}nm=0.
(□ boundedness implication) let |Fn| < b a.s. for some b ∈ R. Then:

E[|Xn|] = E

[∣∣∣∣∣M0F0 +
n∑

m=1

(Mm −Mm−1)Fm

∣∣∣∣∣
]

≤ E [|M0F0|] + E

[
n∑

m=1

|(Mm −Mm−1)Fm|

]

≤ b

E [|M0|]︸ ︷︷ ︸
<∞

+E


n∑

m=1

|Mm −Mm−1|︸ ︷︷ ︸
≤
∑

m E[|Mm|]+
∑

m E[|Mm−1|]<∞




<∞

where the last bounds follow by the fact that M is a martingale. (⃝ martingale equality) By Proposition
11.40 we only check for one time step and get:

En[Xn+1 −Xn] = En[(Mn+1 −Mn)Fn+1] construction
= Fn+1En[Mn+1 −Mn] Fn+1 ∈ Fn predictable process
= 0 (Mn)n∈N martingale

By △,□,⃝ (Xn)n∈N is a martingale.
(Claim #2) similar to #1.

Corollary 12.10 (Stopped time process martingality). Let T be a stopping time (Def. 11.9) and (Xn)n∈N with
Xn =Mn∧T as in Example 12.8. Then:

1. (Mn)n∈N martingale =⇒ X martingale
2. (Mn)n∈N submartingale =⇒ X submartingale

Notice that by the result of Example 12.8 this means that Mn∧T is a martingale/submartingale since Xn =Mn∧T
for all n ∈ N.

Proof. (Claims #1#2) same as Theorem 12.9 noting that:

Xn =

∫
[0,n]

FdM : Fn = 1[0,T ] (m) ≤ 1 ∀T

So that the process (Fn)n∈N is bounded, positive and predictable.
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♢ Observation 12.11 (From deterministic to random times). Recall the martingale equality (Def. 11.35#3):

Es[Mt −Ms] = 0 s < t
Prop. 11.39

=⇒ E [Es[Mt −Ms]] = E [Mt −Ms] = 0 s < t & E[Mt] = E[M0] ∀t

What about ES [MT −MS ] for S, T stopping times?

♡ Example 12.12 (Random times alone do not satisfy martingale equality in a symmetric random walk). Let:

S0 = 1, Sn = Sn−1 + ξn ξn ∼ Bern±1

(
1

2

)
, ξn ∈ {−1,+1} ∀n

Assign Xn = ST∧n. To see that (Sn)n∈N is a martingale, refer to Example 11.44. To see that Xn is a nonnegative

martingale, use Theorem 12.9. In particular E[Sn] = E

E0[Sn]︸ ︷︷ ︸
=E0[S0]

 = E [1] = 1∀n. Consider the random time:

T = inf {k : Sk = 0}

T is a stopping time wrt F = σ
(
(Sn)n∈N

)
(for this recover Example 11.27) or observe that:

{T ≤ t} ⊂
⋃

k≤t,k∈N
{Sk = 0} ∈ Ft

Namely, the sum being equal to zero is included in the event that at least one of the times before the sum has
reached zero which is in the increasing filtration. Clearly, ST = 0 with probability 1 since at time T the martingale
will be certainly null but:

0 = E[ST ] ̸= E[S0] = 1

12.3 Doob’s results and Martingale Convergence

♣ Proposition 12.13 (Doob’s Theorem I). Let (Mn)n∈N be a martingale, T a stopping time (Defs. 11.35,
11.9), with T bounded P[T ≤ k] = 1 for some k ∈ R. Then

E[M0] = E[MT ] = E[Mk]

Proof. Consider MT and (Xn)n∈N = (Mn∧T )n∈N like in Example 12.8. By Corollary 12.10 X is a martingale.
Moreover:

E [M0] = E [M0∧T ] 0 = 0 ∧ T
= E [Mk∧T ] martingale eq. at k
= E [MT ] P[T ≤ k] = 1

We want to show that E [MT ] = E [Mk]. For this purpose, consider (Fn)n∈N =
(
1(T,∞)(n)

)
n∈N so that F is

predictable (this is shown in the second item of Example 12.17 with V = 1) and bounded. Then by Theorem
12.9 the integral X ′ =

∫
FdM is a martingale. Additionally notice that 1(T,∞)(n) = 1− 1[0,T ](n).

By these last two facts we have that the process:

X ′
n =

∫
[0,n]

(
1− 1[0,T ]

)
dM =Mn −Mn∧T

has expectation:

E [Mn −Mn∧T ] = E [Mk −Mk∧T ] martingale equality at k
= E [M0 −M0∧T ] martingale equality at zero
= E [M0 −M0] = 0

Thus, taking the red terms and the final equality one gets:

0 = E [Mk −Mk∧T ] = E [Mk]− E [Mk∧T ] = E [Mk]− E [MT ] ⇐⇒ E [Mk] = E [MT ]

and eventually E [M0] = E [MT ] = E [Mk].
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Corollary 12.14 (Double stopping Time Doob’s Theorem I). Let (Mn)n∈N be a martingale, T a stopping time
(Defs. 11.35, 11.9), with T bounded P[T ≤ k] = 1 for some k ∈ R as before. If S ≤ T is another stopping time:

E [MS ] = E [MT ]

Proof. The boundedness of T a.s. implies the boundedness of S almost surely. An application of Proposition
12.13 for S has the same result of T . Clearly:

E [M0] = E [MT ] = E [Mk] = E [MS ]

♣ Theorem 12.15 (Doob’s decomposition). Let (Xn)n∈N be adapted to F and integrable Xn ∈ L1. The following
statements are true:

1. decomposition, with M a martingale, M0 = 0, and (An)n∈N a predictable process, A0 = 0 (Defs. 11.35,
12.5)

Xn = X0 +Mn +An ∀n ∈ N

2. the decomposition at point 1 is unique up to equivalence
3. if (Xn)n∈N is a submartingale, (An)n∈N is an increasing predictable process, if (Xn)n∈N is a supermartingale,

(An)n∈N is decreasing predictable

Proof. (Claim #1) Let M0 = A0 = 0. We define M,A via increments:

An+1 −An = En[Xn+1 −Xn] Mn+1 −Mn = (Xn+1 −Xn)− (An+1 −An) ∀n ∈ N

Then:
Xn = X0 +Mn +An ∀n ∈ N (12.1)

and M is a martingale since En[Mn+1 −Mn] = En[Xn+1 −Xn]−En[Xn+1 −Xn] = 0, with (An)n∈N predictable
since An+1 = En[Xn+1 − Xn] + An ∈ Fn by the expectation being constructed as to be measurable. The
decomposition is valid.
(Claim #3) for X a submartingale, it holds that the expectation of the difference is positive, making (An)n∈N
increasing. The reverse holds for a supermartingale.
(Claim #2) assume there is another decomposition X = X0 +M ′ +A′, it holds that:

B = A−A′ =M −M ′

is a predictable (by A) martingale (by M). With the predictability, we can measure with En also Bn+1, with the
martingality, we can use the martingale equality. Then:

Bn+1 −Bn = En[Bn+1 −Bn] = 0 ∀n ∈ N =⇒ Bn
a.s.
= 0 =⇒ A

a.s.
= A′, M

a.s.
= M ′

♢ Observation 12.16 (About Doob’s decomposition). We can see that:

Xn+1 −Xn = An+1 −An︸ ︷︷ ︸
prediction process

+ Mn+1 −Mn︸ ︷︷ ︸
innovation process

Where on the right hand side, the first process is known at n, and the second is the extra information provided
by the martingale.

♡ Example 12.17 (Some predictable processes and their integral martingales). we present four easy examples
with S ≤ T almost surely two stopping times and V ∈ FS.
(one extreme) let T be a stopping time. Then the process Fn = 1[0,T ] (n) is such that :

Fn+1 = 1[0,T ] (n+ 1) = 1{n+1≤T} = 1{T≤n}c ∈ Fn
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Since T is a stopping time. Clearly the process (Fn)n∈N is predictable.
(other extreme) Let Fn = V 1(S,∞) (n) for S ≤ T two stopping times, and V ∈ FS. Then:

V ∈ FS =⇒ Fn+1 = V 1(S,∞) (n+ 1) = V 1{n+1≥S} = V 1{S≤n}c ∈ Fn

Where we applied Theorem 11.23#1. The process is predictable.
(two extremes) for Fn = 1(S,T ] (n) = 1[S,∞) (n) · 1[0,T ) (n) the product of two predictable processes, the process
is predictable.
(two extremes + V ) let Fn = V 1(S,T ] (n), the result is trivial by the previous ones.
For all three cases, we have a stochastic integral:

Xn =

∫
[0,n]

FdM

Where (Xn)n∈N is a martingale by Theorem 12.9.

♣ Theorem 12.18 (Doob’s Theorem II, fully general). For a process (Mn)n∈N adapted to (Fn)n∈N the following
are equivalent:

1. (Mn)n∈N is a martingale
2. for bounded stopping times S ≤ T MS and MT are integrable and ES [MT −MS ] = 0

3. for bounded stopping times S ≤ T MS and MT are integrable and E[MT −MS ] = 0

Proof. (△ strategy) denoting the triple equivalence as 1 2 3 we prove 1 =⇒ 2 , 2 =⇒ 3 , 3 =⇒
1 . We also have in hand 1 =⇒ 3 which is Corollary 12.14.

( 1 =⇒ 2 ) by hypothesis M is a martingale and S(ω) ≤ T (ω) ≤ n for non negligible ω ∈ Ω and n ∈ N.
Let V ∈ FS be bounded and positive, the process F = 1(S,T ] is predictable as shown in Example 12.17. The
stochastic integral is:

Xn =

∫
[0,n]

FdM =

∫
[0,n]

V 1(S,T ]dM = V · (MT −MS) +X0 =⇒ Xn −X0 = V · (MT −MS)

By Theorem 12.9#1 or better Corollary 12.10, since V is bounded so that F is predictable bounded, the process
(Xn)n∈N is a martingale. We show integrability of MS and MT by choosing the particular cases:

• V = 1, S = 0 =⇒ MT ∈ L1

• V = 1, T = n =⇒ MS ∈ L1

Eventually:

E [V ES [MT −MS ]] = E [V (MT −MS)] expectation defining property, Def. 10.12#2
= E [Xn −X0] above result
= 0 martingale equality

By the arbitrariness of V ∈ FS positive and bounded, we have as result that ES [MT −MS ] = 0.
( 2 =⇒ 3 ) taking expectations:

E

ES [MT −MS ]︸ ︷︷ ︸
=0

 = E [MT −MS ] = 0

( 3 =⇒ 1 ) for T = n, Mn is clearly integrable by MT begin integrable and n = T as choice. Adaptedness
holds by hypothesis, and the martingale equality reads:

Em[Mn −Mm] = 0∀m,n ∈ N, n ≥ m ⇐⇒ E [1HEm[Mn −Mm]] = 0∀m,n ∈ N, n ≥ m H ∈ Fm

For this purpose, we fix m,n ∈ N, H and for ω ∈ Ω we let:

S(ω) = m, T (ω) = n1H(ω) +m1Ω\H(ω)
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Which makes sense since by fixing ω random times have become deterministic. S is a fixed time and T ≥ S is a
stopping time. By the fact that H ∈ FS , T ≥ S the time T is foretold at S = m. It clearly holds S ≤ T ≤ n.
Eventually:

MT −MS = 1H · (Mn −Mm)

by construction. The hypothesis of 3 implies the claim of 1 .

♢ Observation 12.19 (Why Theorem 12.18 does not work in Example 12.12). The random time T maps to R
and fails to be bounded in probability, i.e. P[T > k] > 0 ∀k.

♢ Observation 12.20 (Recap about concepts needed). Recall the min max convention and the useful decom-
positions:

x+ = max{x, 0} = x ∨ 0

x− = −min{x, 0} = −(x ∧ 0)

So that:
x = x+ − x− |x| = x+ + x− = 2x+ − x

We will also make use of:

• Fatou’s Lemma (Lem. A.49)

(Xn)n∈N nonnegative =⇒ E[lim inf
n
Xn] ≤ lim inf

n
E[Xn]

• Borel Cantelli Lemma 1 (Thm. 9.6)

(Hn)n∈N

∑
P[Hn] <∞ =⇒ P[lim sup

n
Hn] = P[Hn i.o.] = 0

• Borel Cantelli Lemma 1 almost sure version (Ex. 9.9)

(Xn)n∈N , X
∑
n≥1

P[|Xn −X| > ϵ] <∞ ∀ϵ > 0 =⇒ Xn
a.s.→ X

♠ Definition 12.21 (Upcrossing, downcrossing and counter). Let (Mn)n∈N be adapted to (Fn)n∈N (Def. 11.7),
a < b and T0 = −1 for convenience.
For all natural k ≥ 1 define:

Sk := inf{n ≥ Tk−1 :Mn ≤ a}
Tk := inf{n ≥ Sk :Mn ≥ b}

By the adaptedness of (Mn)n∈N we can say that {S1, T1, S2, T2, . . .} is an increasing sequence of stopping times
(Def. 11.9).
Sk can be seen as the kth downcrossing of the interval (a, b), while Tk is the kth upcrossing of the interval (a, b).
We then define the number of upcrossings of (a, b) as:

Un(a, b) =

∞∑
k=1

1[0,n] (Tk)

♡ Example 12.22 (Visualizing the definition). Consider Figure 12.1. This could describe a buy/sell strategy
for stocks with price (Mn)n∈N.

♠ Definition 12.23 (Fn formalism). The number of buy/sell cycles in [0, n] is exactly Un(a, b). In this context
we let:

• Fn be such that: {
Fn =

∑∞
n=1 1(Sk,Tk] (n)

F0 = 0
=

{
1 if ∃k : Sk < n ≤ Tk

0 else

So that F represents the number of stocks owned at (n, n+ 1]
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Figure 12.1: Upcrossings of an imaginary stock price

• we already saw that the value of the portfolio is formalized as:{
Xn =

∫
[0,n]

FdM

X0 = 0

With this context, the profit is in general:

Xn −X0 ≥ (b− a)Un(a, b)

where we put ≥ instead of = since it could be that the price at the end is less than the price at the start! See the
plot of Example 12.22 for reference.

♣ Proposition 12.24 (Upcrossing inequality).

(Mn)n∈N submartingale =⇒ (b− a)E[Un(a, b)] ≤ E[(Mn − a)+ − (M0 − a)+]

Proof. The upcrossings of (a, b) by (Mn)n∈N are equivalent to the upcrossing of (0, b−a) by ((Mn−a)+)n∈N. With
this new formulation using the fact that max is convex and Jensen’s equality for martingales with f(x) = (x−a)+
(Cor. 11.41):

((Mn − a)+)n∈N submartingale =⇒ E
[
(Mn − a)+ − (Mm − a)+

]
≥ 0 ∀n ≥ m

Without loss of generality assume a = 0 so that Mn ≥ 0∀n. We eventually want to show:

bE [Un(0, b)] ≤ E [Mn −M0]

(△ first result) Use for this purpose (Fn)n∈N from Definition 12.23 and Xn =
∫
[0,n]

FdM . Then:

MSk
= 0∀k =⇒ bUn(0, b) ≤ Xn −X0

Since we are always priced more. We now want to show:

E [Xn −X0] ≤ E [Mn −M0]

(□ second result) Notice further that F is defined as:

Fn =
∑
n

1(Sk,Tk] (n)
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which is predictable by being a sum of predictable processes. Additionally, it is positive and bounded by 1 since
we only keep one share at a time. Then, by Theorem 12.9#2 X = (Xn)n∈N is a submartingale.
(⃝ conclusion) it holds:

0 ≤ Ek {Xk+1 −Xk} = Ek {Fk+1(Mk+1 −Mk)}
= Fk+1Ek {Mk+1 −Mk} Fk+1 ∈ Fk predictable
≤ Ek {Mk+1 −Mk} Fk+1 ≤ 1 bounded

giving as result:∑
k

E [Ek [Xk+1 −Xk]] ≤
∑
k

E [Ek [Mk+1 −Mk]]∑
k

E [Xk+1 −Xk] ≤
∑
k

E [Mk+1 −Mk] unconditioning Prop. 10.18

E[Xn −X0] ≤ E [Mn −M0] telescopic sum

Where by the result of △ we get the claim since bE [Un(a, b)] ≤ E [Xn −X0] ≤ E [Mn −M0].

♢ Observation 12.25 (About the Proposition). two conclusions are drawn

• We derive that the upcrossings are controlled by the positive moments of the process.
• The integrability of the submartingale gives a bound on Un(a, b). We use this to investigate the pathwise

convergence of Mn(ω) ∀ω ∈ Ω, n ∈ N

Lemma 12.26 (Finiteness of crossings for pathwise convergence idea). We aim to prove pathwise convergence
up to having finite Un(a, b) as n→ ∞ diverges.
Recall that a series (mn)n∈N on the real line mn ∈ R is such that:

∄ lim
n→∞

mn ⇐⇒ lim inf
n
mn < lim sup

n
mn

An example is mn = sin
(
π
4n
)

which satisfies lim infnmn = −1 ̸= lim supnmn = 1.
A finite number of upcrossings should avoid this incosistency of the path.

♣ Theorem 12.27 (Martingale Convergence Theorem, MCT). For a submartingale (Xn)n∈N (Def. 11.36):

sup
n

E[X+
n ] <∞ =⇒ Xn

a.s.→ X∞, X∞ ∈ L1

So that we can establish an almost sure limiting distribution.

Proof. (△ strategy) Reason pathwise for ω ∈ Ω : Xn(ω) is not convergent. We then want to show:

P [{ω ∈ Ω : Xn(ω) not conv}] = 0 ⇐⇒ Xn
a.s.→ X∞

(□ upcrossings diverge) For such ω the absence of a convergence indicates that:

lim inf
n
Xn(ω) ≤ lim sup

n
Xn(ω) ⇐⇒ ∃a < b : lim

n→∞
[Un(a, b)](ω) = ∞ for ω

Where we could update the condition of △ with :

P

[⋃
a<b

{Un(a, b) = ∞}

]
= 0

⋃
a<b

{
ω ∈ Ω : lim

n→∞
Un(a, b)(ω) = ∞

}
:=
⋃
a<b

{Un(a, b) = ∞}
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(⃝ density and De Morgan) While a < b is uncountable, we could equivalently restate the set via a sequence
of operations:

P

[⋃
a<b

{Un(a, b) = ∞}

]
= P

 ⋃
a<b,a,b∈Q

{Un(a, b) = ∞}

 = 0 dense rationals Prop. 18.15

⇐⇒ 1 = P

 ⋂
a<b,a,b∈Q

{Un(a, b) <∞}

 De Morgan’s Laws

= P
[
lim
n→∞

Un(a, b) <∞ ∀a, b ∈ Q
]

⇐⇒ E
[
lim
n→∞

Un(a, b)
]
<∞

Now by noticing that (Un(a, b))n∈N is nondecreasing in n we apply:

(b− a)E
[
lim
n→∞

Un(a, b)
]
= (b− a) lim

n→∞
E [Un(a, b)] Monotone convergence (Thm. 4.21)

≤ sup
n

E
[
(Xn − a)+ − (X0 − a)+)

]
Upcrossing ineq. Prop. 12.24

≤ sup
n

E
[
(Xn − a)+

]
(X0 − a)+ ≥ 0

≤ E
[
(Xn)

+
]
+ |a| (Xn − a)+ ≤ (Xn)

+ + |a|
<∞ hypothesis

(♠ integrability) e have integrability by:

E [|X∞|] = E
[
lim inf

n
|Xn|

]
lim inf = lim sup

≤ lim inf
n

E [|Xn|] Fatou’s Lem. A.49

≤ lim sup
n

E [|Xn|] lim inf ≤ lim sup in general

< sup
n

E [|Xn|] lim sup < sup

= sup
n

E
[
2(Xn)

+ −Xn

]
|Xn| = 2(Xn)

+ −Xn

≤ sup
n

E
[
2(Xn)

+ −X0

]
(Xn)n∈N is submartingale and submart. ineq.

= 2 sup
n

{
E
[
(Xn)

+
]}

− E [X0]

<∞ hypothesis

Which proves X∞ ∈ L1.

Corollary 12.28 (An equivalent sufficient condition). We can restate the problem in terms of a more useful
condition noting that: {

supn E[X+
n ] <∞

X+
n ∈ L1 ∀n

⇐⇒

{
supn E[|Xn|] <∞
|Xn| ∈ L1 ∀n

Namely, an L1 bound on the martingale, not L1 convergence!

Proof. We retake what we showed in the previous and notice that using |Xn| = 2(Xn)
+ −Xn ≤ 2(Xn)

+ −X0:

E
[
X+
n

]
≤ E [|Xn|] ≤ 2E

[
(Xn)

+
]
− E [X0]

So that the two values bound each other whenever E [X0] ∈ R.

♢ Observation 12.29 (Interpreting the Theorem and the Corollary). Recall that by Jensen’s for martingales
(Cor. 11.41):

(Xn)n∈N martingale =⇒
(
X+
n

)
n∈N submartingale

And that the expectation E[X+
n ] is increasing in n.



12.3. DOOB’S RESULTS AND MARTINGALE CONVERGENCE 137

Corollary 12.30 (Special cases). We recognize a number of familiar situations in which the requirements are
easily verified:

1. (Xn)n∈N non positive submartingale
2. (Xn)n∈N non negative supermartingale
3. (Xn)n∈N non positive or non negative martingale
4. (Xn)n∈N bounded above or below by an integrable random variable

Proof. all cases satisfy the requirement on the supremum.

♡ Example 12.31 (Branching process, Example 11.54 continued). In the previous example, we showed that(
Zn
µn

)
n∈N

is a martingale with µ = E
[
ξ
(1)
1

]
. We also have that:

En
[
Zn+1

µn+1

]
=
Zn
µn

=⇒ En[Zn+1] = µZn =


< Zn, µ < 1 supermartingale

= Zn, µ = 1 martingale

> Zn, µ > 1 submartingale

Here, using the MCT (Thm. 12.27) we want to show this as for Corollary 12.30. For this purpose, let µ =

1, p1 < 1. Then (Zn)n∈N is a positive martingale an by the MCT Corollary:

∃Z∞ = lim
n→∞

Zn =⇒ Zn = Z∞ eventually Def. 9.3

(△ aim)In this context, we want to show that:

Z∞ = 0 ⇐⇒ P[Zn = k,∀n ≥ N ] = 0 ∀k ∈ N, N sufficiently large

(□ solution) compute the following:

P[Zn = k,∀n > N ] = P[Zn = k, Zn+1 = k, . . .] stable limit

= P

[
k∑
i=1

ξ
(m+N)
i = k m = 1, 2, . . . , Zn, Zn = k

]
hypothesis

≤ P

[
k∑
i=1

ξ
(m+N)
i = k m = 1, 2, . . .

]
P[A ∩B] ≤ P[A]

=

∞∏
m=1

P

[
k∑
i=1

ξ
(m+N)
i = k

]
independence

m→∞→ lim
m→∞

(
P

[
k∑
i=1

ξ
(1)
1 = k

])m
indentically distr.

By △ we need it to be null, this is the same as:

⇐⇒ P

[
k∑
i=1

ξ
(1)
1 = k

]
< 1

from which we get:

P

[
k∑
i=1

ξ
(1)
i = k

]
≤ P

[
k∑
i=1

ξ
(1)
1 > 0

]

= 1− P

[
k∑
i=1

ξ
(1)
1 = 0

]
= 1− pk0 iid

< 1 µ = 1, p1 < 1 =⇒ p0 > 0
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By the same arguments for µ < 1 we could show that (Zn)n∈N is a positive supermartingale and that by the
Corollary we have a limit which is almost sure. We call it Z∞. Then, by similar arguments, one can show for
k > 0 and N > 0 arbitrary that:

P[Zn = k, ∀n ≥ N ] = 0

since µ < 1 =⇒ p0 > 0. We then conclude Z∞
a.s.
= 0

♢ Observation 12.32 (Bounds on random variables norms). Recognize that:

• for a martingale, we require integrablity E[|Xn|] <∞, according to Definition 11.35#2

• for almost sure convergence of a martingale, we require supn E[|Xn|] < ∞, according to the MCT (Thm.
12.27, Cor. 12.28)

• For a uniformly integrable martingale, we require an almost sure L1 bound of the p norm (Def. 11.48

How are these linked together?

♡ Example 12.33 (Symmetric random walk (Example 12.12 ctd.)). We show that for a symmetric RW the
MCT can be used, but it is not L1 convergent, namely a.s.→ ≠⇒ L1 at the same limit.
Recover the previous setting, where T = inf{m ∈ N : Sn = 0}. We have that E [Xi] = 0∀i and S = (Sn)n∈N
is a martingale with E [Sn] = 1∀n. The stopped martingale (Sn∧T )n∈N is such that Sn∧T ≥ 0 and by the MCT
(Thm. 12.27, Cor. 12.30) there exists an almost sure limiting process S∞. Now obviously Sn∧T

a.s.→ S∞ = 0

since convergence to k > 0 is impossible as it would mean that Sn = k > 0 =⇒ Sn+1 ∈ {k − 1, k + 1}, i.e. no
convergence. However, there is no L1 convergence. Indeed by Proposition 12.13:

E [Sn∧T ] = E [S0∧T ] = E [S0] = 1

but:
E [|Sn∧T − S∞|] = E [|Sn∧T − 0|] = E [|Sn∧T |] = E [Sn∧T ] = 1 ̸= 0 ∀n ∈ N

Lemma 12.34 (A quick Lemma for L1 convergence). If (Xn)n∈N
L1→ X then:

lim
n→∞

E [XnY ] = E [XY ] ∀Y bounded a.s.

Proof. By hypothesis |Y | ≤ b almost surely, so that:

|E [XnY ]− E [XY ] | ≤ E [|XnY −XY |] ≤ bE [Xn −X]
n→∞→ 0

♣ Theorem 12.35 (Uniform Integrability vs a.s. L1 characterization). For a martingale (Mn)n∈N it holds:

1. Same convergence by uniformity{
Mn

a.s.→ M∞

Mn
L1→M∞

⇐⇒ (Mn)n∈N uniformly integrable

2. Martingale equality extends at infinity as a martingale X if Mn = En[Z] for Z ∈ L1:

Mn = En[Z], Z ∈ L1 =⇒ M∞ = lim
n→∞

Mn : X = (Xn)n∈N

Proof. (Claim #1)( ⇐= ) Let M = (Mn)n∈N be a u.i. martingale.
(△ MCT application) Assign:

k(b) := sup
n

E
[
|Mn|1(b,∞) (|Mn|)

]
→ 0 as b→ ∞

Notice that:
E [|Mn|] = E

[
|Mn|1(−∞,b] (|Mn|)

]
+ E

[
|Mn|1(b,∞) (|Mn|)

]
≤ b+ k(b)
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So that for b large enough it holds k(b) ≤ 1 and (Mn)n∈N is L1 bounded. By the MCT (Thm. 12.27) ∃M∞

integrable with Mn
a.s.→ M∞.

(□ norm convergence) we now wts that Mn
L1→M∞ this is equivalent to:

∀ϵ > 0∃N ∈ N : ∀n ≥ N E [|Mn −M∞] < 2ϵ

Fix now ϵ > 0 and let Hn := {|Mn −M∞| > ϵ}. It holds:

E [|Mn −M∞|] ≤ ϵ+ E [|Mn −M∞|1Hn
]︸ ︷︷ ︸

>ϵ

(⃝ final computation) For X∞ integrable and X = (Xn)n∈N u.i. it holds that (Xn −X∞) is u.i.. Let k∗(b)
be as k(b). Notice that:

|Mn −M∞|1H ≤ b1H + |Mn −M∞|1{|Mn−M∞|>b} ∀H,∀b

Then:
E [|Mn −M∞|1Hn

] ≤ bP[Hn] + k∗(b) k∗(b)
b→∞→ 0 =⇒ ∀ϵ∃b <∞ : k∗(b) ≤ ϵ

2

So if we set δ =
ϵ

2b
,P[Hn] ≤ δ then:

E [|Mn −M∞|1Hn ] ≤ ϵ (12.2)

The result of □ and Equation 12.2 imply that:

∀ϵ > 0∃δ > 0 : P[Hn] < δ =⇒ E [|Mn −M∞|] ≤ 2ϵ

And since P[Hn] = P[|Mn −M∞| > ϵ] → 0 ∀ϵ (i.e. almost sure implies conv. in probability, Prop. 9.14) for n
sufficiently large we obtain Mn

L1→M∞.
( =⇒ ) [Çin11](III.4.6).
(Claim #2) It holds that the martingale is uniformly integrable by Proposition 11.50, moreover, the condition
we want to prove can be reformulated :

En[M∞] =Mn ⇐⇒ En[M∞ −Mn] = 0∀n

Fix m ∈ N, H ∈ Fm. Then ∀n ≥ m the martingale equality implies:

E [1H(Mn −Mm)] = E [1HEm[Mn −Mm]] unconditioning and H ∈ Fn

= 0 martingale equality

Since by #1 Mn −Mm
L1→M∞ −Mn as n→ ∞ we also have that:

E [1H(M∞ −Mm)] = lim
n→∞

E [1H(Xn −Xm)] = 0

So that Xn
L1→ X is such that limn E [XnY ] = E [XY ] for all Y bounded by Lemma 12.34. By the arbitrariness

of H ∈ Fn, the claim is proved.

♡ Example 12.36 (Branching process, (Ex. 12.31 ctd.)). We know µ = 1, p1 < 1 are such that (Zn)n∈N
a.s.→

Z∞ = 0 but not such that Zn
L1→ Z∞. Yet we also argued that Zn ̸= En[Z∞] = 0 since Zn > 0∀n with positive

probability. So, we cannot conclude that En[M∞] =Mn.

♢ Observation 12.37 (Building L1 convergent martingales). Build the following chain:

Zn ∈ L1 ∀n =⇒
Prop. 11.50

(Mn)n∈N :Mn = E[Zn] uniformly integrable martingale ⇐⇒
Thm. 12.35

Mn
a.s.→
L1

M∞

What is the limiting filtration? We can use the extended filtration notion from Definition 11.17:

F∞ =
∨
n

Fn
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Corollary 12.38 (Appying Theorem 12.35 to characterize Observation 12.37). Conclude that:

1. ∀Z : E[|Z|] <∞ it holds En[Z]
a.s.→
L1

E∞[Z] = E[Z|F∞]

2. Z ∈ F∞ =⇒ En[Z]
a.s.→
L1

Z

So that Z is eventually revealed.

Proof. (Claim #1) by Proposition 11.50 we have a u.i. martingale Mn = En[Z] = E[M∞] and by Theorem
12.35#2 for all n almost surely and in L1. Then:

lim
n→∞

Mn = lim
n→∞

En[Z]

= lim
n→∞

En[M∞] ∈ F∞ by construction

= E∞[M∞]

=M∞

= E∞[Z] a.s. L1

(Claim #2) if Z ∈ F∞ then we can remove the expectation:

Mn = En[Z]
a.s.→
L1

E∞[Z] = Z

♡ Example 12.39 (Bayesian mean estimation, Corollary 12.38 (Ex. 11.52 ctd.)). Recall that Zi are iid standard
normals and θ ∼ N(µ0, σ

2
0) is independent from Zi, integrable and finite.

For Yi = θ + Zi =⇒ Yi|θ
iid∼ N(θ, 1) we have that for observables Y = {Yi}ni=1:

πn(A) = P[θ ∈ A|Y = y] F = σ({Y})

Then θ̂n = En[θ] = E[θ|Fn] is a uniformly integrable martingale by Proposition 11.50.
Further, by Corollary 12.38#1 we conclude:

θ̂n
a.s.→
L1

E∞[θ] = E[θ|F∞]

Moreover, if the condition θ ∈ F∞ holds, we apply Corollary 12.38#2 and further state that:

θ ∈ F∞ =⇒ θ̂n
a.s.→
L1

θ

We prove a sufficient condition for this to be true in Proposition 12.40.

♣ Proposition 12.40 (Frequentist validation of Bayesian mean estimator). This Proposition is also useful for
context in Theorem 8.7.
Recall the setting of Example 12.39

identifiability : Pθ(A) = P[Y ∈ A|θ] : Pθ(·) ̸= Pθ′(·)∀θ ̸= θ′ =⇒ θ ∈ F∞

In other words, identifiability is a sufficient condition for the true value to be revealed at the end of time.

Proof. Consider θ ∈ F∞. This holds if and only if:

∃h measurable : h : R∞ → Θ, h(Y1, . . .) = θ

If Yn
iid∼ pθ then by the SLLN we could obtain Pθ and subsequently θ by the identifiability principle. What is

missing is measurability. Using instead a consistent estimator Y n we would get:

P∞
θ

(
|Y n − θ| > ϵ

) n→∞→ 0 ∀ϵ > 0
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Where P∞
θ =×n

Pnθ the infinite product of the probability laws. Then:

lim
n→∞

P[|Y n − θ| > ϵ] = lim
n→∞

∫
P∞
θ (|Yn − θ| > ϵ)︸ ︷︷ ︸

≤1

π(dθ)

=

∫
lim
n→∞

P∞
θ (|Yn − θ| > ϵ)︸ ︷︷ ︸

→0 as n→∞

π(dθ) dominated conv. Thm. 4.24

= 0

Which implies that Y n
P→ θ. Then, by [Çin11](Thm. III.3.3-(b)) there exists a subsequence (n(k))k∈N going to

∞ such that Y n(k)
a.s.→ θ in P. By the fact that Y n(k) ∈ Fn(k) ⊂ F∞ we have that θ is expressible as the limit of

functions which are measurable wrt F∞. eventually, θ ∈ F∞ and ∃h : R∞ → Θ such that h(Y1, Y2, . . .) = θ.

Corollary 12.41 (Frequentist perspective validation). ∀θ0 in almost sure sets of π(·):

Yi
iid∼ Pθ0 = P[Yi ∈ ·|θ0] =⇒ θ̂n → θ0 in P∞

θ0 a.s.

♣ Theorem 12.42 (Levy’s 0-1 law).

A ∈ F∞ =⇒ En[1A]
a.s.→ 1A

Proof. For any A, 1A is bounded and such that 1A ∼ Bern(P[A]). Then 1A is integrable, and its integral is, by
Theorem 12.35 and Corollary 12.38#2:

En[1A]
a.s.→
L1

E∞[1A] = 1A

♢ Observation 12.43 (Uniform integrability and martingales summary). We recognize the main results of this
Chapter and the previous ones.

• Z ∈ L1 integrable =⇒ Xt = Et[Z] is uniformly integrable (Prop. 11.50)
• by the MCT a uniformly integrable martingale has a limit X∞ (Thm. 12.27)
• contrarily, for a characterization we need also L1 convergence (Thm. 12.35#1), and can extend the mar-

tingale equality at ∞ if it is the expectation of an integrable random variable (Thm. 12.35#2)
• If the value of Z is revealed at the end of time Z ∈ F∞ then the martingale converges to the actual value

(Cor. 12.38#2)

♡ Example 12.44 (Branching Process, Ex. 12.36 ctd.). Before we had µ < 1 or µ = 1 and p1 < 1 so that
Zn

a.s.→ 0.
(△ aim) The assumptions now become p0 ∈ (0, 1) =⇒ µ < 1 and we want to show that:

Zn
a.s.→ 0 or Zn

a.s.→ ∞

Namely, if there is no extinction, then the population explodes. Another possible formulation is:

P
[
lim
n→∞

Zn ∈ {0,∞}
]
= 1

(□ characterizing extinction) we have:{
lim
n→∞

Zn = 0
}
= {Zn = 0 ∀n sufficiently large}

while D := {Zn = 0 for some n} =
⋃
n{Zn = 0}. Then exctinction is characterized by:

D =
⋃
n

{Zn = 0} ∈ F∞

By the Lévy 0-1 law (Thm. 12.42) this would mean that:

En[1D] = P[D|Fn]
a.s.→ 1D
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(⃝ characterizing explosion) we aim to see if Dc = {Zn > x i.o.} for any x ∈ R implies that Zn → ∞
necessarily.
(♢ solution) it holds:

P[D|Fn] = Pn[D]

= Pn (D ∩ {Zn ≤ x}) + Pn (D ∩ {Zn > x})
≥ Pn (D ∩ {Zn ≤ x})
≥ Pn (Zn+1 = 0, Zn ≤ x) D ⊃ {Zn+1 = 0}

=

x∑
k=0

Pn (Zn+1 = 0, Zn = k)

=

x∑
k=0

p01{Zn=k} iid generations

= px0

x∑
k=0

1{Zn=k}

= px01{Zn≤x} p0 ∈ (0, 1)

In this setting, we recognize that to have no extinction:

P[D|Fn] = px01{Zn≤x}
a.s.→ 0

p0∈(0,1)⇐⇒ 1{Zn≤x}
a.s.→ 0

⇐⇒ {Zn ≥ x, ∀x ∈ R, i.o} a.s.→ 1

⇐⇒ Dc a.s.→ 1

On the contrary, on Dc, the population explodes, namely Zn
a.s.→ ∞.

12.4 Exercise Session

The following examples are instructive and allow to apply the concepts shown in Chapters 11 and 12.

♡ Example 12.45 (Occupancy problem). Consider n independent bins and m balls. We are interested in the
number of empty bins, denoted as Z.

(△ setting) We set:

Ci := bin chosen at ith ball : P[Ci = j] =
1

n
j = 1, . . . , n

Which are iid random variables.

(□ Azuma inequality by martingales) let (Fn)n∈N = σ({Ci}mi=1) and Zt := Et[Z]. In this setting, Zt is the
estimate of the number of empty bins at the end having observed t throws.
Using Proposition 11.50 we have:

Z ∈ [0, n] bounded =⇒ (Zn)n∈N uniformly integrable

Then set Z0 = E0[Z] = µ = by the martingale equality (Def. 11.35#3).
Notice that Z ∈ Fm =⇒ Zt = Z∀t ≥ m, meaning that after having thrown all the balls (m throws), Z belongs
to the σ-algebra. This is rather intuitive.

(⃝ Azuma inequality applied) We have that:

□ =⇒ P[|Z − µ| > δµ] = P[|Zm − Z0| > δµ]
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And using Azuma Inequality (Thm. 12.49), by |Zt+1 − Zt| ≤ 1 we set c = 1 and get that:

=⇒ P
[
|Zt − Z0| > λ

√
t
]
≤ 2e−

λ2

2 : c = 1

With

λ
√
t = δµ =⇒ λ =

δµ

c
√
m

=⇒ P[|Z − µ| > δµ] ≤ 2exp

{
−−δ2µ2

2m

}
c = 1 (12.3)

(♢ finding µ) letting Xj := # balls in j ∈ {1, . . . , n} we get:

Z =

n∑
j=1

1{Xj = 0} : X1, . . . , Xn ∼ Multinom

(
m,

(
1

n
, . . . ,

1

n

))

Xj ∼ Binom

(
m,

1

n

)
So that:

E[Z] = Z0 = µ =
∑

E [1{Xj = 0}] linearity of integral

=
∑

P({Xj = 0})

= nP[X1 = 0] iid assumption

= n

(
1− 1

n

)m
= np p :=

(
1− 1

n

)m
And Equation 12.3 in □ becomes:

P[|Z − µ| > δµ] ≤ 2exp

{
−1

2

δ2n2p2

m

}
= exp

{
−1

2
δ2np2

}
if n = m

Notice also that as m = n→ ∞ we also have that p→ e−1

(▽ informal Chernoff’s bound) ignoring the dependency let δ ∈ (0, 1), c > 0, µ = np and derive a much
more restrictive bound on the probability by Theorem 7.25:

P[|Z − µ| > δµ] ≤ 2e−
1
2 cnpδ

2

♡ Example 12.46 (Averages). We show that the average process needs a specific condition to be a martingale,
as discussed earlier.
Assume a discrete process (Xn)n∈N is adapted to (Fn)n∈N and is integrable. Then let:

Xn =
1

n

n∑
Xi assume En[Xn+1] = Xn

(△ aim) we want to show that
(
Xn

)
n∈N an F-martingale according to Definition 11.35.

(□ adaptedness) as Xn = 1
n

∑n
Xi : Xi ∈ Fn ∀i ≤ n adapteness is trivial.
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(⃝ integrability) Notice that E[|Xn|] ≤ 1
n

∑
E[|Xi|] <∞, by trivial application of linearity,Jensen’s inequality

and the hypothesis of integrability.

(♢ martingale equality) we proceed by manipulation:

En
[
Xn+1 −Xn

]
=

1

n(n+ 1)
En

[
n

(
n+1∑

Xi

)
− (n+ 1)

(
n∑
Xi

)]

=
1

n(n+ 1)
En

[
n

(
n+1∑

Xi

)
− n

(
n∑
Xi

)
−

(
n∑
Xi

)]

=
1

n(n+ 1)
En

[
nXn+1 −

(
n∑
Xi

)]

=
1

n(n+ 1)
En

[
n

∑
Xi

n
−

(
n∑
Xi

)]
by hypothesis

= 0

And the equality holds. By □,⃝,♢ =⇒ △ claim is verified.
Notice however that Xn ̸= 0 a.s. since Xn+1 ⊥⊥ Fn so that:

E[Xn+1] = Xn = 0 ⇐⇒ Xi = 0 ∀i

♡ Example 12.47 (Poisson Process). Let N be a counting process (Def. 11.13) such that Nt =
∑∞
k=0 1[0,t] (Tk)

is adapted to F (Def. 11.7).

(△ aim) we want to show that:

N ∼ Pois(c) Def. 12.2 =⇒ Mt = exp{−rNt + ct− cte−r} F-martingale ∀r ∈ R+ Def. 11.35

The relation is actually ⇐⇒ but we only show one side.

(□ Laplace approach) recall that by Definition 6.11 for a Poisson random variable we have that:

X ∼ Po(λ) ⇐⇒ P̂X(r) = E[e−rX ] = exp{−λ(1− e−r)}

From this simple fact we could show that for any time point the martingale equality holds by noticing that from
Definition 12.2 we have Nt ∼ Po(ct) and Nt −Ns|Fs ∼ Po(c(t − s)) by Proposition 12.3#3. This allows us to
say that the Laplace transform of Nt −Ns is:

Es [exp {−r(Nt −Ns)}] = exp
{
−c(t− s)(1− e−r)

}
(12.4)

And we could instead check that:

Es
[
Mt

Ms

]
= Es

[
exp{−r(Nt −Ns + c(t− s)(1− e−r)}

]
= Es [exp{−r(Nt −Ns}] exp{c(t− s)(1− e−r)}
= exp{−c(t− s)(1− e−r)}exp{c(t− s)(1− e−r)} Eqn. 12.4

= 1

(▽ adaptedness and integrability) we have:

Mt = exp{−r Nt︸︷︷︸
∈Ft

+c t︸︷︷︸
∈Ft

− cte−r︸ ︷︷ ︸
∈Ft

} ∈ Ft ∀t
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Figure 12.2: A visualization of (At)t∈T

Which proves adaptedness. Concerning integrability:

E[|Mt|] = E[Mt] = ectexp
{
−cte−r

}
E[e−rNt ]

= ectexp
{
−cte−r

}
P̂X(r)

= ectexp
{
−cte−r

}
exp{−ct(1− e−r)} by Xt ∼ Po(ct)

= 1 <∞

♡ Example 12.48 (Counting process: age perspective). We propose a different view on the counting process
(Def. 11.13).

(△ setting) let 0 < T1 < T2 < . . . be such that limn→∞ Tn = +∞ and:

Nt =

∞∑
n=1

1[0,t] (Tn) F = σ((Nt)t∈T)

See Nt as the number of replacements of some object. Then, the duration of the kth object can be formalized as:

At(ω) := t− Tk(ω) if Tk(ω) ≤ t ≤ Tk+1(ω)

Where the map t→ At is:

• strictly increasing in each interval
• right continuous at each jump

See Figure 12.2 for an intuition. We can further define for a > 0:

T := inf{t ≥ 0 : At ≥ a}

As the first time the age of a replacement is at least a.

(□ A is adapted) if t < a =⇒ At = ∅ ∈ Ft∀t and the statement is trivial.
Else consider:

{At ≥ a} ∈ Ft ⇐⇒ At ∈ Ft

⇐⇒ {t− Tk ≥ a} = {Tk < t < Tk+1} ∩ {At ≥ a}
= {t < Tk+1}︸ ︷︷ ︸

Ft

∩{t− Tk ≤ a}︸ ︷︷ ︸
Ft−a⊂Ft

So that by closedness under countable intersections (Lem. 1.7):

{At ≥ a} =
⋃
k

({Tk < t < Tk+1} ∩ {At ≥ a}) ∈ Ft ∀t
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(⃝ equivalence to counting) we aim to show that:

inf{t ≥ 0 : Nt = Nt−a} = inf{t ≥ 0 : At ≥ a}

The time above a is the union of disjoint [·, ·) intervals such that Tk+1 − Tk ≥ a by construction, implying that:

{t ≥ 0 : At ≥ a} =
⋃

k:Tk+1−Tk≥a

[Tk + a, Tk+1)

which infimized:

=⇒ inf{t ≥ 0 : At ≥ a} = min
k

{Tk + a : Tk+1 − Tk ≥ a}

⇐⇒ {T = Tk + a} = {T1 − T0 < a, . . . , Tk − Tk−1 < a} ∩ {Tk+1 > Tk + a}

(♢ T is a stopping time) we eventually show that T is again a stopping time. Differently from Example
11.27 with respect to G = σ((At)t∈T).

{T ≤ t} =
⋃
s<t

{As ≥ a}

=
⋃

s∈Q,s<t
{As ≥ a} By the continuity in △ unless At = 0

=
⋃

s∈Q,s<t
{ As︸︷︷︸
∈Fs

≥ a} where Gs ⊂ Gt∀s < t

∈ Gt by countable unions (Thm. 1.5)

The discussions of △,♢ =⇒ {T ≤ t} ∈ Gt and T is a stopping time in the sense of Definition 11.9.

♣ Theorem 12.49 (Azuma Inequality). For a process X = (Xt)t∈T:

|Xt −Xt−1| ≤ c ∀t =⇒ ∀λ > 0 P[|Xt −X0| > λc
√
t] ≤ 2e−

λ2

2
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Chapter Summary

Objects:
• Poisson process with rate c > 0, a counting process adapted to a filtration such that:

Es [f(Ns+t −Ns)] =

∞∑
k=0

e−ct(ct)k

k!
f(k) ∀s, t, f ∈ E+

• predictable processes (Fn)n∈N to construct the Steltjes-Lebesgue integral series:

X =

∫
FdM, Xn =

∫
[0,n]

FdM =M0F0 +

n∑
m=1

(Mm −Mm−1)Fm

• upcrossings Sk := inf{n ≥ Tk−1 : Mn ≤ a}, downcrossings Tk := inf{n ≥ Sk : Mn ≥ b} and interval
(a, b) counter Un(a, b) =

∑n
k=1 1[0,t] (Tk)

• Fn formalism to represent the number of stocks at (n, n+ 1] with portfolio value Xn =
∫
[0,n]

FdM

and X0 = 0 and profit in general: Xn −X0 ≥ (b− a)Un(a, b)

Results:
• Poisson processes are stationary, Markovian and have Poisson distributed intervals with rate ct
• N ∼ Pois(c) ⇐⇒ (Nt − ct)t∈T is an F-martingale
• the Steltjes Lebesgue integral of a (sub)martingale and a predictable process is a (sub)martingale
• the Steltjes Lebesgue integral of a (sub)martingale and a stopping time indicator is a (sub)martingale
• Doob’s:

– we proved that a martingale and a bounded stopping time result in E [M0] = E [MT ] = E [Mk]

so that the martingale equality extends to stopping times
– for S ≤ T a.s. stopping times, it also holds that E [XS −XT ] = 0

– any adapted integrable X process has a decomposition into a deterministic starting point
X0, predictable process A (prediction) and a martingale M (innovation). This looks like the
orthogonal projection on the filtration

– the general result says that for an adapted process (Mn)n∈N the equivalent conditions are:
∗ (Mn)n∈N is a martingale
∗ for bounded stopping times S ≤ T MS and MT are integrable and ES [MT −MS ] = 0

∗ for bounded stopping times S ≤ T MS and MT are integrable and E[MT −MS ] = 0

– the upcrossing inequality:

(Mn)n∈N submartingale =⇒ (b− a)E[Un(a, b)] ≤ E[(Mn − a)+ − (M0 − a)+]

– the Martingale Convergence Theorem for submartingales:

sup
n

E[X+
n ] <∞ =⇒ Xn

a.s.→ X∞, X∞ ∈ L1

where the condition is equivalent to an L1 bound on the norm
– Uniform integrability of a martingale is characterized by both convergence almost sure and in

L1 norm. If the process is the expectation of an integrable random variable, the martingale
equality also extends at ∞

– identifiability ensures in the Bayesian mean estimation that θ ∈ F∞
– Levy’s 0-1 law is A ∈ F∞ =⇒ En[1A]

a.s.→ 1A



148 CHAPTER 12. MORE PROCESSES & INTEGRATION



Chapter 13

Poisson Random Measures

13.1 Random Measures

♠ Definition 13.1 (Random Measure M(·, ·), r.m.). The concept is equivalent to that of a Transition Kernel
(Def. B.13) from (Ω,H) onto (E,E). Consider a probability space (Ω,H,P) and a measurable space (E,E). A
random measure on (E,E) is a mapping:

M : Ω× E → R+

Such that:

1. ω →M(ω,A) is a r.v. ∀A ∈ E denoted as M(A), which is H-measurable and takes values on (E,E)

2. A→M(ω,A) is a measure on (E,E) denoted as Mω(dx) for all ω ∈ Ω

♠ Definition 13.2 (Measure description of M). The measure in M denoted as Mω(dx) can be atomic or diffuse
(Def. A.32), finite, σ-finite or Σ-finite (Defs. A.26, A.27).

♠ Definition 13.3 (Random counting measure). M(dx) such that Mω(dx) atomic and with weight 1 a.s. is a
random counting measure. It is the equivalent of a counting measure after fixing ω.

♡ Example 13.4 (Counting process as Definition 11.13). For ordered distinct arrival times 0 < T1 < . . . the
counting process Nt =

∑∞
n=1 1[0,t] (Tn) can be seen as the measure arising from a random measure:

Nt =M([0, t]) E = R+, A = [0, t]

♠ Definition 13.5 (Recap of integral notation). Let f : E → R be a Borel function and assume we wish to
integrate wrt M(dx). Recalling that for a fixed measure ν we have νf =

∫
f(x)ν(dx) then:

Mf : E → R |Mf :=

∫
E

f(x)M(dx) is an r.v.

Notice also that:
M(A) =

∫
A

M(dx) =

∫
E

1AM(dx) =M1A ∀A ∈ E

Remark 3 (About the transition kernel). We aim to make clear why we are going to express certain objects as
random variables or measures. This is due to the result of Theorem B.15, thanks to which for a transition kernel
M it holds that:

• Mf(ω) =
∫
E
M(ω, dx)f(x) is a random variable governed by ω ∈ Ω on (E,E) for each f ∈ E+

• E [M(A)] =
∫
Ω
M(ω,A)dP[ω] is a measure on (E,E) which assigns weight to the set A ∈ E

♠ Definition 13.6 (Expected version of random measure, mean measure). For a random measure as in Defini-
tion 13.1 we refer to the mean measure ν when considering the measure such that:

1. ν(A) = E[M(A)] ∀A ∈ E

149
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2. equivalently νf = E[Mf ] ∀f ∈ E+

In particular:

ν(A) = E [M(A)] =

∫
Ω

M(ω,A)P[dω]

Where we are integrating out the ω of the random measure over the underlying probability space.

13.2 Stones in a Field and Poisson Random Measures

Lemma 13.7 (Mean in terms of tail).

X ≥ 0 a.s. =⇒ E[X] =

∞∑
i=1

P[X ≥ i] =

∞∑
i=0

P[X > i]

Proof. Wlog let X discrete. This is sufficient for our needs. Then:

E [X] =

∞∑
x=0

xP[X = x]

=

∞∑
x=1

xP[X = x]

=

∞∑
x=1

x∑
i=1

1 · P[X = x]

=

∞∑
x=1

∞∑
i=1

1{i≤x} · P[X = x]

=

∞∑
i=1

∞∑
x=1

1{i≤x}P[X = x] Fubini Thm. B.30

=

∞∑
i=1

P[X ≥ i]

=

∞∑
i=0

P[X > i] ch. variable

♡ Example 13.8 (The "stones in a field" perspective). Let K ∼ Po(c) be Poisson distributed. Consider K to be
the random number of stones in a field E ⊂ R2. This throwing process is done always with the same mechanism
with no regard to total or previous positions (i.e. independence).

P[K = k] =
e−cck

k!
1[0,1,...] (k)

Let Xi be the ith stone position. Xi ∼ λ(dx⃗) is a distribution over E ⊂ R2.
Assume K ⊥⊥ {Xi}, as argued before.
The random measure M(dx) assigns the number of stones to the A ⊂ E region, mathematically:

M(A) =

K∑
i=1

1A (Xi)

Is the number of stones in region A.
We will show that M(dx) is atomic counting whenever λ is diffuse, i.e. no two stones are in the same position
(i.e. Thm. 14.10).



13.2. STONES IN A FIELD AND POISSON RANDOM MEASURES 151

♡ Example 13.9 (Stones in a field mean measure). In the "Stones in a field" formalism, the mean measure is:

cλ c = E[K]

We can see this as follows.
For f = 1A it holds:

Mf =M1A =

K∑
i=1

1A (Xi)

Similarly for f ∈ E+:

Mf =

∫
E

f(x)M(dx) =

K∑
i=1

f(Xi) =

∞∑
i=1

f(Xi)1{K≥i}

namely, a sum of images under a random number of K atoms. The last form is for convenience. Then, applying
the Definition of mean measure (Def. 13.6):

E [Mf ] = E

[ ∞∑
i=1

f(Xi)1{K≥i}

]

=

∞∑
i=1

E
[
f(Xi)1{K≥i}

]
linearity

=

∞∑
i=1

E [f(Xi)]E
[
1{K≥i}

]
independence & Fubini Thm. B.30

= E [f(X1)]

∞∑
i=1

E
[
1{K≥i}

]︸ ︷︷ ︸
=P[K≥i]

iid

= E [f(X1)]E [K] Lem. 13.7

=

∫
E

f(x)λ(dx) · c

= c(λf) integral notation

= (cλ)f

Eventually, the mean measure is ν(dx) = cλ(dx) where c = E [K] as claimed.

♠ Definition 13.10 (Laplace functional). This definition resembles that of Def. 6.11.
For a random measure M and a positive Borel function f ∈ E+ we define the Laplace functional as:

P̂M (f) = E
[
e−Mf

]
Which can be seen as the Laplace transform of Mf , which is a r.v., evaluated at r = 1.

♡ Example 13.11 ("Stones in a field" Laplace functional). For c = E[K] in Ex. 13.8 it holds that:

P̂M (f) = exp
{
−c(λ(1− e−f ))

}



152 CHAPTER 13. POISSON RANDOM MEASURES

(□ solution) We perform the following long computation:

E
[
e−Mf

]
= E

[
exp

{
−

K∑
i=1

f(Xi)

}]
Ex. 13.9

= E

[
K∏
i=1

exp {−f(Xi)}

]

= E

[
EK

[
K∏
i=1

exp {−f(Xi)}

]]
unconditioning

= E

[
K∏
i=1

E [exp {−f(Xi)}]

]
independence

= E
[
(E [exp {−f(X1)}])K

]
iid

= E

[(∫
E

e−f(x)λ(dx)

)K]
= E

[(
λ(e−f )

)K]

=

∞∑
k=0

(
λe−f

)k P[K=k]︷ ︸︸ ︷
e−cck

k!︸ ︷︷ ︸
pgf of K at t = λe−f

λ(e−f ) is a number

= exp
{
−c
(
1− λe−f

)}
pgf closed form X ∼ Po(λ) =⇒ pgf(s) =

∑
x≥0

P[X = x]sx = e−λ(1−s)

= exp

{
−c
(∫

E

λ(dx)− λe−f
)}

= exp
{
−c
(
λ(1)− λe−f

)}
= exp

{
−c
(
λ(1− e−f )

)}
linearity

♢ Observation 13.12 (Counting process as random measure). The random variable Mf =
∑∞
i=1 f(Xi) is the

prototype of atomic random measure.
The connection with the counting process is done via Nt = M([0, t]), where the atoms of M(dx) can be seen as
the arrival times of Nt when M is atomic, and no two arrival times happen at the same time.

♠ Definition 13.13 (Poisson random measure, p.r.m.). N(dx) ∼ Pois(ν(dx)) is a Poisson random measure
(Def. 13.1) with mean measure ν(dx) when:

1. N(A) ∼ Po(ν(A)) ∀A ∈ E

2. For {Ai}ni=1 ⊂ E disjoint =⇒ {N(Ai)}ni=1 is an independency (Def. 6.9)

♡ Example 13.14 ("Stones in a field" is a Poisson Random measure). N(dx) as in Ex. 13.8 is a p.r.m. in
Definition 13.13 sense.
(□ solution) (△ setup) wts for {Ai}ni=1 ⊂ E disjoint it holds:P[N(A1) = i1, . . . , N(An) = in] =

e−ν(A1)(ν(A1))
i1

i1!
· · · e

−ν(An)(ν(An))
in

in!

ν = cλ : Xi
iid∼ λ, c = E [K]

(□ baseline) wlog let n = 2 and A1 ∩ A2 = ∅ with A3 = (A1 ∪ A2)
c. The collection {A1, A2, A3} is a partition

of E and we might show △ there. Indeed:{
λ(A1) + λ(A2) + λ(A3) = 1

i1 + i2 + i3 = k
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where we call the former □(1) and the latter □(2), with k a realization of the r.v. K.
(⃝ work) it holds that:

P[N(A1) = i1, N(A2) = i2, N(A3) = i3] = P[N(A1) = i1, N(A2) = i2, N(A3) = i3,K = k]

[□(2)]

= P[N(A1) = i1, N(A2) = i2, N(A3) = i3|K = k]

[distribution is Multinom
(
3, (λ(Ai))

3
i=1

)
]

=
e−cck

k!

k!

i1!i2!i3!
(λ(A1))

i1 (λ(A2))
i2 (λ(A3))

i3

=
e−(λ(A1)+λ(A2)+λ(A3))ci1+i2+i3

i1!i2!i3!
(λ(A1))

i1 (λ(A2))
i2 (λ(A3))

i3

[□(1),□(2)]

=
e−cλ(A1) (λ(A1))

i1

i1!

e−cλ(A2) (λ(A2))
i2

i2!

e−cλ(A3) (λ(A3))
i3

i3!

13.3 Properties of Poisson Random Measures

♡ Example 13.15 (Homogeneous counting measure and Weibull). Let N(dx, dy) be a p.r.m. on E = R2,
with mean measure ν(dx, dy) = cLeb(dx, dy). It holds that N is invariant to translations and rotations (i.e.
homogeneous). Let R be the distance of the closest atom of N from the origin 0 = (0, 0). We describe R via its
probability distribution P[R > r]. It turns out that this is equivalent to a ball having null mass:

Br(0) = {(x, y) : x2 + y2 ≤ r2} : N(Br(0)) = 0 ∀r > 0

This can be seen as:

P[R > r] = P[N(Br(0)) = 0]

= e−ν(Br(0)) N(Br(0)) ∼ Po(ν(Br(0)))

= exp {−c · Leb(Br(0))}
= exp {−c ·Area(Br(0))}
= exp

{
−cπr2

}
Which is the well known Weibull distribution.

♡ Example 13.16 (Homogeneous Poisson random measure visibility). Let the atoms of N have radius a ≈ 0.
We interpret the model as a forest with density c = E [K] and mean measure ν = Leb. For simplicity, we ignore
the overlapping trees. By construction, N is homogeneous, and the horizontal direction is as good as any by
rotation invariance. We refer to the distance between the origin and the closest tree as a measure of visibility.
An atom with radius a intersects y = 0 if and only if the distance between y and the center is ≤ a. Then:

{V ≥ x} = {N(Dx) = 0} Dx = [0, x]× [−a, a]

is the expression in terms of sets of the visibility being greater than x. We describe the r.v. in terms of its
distribution as:

P[V ≥ x] = P[N(Dx) = 0] N(Dx) ∼ Po(ν(Dx))

= e−ν(Dx)

= exp {−cLeb([0, x]× [−a, a])}
= exp{−c(2ax)}

♣ Proposition 13.17 (Mean Variance for sets of Poisson random measure). For N(dx) ∼ Pois(ν(dx)) such
that ν(A) <∞ ∀A ∈ E:

1. E[N(A)] = ν(A)
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2. V [N(A)] = ν(A)

3. If ν(A) = ∞ =⇒ E[N(A)] = ∞ a.s. and V [N(A)] is undefined a.s.

Proof. (Claims #1, #2) follow by Definition 13.13#1 directly as:

N(A) ∼ Po(ν(A)) =⇒ E [N(A)] = V [N(A)] = ν(A) ∀A ∈ E

(Claim #3) again trivial since:

V [N(A)] = E
[
(N(A))2

]
− E [N(A)]

2
= ∞−∞ =⇒ undefined

♣ Proposition 13.18 (Mean and variance for functions, Poisson random measure). Let N be a p.r.m. and
f ∈ E+:

1. E[N(f)] = ν(f)

2. V [N(f)] = ν(f2) if νf <∞

Proof. (Claim #1) it holds by Definition 13.13 and N(A) ∼ Po(ν(A))∀A ∈ E that E [Nf ] = νf .
(Claim #2) we have:

V [Nf ] = E
[
(Nf)2

]
− E [Nf ]

2

= ν(f2) + (νf)2 − (νf)2 fn =
∑

ai1Ai
↗ f, fn : E

[
(Nfn)

2
]
= ν(f2n) + (νf)2

= ν(f2)

♣ Theorem 13.19 (Laplace functional of Poisson random measure characterization). Using the theory of Laplace
transforms, for a random measure N on (E,E) (Def. 13.1) with mean measure ν:

N ∼ Pois(ν) (Def. 13.13) ⇐⇒ E[e−Nf ] = e−ν(1−e
−f ) ∀f ∈ E+

Proof. (△ strategy) we first show the claim for fn simple and then use a fn ↗ f argument.
( =⇒ ) choose a ∈ R+, A ∈ E : ν(A) <∞. Then:

E [exp {−aN(A)}] =
∞∑
0

e−ν(A)(ν(A))k

k!
e−ak

=

∞∑
0

e−ν(A)(ν(A)e−a)k

k!

= exp
{
−ν(A)(1− e−a)

}
Poisson pgf

Let fn be simple, namely fn =
∑
ai1Ai

with Ai disjoint. It holds that Nf =
∑
aiN(Ai) and by the Ai being

disjoint they are independent:

=⇒ E
[
e−Nf

]
=

n∏
i=1

E
[
e−aiN(Ai)

]
= exp

{
−
∑

ν(Ai)(1− e−ai)
}

(□ f ∈ E+ arbitrary) For (fn)n∈N ⊂ E+ such that fn ↗ f , by the continuity of Lemma 13.20#1 we have that:

E
[
e−Nf

]
= lim
n→∞

E
[
e−N(fn)

]
= lim
n→∞

exp
{
−ν(1− e−fn)

}
Where gn = 1 − e−fn ↗ 1 − e−f = g =⇒ ν(gn) ↗ ν(g) by monotone convergence (Thm. 4.24), giving us the
equality needed.
( ⇐= ) immediate by ( =⇒ ) and Lemma 13.20#2.
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Lemma 13.20 (Laplace functional uniqueness and continuity). The Laplace functional mapping f → E[e−Mf ]

for f ∈ E+ is such that:

1. (fn) ⊂ E, fn ↗ f =⇒ limn→∞ E
[
e−Mfn

]
= E

[
e−Mf

]
2. N =M on (E,E) random measures ⇐⇒ P̂M (f) = P̂N (f) ∀f ∈ E+

Proof. (Claim #1) take fn ↗ f , by Monotone convergence (Thm. 4.21) it holds Mfn ↗ Mf for all Mω

pathwise in ω. Then, by bounded convergence (Cor. 4.26) also:

E
[
e−Mfn

]
↘ E

[
e−Mf

]
Eventually we have the following chain of equalities:

P̂M (f) = P̂M ( lim
n→∞

fn) = E
[
e−Mf

]
= E

[
lim
n→∞

e−Mfn
]
= lim
n→∞

E
[
e−Mfn

]
= lim
n→∞

P̂M (fn)

(Claim #2) is analogous to Theorem 6.12.

Corollary 13.21 (Extending the results of Theorem 13.19). Clearly:

P̂M (f) = P̂N (f) ∀f ∈ E+ ⇐⇒ M = N a.s. ⇐⇒ M r.m. specified by ν only

Proof. The first characterization holds by Theorem 13.19.
For the second, notice that:

P̂M (f) = exp
{
−ν(1− e−f )

}
∀f ∈ E+

So M is completely specified by ν.

♣ Proposition 13.22 (Laplace function of N(A)). We provide quickly an intuition of the =⇒ direction in the
Proof of Theorem 13.19 for the simplest case possible.
We can show for r = 1 that :

E
[
e−1·N(A)

]
= exp{−ν(1− e−1A)}}

and then reason by simple functions approximation.

Proof. observe that:

1− e−1A =

{
1− e−1 x ∈ A

1− 1 x /∈ A
= (1− e−1)1A

which eases out the main computation:

E
[
e−1·N(A)

]
= exp{−ν(A)(1− e−1)} Laplace transform at r = 1

= exp

{
−
∫
A

(1− e−1)ν(dx)

}
= exp

{
−
∫
E

(1− e−1)1Aν(dx)

}
= exp

{
−
∫
E

(1− e−1A)ν(dx)

}
previous equation

= exp
{
−ν(1− e−1A)

}
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Chapter Summary

Objects:
• random measure, a transition kernel between (Ω,H) and (E,E)

• a counting process is the realization of a random counting measure Nt =M((0, t]) for any t ∈ T
• Mf(ω) =

∫
E
M(ω, dx)f(x) is a random variable on (E,E). M(A) is a random variable in the

indicator version
• Mω(dx) is the underlying measure, dependent on ω. To have no randomness we can say that
E [M(A)] = ν(A) =

∫
A
M(ω,A)dP is the mean measure on (E,E) with νf = E [Mf ] for any f ∈ E

• the Laplace functional P̂M (f) = E
[
e−Mf

]
for f ∈ E+

• Poisson random measures as random counting measures with N(A) ∼ Po(ν(A)) for any A ∈ E and
independence of {N(Ak)}nk=1 for any disjoint set {Ak}nk=1

Results:
• mean measure of stones in a field if cλ(dx) for K ∼ Po(c).

trick: expression as sum, isolate K, use tail probability trick proved by Fubini
• stones in a field Laplace functional is exp{−cλ(1− e−f )}
• stones in a field is a p.r.m.
• mean and variance for N(A) and N(f) p.r.m.s
• Laplace functional of p.r.m. is like stones in a field and is exp{−ν(1− e−f )} for mean ν



Chapter 14

Atomic View of Poisson Random Measures

♢ Observation 14.1 (Recalling atom and atomic measures). We have that:

• x ∈ E is an atom for µ ⇐⇒ µ({x}) = 0, Def. A.31
• µ is atomic ⇐⇒ D = {x atoms} is such that µ(E \D) = 0, Def. A.32

♠ Definition 14.2 (Proper random variable for random measure). Given f ∈ E+ we say Mf =
∫
E
f(x)M(dx)

is proper when P[Mf <∞] = 1, namely Mf
a.s.
= 1.

Lemma 14.3 (Finiteness of random variable by Laplace function).

X ≥ 0 a.s. =⇒ P[X <∞] = lim
r→0

P̂X(r)

Proof. Proposition C.19.

14.1 Other Properties of Poisson Random Measures

♣ Proposition 14.4 (Finiteness of Poisson random measure). Let f ∈ E+ and N ∼ Pois(ν). Then:

ν(f ∧ 1) <∞ =⇒ Nf <∞ a.s.

Else Nf = ∞ a.s.

Proof. (△ strategy) we use Lemma 14.3 and f ∈ E+ to show that Nf ≥ 0 a.s. as a r.v. This means showing:

P[Nf <∞] = lim
r→0

E
[
e−rNf

]
= 1

This is also equivalent, using continuity (Lem. 13.20) and the Laplace functional Theorem 13.19 to:

lim
r→0

E
[
e−rNf

]
= lim
r→0

E
[
e−Nrf

]
= lim
r→0

exp
{
−ν(1− e−rf )

}
= 1

(□ another simplification) looking at the last result, it also holds:

lim
r→0

exp
{
−ν(1− e−rf )

}
= 1 ⇐⇒ lim

r→0
−ν(1− e−rf ) = 0

⇐⇒
∫

1− e−rf(x)ν(dx)
r→0→ 0

⇐⇒ 1− e−rf(x)
r→0→ 0 as 1− e−rf(x) ≥ 0∀x

Here it holds that 1− e−rf(x) ≤ (f(x) ∧ 1) ∀x so that by Dominated Convergence (Thm. 4.24):

ν(f ∧ 1) <∞ =⇒ lim
r→0

∫
1− e−rf(x)ν(dx) =

∫
lim
r→0

1− e−rf(x)ν(dx) = 0 =⇒ P[Nf <∞] = 1

157
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(⃝ opposite) Contrarily, if ν(f ∧ 1) = ∞ we conclude Nf = ∞ almost surely. Indeed by:

1− e−t ≥ (1− e−1)(t ∧ 1) ∀t ≥ 0 E
[
e−Nf

]
= exp{−ν(1− e−f )}

we can notice that

ν(1− e−f ) =

∫
(1− e−f(x))ν(dx)

≥
∫
(1− e−1)(f ∧ 1)ν(dx)

= (1− e−1)

∫
(f ∧ 1)ν(dx)

= +∞ ν(f ∧ 1) = ∞
=⇒ E

[
e−Nf

]
= exp{−ν(1− e−f )}
≤ exp{− ν((1− e−1)(f ∧ 1))︸ ︷︷ ︸

=∞

}

= 0

=⇒ E
[
e−Nf

]
= 0

which, by an application of the inverse of Jensen’s inequality for concave functions f(x) = xr with r < 1 (namely,
Cor. 7.8) suggests that:

E
[
e−rNf

]
= E

[
(e−Nf )r

]
≤
(
E
[
e−Nf

])r
= 0 ∀r > 0

which in the limit means:

P[Nf <∞] = lim
r→0

E
[
e−rNf

]
= 0 =⇒ P[Nf = ∞] = 1

and Nf = ∞ almost surely.

♢ Observation 14.5 (Sketch for proving the Proposition). Basically we implement the bound:{
1− e−ry ≤ ry < y r < 1

y ∧ 1 bounds the whole graph since 1 is asymptote

♠ Definition 14.6 (Independent random measures). Two random measures N,M are such that N ⊥⊥M when
N(A) ⊥⊥M(A) ∀A ∈ E

♢ Observation 14.7 (Finiteness of measures recap). Recall that:

• ν finite: ν(E) <∞
• ν σ-finite if there exists a partition of the sample space which covers it and each elements has finite measure
• ν Σ-finite: ∃(νn) such that νn(E) <∞∀n and ν =

∑
n νn

Do we have a p.r.m. N given a mean measure ν? Theorem 14.8 shows this for Σ-finite measures.

♣ Theorem 14.8 (Poisson random measure existance). Let ν be Σ-finite on (E,E). Then:

∃(Ω,H,P) & N(ω, ·) on (E,E) : N ∼ Pois(ν) ∀ω ∈ Ω

Proof. (△ ν finite) let c = ν(E) < ∞ and set λ(dx) = ν(dx)
c . λ is a probability measure. Let π ∼ Po(c) and

construct the probability space:
(Ω,H,P) = (N, 2N, π)× (E,E, λ)N

Where an event takes form
ω⃗ ∈ N× EN, ω⃗ = (ω0, ω1, ω2, . . .)

By Ionescu-Tulcea (Thm. 10.57), such space exists. Let K(ω) = ω0 and Xi(ω) = ωi∀i ∈ N∗. It holds:

K ⊥⊥ X1 ⊥⊥ X2 ⊥⊥ · · · K ∼ Po(c), Xi
iid∼ λ
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Then, the Random measure:

N(ω, ·) : N(ω,A) =

K(ω)∑
i=1

1A (Xi(ω))

Is a p.r.m. by analogy given Example 13.14.
(□ Σ-finite ν) For (νn) all finite such that

∑
n νn = ν we construct the same probability space and p.r.m. as △:

(Ωn,Hn,Pn) Nn

And then set their product space:

(Ω,H,P) =
⊗
n

(Ωn,Hn,Pn) ∀ω ∈ Ω ω = (ω⃗1, ω⃗2, . . .), ω⃗n ∈ Ωn∀n

Define now the objects:
Ñn(ω,A) = N(ω⃗n, A), N(ω,A) =

∑
n

Ñn(ω,A)

The tensor product ensures that Ñn ⊥⊥ Ñm∀m,n, and all are defined on (Ω,H,P). Then, for f : Ω → E, f ∈ E+

it holds that for a finite collection:

E

[
exp

{
−

n∑
i=1

Ñif

}]
=

n∏
i=1

exp
{
−νi(1− e−f )

}
= exp

{
−

n∑
i=1

νi(1− e−f )

}

So that for a countable collection:

lim
n→∞

E

[
exp

{
−

n∑
i=1

Ñif

}]
= lim
n→∞

exp

{
−

n∑
i=1

νi(1− e−f )

}

= exp

{
−

∞∑
i=1

νi(1− e−f )

}
= exp

{
−ν(1− e−f )

} ∑
n

νn = ν

Which means that N is a p.r.m. with mean ν by Theorem 13.19 since it also holds:

lim
n→∞

E

[
exp

{
−

n∑
i=1

Ñif

}]
= lim
n→∞

n∏
i=1

E
[
exp

{
−Ñif

}]
=

∞∏
i=1

E
[
exp

{
−Ñif

}]
= E

[
exp

{
−

∞∑
i=1

Ñif

}]
= E [exp{−Nf}]

14.2 Simulation

♢ Observation 14.9 (Monte Carlo simulation of Poisson random measure). We construct Nω(dx) for ω ∈ Ω of
a p.r.m. N(dx) (Def. 13.13).
The aim is to do so from a set of uniform variables over (0, 1).
Let E = R+ ×R+ and ν = cLeb2, so that ν(dx, dy) = cdxdy. For simplicity set c = 1. Observe that ν is σ-finite.

• pick the a-sized square E0 = [0, a]× [0, a] and generate K ∼ Po(a2) using u0 (classic simulation of an r.v.)
• assign to its realization k the entry ω0.
• form (ω1, . . . ω2k) as pairs (au1, au2), . . . , (au2k−1, au2k) atoms with unit weight
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Figure 14.1: Poisson Random Measure on R+ × R+

• repeat for different squares to get a p.r.m. realization in finite time

See Figure 14.1 for a plot.

♣ Theorem 14.10 (Random counting measure and diffusivity of Poisson random measure). Let N be a p.r.m.
on (E,E) according to Definition 13.13, with Σ-finite mean measure ν. Then:

N random counting measure (Def. 13.3) ⇐⇒ ν diffuse (Def. A.32)

Proof. ( =⇒ )(△ setting) fix x ∈ E, let c = ν({x}), we want to show that c = 0.
(□ nullity of singletons) for c = ν({x}) it holds that the set {N({x}) ≥ 2} has measure zero (is negligible)
since otherwise N would not be a counting measure. Then, by N being a p.r.m.:

N({x}) ∼ Po(ν({x})) = Po(c)

where the probability of the negligible set is:

P [{N({x}) ≥ 2}] = 1− P [{N({x}) < 2}] = 1− P [{N({x}) = 0}]− P [{N({x}) = 1}] = 1− e−c − ce−c = 0

which holds if and only if c = 0.
( ⇐= ) let ν be diffuse and Σ-finite.
(⃝ construct N) by Corollary 13.21 the mean measure ν completely characterizes the p.r.m. N . We aim to
build N as in Theorem 14.8. This leads us to the decomposition of N into:

N =
∑
n

Nn Nn =
∑
i≤Kn

1{Xn,i,·}

for X = {Xn,i : n ≥ 1, i ≥ 1} an independency. Every element of X is from a diffuse distribution by ν being
diffuse. Then, the sets:

{Xn,i = Xm,j} for some n, i,m, j

are negligible and so is their union by being countable:

Ω0 =
⋃
m∈N

⋃
n∈N

⋃
i∈N

⋃
j∈N

{Xn,i = Xm,j}

clearly, N is a random counting measure, since ∀ω non negligible (i.e. out of Ω0) Nω is a counting measure

Corollary 14.11 (Extension to special case). Let N ∼ Pois(ν) on E = R+ × R+ and E = B(E).
Let ν = Leb× λ, with

• λ({0}) = 0

• λ((ϵ,∞)) <∞ ∀ϵ > 0
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We can interpret N(t, z) for a time of arrival t of an object of size z. Then:

1. for a.e. ω ∈ Ω Nω is a counting measure that:
2. (no simultaneity) has not atom at t = 0, no atom of size z = 0, i.e. no simultaneity of Xi, Xj : ti = tj
3. (finite big activity) ∀t <∞, ϵ > 0 there are finitely many atoms before t with size z > ϵ

4. (infinite small activity) claim #3 holds for ϵ = 0 if λ is finite. Otherwise there are ∞ many atoms of size
z ≤ ϵ ∀ϵ > 0

Proof. (Claim #1) Theorem 14.10.
(Claim #2) the p.r.m. N is such that:

• by Leb({0}) a.s.= 0 there is almost surely no mass on {0} × R+

• by λ({0}) a.s.= 0 there is no mass on R+ × {0}

Let Ω0 = ({0} × R+) ∪ (R+ × {0}), the set we just described. Fix ϵ > 0. The random variable M(A) =

N(A× (ϵ,∞)) on R+ for arbitrary A ∈ B(R) is:

• a p.r.m. with mean µ = λ((ϵ,∞))

• a counting random measure since Leb is diffuse and we can apply Theorem 14.10

Then:
∃Ωϵ : P[Ωϵ] = 1, ∀ω ∈ Ωϵ (t, z), (t′, z′) : z > ϵ, z′ > ϵ

Which are the atoms of a realization Nω, with the peculiarity that t ̸= t′ since M is a random counting measure.
Let:

Ωa = Ω0 ∩

(⋂
ϵ>0

Ωϵ

)
= Ω0 ∩

⋂
ϵ∈Q

Ωϵ


and Ωa is the almost sure set where Claim #2 holds.
(Claim #3) ν puts mass t · λ((ϵ,∞)) <∞ on the set [0, t]× (ϵ,∞). Clearly, there exists an almost sure set Ωt,ϵ
such that N has finite atoms there. Let:

Ωb =
⋂
t∈N

⋂
ϵ∈Q

Ωt,ϵ

the set is almost sure and Claim #3 is true for every ω in it.
(Claim #4) for λ(R+) <∞ so that the λ measure is finite, construct the set:

Ωc =
⋂
t∈N

Ωt,0

for λ not finite, the mean measure of N is such that:

ν((t, t+ δ)× (0, ϵ]) = δλ((0, ϵ]) = ∞

By the hypothesis that λ((ϵ,∞)) < ∞, there is an almost sure event Ωt,δ,ϵ with finitely many atoms in (t, t +

δ)× (0, ϵ].
We then let:

Ωc =
⋂
t∈N

⋂
ϵ∈Q

⋂
δ∈Q

Ωt,ϵ,δ

which is an almost sure event where Claim #4 holds.
All the statements hold almost surely in the set:

Ωa ∩ Ωb ∩ Ωc

♠ Definition 14.12 (Image of N under h, N ◦ h−1). This is equivalent to Definition B.1.
Let N be a p.r.m. on (E,E), and h : E → F a measurable map (satifies Eqn. 3.1). The image of N under h is
a random measure on (Ω,H,P), (F,F) (Def. 13.1) defined as:

N ◦ h−1 : (N ◦ h−1)(B) = N ◦ (h−1(B)) ∀B ∈ F
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the last expression is:

N(h−1(B)) =

∫
E

1h−1(B) (x)N(dx)

=

∫
x:h(x)∈B

N(dx)

=

∫
E

1B (h(x))N(dx)

= N(1B ◦ h)

Where we infer that instead for a borel map f : F → R:

(N ◦ h−1)(f) = N(h−1(f)) = N(f ◦ h)

which by Nf =
∑
f(Xi) for (Xi) atoms of N suggests that:

(N ◦ h−1)(f) = N(f ◦ h) =
K∑
i=1

f(h(Xi)) =

K∑
i=1

f(Yi)

For (Yi) the atoms of N ◦ h−1.

♣ Proposition 14.13 (Image measure is a Poisson random measure). N ◦ h−1 on (Ω,H,P), (F,F) satisfies the
requirements of Definition 13.13 and has mean µ = ν ◦ h−1.

N ∼ Pois(ν), h : E → F =⇒ N ◦ h−1 ∼ Pois(ν ◦ h−1)

Proof. For all B ∈ F it holds that (N ◦ h−1)(B) ∼ Po(ν ◦ h−1(B)). If we take {Bi}ni=1 ⊂ F disjoint, it is also the
case that {(N ◦ h−1)(Bi)}ni=1 is an independent set.

♢ Observation 14.14 (Mean measure and integrals recap). we quickly refresh already introduced notation:

• (N ◦ h−1)(f) = N(f ◦ h)
• µ(f) = (ν ◦ h−1)(f) = ν(f ◦ h) =

∫
E
f(h(x))ν(dx)

♢ Observation 14.15 (What we want & need). We aim to simulate N ∼ Pois(ν) for any mean measure ν. By
Observation 14.9 we can only do so for ν = cLeb.
Eventually, we will implement a N ◦ h−1 image construction to relate to the simulation we can perform.

14.3 Arrival Process

♠ Definition 14.16 (Arrival process formalism). Let N(dx) be a p.r.m. on E = R+ with diffuse mean ν(dx),
such that c(t) = ν((0, t]) <∞ ∀t.
By Theorem 14.10 we know that ν is diffuse ⇐⇒ N is a random counting measure.
With this premise we can interpret (Tk)k≥1 as distinct ordered arrival times. We want to simulate this random
measure.

♣ Proposition 14.17 (Arrival process simulation by inverse image). For N as in Definition 14.16 let h : R+ →
R+ be such that in the arrival process formalism:

h(u) = t ⇐⇒ c(t) = u

Namely, the inverse of the cdf. Then for Ñ a p.r.m. with mean measure Leb:

1. ν = Leb ◦ h−1

2. (ui)i≥1 are the atoms and (h(ui))i≥1 are the atoms of N
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Proof. (Claim #1) consider Ñ ∼ Pois(Leb), h as hypothesized. By Proposition 14.13, Ñ ◦ h−1 is a p.r.m. as
well with mean:

(Leb ◦ h−1)(A) = Leb(h−1(A)) =

∫
x:h(x)∈A

dx wlog let A = [a, b]

=

∫ c(b)

c(a)

dx a < h(x) ≤ b ⇐⇒ c(a) < x ≤ c(b)

= c(b)− c(a)

= ν((0, b])− ν((0, a]) Def. 14.16
= ν([a, b])

= ν(A) ∀A = [a, b]

It is evident that N = Ñ ◦ h−1 is the p.r.m. we want to simulate as it has the same mean over any Borel set.
Indeed, by the classic result of Proposition A.29 we have ν = Leb ◦ h−1.
(Claim #2) let (Ui)i≥1 = (ui)i≥1 be the atoms of Ñ , according to Definition B.1 the atoms of N = Ñ ◦ h−1

with N(B) = Ñ(h−1(B)), Nf = Ñ(f ◦ h) are (h(ui))i≥1 and we can simulate Nf =
∑
i≥1 f(h(ui)). Notice that

the Poisson random measure N has the desired mean ν.

♠ Definition 14.18 (Trace of random measure, also restriction). For D ⊂ E and a random measure M on E

we call restriction the measure MD characterized as:

MD(B) :=M(B ∩D) ∀B ∈ E

Which has mean µD(B) = µ(B ∩D) ∀B ∈ E

♠ Definition 14.19 (Intensity or expected arrival time r). In the context of Definition 14.16 further let ν be
σ-finite and such that ν ≪ Leb. By Radon Nikodym Theorem (Thm. 5.7) we have that:

∃r Leb-measurable, ν(A) =

∫
A

r(t)dt

We call r(t) = dν
dLeb (t) the Radon-Nykodym derivative also with the term intensity.

Recall the discussion we did in Chapter 5. It is not granted that the measure ν will be σ-finite once it is absolutely
continuous to the Lebesgue measure. The observation we did when introducing the Radon-Nykodim theorem made
it precise that this requirement was lifted for probability measures, but ν in principle could be just a measure.
This comment can be ignored in most of the cases.
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♣ Proposition 14.20 (Arrival process simulation by intensity). Using the interpretation of Definition 14.19 for
an intensity r we also let:

• h(t, z) = t

• D = {(t, z) : z ≤ r(t)} ⊂ R+ × R+

• MD be the trace of the p.r.m. M on R+ ×R+ with mean Leb, so that it is a p.r.m. with mean µD ≪ Leb.
The mean measure µD is also σ-finite since it is just a restriction of Leb inside the set D

Then:

1. N = MD ◦ h−1 is a p.r.m. with mean ν = µD ◦ h−1. N here is the counting measure on R+ whose atoms
are arrival times Ti with size Zi ≤ r(Ti), according to the restriction D.

2. can simulate (Ti, Zi)i≥1 from M and set Nf =
∑
i:Zi≤r(Ti)

f(Ti)

Proof. (Claim #1) let D,h as hypothesized. The p.r.m. MD ◦ h−1 = N has mean ν = µD ◦ h−1 since for

Dt = {(s, z) ∈ D : s ≤ t, z ≤ r(s)} = {(s, z) ∈ D : 0 ≤ h(s, z) ≤ t} = h−1((0, t]) ∩D

we have:

(µD ◦ h−1)((0, t]) = µD(h
−1((0, t]))) = Leb(D ∩ h−1((0, t]))) Def. 14.18

= Leb(Dt) above argument

=

∫ t

0

r(s)ds Dt construction

= ν((0, t]) intensity notion

(Claim #2) it trivially follows that we can simulate N by:

1. simulating from M atoms (Ti, Zi)

2. setting Nf =
∑
i:Zi≤r(Ti)

f(Ti)

Where Nf is the projection via h of the restriction MD.
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Chapter Summary

Objects:
• proper random variables of random measures are almost surely finite random variables
• independent random measures are such that all the random variables are mutually independent
• the image measure N ◦ h−1 for N a random measure on (E,E) and h : E → F a measurable map is

defined as:

(N ◦ h1)(B) = N ◦ (h−1(B)) = N(1B ◦ h) ∀B ∈ F, (N ◦ h1)(f) = N(f ◦ h)

and it is a random measure on (F,F)

• the arrival process formalism for a p.r.m. on E = R+ with mean ν diffuse such that the cumulative
c(t) = ν((0, t]) <∞∀t is a random counting measure that can be simulated

• trace of a random measure for D ⊂ E we set MD(B) :=M(B ∩D)

• intensity of random measure, the Radon Nikodym derivative of the mean measure
Results:

• Poisson Random Measures
– ν(f ∧ 1) <∞ is sufficient for Nf to be proper
– a Σ-finite mean measure is sufficient for the existance of a p.r.m. N ∼ Pois(ν) on a probability

space
– N is a random counting measure if and only if the mean measure is diffuse
– infinite activity: for N ∼ Pois(Leb × λ) with λ({0}) = 0, λ((ϵ,∞)) < ∞∀ϵ we established Nω

is a random counting measure by Leb making it diffuse such that:
∗ no simultaneity in time, no events at null times or space
∗ finitely many atoms before t with size z > ϵ for arbitrary ϵ
∗ for λ finite the finite activity extends to ϵ = 0 otherwise ∞-many atoms of size at most ϵ

in an interval [0, t]
• Simulation

– Monte Carlo for Lebesgue p.r.m.
∗ aim: construct Nω(dx) for ω ∈ Ω of a p.r.m. N(dx) from a set of uniform variables over
(0, 1) where N is simple

∗ setting: E = R+ ×R+ and ν = cLeb2, so that ν(dx, dy) = cdxdy. For simplicity set c = 1.
Observe that ν is σ-finite.

∗ pick the a-sized square E0 = [0, a] × [0, a] and generate K ∼ Po(a2) using u0 (classic
simulation of an r.v.)

∗ assign to its realization k the entry ω0.
∗ form (ω1, . . . ω2k) as pairs (au1, au2), . . . , (au2k−1, au2k) atoms with unit weight
∗ repeat for different squares to get a p.r.m. realization in finite time

– Arrival process by inverse image:
∗ aim: simulate arbitrary mean measure p.r.m. N , where N is an arrival process
∗ setting: h : R+ → R+ with h(u) = t ⇐⇒ c(t) = u

∗ consider Ñ a p.r.m. with mean measure Leb
∗ ν = Leb ◦ h−1

∗ (ui)i≥1 are the atoms and (h(ui))i≥1 are the atoms of N
– Arrival process by intensity

∗ aim: simulate arbitrary mean measure p.r.m. using intensity notion
∗ setting: measurable map h(t, z) = t and:

· D = {(t, z) : z ≤ r(t)} ⊂ R+ × R+

· MD the trace of the p.r.m. M on R+ ×R+ with mean Leb, so that it is a p.r.m. with
σ-finite mean µD ≪ Leb

∗ N = MD ◦ h−1 is a p.r.m. with mean ν = µD ◦ h−1. N here is the counting measure on
R+ whose atoms are arrival times Ti with size Zi ≤ r(Ti), according to the restriction D.

∗ can simulate (Ti, Zi)i≥1 from M and set Nf =
∑
i:Zi≤r(Ti)

f(Ti)
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Chapter 15

Transformations & Increasing Lévy
Processes

Assumption 15.1 (Setting for transformations). We consider measurable spaces (E,E), (F,F), and collections
{Xi : i ∈ I}, {Yi : i ∈ I}.
N is a p.r.m. on (E,E) with mean ν (Def. 13.13) =⇒ Nf =

∑
i∈I f ◦Xi f ∈ E+.

For a measurable map h : E → F , satisfying Equation 3.1, we set Yi = h ◦Xi and derive the new p.r.m. N ◦h−1

using Proposition 14.13.
Yi is ultimately the random transform associated to the kernel (Def. B.13):

Yi ∈ B w.p. Q(x,B) if Xi = x ⇐⇒ P[Y ∈ B|X = x] = Q(x,B) ∀B ∈ F

Where Q : E × F → E

♣ Theorem 15.2 (Transformation independence poissonity). For a measure ν on (E,E), and a kernel Q from
(E,E) to (F,F) such that:

• X is a p.r.m. with mean ν

• Yi|X
ind∼ Q(Xi, ·)

It holds:

1. Y is a p.r.m. on (F,F) with mean π(Q) : π(Q(B)) =
∫
F
ν(dx)Q(x,B) ∀B ∈ F or in other terms

π(dy) =
∫
F
Q(x, dy)ν(dx)

2. (X,Y ) is a p.r.m. on (E × F,E⊗ F) with mean µ = ν ×Q so that:

µ(dx, dy) = ν(dx)Q(x, dy)

Proof. (△ setting) let N be the r.m. defined by X on (E,E) and M be the r.m. defined by (X,Y ) on the
product space. Since Y defines a random measure as the image of M under the projection map h(x, y) = y it
holds that #2 =⇒ #1.
(□ focus on #2) note that f ∈ (E⊗ F)+ implies by independence across I that:

e−Mf =
∏
i∈I

e−f ◦ (Xi, Yi)

Choosing:

e−g(x) :=

∫
F

Q(x, dy)e−f(x,y) =⇒ e−Mf |X =
∏
i∈I

∫
F

Q(x, dy)e−f ◦ (Xi, y) =
∏
i∈I

e−g ◦Xi = e−Ng

Which means that in expectation:

E
[
e−Mf

]
= E

[
e−Ng

]
= exp

{
−ν(1− e−g)

}
Thm. 13.19 for N ∼ Pois(ν)

167
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(⃝ finalization) noticing that Q(x, F ) = 1 we will have that:

ν(1− e−g) =

∫
E

ν(dx)

∫
F

Q(x, dy)(1− e−f(x,y))

= (ν ×Q)(1− e−f )

⇐⇒ M ∼ Pois(ν ×Q) Thm. 13.19

And the claim is proved.

Corollary 15.3 (Special case Kernel is probability measure). For X ∼ Pois(ν) on (E,E) and Y ⊥⊥ X such that
Y ∼ π on (F,F):

=⇒ (X,Y ) ∼ Pois(µ) on (E × F,E⊗ F) µ = ν × π : µ(dx, dy) = ν(dx)π(dy)

Proof. Same as Theorem above.

♡ Example 15.4 (Poisson compound process, customers in a store). Consider a sequence of arrival times (Ti)i≥1

from a p.r.m. N ∼ Pois(cLeb). We can visualize a sequence of customers spending random money Y ⊥⊥ T where
Y ∼ π has mean a and variance b2.
Applying Corollary 15.3 we can safely say (T, Y ) is a p.r.m. such that:

(T, Y ) ∼ Pois(cLeb× π) on R+ × R+

Where for a fixed time t ≥ 0 we have that the amount of money spent is:

Zt =
∑
Ti≤t

Yi =

∞∑
i=1

Yi1[0,t] (Ti) =

∞∑
i=1

f(Ti, Yi) f(x, y) := y1[0,t] (x)

=

∫
[0,t]×R+

Ñ(dx, dy)y

= Ñf

where Ñ = (T, Y ) is a Poisson Random measure.
We can use the previous results for p.r.m.s from Chapter 13 and 14. The new mean is µ = cLeb × π with
µ(dx, dy) = cdxπ(dy) and:

E[Zt] = E[Ñf ] = µf Prop. 13.18#1

=

∫
R+×R+

f(x, y)µ(dx, dy)

=

∫
R+×R+

y1[0,t] (x) cdxπ(dy)

= ct

∫
R+

yπ(dy)

= cta by a = E[Y ]

Similarly the variance is:

V [Zt] = V [Ñf ] = µf2 Prop. 13.18#2

=

∫
R+×R+

(y1[0,t] (x))
2cdxπ(dy)

= ct(a2 + b2) by a2 + b2 = E[Y ]2 + V [Y ] = E[Y 2]
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Concluding with the Laplace transform:

P̂Zt(r) = P̂Ñ (rf) = E[e−rÑf ]

= exp
{
−µ(1− e−rf )

}
Thm. 13.19

= exp

{
−
∫
R+×R+

1− e−r(y1[0,t](x))cdxπ(dy)

}

= exp

{
−ct

∫
R+

1− e−ryπ(dy)

}
Notice that we used the random variable version with r instead of the functional version since Zt is a random
variable and not the underlying random measure.

♠ Definition 15.5 (Compound Poisson process (St)t≥0). We give a precise definition of the object presented in
the above example.
For arrival times T1 < T2 < . . . atoms of a p.r.m. on R+ with mean cdx = ν(dx) we consider a sequence of
random variables Yi

iid∼ π on R where Y ⊥⊥ T .
The compound Poisson process that arises is the continuous time process of the random sum:

(St)t≥0 : St =
∑
i:Ti≤t

Yi =
∑
i

1[0,t] (Ti)Yi

=

∫
R+×R

y1[0,t] (x)N(dx, dy)

Where by Theorem 15.2 N is a p.r.m. and the expression makes sense.

♠ Definition 15.6 (Borel version of compound Poisson process). (St)t∈R+
can be seen as a cumulative version

of a r.m. (Def. 13.1) on R+:

St = L((0, t]) L(dx) r.m. : L(A) =

∫
A×R

yN(dx, dy)

Indeed the Laplace transform of St would be:

E
[
e−rL((0,t])

]
= E

[
e−rSt

]
= exp

{
−ct

∫
R+

(1− e−ry)π(dy)

}

= exp

{∫
(0,t]×R+

(1− e−ry)dxcπ(dy)

}
Which we write for general A below the Observation that follows.

♢ Observation 15.7 (Setting and aims). we reorder ideas for the next results:

• y in notation is changed to z
• λ(dz) is not necessarily finite
• we will try to express the Laplace functional of random measures in terms of the underlying p.r.m. using:

– the result of Theorem 15.2 which allows us to do so
– the intensity notion (Def. 14.19)
– Theorem 13.19 for a closed form formula

We eventually inspect:

P̂L(A)(r) = E[e−rL(A)] = exp


∫
A×R+

(1− e−rz)

mean N(dx,dz)︷ ︸︸ ︷
dx λ(dz)︸ ︷︷ ︸

=cπ(dy)


♠ Definition 15.8 (Additive random measure). A random measure (Def 13.1) M is said to be additive when
for disjoint sets {Ai}ni=1 ⊂ E the set of random variables {M(Ai)}ni=1 is an independency according to Definition
6.9.
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♢ Observation 15.9 (Additive random measure vs Independent random measure). A potentially confusing fact
is that additive random measures are independent within themselves, while two random measures are independent
to each other. Both rely on a choice of countable disjoint sets in E. In the former, we compare random variables
arising from the same measure on different sets. In the latter, we compare random variables arising from two
different measures on the same sets.

♣ Proposition 15.10 (Compound Poisson process has underlying additive measure). L as in Definition 15.5
is an additive random measure.

Proof. Consider a disjoint set A1, . . . An in B(R+). Then {Ai ×R}ni=1 are disjoint in B(R+ ×R) and we can say
that the Laplace functional transform of the underlying measure takes form:

E
[
e−rL(A)

]
= exp

−
∫
A×R

ν(dx, dz)︸ ︷︷ ︸
dxcπ(dz)

(1− e−rz)


By the Definition of p.r.m. (Def. 13.13), the restrictions on Ai × R+ are independent random measures, so the
above expression becomes:

P̂L(A)(r) = exp


n∑
i=1

∫
Ai×R+

(1− e−rz)

mean N(dx,dz)︷ ︸︸ ︷
dx λ(dz)︸ ︷︷ ︸

=cπ(dy)


=

n∏
i=1

exp


∫
Ai×R+

(1− e−rz)

mean N(dx,dz)︷ ︸︸ ︷
dx λ(dz)︸ ︷︷ ︸

=cπ(dy)


=

n∏
i=1

P̂L(Ai)(r)

=⇒ {L(Ai)}ni=1 independency

Where we used Theorem 6.12, since the random variables are identified by disjont Laplace transforms as a
product, then they are independent.

Lemma 15.11 (Automatic additive random measure). For a countable set D ⊂ E and an independency of
positive random variables {Wx : Wx ≥ 0 x ∈ D} the random measure:

K(ω,A) =
∑
x∈D

Wx(ω)1A (x) ω ∈ Ω, A ∈ E

is additive.

Proof. K(ω,A) is additive clearly by the 1A (x) construction.

♣ Theorem 15.12 (A form of additive random measure decomposition). Consider a measure α on (E,E), a
random measure K as in Lemma 15.11, purely atomic with fixed atoms, and a random measure L as in Proposition
15.10, namely:

L(A) =

∫
A×R+

yN(dx, dy) N ∼ Pois(ν)

Then:

1. any additive r.m. (Def. 15.8) can be decomposed in a sum M = α+K + L

2. if M is a Σ-bounded kernel (Def. B.23) the same decomposition holds and if additionally α is diffuse, and
the mean measure of K ν(· × R+) is diffuse the decomposition is unique

Proof. Clear by Proposition 15.10, Lemma 15.11 and α being a measure.
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♢ Observation 15.13 (Comments on Theorem). Atoms are at fixed points with random weights. Ignoring the
countable fixed randomness arising from K(dx) from now onwards we concentrate on:

St =M((0, t]) = α((0, t]) +

∫
[0,t]×R+

zN(dx, dz)

In the R+ × π(dy) case of Definition 15.6.

♠ Definition 15.14 (Increasing Lévy process). A process S = (St)t∈R+
is increasing Lévy when it is such that:

1. independence of increments:

St1 − St0 , . . . , Stn − Stn−1 ⊥⊥ ∀n ≥ 2, 0 ≤ t0 < t1 < . . . < tn

2. stationarity of increments
St+u − Su

d
= St ∀u, t ∈ R+

3. increasing, right continuous and starting at S0 = 0

Assumption 15.15 (Structure of compound Poisson process revisited). We know by Proposition 15.10 that the
underlying random measure of a compound Poisson process is additive. We now impose that:

• St(ω) =M(ω, [0, t]) for M an additive r.m., so that St is increasing and right continuous
• St <∞ a.s.∀t which will ensure independence by the additivity of M
• α(dx) = bdx b ∈ R+ to ensure linearity, which will guarantee stationarity of increments

♠ Definition 15.16 (Candidate Poisson additive random measure). We present here the r.m. we will feed to
the following results, carefully constructed according to Assumption 15.15 and Observation 15.13:

St = bt+

∫
[0,t]×R+

zN(dx, dz) =M(ω, [0, t]) b, t ∈ R+,M additive

for N a Poisson random measure with mean ν(dx, dz) = Leb× λ(dz).

♣ Proposition 15.17 (Candidate compound Poisson with weak integrability is increasing Lévy). Let b ∈ R+,
N a p.r.m. on R+ × R+ with mean ν = Leb× λ. If the integrability condition:∫

R+

λ(dz)(z ∧ 1) = λ(z ∧ 1) <∞

is satisfied then:

1. (Lévyness) (St)t∈R+
as in Definition 15.16 is an increasing Lévy process in the sense of Definition 15.14

2. (characterization) the Laplace transform is:

E[e−rSt ] = exp

{
−t

[
br +

∫
R+

λ(dz)(1− e−rz)

]}
r ∈ R+

Proof. (Claim #1) Consider L on E = R+ as in Proposition 15.10. Then M = α+ L is additive for α = Leb.
(△ basics) S = (St)t∈R+

is increasing, right continuous and starting at S0 = 0 clearly.
(□ finiteness and independence of increments) Moreover:

St = bt+
∑
i≥1

zi1[0,t] (Ti) = bt+
∑
i:Ti≥t

Zi = bt+Nf f(x, z) = z1[0,t] (x)

By hypothesis:

ν(f ∧ 1) =

∫
R+×R+

ν(dx, dz)(f ∧ 1) = t

∫
R+

λ(dz)(z ∧ 1) <∞

So that by finiteness of p.r.m. (Prop. 14.4) we have Nf <∞ a.s. =⇒ St <∞ a.s..
Independence of increments follows by N being a p.r.m. as in Proposition 15.10.
(Claim #2) the Laplace transform, given △,□ and Theorem 13.19 takes form:

E
[
e−rSt

]
= exp

{
−t(br)− t

∫
R+

λ(dz)(1− e−rz)

}
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(Claim #1)(⃝ stationarity Def. 15.14#2) using the just derived Laplace transform:

E
[
e−r(Su+t−Su)

]
= E

[
e−r(α((u,u+t])−Nf)

]
f(x, z) = z1(u,u+t] (x)

= e−rα((u,u+t])E
[
e−rNf

]
= exp {−r(b)(u+ t− u)} exp

{
−
∫
(u,u+t]×R+

(1− e−rz)λ(dz)

}

= exp

{
−rbt− t

∫
R+

1− e−rzλ(dz)

}

= exp

{
−t

(
rb+

∫
R+

(1− e−rz)λ(dz)

)}
= E

[
e−rSt

]
Claim #2

So that (St)t∈R+
is an increasing Lévy process.

♢ Observation 15.18 (Usefulness of the result). By proving that Poisson compound processes are increasing
Lévy processes we are certain that the latter exists. The question now becomes if this form is the only one, and
so any Lévy process is Poisson compound, or there are other forms.

♠ Definition 15.19 (Lévy process terminology). We say that:

• b ∈ R+ is the drift
• λ is the Lévy measure

Where the two of them uniquely identify S via the Laplace transform of Proposition 15.17#2.

Lemma 15.20 (Finite measures Lévyness). It is rather easy to check for E ⊂ R+ that:

λ : λ(E) <∞ =⇒ λ(z ∧ 1) <∞ can apply Prop. 15.17

Proof. Trivial.

15.1 Stable and Gamma Processes

♢ Observation 15.21 (Interesting cases for further results). Until the end of the Chapter, set b = 0 and consider
measures λ not finite. We will establish a connection with the claims of Corollary 14.11#2,#3 through examples
and generalized results. The Poisson compound process we consider has form:

St =

∫
R+×R+

f(x, z)N(dx, dz) N ∼ Pois(Leb× λ), f(x, z) = 1[0,t] (x) z

Namely, the c constant in the Lebesgue measure is ignored. It is a simplified version of the candidate of Definition
15.16.

♡ Example 15.22 (Gamma process). Consider the (soon to be) Lévy measure:

λ(dz) = a
e−cz

z
dz z ∈ R+, a ∈ (0, 1), c > 0

We call the arising compound Poisson process (Def. 15.5) S = (St)t∈R+
a Gamma process, and aim to show that

it is also an increasing Lévy process (Def. 15.14) with the construction just explained, according to the setting of
Observation 15.21.
(△ integrability) we want to show that

∫
λ(dz)(z ∧ 1) <∞. This holds since:

•
∫∞
1
λ(dz)(z ∧ 1) =

∫∞
1
λ(dz) =

∫∞
1
a e

−cz

z dz → 0 as z → ∞ sufficiently fast (we take this for granted)
•
∫ 1

0
λ(dz)(z ∧ 1) =

∫ 1

0
λ(dz)z =

∫ 1

0
a e

−cz

z zdz =
∫ 1

0
ae−czdz <∞
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Given that the condition of Proposition 15.17 is satisfied, we conclude that S is an increasing Lévy process.
(□ why Gamma?) wts (St)t∈R+

is such that St
d
= Xt ∼ Gamma(at, c) ∀t

We do this by using the Laplace functional. We recall that a Gamma distribution is such that:

P̂Xt
(r) =

(
c

r + c

)at
(15.1)

For the Gamma process at a fixed t ∈ R+:

E[e−rSt ] = exp

{
−t
∫ ∞

0

(1− e−rz)λ(dz)

}
Prop. 15.17#2

= exp

{
−t
∫ ∞

0

(1− e−rz)a
e−cz

z
dz

}
= exp

{
−at

∫ ∞

0

e−cz − e−(c+r)z

z
dz

}
(⃝ blue integral) We focus on the highlighted part for a moment and observe that the inside can be seen as the
integral in dt: ∫ ∞

0

e−cz − e−(c+r)z

z
dz =

∫ ∞

0

−e−tz

z

∣∣∣∣c+r
t=c

dz

=

∫ ∞

0

∫ c+r

c

−d
dt

e−tz

z
dtdz

=

∫ ∞

0

∫ c+r

c

e−tzdtdz deriving

=

∫ c+r

c

∫ ∞

0

e−tzdzdt Fubini Thm. B.30

=

∫ c+r

c

−e−tz

t

∣∣∣∣∞
z=0

=

∫ c+r

c

1

t
dt

= log t

∣∣∣∣c+r
t=c

= log

(
c+ r

c

)
(♢ back to Laplace) we plut the result of ⃝ into □ and conclude that:

E[e−rSt ] = exp

{
−at log

(
c+ r

c

)}
= exp

{
log

(
c+ r

c

)−at
}

=

(
c

c+ r

)at
Which is equal to the Laplace transfom of Xt ∼ Gamma(at, c). By Theorem 6.12 this means that the two variables
are equivalent. This holds ∀t ∈ R+.

♡ Example 15.23 (Stable process of index α). Consider the (soon to be) Lévy measure:

λ(dz) =
1

Γ(1− a)
acz−1−adz z ∈ R+, a ∈ (0, 1), c > 0

We will see that the arising process S = (St)t∈R+
with the form of Observation 15.21 is an increasing Lévy process

(Def. 15.14) and has some nice properties.
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(△ integrability) we aim to show that the integrability condition for being increasing Lévy holds. For this
purpose, notice that:

Γ(x) :=

∫ ∞

0

tx−1e−tdt Γ(n) = (n− 1)! ∀n ∈ N

So that:

•
∫∞
1
λ(dz)(z ∧ 1) =

∫∞
1
λ(dz) = 1

Γ(1−a)ac
∫∞
1
z−1−adz = 1

Γ(1−a)ac
1
a − z−a

∣∣∣∣∞
z=1

= 1
Γ(1−a)c

1
a <∞

• by a ∈ (0, 1) ∫ 1

0

λ(dz)(z ∧ 1) =
1

Γ(1− a)
ac

∫ 1

0

z−1−az =
1

Γ(1− a)
ac

∫ 1

0

z−a

=
1

Γ(1− a)
ac

1

1− a
z1−a

∣∣∣∣1
z=0

=
1

Γ(1− a)

ac

1− a
<∞

Making their sum finite. By
∫∞
0
λ(dz)(z ∧ 1) <∞ we can apply Proposition 15.17#1 and conclude that S is an

increasing Lévy process.

♢ Observation 15.24 (About the stable process). Notice that even though St < ∞ a.s. the process has no
expectation. Infact:

E[St] = E

[∫
(0,t]×R+

z N(dx, dz)

]
Obs. 15.21, b = 0

= E [Nf ] f(x, z) := 1[0,t] (x) z

= νf Def. 13.6

=

∫
fν(dx)

=

∫
1[0,t] (x) zdxλ(dz)

=

∫ t

0

∫ ∞

0

zλ(dz)dx

= t

∫ ∞

0

zλ(dz)

= t

∫ ∞

0

z
1

Γ(1− α)
acz−1−adz

=
tca

Γ(1− α)

∫ ∞

0

z−adz improper integral

Where the improper integral diverges at ∞, and St has no expectation. For the sake of completeness, we report
the calculation here below. An improper integral of this form can be calculated considering the discontinuity at
zero and the divergent limit on the other side:∫ ∞

0

z−adz =

∫ 1

0

z−adz +

∫ ∞

1

z−adz = lim
b→0

∫ 1

b

z−adz + lim
c→∞

∫ c

1

z−adz

while the indefinite integral is easily found as 1
1−az

−a+1 + K,K ∈ R. Ignoring the constant which is positive
since a ∈ (0, 1) by construction and 1− a > 0, we get:

lim
b→0

z−a+1

∣∣∣∣1
z=b

= 1− lim
b→0

b1−a = 1 <∞

But

lim
c→∞

z1−a
∣∣∣∣c
z=1

= lim
c→∞

c1−a − 1 = ∞

and the sum diverges. All the constants are positive and the claim is proved.
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♣ Proposition 15.25 (Link integrability & infinite activity). Consider a measure on R+ which is not finite.
We link Proposition 15.17#1 and Corollary 14.11#2,#3 by:

∫ ∞

0

(z ∧ 1)λ(dz) <∞ =⇒ λ((ϵ,∞)) <∞ ∀ϵ > 0

but still λ((ϵ,∞))
ϵ→0→ ∞

Proof. (△ ϵ > 1) it holds:

λ((ϵ,∞)) < λ((1,∞)) =

∫ ∞

1

λ(dz) ≤
∫ ∞

0

(z ∧ 1)λ(dz) <∞

(□ ϵ ≤ 1) a little more elaborate since:

λ((ϵ,∞)) =

∫ 1

ϵ

λ(dz) +

∫ ∞

1

λ(dz) := (I1 + I2)

Where I2 <∞ by △.
(⃝ I1 <∞) we have:

∫ 1

ϵ

λ(dz) ≤
∫ 1

ϵ

z

ϵ
λ(dz) ϵ < z < 1 =⇒ z

ϵ
> 1

≤ 1

ϵ

∫ 1

0

zλ(dz) z = z ∧ 1 ∀z ∈ [0, 1]

<∞ by △

(♠ ϵ→ 0) as ϵ→ 0 all the results hold but asymptotically as claimed. Since the measure is on R+ and it is not
finite, we necessarily have λ((ϵ,∞))

ϵ→0→ ∞

♢ Observation 15.26 (A side result). Let λ be not finite. Since a compound Poisson process is increasing Lévy
if it satisfies the integrability condition, it will also be the case that it has infinite activity.

♡ Example 15.27 (The stability of the stable process from Example 15.23). S = (St)t∈R+
from Example 15.23

is stable in the sense that:

Sut
d
= u

1
aSt ∀u, t ∈ R+ i.e. St

d
= t

1
aS1 ∀t ∈ R+

(△ Laplace approach) use the Laplace transform from Proposition 15.17#2.

E
[
e−rSt

]
= exp

{
−t
∫ ∞

0

(1− e−rz)λ(dz)

}
= exp

{
−t
∫ ∞

0

(1− e−rz)
ac

Γ(1− a)
z−1−adz

}
= exp {−tcra} proved below in □
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Where the last equality is
∫∞
0

(1− e−rz)az−1−adz = raΓ(1− a).
(□ missing equality) by direct computation:∫ ∞

0

(1− e−rz)az−1−adz =

∫ ∞

0

(1− e−t)a

(
t

r

)−1−a
dt

r
t = rz dt = rdz

= ra
∫ ∞

0

(1− e−t)at−1−adt

= −ra
∫ ∞

0

(1− e−t)︸ ︷︷ ︸
g

(−at−1−a)︸ ︷︷ ︸
f ′

dt integrate by parts

= −ra

(1− e−t)t−a
∣∣∣∣∞
0︸ ︷︷ ︸

=0

−
∫ ∞

0

e−tt−adt

 t−a = t1−a−1

= −ra
(
−
∫ ∞

0

e−tt1−a−1dt

)
Gamma integral at 1− a

= raΓ(1− a)

(♠ back to Laplace) by △ the general form at time ut is:

E
[
e−rSut

]
= exp {−utcra}

= exp
{
−ct

(
u

1
a r
)a}

= E
[
e−u

1
a rSt

]
= E

[
e−r(u

1
a St)

]
=⇒ Sut

d
= u

1
aSt ∀u, t

♡ Example 15.28 (Wiener process is stable). We showed that a Wiener process W = (Wt)t∈R+
(Def. 11.55)

is such that:
Wt =

√
tW1,Wt ∼ N(0, t),W1 ∼ N(0, 1)

which is the result of Proposition 11.56#3 for s = 0.
This is equivalent to saying that the process is stable as that of Example 15.23.

♠ Definition 15.29 (Inverse Gaussian distribution). We consider a stable process (St)t∈R+
as in Example 15.23

with a = 1
2 , c =

√
2. The Lévy measure becomes:

λ(dz) =
1√
2πz3

dz

The density associated to such measure is available in closed form:

f(z) =
t√
2πz3

e−
t2

2z z ∈ R+

We know that this is the density function of an inverse gaussian distribution, so we can safely say that St
d
= a2

Z2

for Z ∼ N(0, 1) and write St ∼ IN(a).

♢ Observation 15.30 (Simulating infinite activity measures). We know that:

St =

∫
[0,t]×R+

zN(dx, dz) mean dxλ(dz)

=

∞∑
i=1

Zi1[0,t] (Ti) jumps of size Zi

However, both a Gamma process (Ex. 15.22) and a stable process (Ex. 15.23) have ∞ activity since λ((ϵ,∞))
ϵ→0→

∞. We cannot apply Proposition 14.17 directly since the premises of Def. 14.16 are not respected. We need some
form of truncation. For this purpose, we will reconsider:
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• Ñ(dx, du) on R+ × R+ with mean dxdu

• N(dx, dz) simulated via transform using Proposition 14.20 assuming that it has an intensity notion (Def.
14.19)

we will do so for the stable process of Example 15.23.

♠ Definition 15.31 (Generalized inverse j). To implement the truncation, we make use of:

j(u) = inf {ϵ > 0 : λ((ϵ,∞)) < u}

Where the inf accounts for possible discontinuities. Notice that j is decreasing since λ is decreasing in ϵ.

♣ Proposition 15.32 (Generalized inverse properties). We have that:

1. λ(A) = (Leb ◦ j−1)(A) = Leb(1A ◦ j) ∀A ∈ E

2. λ(f) = Leb(f ◦ j)
3. St =

∑∞
i=1 j(Ui)1[0,t] (Ti) =

∑
i:Ti≤t j(Ui) for ((Ui, Ti))i≥1 ∼ N(dx, du)

Proof. (Claim #1) wlog for A = (a, b] observe that:

λ(A) = λ((a, b]) = λ((a,∞))− λ([b,∞))

= Leb ({u : u ∈ (λ([b,∞)), λ((a,∞))]})
= Leb ({u : j(u) ∈ A})
= Leb

(
j−1(A)

)
= Leb(1A ◦ j) j−1(A) = 1A ◦ j

(Claim #2) more in general:

λ(f) =

∫
f(z)λ(dz) =

∫
f(j(u))du = Leb(f ◦ j)

(Claim #3) The integrability condition becomes:∫
R+

(j(u) ∧ 1)du <∞

and if Ñ is a p.r.m. with mean Leb × Leb on R+ × R+ with atoms (Ti, Ui) then (Ti, j(Ui)) are the atoms of N
and we recover St via:

St =
∑
i≥1

j(Ui)1[0,t] (Ti) =
∑
i:Ti≤t

j(Ui)

♢ Observation 15.33 (About the results). More comments can be made:

• j(·) decreasing =⇒ (Ui)i≥1 arrival times are in increasing order
• St has decreasing increments
• it will be shown in Theorem 16.2 that (Ui)i≥1

d
= (Gi)i≥1 where:

G1 = E1, . . . , Gi =

i∑
k=1

Ek Ek ∼ Exp(1), Gi = Gamma(i, 1)

• S1 =
∑∞
i=1 j(Gi) but for t ̸= 1 it holds St =

∑∞
i=1 j(

1
tGi)

For these reasons, we need an appropriate j generalized inverse. We will prove such results as a continuation of
Examples 15.22, 15.23.

♡ Example 15.34 (Stable process j, Ex. 15.23 ctd.). Remember that λ(dz) = ac
Γ(1−a)z

−1−adz and:

λ((ϵ,∞)) =
c

Γ(1− a)
ϵ−a



178 CHAPTER 15. TRANSFORMATIONS & INCREASING LÉVY PROCESSES

Using Definition 15.31 for j we have that the solution in ϵ to the infimization is:

j(u) : λ((ϵ,∞)) = u =⇒ j(u) =

(
c

Γ(1− a)

) 1
a

u−
1
a

Using Observation 15.33 we can safely say that by the exponential distribution of the Gi ∼ Exp(1) with 1
t

∑
Gi ∼

Exp(1) it is the case that: 
St =

∑
i:Ti≤t ĉ(Ui)

− 1
a =

∑∞
i=1 ĉ

(
1

t
Gi

)− 1
a

ĉ =

(
c

Γ(1− a)

) 1
a

If we take t = 1, (Ui) forms a p.r.m. with unit intensity. In particular the arrival times of the allied counting
process (that is Ui in increasing order) are equal in distribution to:

G1 = E1, G2 = E1 + E2, . . . , Gk = E1 + · · ·Ek

Where (Ei) are exponential iid of unit rate. Hence:

S1 =

∞∑
i=1

ĉG
− 1

a
i

while in general:

St =

∞∑
i=1

ĉ

(
1

t
Gi

)− 1
a 1

t
Gi

iid∼ Exp(1)

♡ Example 15.35 (Gamma process j approximation, Ex. 15.22 ctd). For a Lévy density as that of the gamma
process the integral:

λ((ϵ,∞)) =

∫ ∞

ϵ

a
e−cz

z
dz

is not available in closed form. To simulate from it, we resort to the notion of incomplete Gamma function (Def.
15.36) and the result of Lemma 15.37. Indeed:

Γ(0, x) = γ0(x) =

∫ ∞

x

u−1e−udu Γ1(x)
x→0→ ∞

And we can express the Lévy measure as:

λ((ϵ,∞)) =

∫ ∞

ϵ

a
e−cz

z
dz

=

∫ ∞

cϵ

a
e−x

xc
cdz let x = cz, dx = cdz

=

∫ ∞

cϵ

ae−xx−1dx

= aγ0(cϵ)

So that the following chain holds:

aγ0(cϵ) = u ⇐⇒ cϵ = γ−1
0

(u
a

)
⇐⇒ j(u) =

1

c
γ−1
0

(u
a

)
And eventually:

St =

∞∑
i=1

j

(
1

t
Gi

)
Obs. 15.33

=

∞∑
i=1

1

c
γ−1
0

(
Gi
at

)
And we know how to approximate the inverse of the incomplete Gamma function (Lem. 15.37).
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♠ Definition 15.36 (Incomplete Gamma function Γ(s, x)). Also known as upper incomplete gamma function:

γs(x) = Γ(s, x) =

∫ ∞

x

ts−1e−tdt

Where for s = 0 we see that Γ(0, x) = γ0(x)
x→0→ ∞.

Lemma 15.37 (Incomplete gamma-χ2 link). Let χ2
d,(qt)

:= upper quantile of the chi-square distribution such
that P[χ2

d > χ2
d,(α)] = α. Then:

1. γ0(u) = Γ(0, u)
d→0
≈ 1

2χ
2
d,( du

2 )

2. Accordingly:

St
d→0
≈

∞∑
i=1

1

c

1

2
χ2

d,( d
2

Gi
at )

Proof. (Claim #1)(△ a basic fact) notice that χ2
d = Gamma

(
d

2
,
1

2

)
with density:

f(x) =
1

Γ
(
d
2

) (1

2

) d
2

x
d
2−1e−

x
2

(□ approximating) we extract the inequality:

2

d
P[χ2

d > 2x] =
2

d

∫ ∞

2x

1
d
2Γ
(
d
2

) (1

2

) d
2

u
d
2−1e−

u
2 du

=

∫ ∞

2x

1

Γ
(
d
2

) (1

2

) d
2

u
d
2−1e−

u
2 du

d→0
≈
∫ ∞

2x

(
1

2

) d
2

u
d
2−1e−

u
2 du aΓ(a)

a→0→ 1

=

∫ ∞

x

y−1e−ydy ch. var y =
u

2

= γ0(x) Def. 15.36

So that the expression tends to the law of the incomplete Gamma function as d→ 0.
(⃝ inverting) we invert the relation to derive a generalized inverse in the sense of Definition 15.31.

2

d
P[χ2

d > 2x] = u ⇐⇒ P[χ2
d > 2x] = u

d

2
⇐⇒ χ2

d,( d
2u)

= 2x ⇐⇒ x =
1

2
χ2
d,( d

2u)

which means that E−1
1 (u)

d→0
≈ 1

2
χ2
d,( d

2u)
.

(Claim #2) we just use the result of Example 17.12 to conclude that:

St =

∞∑
i=1

1

c

1

2
χ2

d,
(

dGi
2at

) d→0
≈

∞∑
i=1

1

c
E−1

1

(
Gi
at

)
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Chapter Summary

Objects:
• we consider the arising Poisson compound process from a Poisson random measure (T, Y ) where
(Tn)n∈N are arrival time atoms of a p.r.m. on R+ with mean cdx = ν(dx) and Yi

iid∼ π, Y ⊥⊥ T

St =
∑
i:Ti≤t

Yi =

∫
R+×R+

y1[0,t] (Ti)Yi = L((0, t]) L(A) =

∫
A×R

yN(dx, dy)

• additive random measures are random measures with independencies of random variables over dis-
joint sets

• increasing Lévy process is:
– increasing, right continuous, S0 = 0

– indepedendent increments
– stationary increments

• the candidate Poisson compound process with underlying additive random measure to be increasing
Lévy is:

St = bt+

∫
[0,t]×R+

zN(dx, dz) =M(ω, [0, t]), N ∼ P(cdx× λ(dz))

where M is an additive random measure, and N is a Poisson random measure
• we introduce the drift and Lévy measure of a precise form of increasing Lévy processes
• the inverse Gaussian distribution has measure & denstity wrt Lebesgue:

λ(dz) =
1

Γ(1− a)
acz−1−adz =

1√
2πz3

dz for α =
1

2
, c =

√
2, f(z) =

t√
2πz3

e−
t2

2z

where the density is that of a2

Z2 ∼ IN(a)

• to simulate infinite activity processes, we need the generalized inverse notion:

j(u) = inf{ϵ > 0 : λ((ϵ,∞)) < u}

Results:
• for X ∼ Pois(ν) on (E,E) and Y ⊥⊥ X such that Y ∼ π on (F,F) it holds:

(X,Y ) ∼ Pois(µ), µ = ν × π, (X,Y ) : (E × F,E⊗ F) → R+

• the compound Poisson process St has an underlying additive measure L
• any additive random measure is decomposed as M = α+K +L, where α is deterministic and K is

random with fixed positions
• the candidate compound Poisson process with mean Leb×λ is Lévy increasing if the Lévy measure:

λ(f ∧ 1) =

∫
R+

(f ∧ 1)λ(dz) <∞

• the integrability condition implies infinite activity, namely λ((ϵ,∞)) <∞ for all ϵ > 0

• Simulation of infinite activity process:
– aim: for a compound Poisson process with weak integrability (i.e. an increasing Lévy process),

we have infinite activity, and cannot fall under the arrival process formalism
– setting: λ with weak integrability for a p.r.m. N ∼ Pois(Leb × λ), Ñ(dx, du) ∼ Pois(Leb ×
Leb)),

– look for j in closed form assuming that Ui = Gi ∼ Exp(1) to conclude
– then use the intensity simulation of before
– the generalized inverse of an infinite activity process is such that λ(A) = Leb(1A ◦ j), λ(f) =
Leb(f ◦ j), St =

∑
i≥1 j(Ui)



Chapter 16

Poisson Processes

♢ Observation 16.1 (Setting & previous results). We briefly recall some facts that will be useful in this Chapter.

• A Poisson process N = (Nt)t∈R+
∼ Pois(c) c > 0 (Def. 12.2) is such that:

1. N is adapted to a filtration F (Def. 11.7)
2. Es[f(Ns+t −Ns)] =

∑∞
k=0 f(k)

e−ct(ct)k

k!

• N can be seen as a counting process (Def. 11.13) by definition with map t→ Nt:
1. starting at zero N0 = 0

2. increasing, right continuous and with jumps of size 1

• the representation of a counting process for 0 < T1 < . . . ; limk→∞ Tk = ∞ arrival times is:

Nt =

∞∑
k=1

1[0,t] (Tk) t ∈ R+

• a filtration of the form (Ft)t∈R+
= σ({Ns, s ≤ t}) = σ({M(A) : A ∈ B([0, t])}, where Nt(ω) = M(ω, [0, t])

makes Tk a stopping time ∀k in the sense of Definition 11.9, by the result of Example 11.27 since:

{Tk ≤ t} = {Nt ≥ k} ∀k

• by Theorem 12.4 we know that (Nt − ct)t≥0 is a martingale, in the sense of Definition 11.35
• ultimately, we observe that (Tk)k≥1 identifies a random counting measure (Def. 13.3) on R+ which we call
M(dx) and for f ∈ E+ extended to ∞ with f(∞) = 0 we write:

Mf =

∞∑
k=1

f(Tk)

• such M(dx) is a p.r.m. (Def. 13.13) with mean ν(dx) = cdx allowing us to write:

Nt =M((0, t])

Formal conclusions in this structure are made in the following Theorem.

♣ Theorem 16.2 (Poisson process, random measure & counting process equivalence). Let c > 0, TFAE:

1. M is a p.r.m. (Def. 13.13) with mean µ = cLeb

2. N is a poisson (counting) process (Defs. 12.2, 11.13) with rate c
3. N is a counting process (Def. 11.13) and Ñ = (Nt − ct)t≥0 is an F-martingale (Def. 11.35)
4. (Tk)k≥1 is an increasing sequence of F-stopping times (Def. 11.9) and:

T1, T2 − T1, . . .
iid∼ Exp(c)

Proof. (△ strategy) we show the chain of implications:

1 =⇒ 2 ⇐⇒ 3 =⇒ 4 =⇒ 1

181
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( 1 =⇒ 2 ) by the Lebesgue measure being diffuse we can apply Theorem 14.10 to conclude that M is a
Poisson counting measure with mean µ([0, t]) = ct <∞, so that N is a counting process. The independence and
the Poisson distribution requirements of Definition 12.2 follow by the fact that M is not only diffuse but also a
Poisson random measure.
( 2 ⇐⇒ 3 ) this is Theorem 12.4
( 3 =⇒ 4 ) assume #2,#3 holds and recall the discussion of the above observation.
(△ stopping) for all k ≥ 1 it holds {Tk ≤ t} = {Nt ≥ k} ∈ Ft∀t by the filtration we considered. Then Tk is
always a stopping time in the sense of Definition 11.9.
(□ domain check) by N being a counting process, it holds limt→∞Nt = M(R+) = ∞ almost surely with
ordered arrival times:

0 < T1(ω) < · · · < Tk(ω) if Tk(ω) <∞, lim
k→∞

Tk = ∞

(⃝ stochastic integrals approach) we want to show:

ETk
[exp{−r(Tk+1 − Tk)] =

c

c+ r
∀r ∈ R+ (16.1)

the Steltjes integral of the martingale Ñ in this case is, by Corollary C.25:

ES
∫
(S,T ]

FtdNt = ES
∫
(S,T ]

Ftcdt

Let Tk = S, Tk+1 = T, S ≤ T almost surely for fixed k ∈ N. We have:{
Nt = K S < t < T =⇒ dNt = 0

Nt = k + 1 t = T =⇒ dNt = 1

choosing Ft = re−rt with fixed r > 0 we get:

LHS = rES
[
e−rT

]
= cES

[
e−rS − e−rT

]
= RHS

reordering gives us the equivalent claim we eventually want to show:

ES [e−r(T−S)] =
c

c+ r
⇐⇒ rES [e−r(T−S)] = c− cES [e−r(T−S)] (16.2)

(▽ big computation) the result is as follows:

rES
[
e−r(T−S)

]
= rES

[
e−rT

]
ES
[
erS)

]
= erSES

[
re−rT

]
conditional determinism

= erSES

[∫
(S,T ]

FtdNt

]
□,⃝

= erSES


∫
(S,T ]

Ftd(Nt − ct)︸ ︷︷ ︸
=0

+

∫
(S,T ]

Ftcdt

 Thm. 12.18#2

= erSES

[∫
(S,T ]

Ftcdt

]

= erSES

[∫
(S,T ]

re−rt

]
= cES

[
c(e−rS − e−rT )

]
= cES

[
1− e−r(T−S)

]
= c− cES

[
e−r(T−S)

]
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which means that T −S = Tk+1−Tk is independent of FS = Tk and has exponential distribution with parameter
c, as it was to be proved.
(#4 =⇒ #1) [Çin11](VII.5.5).

♣ Theorem 16.3 (Poisson increasing Lévy characterization). For a counting process N (Def. 11.13) we conclude
that:

N increasing Lévy (Def. 15.14) ⇐⇒ N Poisson (Def. 12.2)

Proof. ( ⇐= ) trivial, a Poisson process is a counting process (thus, Prop. 11.14 holds), with independent
increments and stationary distribution by the definitional properties (Prop. 12.3), the two together cover the
requirements of an increasing Lévy process.
( =⇒ )(△ aim) wts N = (Nt)t∈R+

∼ Pois with mean ct ∀t and c > 0.
(□ first step) wts:

q(t) = P[{Nt = 0}] = e−ct ∀t ∈ R+, c > 0 fixed

By N begin Lévy, it holds that Ns+t −Ns
d
= Nt and:

P[{Ns+t = 0}] = P[{Ns = 0, Ns+t −Ns = 0}] Ns ⊥⊥ Ns+t −Ns

= P[{Nt = 0}]P[{Ns = 0}]

So that q(s + t) = q(t)q(s) decouples for any s, t ∈ R+. Also q(0) = 1. Lastly, q(t) = E
[
1{0} ◦Nt

]
is right

continuous by:

• the map t→ 1{0} ◦Nt being a.s. right continuous (simply, Nt is a.s. right continuous)
• the bounded convergence Theorem (Cor. 4.26):

lim
t↓s

q(t) = lim
t↓s

E

1{0} ◦Nt︸ ︷︷ ︸
≤1


= E

[
lim
t↓s
1{0} ◦Nt

]
= E

[
1{0} ◦Ns

]
right continuity of N

= q(s)

the solution this problem is unique for positive c:

c > 0, ∃!q : q(s+ t) = q(s)q(t), q(t) = e−ct

and is in the form claimed at the beginning of □.
(⃝ corner case) for c = 0 Nt = 0 almost surely ∀t and N is a Poisson process as well.
(♠ second part) we now consider M a random counting measure such that Nt = M((0, t]) and see that for a
partition of A = (0, t] into equal length subspaces {Ak}nk=1 of the form (·, ·] we have that for:

Xi = 1{M(Ai)≥1} Sn = X1 + · · ·+Xn

by N being Lévy it holds that {M(Ak)}nk=1 is an independency (Def. 17.1) and all are iid having equal size. We
denote them as M(Ak) = N∀k. Then:

Xi ∼ B(p) p = 1− q

(
t

n

)
= 1− e

−ct
n

implying:

∀k ∈ N P[{Sn = k}] = n!

k!(n− k)!

(
1− e−

ct
n

)k (
e−

ct
n

)n−k
=
e−ct

k!
n(n− 1) · · · (n− k + 1)

(
e−

ct
n − 1

)k
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(♠ third part) for almost every ω Mω has a finite number of atoms in A. Given δ(ω) the minumum distance if

n >
t

δ(ω)
we will have that:

Sn(ω) =M(ω,A) = Nt(ω) =⇒ Sn
n→∞→ Nt =⇒ P[Nt = k] = lim

k→∞
P[Sn = k] =

e−ct(ct)k

k!

♢ Observation 16.4 (Side note on the conclusion). In Chapter 15, we introduced increasing Lévy processes and
showed that a way to obtain them was via compound Poisson processes (Prop. 15.17. This ensured existance with a
specific form, but not uniqueness. This result instead, relates all increasing Lévy processes and Compound
Poisson processes as equivalent objects under the requirement that jumps are of unitary size.

♢ Observation 16.5 (Comments about the Theorem). We inspect for Ñ ∼ Pois(cdxλ(dz)) on R+ × R+ and:

Nt =

∫
[0,t]×R+

zÑ(dx, dz)

the form of λ(dz). Since Nt is a counting measure we derived that:

Nt =

∞∑
i=1

1[0,t] (Ti) =

∞∑
i=1

1 · 1[0,t] (Ti)

=

∞∑
i=1

Zi · 1[0,t] (Ti) Zi ≡ 1

So that λ(dz) = δ1(dz) has mass 1 for all Zi.

♣ Proposition 16.6 (Strong Markov Property of Poisson Processes). We establish independence of future events
from the past even when the present is a stopping time.
For a Poisson process N ∼ Pois(c) and a stopping time S:

ES [f(NS+t −NS)1{S<∞}] =

∞∑
k=0

f(k)
e−ct(ct)k

k!
1{S<∞}

Proof. By definition of Poisson Process (Def. 12.2) we extend to stopping times using Proposition C.27 replacing
s with S and t with S + t and proceed by Applying Corollary C.25. The result follows after some work. Note
that deterministically for t > 0 it holds t+ S > S, even though S is random.

♡ Example 16.7 (Counting process, ctd). Consider the random time:

S = inf {t ≥ a : Nt = Nt−a}

Where Tk+ a k > 0 is equivalent to having the first k interarrivals of size at most a and the (k+1)th exceeding
a. It holds that S <∞ almost surely, since the union over k of the events has probability one.
Let T be the next jump, and note that S falls in a+ (T − S). We ask the following question:

Is it true that a→ ∞ =⇒ T − S → 0?

This is False. Indeed, notice that:

{T − S > t} = {NS+t −NS = 0} ⊥⊥ FS =⇒ T − S ∼ Exp(ct)
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Where we exploited the loss of memory property, namely the second set being strong Markovian. The probability
is:

P(T − S ≥ t) = E
[
1{T−S>t}

]
= E

[
ES
[
1{T−S>t}

]]
unconditioning

= E [ES [1{NS+t −NS = 0}]] set equivalence above

= ES [f(NS+t −NS)] f(x) = 1 · 1{x=0}

= E
[
1{x=0}

]
Strong Markov Prop. 16.6

= P(X = 0) distr as Po(ct)

= e−ct ⊥⊥ FS , a

And the distribution is completely independent of a.

♣ Proposition 16.8 (Total unpredictability of jumps). This result is mirroring that of Proposition 19.10, which
will be proved later.
Consider a Poisson process N , of which the first jump is T = T1, and a stopping time S wrt F. Then:

0 ≤ S < T a.s. =⇒ S = 0 a.s.

Namely, we cannot find a sequence of stopping times that would approximate T .

Proof. As in the previous Example, we establish with an application of the strong Markov property (Prop. 16.6)
that:

{T − S > t} = {NS+t −NS} ⊥⊥ FS wp e−ct

Having the Poisson distribution, we derive using the unconditioning property (Prop. 10.18)

ES [T − S] =
1

c
=⇒ E [ES [T − S]] = E [T ]− E [S] = E

[
1

c

]
=

1

c

Where T ∼ Pois(c) ensures that the arrival times are exponentially distributed and E [T ] =
1

c
implying E [S] = 0.

By the hypothesis S ≥ 0 almost surely, and the fact that we have null expectation, it must be that S a.s.
= 0.

♡ Example 16.9 (Shot Noise, Ornstein Uhlenbeck process). The following is a descriptive discussion of a
famous process, which will be generalized in Example 22.28.
(△ R case) We aim to describe a p.r.m. N on the real line R with mean ν(dx) = cdx. The arrival times in this
case are:

. . . < T−2 < T−1 < T0 < 0 < T − 1 < . . .

This could model the arrivals to an anode of electrons producing a current intensity g decreasing as a function
of the elapsed time u ≥ 0. We assume for simplicity that currents are additive.
The total current at time t is then modelled as:

Xt =
∑

n:Tn≤t

g(t− Tn)

=

∞∑
n=∞

g(t− Tn)1(−∞,t] (Tn)

=

∫
g(t− x)1(−∞,t] (x)N(dx)

= Nf f(x) := g(t− x)1[0,t] (x)
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We wish to describe the moments and the Laplace functional of this process on R:

E[Xt] = E[Nf ] = νf Prop. 13.18#1

=

∫
R
g(t− x)1(−∞,t] (x) cdx

= c

∫ t

−∞
g(t− x)dx let u = t− x, du = −dx

= c

∫ 0

∞
−g(u)du

= c

∫ ∞

0

g(u)du

Which is ⊥⊥ t once we integrate. Moving on to the variance:

V [Xt] = V [Nf ] = νf2 Prop. 13.18#2

=

∫
R

(
g(t− x)1(−∞,t] (x)

)2
cdx

= c

∫ t

−∞
[g(t− x)]2dx let u = t− x, du = −dx

= c

∫ 0

∞
−[g(u)]2du

= c

∫ ∞

0

[g(u)]2du

Again ⊥⊥ t. Lastly, the Laplace transform is:

E[e−rXt ] = E[e−rNf ] = exp
{
−ν(1− e−rf )

}
Thm. 13.19

= exp

{
−
∫
R
(1− e−rg(t−x)1(∞,t](x))cdx

}
= exp

{
−c
∫
R
(1− e−rg(t−x))1(−∞,t] (x) dx

}
move indicator out

= exp

{
−
∫ t

−∞
(1− e−rg(t−x))dx

}
let u = t− x, du = −dx

= exp

{
−c
∫ ∞

0

(1− e−rg(u))du

}
(16.3)

Since the independence from t carries over to the Laplace functional, we can safely say that by Theorem 13.19
we have that:

Xt
d
= X̃0 ∀t X̃0 with transform as above

(□ (0,∞) case) consider now a more realistic p.r.m. on R+, which would allow a researcher to simulate the
phenomenon1. We consider as intensity function

g(u) = ae−bu a > 0, b > 0

and set a starting current to our Xt amount:
Xt = e−btX0 +

∑∞
n=1 ae

−b(t−Tn)︸ ︷︷ ︸
=g(t−Tn)

1[0,t] (Tn)

X0 ⊥⊥ T1 < T2 < . . .

1indeed, a physicist has to start somewhere, but the process in reality does not have a starting point itself.
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In this context, we want to show that Xt
d→ X̃0 as before. Proceeding in the same way, we inspect moments and

Laplace functional:

E[Xt] = E[e−btX0 +Nf ] f(x) := g(t− x)1[0,t] (x)

= e−btE[X0] +

∫ t

0

g(t− x)cdx again by Prop. 13.18#1

= e−btE[X0] + c

∫ t

0

g(u)du same ch. variable

which is dependent on t. For what concerns the variance

V [Xt] = E
[
(e−btX0 +Nf)2

]
− E

[
e−btX0 +Nf

]2
the result is the same. Moving to the Laplace transform:

E[e−rXt ] = E
[
e−re

−btX0

]
E
[
e−rNf

]
by X0 ⊥⊥ t

= E
[
e−re

−btX0

]
exp

{
−c
∫ t

0

(
1− e−rg(t−x)

)
dx

}
let u = t− x, du = −dx

= E
[
e−re

−btX0

]
︸ ︷︷ ︸

→1 as t→∞

exp

{
c

∫ t

0

(
1− e−rg(u)

)
du

}

t→∞→ exp

{
c

∫ t

0

(
1− e−rae

−bu
)
du

}
In the limit, the laplace transform converges pointwise to that of X̃0 of Equation 16.3. Laplace pointwise conver-
gence ensures that Xt

d→ X̃0 (Thm. 9.39).
(⃝ stationarity) we aim to show X0

d
= X̃0 =⇒ Xt

d
= X̃0 ∀t ∈ R+. This would mean that the distribution is

stationary around the realistic one over R, but feasible for experimentation as argued in □. We start with a split:

E[e−rXt ] = E[e−re
−btX̃0 ]︸ ︷︷ ︸

=A

exp

{
−c
∫ t

0

e−rg(u)du

}
︸ ︷︷ ︸

=B

(⋆)

A is the Laplace transform of X̃0 at r′ = re−bt > 0. Using Theorem 13.19 together with the explicit form in
Equation 16.3 we get that:

A = exp

{
−c
∫ ∞

0

(
1− e−re

−btg(u)
)
du

}
= exp

{
−c
∫ ∞

0

(
1− e−re

−btae−bu
)
du

}
= exp

{
−c
∫ ∞

0

(
1− e−rae

−b(t+u)
)
du

}
let x = t+ u, dx = du

= exp

{
−c
∫ ∞

t

(
1− e−rae

−bx
)
dx

}
for clearness, let x = u

= exp

{
−c
∫ ∞

t

(
1− e−rae

−bu
)
du

}
So that (⋆) becomes:

E[e−rXt ] = exp

{
−c
∫ ∞

t

(
1− e−rae

−bu
)
du

}
exp

{
−c
∫ t

0

e−rg(u)du

}
= exp

{
−c
∫ ∞

0

(
1− e−rg(u)

)
du

}
⊥⊥ t

=⇒ Xt
d
= X0

d
= X̃0 ∀t ∈ R+
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(♢ stochastic differential equation) we want to show that such a process satisfies the SDE:

Xt = X0 − b

∫ t

0

Xsds+ aN([0, t])

Also written as dXt = −bXtdt+ aN(dt). This is equivalent to:

⇐⇒ Xt = e−btX0 +

∫ t

0

g(t− x)N(dx) = X0 − b

∫ t

0

Xsds+N([0, t])

Where the form we have is the LHS and the form we want is the RHS. Inspecting the integral in the RHS with
the result of the LHS 2:∫ t

0

Xsds =

∫ t

0

e−bsX0ds+

∫ t

0

∫ s

0

g(s− x)N(dx)ds where s ≤ x ≤ t

=
1

b
X0(1− e−bt) +

∫ t

0

∫ t

x

g(s− x)dsN(dx) order change in accordance with s ≤ x ≤ t

Where the blue integral is precisely∫ t

0

∫ t

x

g(s− x)dsN(dx) =

∫ t

0

−a
b
e−b(s−x)

∣∣∣∣t
s=x

N(dx) =

∫ t

0

a

b

(
1− e−b(t−x)

)
N(dx)

Eventually substituting in the RHS one gets:

X0 − b

∫ t

0

Xsds+ aN([0, t]) = X0 + e−btX0 −X0 − a

∫ t

0

N(dx) + a

∫ t

0

e−b(t−x)N(dx)

= e−btX0 +

∫ t

0

g(t− x)N(dx)

Which is the LHS.

♡ Example 16.10 (Continuous time Yule Branching process, Ex. 12.44 ctd). Consider Zt := # individuals at
time t, with Z0 = 1. Assume death is not possible and the chance of birth is dt, independently for each individual.
Namely, one child in the interval (t, t+ dt], with no influence within the population.
(△ aim) We show that for each individual the number of descendants is an independent copy of the counting
Yule process, upon time shifts to restart it.
(□ exponential interbirths premise) let Yk be the kth inter-birth time. It holds that:

Yk
ind∼ Exp(k)

Since the waiting time for the first birth is a unit rate with exponential variable, given the linear chance of
birth. For general k, there are k − 1 individuals plus one ancestor, each birthing at a rate dt. The first birth
is the minumum of k exponential unit random variables. We show that this is again exponential. Observe that
Y2 = min{E1, E2}, . . . , Yk = min{E1, . . . , Ek} where for each Ei ∼ Exp(1). We easily conclude:

P(Yk > t) = P(E1 > t, . . . , Ek > t)

= (P(E1 > t))
k iid

= e−kt

= P(E > t) E ∼ Exp(k)

(⃝ first result)wts

Zt ∼ Geom(e−t) ⇐⇒ P(Zt = x) = e−t(1− e−t)x−1 x = 1, 2, . . .

Notice that the interarrivals denoted with Yk allow to define the arrivals process S = (Sn)n∈N as

Sn =

n∑
k=1

Yk

2this is slightly informal to say
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Which is equivalent to:

⇐⇒ {Sn ≤ t} = {Zt − 1 ≥ n} ⇐⇒ {Sn ≤ t} = {Zt > n} (16.4)

Meaning that the arrival times are stopping times for the underlying counting process Z in the usual sense (Def.
11.9).
Notice that in the p.r.m. case of the compound Poisson process (Def. 15.5) we had that Sn was a sum of unit
exponentials, returning a Gamma(n, 1) distribution (Thm. 16.2). Here instead:

Sn =

n∑
k=1

Yk︸︷︷︸
∼Exp(k)

=

n∑
k=1

1

k
E1︸︷︷︸

∼Exp(1)

d
= max{E1, . . . , Ek}

By a reverse time heuristic argument or a mgf argument. Eventually:

P(Sn < t) = P(E1 ≤ t, . . . , En ≤ t) Ek
iid∼ Exp(1)

= (P(E1 < t))
k

iid

= (1− e−t)k

= P(Zt > n) Eqn. 16.4

=⇒ P(Zt = n) = e−t(1− e−t)k =⇒ Zt ∼ Geom(e−t)

(▽ growth rate)wts
Zt

E [Zt]

a.s.→ W ∼ Exp(1)

First of all, observe that the unnormalized rate would explode exponentially fast:

E [Zt] =
1

e−t
= et ↗ ∞

thus a normalized version. Let Wt = e−tZt =
Zt

E [Zt]
and inspect the process (Wt)t∈R+

.

(▽♠ subpoint, W is a martingale) we show for F = σ(Z) that W is a martingale according to Definition
11.35. Adaptedness and integrability are easily verified. The martingale equality holds since:

Es[Wt] = E[Wt|Zs] Z only determinator

= e−tE [Zt|Zs]
= e−tE [Zt−s|Z0 = Zs]

= e−tZsE [Zt−s|Z0 = 1]

= e−tZse
t−s previous results

= e−sZs =Ws

(▽♣ subpoint, Gumbell limit identity) recall that for S = (Sn)n∈N = max{E1, . . . , En} it holds that:

Sn − log(n)
d→ Ψ ∼ Gumbell P[Ψ = x] = e−e

−x

(▽♡ subpoint, limiting distribution) we close the task of ▽. Recall that P(Zt > n) = P(Sn ≤ t) by Equation
16.4 in △. Now consider:

P(e−tZt < x) = P(Wt < x) ▽

= P(Zt < etx)

= P(Setx > t) if necessary take integer part

= P
(
Setx − log[etx] > t− log[etx]

)
= P

(
Setx − log[etx] > − log[x]

)
apply ▽,♣

t→∞→ etx P(Ψ < − log[x]) = e−e
− log(x)

= e−x

=⇒ Wt
d→ Exp(1)



190 CHAPTER 16. POISSON PROCESSES

Now we can apply the MCT (Thm. 12.27, especially Corollary 12.30#2 for positive martingales) to conclude that
we have an almost sure limiting distribution such that Wt

a.s.→ W∞. By the existance of an almost sure limit, it
coincides with that in distribution (Props. 9.14, 9.38) and:

∃W∞ :Wt
a.s.→ W∞, Wt

d→ Exp(1) =⇒ Wt
a.s.→ W∞ ∼ Exp(1)

Chapter Summary

Objects:
• summary of previous objects including Poisson processes, counting processes in general, with repre-

sentation via arrival times, which are stopping times for the natural filtration of N , itself generated
by the underlying random measure M

• N the counting process is also a martingale when normalized by its current expectation and the
underlying measure is random counting and Poisson with mean ν(dx) = cdx

Results:
• for c > 0 the following are equivalent:

– M is a p.r.m. (Def. 13.13) with mean µ = cLeb

– N is a Poisson (counting) process with rate c
– N is a counting process and Ñ = (Nt − ct)t≥0 is an F-martingale
– (Tk)k≥1 is an increasing sequence of F-stopping times and:

T1, T2 − T1, . . .
iid∼ Exp(c)

• a counting process is increasing Lévy if and only if it is Poisson
• Poisson processes (rate c) follows the strong Markov property, conditioning at a stopping time S

makes them Markovian in the sense that:

ES [f(NS+t −NS)1{S<∞}] =

∞∑
k=0

f(k)
e−ct(ct)k

k!
1{S<∞}

• jumps of Poisson processes are totally unpredictable, if T is the first jump of N and S ≤ T then
S
a.s.
= 0 almost surely, and there is no sequence of stopping times approximating T



Chapter 17

Lévy Processes

♠ Definition 17.1 (Lévy process). A process X = (Xt)t∈R+
is Lévy wrt a filtration (Ft)t∈R+

if:

1. (adaptedness) it is adapted to (Ft)t∈R+
(Def. 11.7)

2. (right continuity and starts at zero) for a.e. ω ∈ Ω the path t→ Xt is right continuous and X0(ω) = 0

3. (stationary and independent increments) ∀s, t ≥ 0 Xs+t −Xs ⊥⊥ Fs
d
= Xt

♢ Observation 17.2 (Differences with increasing Lévy processes). Compare this Definition with Definition
15.14. We are removing the term increasing.

♢ Observation 17.3 (About Lévy processes). trivially:

• cXt is a Lévy process
•
∑n

X
(i)
t is a Lévy process

♠ Definition 17.4 (Infinite divisibility). We express a Lévy process (Xt)t∈R+
as
∑n
i=1Xi = Xt ∀n, t where

the elements are all Lévy processes:

δ =
t

n
=⇒ Xt = Xt1[0,δ] (t) +Xt1[δ,2δ] (t) + · · ·+Xt1[δ(n−1),δn] (t)

where the increments are independent and identically distributed.

♠ Definition 17.5 (Characteristic exponent ψ(r)). This is a direct result of the infinite divisibility, which makes
the process decompose into independent processes. A Lévy process can be described by the characteristic exponent,
a complex valued function such that:

ΦXt
(r) = E[eirXt ] = etψ(r) t ∈ R+, r ∈ R

Where ψ : R → C is complex valued.

♡ Example 17.6 (Easy Lévy processes). recognize that:

• a Wiener process (Def. 11.55) is such that Xt = bt+ cWt is Lévy
• a Poisson process (Def. 12.2) N = (Nt)t∈R+

is Lévy
• a compound Poisson process (Def. 15.5) Xt =

∑∞
n=1 Yn1[0,t] (Tn) for arrival times (Tn) is increasing Lévy

if it satisfies the integrability condition on the Lévy measure:∫
λ(dz)(z ∧ 1) <∞ Thm16.3

=⇒ Xt = bt+

∫
[0,t]×R+

zN(dx, dz)

where N ∼ Pois(Leb× λ). Provided that this holds, (Xt)t∈T is an (increasing) Lévy process

♠ Definition 17.7 (Pure jump process). Consider on R the Lévy process

Xt =
∑

s∈[0,t]∩Dω

∆Xs ∀t ∆Xs = Xs(ω)−Xs−(ω), Dω = {t > 0 : ∆Xt(ω) ̸= 0}

Then:

191
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• the jumps are positive or negative, we could see Xt = X+
t +X−

t where both are increasing Lévy
• if the jumps are countable (e.g. arising from arrival times (Tn)) then we can evaluate the sum, we do so

by intersecting the time interval with Dω

We call this a pure jump process, notice that it is not necessarily increasing.

♠ Definition 17.8 (Total Variation Vt of the pure jump). We give a first definition of total variation of a path
of a pure jump process t→ Xt as:

Vt =
∑

s∈[0,t]∩Dω

|∆Xs| ∀t ∈ R+

♣ Proposition 17.9 (General representation & existance conditions of Lévy process). For a p.r.m. M on
R+ × Rd with mean Leb× λ and λ({0}) = 0 if:

λ(|x| ∧ 1) =

∫
Rd

λ(dx)(|x| ∧ 1) <∞ (17.1)

then:

1. for a.e. ω the process arising from the integral Xt(ω) =
∫
[0,t]×Rd Mω(ds, dx)x converges absolutely ∀t and

it has bounded total variation Vt <∞ ∀t
2. X is a pure jump Lévy process with characteristic exponent

ψ(r) = λ(eir·x − 1) =

∫
Rd

λ(dx)(eir·x − 1) ∀r ∈ R

Proof. Let:

• M̂ be the image of M under (s, x) → (s, |x|) from R+ × Rd to R+ × R+

• λ̂ be the image of λ under x→ |x|

Then M is a p.r.m. on R+ × R+ with mean Leb × λ̂ by Proposition 14.13. Note that λ̂({0}) = 0 so that the
integrability condition becomes: ∫

R+

λ̂(dv)(v ∧ 1) <∞

Which implies that λ̂((ϵ,∞)) <∞∀ϵ > 0. By Corollary 14.11 we can choose Ω′ an almost sure event such that:

∀ω ∈ Ω′ M̂ω counting

according to Definition 2.4, with:

• no atoms in R+ × {0}
• at most one atom in {t} × R+ ∀t

On the other hand, for each time t:

Vt =

∫
[0,t]×R+

M̂(ds, dv)v =

∫
[0,t]×Rd

M(ds, dx)|x| (17.2)

is positive and in R almost surely by the integrability condition and Proposition 14.4. Let Ωt be the almost sure
event for each t. Additionally:

Ω′′ =
⋃
t∈N

Ωt

Fix ω ∈ Ω′ ∩ Ω′′. The map:
t→ Vt(ω) f : R+ → R+

is:

• right continuous
• increasing
• V0(ω) = 0

• jump of size v at time s ⇐⇒ Mω has an atom (s, x) with |x| = v
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From this the integral of Claim #1 converges absolutely for every t and∑
s≤t

|∆Xs(ω)| = Vt
∑
s≤t

∆Xs(ω) = Xt(ω)

So that X is of pure-jump type with total variation over [0, t] identified by Vt.
From the integral of Claim #1 and the Poisson character of M the process X has independent and stationary
increments. Its form, the fact that we can use a characteristic exponent (Def. 17.5) and Theorem 13.19 suggest
that:

ψ(r) =

∫
Rd

λ(dx)(eirx − 1) ∀r ∈ R

♢ Observation 17.10 (A side note on the result). The integrability condition on the Lévy measure is very
similar to that of compound Poisson processes. The naïve difference is that we need to bound negative values as
well, while before the process was only increasing.

♢ Observation 17.11 (About the Proposition). Many comments can be made:

• the Lévy measure λ regulates the jumps and characterizes both M and X.
• we have ∀A ⊂ R such that λ(A) < ∞ that the jump sizes in A form a counting process with path t →
M([0, t]×A), where the latter has Poisson rate λ(A).

• the condition λ({0}) = 0 is to ensure that Mω and X(ω) determine each other uniquely almost surely
• trivially, a measure λ finite satisfies the requirements, resulting in a Poisson compound process with jumps
(Yn)n≥1 and Yn

iid∼ π(dz) in the sense of Definition 15.5. Notice however that differently from Example
15.4, we are allowing jumps to take place on R and not R+ only

• infinite Lévy measures that satisfy the integrability condition come with ∞ activity but finitely many jumps
exceeding ε > 0 arbitrary in absolute value since λ((−∞,−ϵ))+λ((ϵ,∞)) <∞ for any interval (s, t) : s < t

• another characterization of total variation is Equation 17.2
• the total variation Vt is a pure jump increasing Lévy process with Lévy measure as the image of λ under
x→ |x|. The path X(ω) jumps with size x at time t if and only if V (ω) jumps at time t with size |x|

♡ Example 17.12 (Symmetric Gamma process, Ex. 15.35 ctd). Recall that a Gamma process is an increasing
Lévy process (Def. 15.14) with measure and distribution:

λ(dz) =
ae−cz

z
dz, z ∈ R+, Xt ∼ Gamma(at, c) ∀t ∈ R+

Let X+
t ⊥⊥ X−

t be independent copies, and set Xt = X+
t −X−

t . Then, Xt is a pure jump Lévy process according
to Definition 17.7 with measure:

λ(dz) =
ae−c|z|

|z|
dz

We aim to evaluate its characteristic function to see if it coincides with some known distribution.

E
[
eirXt

]
= E

[
eirX

+
t

]
E
[
ei(−r)X

−
t

]
independence

=

(
c

c+ ir

)at(
c

c− ir

)at
Ex. 15.35

=

(
c2

(c+ ir)(c− ir)

)at
=

(
c2

c2 + r2

)at
Which means that the characteristic exponent is real:

ψ(r) =
1

t
log
[
E[eirXt ]

]
= a log

[
c2

c2 + r2

]
∈ R

While Xt has no known distribution, it can be shown that the total variation V = X+ +X− is such that:

Vt ∼ Gamma(2at, c) ∀t ∈ R+
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♡ Example 17.13 (Isotropic stable process, Ex. 15.34 ctd). Let X+
t ⊥⊥ X−

t be independent copies of the stable
process from Example 15.34. The density of Xt = X+

t −X−
t is:

λ(dz) =
ac

Γ(1− a)
|z|1−adz, z ̸= 0, a ∈ (0, 1)

Such a process is pure jump Lévy according to Definitions 17.1, 17.7 and has Laplace transform:

E[eirXt ] = exp

{
t

∫
R
(eirz − 1)λ(dz)

}
= exp

{
tc cos

(
1

2
πa

)
|r|a
}

With characteristic exponent:

ψ(r) =

∫
R
(eirz − 1)λ(dz) = −c cos

(
1

2
πa

)
|r|a

Which is stable since Xt
d
= t

1
aXt ∀t.

17.1 Compensated sum of jumps from relaxed integrability conditions

♢ Observation 17.14 (Infinite variation process). We consider a Lévy process such that Vt = ∞ for each
positive path t > 0. Then:

Xt−(ω) = lim
s↑t

Xs(ω) Xt+(ω) = lim
s↓t

Xs(ω)

By right continuity of the Lévy process, we have for free that Xt+(ω) = Xt(ω). If Xt−(ω) ̸= Xt+(ω) then we will
have a jump at time t denoted as ∆Xt(ω). Let:

Dω = {t > 0 : ∆Xt(ω) ̸= 0}

be the set of times where a jump takes place. Then, ∀ϵ > 0 there are infinitely many jumps in Dω ∩ (s, u) such
that ∆Xt(ω) > ϵ. Otherwise, by Bolzano-Weierstrass there would exist a countable subsequence (tn) ⊂ Dω where
n→ tn ∈ [s, u] such that either Xtn−(ω) or Xtn+(ω) do not exist.
However, does an infinite Vt Lévy process exist at all?
We aim to build a Lévy process driven by a p.r.m. N with mean dxλ(dz) even when the integrability condition is
not satisfied. For simplicity, we concentrate on jumps that have size less than one in absolute value.

♠ Definition 17.15 (Basis notation). denote:

• B = {x ∈ R : |x| ≤ 1}
• Bϵ = {x ∈ R : ϵ < |x| ≤ 1} for ϵ ∈ (0, 1)

♣ Theorem 17.16 (Infinite total variation Lévy existance as compensated sum of jumps). Let M ∼ Pois(Leb×λ)
(Def. 13.13) on R+ × B where λ({0}) = 0 and:

λ(|x|21B) =
∫
B
λ(dx)|x|2 <∞ (17.3)

For ϵ ∈ (0, 1) consider:

Xϵ
t (ω) =

∫
[0,t]×Bϵ

xMω(ds, dx)− t

∫
Bϵ

λ(dx)x ω ∈ Ω, t ∈ R+

Then:

1. ∃X Lévy such that limϵ↓0X
ϵ
t (ω)

a.s.
= Xt(ω) uniformly convergent over bounded intervals

2. ψ(r) =
∫
B λ(dx)(e

irx − 1− irx) r ∈ R

♢ Observation 17.17 (Technicalities of the theorem). some comments are:
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1. (eirx − 1 − irx) ≤ 1
2 (irz)

2 = 1
2r

2z2 which is a well defined quantity under the integrability condition of
Equation 17.3

2. Xϵ
t = Y ϵt + aϵt where Y ϵt is compound Poisson (Def. 15.5) and aϵ is a fixed drift. Additionally denote:

bϵ =

∫
Bϵ

λ(dx)|x| cϵ =

∫
Bϵ

λ(dx)|x|2, ϵ ∈ [0, 1)

notice that by1 ϵ2λ(Bϵ) ≤ ϵbϵ ≤ cϵ ≤ c0 the integrability condition of Equation 17.3 implies that c0 < ∞
guaranteeing that all such quantities are finite:

λ(Bϵ) <∞ bϵ <∞ ∀ϵ ∈ [0, 1)

so that λ(Bϵ) <∞ =⇒ Xt(ω) from Thm. 17.16 is convergent and the second integral in the expression aϵ
is a vector in Rd.

3. the uniform convergence over bounded intervals claim is equivalent to:

X : for a.e. ω lim
e↓0

sup
0≤t≤u

|Xϵ
t (ω)−Xt(ω)| = 0 ∀u ∈ R+

4. if it also holds that:

b0 <∞ =⇒ λ sat. Eqn. 17.1 Prop. 17.9
=⇒ Yt = lim

ϵ↓0
Y ϵt =

∫
[0,t]×B

M(ds, dx)x ∀t ∈ R+

with Yt a pure jump process (Def. 17.7) and:
• a = limϵ↓0 aϵ =

∫
B λ(dx)x well defined

• Xt = Yt − at ∀t ∈ R+

We refer to Xt as the stochastic integral:

Xt =

∫
[0,t]×B

x [M(ds, dx)− dsλ(dx)]

called a compensated sum of jumps, compensated in that every Xϵ
t is the sum of the sizes of the jumps

during [0, t] larger than ϵ in magnitude minus the expected value at aϵt so to get a martingale.

♢ Observation 17.18 (Why compensated jumps & a Theorem). We try to justify the use of a Theorem to
present the results.

1. Recall Observation 17.17, let b0 = ∞ and c0 <∞. Then Theorem 17.16 can be applied since Equation 17.3
holds but Proposition 17.9 cannot be applied since Equation 17.1 does not. So:

• aϵ, Y
ϵ
t are not convergent as ϵ→ 0

• but Xϵ
t = Y ϵt − aϵ converges!

• X has infinite variation over every time interval (s, t) : s < t

2. Xϵ
t is a compensated jumps martingale in the sense that:

E[Y ϵt ] = aϵt =⇒ E[Xϵ
t ] = 0 ∀ϵ ∈ (0, 1),∀t ∈ R+

where the sum of the sizes of the jumps is Y ϵt compensated by aϵt.

♡ Example 17.19 (Standard Cauchy process). Let the Lévy measure be:

λ(dz) =
1

πz2
dz z ∈ R+

1which in turn holds as ϵ2 ≤ ϵ|x| ≤ |x|2 for x ∈ Bϵ
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It holds that (be careful with the second as it is a bit tricky):∫ 1

−1

z2λ(dz) =

∫
B
z2λ(dz) =

2

π
<∞∫

B
|z|λ(dz) =

∫ 1

−1

|z| 1

πz2
dz

=

∫ 0

−1

−z 1

πz2
dz +

∫ 1

0

z
1

πz2
dz basically without modulus undefined

=
1

π

(∫ 1

0

1

z
dz −

∫ 0

−1

1

z
dz

)
=

1

π

(
ln(|z|)

∣∣∣∣1
0

− ln(|z|)
∣∣∣∣0
−1

)

=
1

π
(∞+∞)

= +∞

So we can apply Theorem 17.16 having infinite total variation.
Let Xt = Xd

t +Xe
t where:

Xd
t =

∫
[0,t]×B

z (N(dx, dz)− dxλ(dz)) jumps size ≤ 1

Xe
t =

∫
[0,t]×Bc

zN(dx, dz) jumps size > 1

Here Xe
t is such that

∫∞
1
λ(dz) <∞.

The characteristic exponent is:

ψ(r) =

∫
B
(eirz − 1− irz)λ(dz) +

∫
Bc

(eirz − 1)λ(dz)

since we can split the process into the infinite variation part and the finite one. Recalling Observation 17.17 we
also have that:

Xd
t = lim

ϵ↓0
Xd,ϵ
t Xd,ϵ

t =

∫
[0,t]×Bϵ

zN(dx, dz)− t

∫
Bϵ

zλ(dx, dz)︸ ︷︷ ︸
=0 by symmetry

so that Xd,ϵ
t requires no compensation and we eventually get:

Xt = lim
ϵ↓0

∫
[0,t]×Bϵ

zN(dx, dz) +

∫
[0,t]×Bc

zN(dx, dz)

= lim
ϵ↓0

∫
[0,t]×Rϵ

zN(dx, dz) +

∫
[0,t]×Bc

zN(dx, dz) Dominated conv. Thm. A.51

where Rϵ = {x : |x| > ϵ} dominates Bϵ. Notice that this is not a pure jump process in the sense of Definition
17.7. Nevertheless, the Laplace transform is:

E[eirXt ] = exp

{
t lim
ϵ↓0

∫
Rϵ

(eirz − 1)
1

πz2
dz

}
= exp

{
t

∫
R
(eirz − 1)

1

πz2
dz

}
= exp

{
t

∫
R
(cos(rz) + i sin(rz)− 1)

1

πz2
dz

}
= exp

{
t

∫
R
(cos(rz)− 1)

1

πz2
dz

}
sin(rz)

πz2
symm around 0

= exp {t|r|} Prop. 17.21#2
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And we have that Xt
d
= t

1
1X1 (stability with index 1). Moreover by:

X1
d
=
Z1

Z2
, Z1, Z2 ∼ N(0, 1), X1 ∼ Cauchy(1) (Prop. 17.21#1), f(x) =

1

π(1 + x)2

We have that:
Xt : f(x) =

t

π(t2 + x2)
∀x ∈ R,∀t ∈ R+

Lemma 17.20 (An identity for distribution and Φ). This is presented here but proved in Lemma C.32.
For X a r.v. on R with density f(x):

ΦX(r) =

∫
R
eirxf(x)dx ⇐⇒ f(x) =

1

2π

∫
R
e−irxΦX(r)dr

Proof. Lemma C.32.

♡ Example 17.21 (Concluding Example 17.19). In the context of the standard Cauchy process we add that:

1. X1 ∼ Cauchy(1)

2.
∫
R(cos(rz)− 1)

1

πz2
dz = |r|

(Claim #1) use Lemma 17.20 and the fact that the Characteristic function of a Cauchy(1) distribution is
Φ(r) = e−|r|. We have:

1

2π

∫
R
e−irxe−|r|dr =

1

π

∫
R
eir(−x)

1

2
e−|r|︸ ︷︷ ︸

density Laplace

dr

=
1

π

1

1 + (−x)2
characteristic function Laplace

=
1

π(1 + x2)

= f(x) X1

(Claim #2) by the symmetry of the integrated function, the claim is equivalent to:

2

∫ ∞

0

(1− cos(rz))
1

π(z2)
dz = |r|

(△ first step) for a triangular distribution U + U ′ − 1 where U ∼ Unif(0, 1) the density is

f(x) = 1− |x| |x| < 1

with characteristic function:

Φ(r) =

∫ 1

−1

e−rx(1− |x|)dx

=

∫ 1

−1

(cos(rx) + i sin(rx))(1− |x|)dx

=

∫ 1

−1

cos(rx)(1− |x|)dx symmetry of second term

= 2

∫ 1

0

cos(rx)︸ ︷︷ ︸
f ′

(1− x)︸ ︷︷ ︸
g

dx cos(−x) = cos(x) ∀x

= 2
− sin(rx)(1− x)

r

∣∣∣∣1
x=0︸ ︷︷ ︸

=0

−2

∫ 1

0

− sin(rx)(−1)

r
dx integration by parts

= − 2

r2
cos(rx)

∣∣∣∣1
x=0

=
2

r2
(1− cos(r)) cos′ = − sin′, sin′ = cos
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(□ density) using Lemma 17.20 for the triangular distribution of △ we have

f(x) = (1− |x|)1[−1,1](x) =
1

2π

∫
R
e−irx

2

r2
(1− cos(r))dr =⇒ 1 =

1

π

∫
R

1− cos(r)

r2
dr at x = 0

where, using r = u, u = rx : du = |r|dx:∫
R

1− cos(u)

πu2
du =

∫
R

1− cos(rx)

πr2x2
|r|dx =

∫
R

1− cos(rx)

π|r|x2
dx = 1

So that: ∫
R

1− cos(rx)

πx2
dx = |r|

and we have proved the claim.

Chapter Summary

Objects:
• Lévy processes are:

– adapted
– right continuous, starting at 0 almost surely
– with stationary and indepedent increments

• the concept of infinite divisibility allows for the formulation of the characteristic exponent ψ(r) :

E
[
eirXt

]
= etψ(r) for all t ∈ R+, r ∈ R

• a pure jump process is a countable sum of sizes of its jumps over time:

Xt =
∑

s∈[0,t]∩Dω

∆Xs ∀t ∆Xs = Xs(ω)−Xs−(ω), Dω = {t > 0 : ∆Xt(ω) ̸= 0}

their total variation is Vt =
∑
s∈[0,t]∩Dω

|∆Xs|. For Xt to exist, Vt must be finite
• to ease out computations we define B = {x : |x| ≤ 1}, Bϵ = {x : ϵ < |x| < 1} for some ϵ ∈ (0, 1)

Results:
• a pure jump Lévy process exists when it is defined as the integral of a Poisson random measure
M ∼ Pois(Leb× λ) where the size measure satisfies:

λ({0}) = 0 λ(|x| ∧ 1) <∞ (17.4)

so that:
– for almost every ω Xt(ω) =

∫
[0,t]×Rd Mω(ds, dx)x is absolutely convergent with bounded total

variation
– X = (Xt)t∈T is of pure jump time as desired with characteristic exponent

ψ(r) = λ(eir·x − 1) ∀r ∈ R

• in the case in which the total variation is infinite, we can still devise a compensated Lévy process if
the size measure λ satisfies:

λ({0}) = 0 λ(|x|21B) <∞

so that:
– the process:

Xϵ
t (ω) =

∫
[0,t]×Bϵ

xMω(ds, dx)− t

∫
Bϵ

λ(dx)x ω ∈ Ω, t ∈ R+

– is uniformly convergent as ϵ ↓ 0 almost surely to a Lévy process. That is, limϵ↓0X
ϵ
t (ω)

a.s.
= Xt(ω)

uniformly convergent over bounded intervals
– the characteristic exponent is ψ(r) =

∫
B λ(dx)(e

irx − 1− irx) r ∈ R



Chapter 18

Brownian Motion

♢ Observation 18.1 (So far and setting). We will work on a probability space (Ω,H,P), and consider:

• Wiener processes (Def. 11.55), martingales (Prop. 11.62), with stationary independent Gaussian incre-
ments

• Lévy processes (Def. 17.1), right continuous, starting at zero, with stationary independent increments

Recall also that a Wiener process is stable of order 2, meaning:

Wt
d
=

√
tW1, W1 ∼ N(0, 1), Wut

d
=

√
uWt ∀u, t ∈ R+

♠ Definition 18.2 (Brownian motion). A process X = (Xt)t∈R+
on (R,B(R)) such that:

1. the path t→ Xt is continuous
2. it has stationary and independent increments

♢ Observation 18.3 (Connection Brownian-Lévy). straightforward:

(Xt)t∈R+
Brownian =⇒ (Xt −X0)t∈R+

continuous Lévy

But could we say more?

18.1 A Different Perspective of Wiener Processes

♣ Theorem 18.4 (Lévy characterization as Wiener). As a first step, notice that:

1. Xt = at+ bWt continuous Lévy =⇒ Wt Wiener
2. Wt Wiener =⇒ Xt = at+ bWt continuous Lévy

Which establish an ⇐⇒ relation

Proof. (Claim #1) Theorem D.1.
(Claim #2) Example 17.6

Corollary 18.5 (Applying Theorem in the Brownian-Wiener-Lévy context). Combine the results to obtain:

Xt Brownian Obs. 18.3
=⇒ Xt −X0 Lévy Thm. 18.4⇐⇒ Xt −X0 = bt+ cWt : Wt Wiener

♠ Definition 18.6 (Brownian motion decomposition). We build a Brownian motion from Definition 18.2 as:

Xt = X0 + bt+ cWt

for a drift coefficient b, a volatility coefficient c and a Wiener process W .

199
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♠ Definition 18.7 (Wiener process as Brownian motion revisited). According to our results, a Brownian motion
W = (Wt)t∈R+

with W0 = 0,E[Wt] = 0, V [Wt] = t (namely, X0 = 0, b = 0, c = 1) is also a Wiener process!
We will see in the next result that a Wiener process is a Gaussian process with continuity. However, while
constructing a Gaussian process is immediate, as it is only required to specify the functions m,K (see Def.
10.61), it is not granted that there exists a probability space where such process is continuous. We will eventually
see that this condition is satisfied, but the question at the moment is proving that Wiener processes exist in the
Brownian formulation.

Lemma 18.8 (Gaussian Transformation linearity). Quickly recall that:

X ∼ Nd(µ,Σ), A ∈ Rp × Rd =⇒ Y = AX ∼ Nd(Aµ,AΣAT )

♢ Observation 18.9 (Wiener Gaussianity). By the very definition of a Wiener process W we have that:

• Ws+t −Ws ⊥⊥ Fs (Markovianity)

• P[(Ws+t −Ws) ∈ B] = P[Wt ∈ B] =
∫
B
dx e

− x2

2t√
2πt

(gaussianity)

So for distinct times 0 < t1 < t2 < · · · < tn the joint distribution is:

(Wt1 , . . . ,Wtn) ∼ Nn(0,Σ) Σ = {ti ∧ tj}ij

Since we use Lemma 18.8 with:

A =



1 0 0 · · · · · · · · · 0

−1 1 0 · · · · · · · · · 0

0 −1 1 0 · · · · · · 0
... 0 −1 1 · · · · · · 0
...

...
. . . 0

. . . . . . 0

0 0 0 0 · · · −1 1


Basically a triangular matrix, so that: 

t1
t2 − t1

...
tn − tn−1

 = A


t1
t2
...

tn−1


and we can check that AΣAT returns the desired result.

♢ Observation 18.10 (Gaussian Wienerity). the process (Wt) = (Wt1 , . . . ,Wtn) Gaussian, with null expectation
E[Wti ] = 0∀i and Covariance of the form CoV [Wti ,Wtj ] = ti∀i ≤ j can be used to recover a Wiener process
making use of A−1 where A is from the above Observation and Lemma 18.8 so that we get and independecy:

(Wt1 ,Wt2 −Wt1 , . . . ,Wtn −Wtn−1) ⊥⊥ mutually Wti −Wti−1 ∼ N(0, ti − ti=1)

behaving as a Wiener process.

♣ Theorem 18.11 (Wiener-Gaussian characterization). The previous observations suggest a useful conclusion.
For W = (Wt)t∈R+

a process on R we establish:

W Wiener ⇐⇒


W continuous

W ∼ GP(m, k) Gaussian Def. 10.61
E[Wt] = 0, CoV [Ws,Wt] = s ∧ t

where m(t) ≡ 0 and k(s, t) = s ∧ t.

Proof. Observations 18.9, 18.10.
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♢ Observation 18.12 (About the Theorem). Does Brownian motion exist at all? We have not yet assessed
continuity in the Gaussian process, as we only have seen that expectation and variance coincide, up to transfor-
mation. So far, we know the easiest instance of Brownian motion, with the adjusted Definition of Wiener process
(Def. 18.7) should work. We are missing a formal continuity of the path proof.

Lemma 18.13 (Kolmogorov’s maximal inequality). Assume {Xi}ni=1 is an independency where E[Xi] = 0∀i.
Setting Sn =

∑n
Xi:

a2P
[
max
k≤n

|Sk| > a

]
≤ V [Sn]

Proof. Lemma D.2.

♠ Definition 18.14 (Recap about Dyadic rationals). Dyadic rationals are also discussed in Lemma A.17. Here
we denote them as:

D = {x ∈ R+ : x = k2−m, k,m ∈ N}

♣ Proposition 18.15 (Dyadics are dense in R). This is a very important result. It is reported here to reference
it when needed.

∀t ∈ R,∀ϵ > 0 ∃k,m ∈ N : t ∈ (k2−m, (k + 1)2−m], t− k2−m < ϵ

which is the exact definition of dense set.

Proof. Lemma D.3.

♣ Theorem 18.16 (Wiener Process properties, Brownian formulation). Let W = (Wt)t∈R+
be a Wiener process

according to Definition 18.7. Then:

1. (symmetry) (−Wt)t∈R+
is Wiener

2. (scaling) (Wct)ct∈R+ Wiener =⇒ Ŵ = (
√
cWt)t∈R+ is Wiener ∀c ∈ (0,∞)

3. (time inversion) setting W̃0 = 0 for convention, the process W̃t = tW 1
t

is Wiener

Proof. (Claim #1) trivial by Definition 18.7.
(Claim #2) holds if and only if we have stability of order 2, something verified by Definition 18.7.
(Claim #3)(△ t > 0) for t > 0 the process W̃t is continuous and such that E

[
W̃t

]
= E

[
tW 1

t

]
= 0. Moreover:

CoV
[
W̃s, W̃t

]
= CoV

[
sW 1

s
, tW 1

t

]
= stCoV

[
W 1

s
,W 1

t

]
bilinearity

= st

(
1

s
∧ 1

t

)
Thm. 18.11

= st ·

{
1
s t < s
1
t s < t

= s ∧ t

So that W̃t satisfies Theorem 18.11 for t > 0.
(□ t = 0) wts:

lim
t→0

tW 1
t
= lim
t→0

W̃t
a.s.
= 0 ⇐⇒ lim

t→∞

1

t
Wt

a.s.
= 0

(□⃝ subpoint, n ∈ N argument) by the SLLN:

Wn
d
= Z1 + . . .+ Zn Zi

iid∼ N(0, 1) =⇒ lim
n→∞

1

n
Wn = E [W1]

a.s.
= 0
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(□▽ subpoint, t ∈ R+ argument) let n < t ≤ n+ 1 so that 1
t <

1
n . Then:∣∣∣∣1tWt

∣∣∣∣ ≤ 1

n
|Wt| =

1

n
|Wn +Wt −Wn|

≤ 1

n
|Wn|+

1

n
|Wt −Wn|

=
1

n
|Wn|︸ ︷︷ ︸

n→∞→ 0 by □⃝

+
1

n
sup
s∈[0,1]

|Wn+s −Wn|

So the condition becomes:
wts

1

n
sup
s∈[0,1]

|Wn+s −Wn|
n→∞→ 0 a.s. (⋆)

we denote it as ⋆.
(♣ objects involved) we will use Kolmogorov’s maximal inequality (Lem. 18.13) and the BC1 (Thm. 9.6),
which we recall below: ∑

n

P[|Xn| > ϵ] <∞ ∀ϵ > 0 =⇒ Xn
a.s.→ 0

(♠ sup discretization) let Xk = Wn+k2−m −Wn+(k−1)2−m for k = 1, . . . , 2m, where m ∈ N,m ≥ 1. This is a
dyadic construction as Definition 18.14. As m→ ∞ for a finer and finer grid of subintervals we let:

Sk = X1 + . . . Xk =Wn+2−mk −Wn

S2m =Wn+1 −Wn

a = ϵn

observe that X1, . . . , Xk are independent and have mean zero by construction. Then:

P

(
1

n
max

0<k<2m
|Wn+2−mk −Wn| > ϵ

)
≤ 1

n2ϵ2
V

|Wn+1 −Wn|︸ ︷︷ ︸
=S2m


≤ 1

n2ϵ2
· 1 ∀m

By Lemma 18.13 and the variance being unitary as the process is Wiener.
(♡ finalization) By Proposition 18.15 as m → ∞ it holds that max ≈ sup monotonically and with arbitrary
precision:

max
0<k<2m

|Wn+2−mk −Wn| ↑ sup
s∈[0,1]

|Wn+s −Wn|

which is granted by the map t→Wt being right continuous, since W is also a Lévy process (Theorem 18.4) and
Lévy processes are right continuous (Def. 17.1).
We are in the position to apply monotone convergence (Thm. 4.21) to conclude that:

P

(
1

n
sup
s∈[0,1]

|Wn+s −Wn| > ϵ

)
= P

(
1

n
lim
m→∞

max
0<k<2m

|Wn+2−mk −Wn| > ϵ

)
Prop. 18.15

= lim
m→∞

P

(
1

n
max

0<k<2m
|Wn+2−mk −Wn| > ϵ

)
Mon. conv Thm. 4.21

≤ 1

n2ϵ2
above inequality

Recalling the classic identity
∑
n

1
n2 = π2

6 we eventually have that:

∑
n

1

n2ϵ2
<∞ ∀ϵ > 0

BC1 (Thm. 9.6)
=⇒ 1

n
sup
s∈[0,1]

|Wn+s −Wn|
a.s.→ 0

where in particular we used the interpretation of Borel Cantelli for almost sure convergence (see Example 9.9).
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18.2 Continuity

In the previous proof we make use of right continuity only. We are missing the continuity stated in Definition
18.7 for Wiener processes, which would ensure existance of the process W = (Wt)t∈R+

. We do so by Kolmogorov
extension. For a finite collection of ordered times {ti}ni=1 the multivariate Gaussian with mean zero and covariance
{ti ∧ tj} is denoted as µt1,...,tn . Such distribution is a consistent family, in the sense of Definition 10.54. For
Ω = {ω : R+ → R} a set of functions put:

Wt(ω) = ω(t) H = σ {ω ∈ Ω : ω(t) ∈ A,A ∈ B(R)}

Using Kolmogorov extension Thm. 10.55:

∃!P on (Ω,H) s.t. P[ω : ω(ti) ∈ Ai ∀i = 1, . . . , n] = µt1,...,tn(A1 × · · · ×An)

Yet to evaluate continuity, we would need to check the paths t → ω(t) at uncountable time points, while H is
constructed from countably many coordinates. The collection of continuous functions is not a priori measurable.
What we do is a modification of the process (Wt)t∈R+

into
(
W̃t

)
t∈R+

so that:

∀t∃Ωt :Wt = W̃t, W̃t continuous

where Ωt is an almost sure set.
Precisely, we establish Hölder continuity instead of continuity.

♠ Definition 18.17 (Uniform continuity). the map t→Wt is uniformly continuous if:

∀ϵ > 0∃δ = δ(ϵ) |t− s| < δ =⇒ |Wt −Ws| < ϵ ∀t, s

Where δ depends on ϵ only.

♠ Definition 18.18 (Hölder continuity). The path t→Wt is Hölder continuous when:

∃C ∈ R |Wt −Ws| ≤ C|t− s|α, for α ∈ [0, 1] ∀t, s

Which means uniform continuity for δ = ( ϵC )
1
α .

♢ Observation 18.19 (About Hölder continuity). At α = 1 we recover Lipschitz continuity, which guarantees
continuous and bounded derivatives, and differentiability.

Lemma 18.20 (Kolmogorov moment condition). For a process X = (Xt)t∈[0,1] on R and D the dyadic set of
Definition 18.14 if:

∃c, p, q ∈ (0, 1) : E[|Xt −Xs|p] ≤ c|t− s|
1
q ∀s, t ∈ [0, 1]

Then:

1. ∀α ∈ [0, qp )∃K r.v. such that:
(a) E[Kp] <∞
(b) |Xt −Xs| ≤ k|t− s|α for s, t ∈ D

2. if X is continuous then #1 holds ∀s, t ∈ [0, 1]

Proof. (Claim #1)(△ K aim) for α ∈
[
0, qp

)
we let:

K := sup
s,t∈D,s̸=t

|Xt −Xs|
|t− s|α

where by D ×D being countable K is a random variable.
(□ proving #1(b) and #2) by the way K is defined, and the fact that D are dense in R (Prop. 18.15) we
can easily conclude that both hold in the genereal setting.
(⃝ proving #1(a)) wts E [Kp] <∞
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(▽ dyadic argument) let Mn = supDn
|Xt − Xs| where Dn = {s, t : t − s = 2−n}, by the equatio in the

hypothesis we can say that:
E [Mp

n] ≤ 2n · c · (2−n)1+q = c2−nq

since 2n = |Dn|.
(♠ general D) let s, t ∈ D and:

sn = inf {Dn ∩ [s, 1]} , tn = inf {Dn ∩ [0, t]}

trivially sn ↘ s, tn ↗ t and for n large both are equal to their limits. Then:

Xt −Xs =
∑
n≥m

(
Xtn+1−Xtn

)
+Xtm −Xsm +

∑
n≥m

(
Xsn −Xsn+1

)
with this setting, if 0 < t− s < 2−m either tm − sm = 0 or tm − sm = 2−m. We can then derive the bound:

|Xt −Xs| ≤
∑
m≥n

Mn+1 −Mm +
∑
n≥m

Mn+1 ≤ 2
∑
n≥m

Mn (18.1)

(♣ final computation) for K as in ▽, take the sup over s, t with the condition that 2−m−1 < |t − s| ≤ 2−m.
Then, the sup condition can be seen in terms of m and by Equation 18.1 we get that:

K ≤ sup
m

(2m+1)α · 2
∑
n≥m

Mn (2−m−1)−1 = ((t− s)α)−1 in △

≤ 21+α
∑
n≥0

2nαMn

for p ≥ 1 and the Lp norm denoted as ∥·∥ we eventually get that:

∥K∥ ≤

∥∥∥∥∥∥21+α
∑
n≥0

2nαMn

∥∥∥∥∥∥
≤ 21+α

∑
n≥0

2nαc
1
p 2−

nq
p

= 21+αc
1
p

∑
n≥0

2nα−
nq
p nα− nq

p
= n

(
α− q

p

)
≤ 0 hypothesis

<∞

♢ Observation 18.21 (What is missing?). Recall Definition 18.7 and Observations 18.9, 18.10. We need to
show that the map t → Wt is continuous. Notice that we can also use the result of Theorem 18.16 since in
the proof we only use the right continuity of the process, which is granted by the Wiener-Lévy connection (Thm.
18.4), and does not use assumptions brought by the Brownian formulation.

♣ Theorem 18.22 (Brownian continuity of Wiener process). We prove the local Höldercontinuity of the paths of
a Wiener process, closely linked to the Gaussian process (see Thm. 18.11). This result is parallel to the existance
of a p.r.m. (Thm. 14.8).
(Def. 10.61) If W = (Wt)t∈R+

is a Wiener process with:

• E[Wti ] = 0∀i
• CoV [Wti ,Wtj ] = ti ∧ tj ∀i, j

Then there exists an almost sure version of W that is locally Hölder continuous:

t→ W̃t Hölder continuous W
a.s.
= W̃

Proof. Let 0 < t1 < · · · < tn, and consider the law µt1,...,tn , which is by hypothesis Gaussian.
(△ extension by consistency) we first build the space. µt1,...,tn is Kolmogorov consistent in the sense of
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Definition 10.54. Additionally let:
Ω = {ω : R+ → R}
Wt(ω) = ω(t) ω ∈ Ω, t ≥ 0

H = σ ({ω ∈ Ω : ω(t) ∈ A, A ∈ B(R)})

where the algebra is finitely generated. By Kolmogorov Extension (Thm. 10.55) there exists a unique P on
(Ω,H) such that:

Wt1 , . . . ,Wtn ∼ µt1,...,tn P[ω : ω(ti) ∈ Ai, ∀i = 1, . . . , n] = µt1,...,tn(A1 × · · · ×An)

(□ a problem) the set {t → ω(t) : continuous} = C is not measurable wrt H since H ∈ H is generated by
countably many coordinates and we cannot say P[C] = 1 directly (i.e. we cannot check all continuity points).
(▽ redirected aim) given □ we consider finding W̃t, a version of Wt such that:

∀t ∃Ωt : P[Ωt] = 1 W̃t =Wt, W̃t continuous

(♣ first facts) by scaling and stationarity of W = (Wt)t∈R+
we recover for all s, t ∈ (0, 1) and m ≥ 1 that:

E [|Wt −Ws|m] ≤ E
[
|Wt−s|2m

]
stationarity

= E
[
|t− s|m|W1|2m

]
W1

d
=

√
t− sWt−s

= |t− s|mE
[
|W1|2m

]
= |t− s|mCm

Where Cm exists since the Gaussian process Wt always has moments.
(♠ Kolmogorov moment) use Lemma 18.20 with p = 2m, 1 + q = m to get:

|Wt −Ws| ≤ K|t− s|α ∀s, t ∈ D ∩ [0, 1]

Where K ∈ Lp and α ∈ [0, m−1
2m ).

For Ω0 := {K <∞} we have that P[Ω0] = 1 and Wt is Hölder continuous according to Definition 18.18.
(♡ defining W̃t) we let

W̃t =

{
0 ω /∈ Ω0

lims→tWs(ω) t ∈ [0, 1], ω ∈ Ω0

such process, as per ♠, is Hölder continuous for all ω ∈ Ω and for α arbitrary close to 1
2 by the fact that

[0, m−2
2m )

m→∞→ [0, 12 ).
We conclude that ∀t ∈ [0, 1] the process Wt = W̃t is almost surely continuous by the construction of the Ω0

almost sure set.
(a iteration) use the previous steps repeatedly to build a series of chained (Wt)t∈[n,n+1] that respect the
relation ∀n ∈ N. By

⋃
n[n, n + 1) = T = R+ we can safely say that (Wt)t∈T is a Wiener process in the sense of

Definition 18.7, since its Gaussianity already implies continuity, and we can apply Theorem 18.11.

♢ Observation 18.23 (About further properties and conclusion). The results we have shown are:

• Wiener implies Gaussian continuous, Theorem 18.11
• Wiener is continuous, Theorem 18.22
• Brownian motion automatically exists, via Definition 18.7

So we could see a Brownian motion as:

Xt︸︷︷︸
Brown

= X0 + bt+ c Wt︸︷︷︸
Wien

, Xt −X0 Lévy

Existsance is a consequence of the very existance of continuous Wiener processes in the Brownian formulation.
It is also possible to prove that the path is nowhere differentiable (i.e. very wiggly). This is somewhat hinted by
the α ≤ 1

2 Hölder continuity rate, which is less than Lipschitz continuity (and thus differentiability).
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Chapter Summary

Objects:
• Brownian motion is a process on (R,B(R)) such that:

– t→ Xt is continuous
– Markovian and stationary increments
– decomposed as X0 + bt+ cWt where Wt is a Wiener process, assumed to be continuous

• uniform continuity of a map t→Wt

∀ϵ > 0∃δ = δ(ϵ) |t− s| < δ =⇒ |Wt −Ws| < ϵ

• Hölder continuity of a map t→Wt

∃C ∈ R |Wt −Ws| ≤ C|t− s|α, for α ∈ [0, 1]

Results:
• (Xt)t∈R+

Brownian =⇒ (Xt −X0)t∈R+ is Lévy
• Xt = at+ bWt continuous Lévy ⇐⇒ Wt Wiener (assuming it is continuous)
• W = (Wt)t∈R+

Wiener ⇐⇒ W is continuous Gaussian Process with E [Wti ] = 0, CoV [Wti ,Wtj ] =

ti ∧ tj
• dyadics are dense in R
• Wiener process properties:

– (symmetry) (Wt)t∈R+
Wiener =⇒ (−Wt)t∈R+

is Wiener
– (scaling) stable of order 2

– (time inversion) with W̃0 = 0, it holds W̃t = tW 1
t

is Wiener
• Wiener process is Hölder continuous, thus Brownian motion exists



Chapter 19

Arcsine laws, Hitting times

19.1 Augmentations and Hitting Times

♠ Definition 19.1 (Right continuous augmentation of filtration). For this object and its properties, refer also
to Appendix D, especially from Definition D.4 onwards.
For a filtration

(
F0
t

)
t∈R+

we let it be generated by the process itself. Namely
(
F0
t

)
t∈R+

= σ({Xs : s ≤ t}). In this
context, we define the right continuous augmentation as:

(Ft)t∈R+
: ∀t Ft =

⋂
s≥0

F0
t+s = lim

s↓0
F0
t+s

Since
(
F0
t

)
t∈R+

is increasing by Definition of filtration. This new filtration can be interpreted as a peek into the
future. From now on, when referring to F it will be the augmented filtration.

♠ Definition 19.2 (Hitting time of barrier a, Ta). For a random time T : Ω → R+ we define:

Ta := inf{t ≥ 0 : Xt > a}

Namely, the entrance time in the interval (a,∞). Notice that we intuitively assume Ta to be almost surely finite
for a Wiener process.

♣ Theorem 19.3 (Hitting times are stopping in augmentation). Let F be augmented as in Definition 19.1, a
process X on E be right continuous and adapted to F. Then:

∀B ∈ B(E) TB = inf{t ∈ R+ : Xt ∈ B} stopping time wrt F

According to the usual stopping time knowledge (Def. 11.9).

Proof. More context is given in Appendix D, especially from Theorem D.8 onwards.

♠ Definition 19.4 (Shift operator θ·). For a collection of continuous maps C = {t → w(t) | continuous} we
define an operator:

θs : C → C , s ∈ R (θs ◦ w)(t) := w(s+ t)

♣ Theorem 19.5 (Markov property of Lévy processes). This is Theorem VII.3.5 in [Çin11].
For X = (Xt)t∈R+

a Lévy process (Def. 17.1), for any time t, the process X ◦ θt is independent of Ft and has
the same law of X. Equivalently:

Et [V ◦ θt] = E [V ] t ∈ R+, ∀V ∈ G∞ bounded

where the boundedness of V is used to ensure existance of the expectation, but the result is extended to positive
or integrable random variables in G∞ the underlying end of time filtration generated by the process.
In terms of Wiener processes, which are Lévy by Theorem 18.4 for a = 0, b = 1 we have that:

∀s ≥ 0 (W ◦ θs) =
(
W̃t

)
t∈R+

= (Ws+t −Ws)t∈R+
⊥⊥ Fs Wiener law

207
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Proof. (△ comments only) recall that a Wiener process is Lévy by Theorem 18.4, then [Çin11] Theorem VII.3.5
states exactly this for Lévy processes.

♣ Proposition 19.6 (Conciliating time shifts to Wiener and Brownian). While a Wiener process (on a stochastic
base [Çin11]) is such that:

Wt ◦ θs =Ws+t −Ws

A Brownian motion as in Definition 18.2 is such that:

Xt ◦ θs = Xt+s

Proof. For Xt = X0 +Wt taken for simplicity, we have that:

Xs+t = Xs+t −Xs︸ ︷︷ ︸
⊥⊥Fs

+Xs Markov Thm. 19.5

= X0 +Ws+t −X0 −Ws +Xs independent terms explicit
=Ws+t −Ws +Xs

d
= W̃t +Xs W̃t =Ws+t −Ws =Wt ◦ θs

♢ Observation 19.7 (θs interpretation). We have that:

Xs+t =

{
Xt ◦ θs as a function of Xt

(θs ◦X)(t) as X a random function, a process

So that:

Xs+t = Xt ◦ θs = (X0 +Wt) ◦ θs easiest Brownian form

= X0 ◦ θs +Wt ◦ θs linearity

= Xs +Ws+t −Ws Prop. 19.6

= Xs + W̃t makes sense

♡ Example 19.8 (Recurrence times). Define Gt as the last time at zero before t and Dt as the first time at
zero after t. Namely:

Gt := sup{s ∈ [0, t] :Ws = 0} Dt = inf{u ∈ (t,∞) :Wu = 0}

Accordingly, the forward recurrence time is Rt = Dt − t and the backward recurrence time is Qt = t−Gt.
By the process (Wt)t∈R+

being such that Wt ∼ N(0, t)∀t we have P[Wt = 0] = 0 a.s. by the diffusivity of a normal
distribution. Then:

Gt < t < Dt a.s. & s ∈ [0, t] =⇒ {Gt < s} = {Ds > t}

an intuition is given in Figures 19.1, 19.2. So, if Wt = a > 0 =⇒ Rt is the hitting time from above of the
barrier −a of the rescaled process:

(Wu ◦ θt)u≥0 = (Wt+u −Wt)u≥0

By the markov property of Wiener processes W̃u =Wt+u −Wt ⊥⊥ Ft is again Wiener and we can see that:

Rt = inf{u > 0 : W̃u < −a}

Additionally, by symmetry (Thm. 18.16#1) we have:

W̃u < −a ⇐⇒ −W̃u > a ⇐⇒ W̃u > a

So that:
Rt

d
= Ta = inf{u > 0 :Wu ◦ θt = W̃u > a} a =Wt, Ta ⊥⊥Wt

Which means that if Ta is known ∀a > 0 =⇒ Rt is known and so is Dt = Rt+t and Gt via P[Gt < s] = P[Ds > t],
as well as Qt = t−Gt.
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Figure 19.1: Recurrence times of a Wiener process

Figure 19.2: Recurrence times of a Wiener process
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Corollary 19.9 (Blumenthal’s 0-1 law). It holds that:

F augmented, right continuous =⇒ ∀A ∈ F0 P[A] ∈ {0, 1}

Namely, a suitable augmented filtration makes every event in the infinitesimal peek in the future at the start either
certain or null.

Proof. Corollary D.18

♣ Proposition 19.10 (Hitting zero almost surely). This result is like that of Proposition 16.8.
For T0 = inf{t > 0 :Wt > 0} as in Definition 19.2 we have:

T0 = 0 a.s.

Proof. We have that F0 is right continuous (Def. 19.1). An application of Corollary 19.9 gives:

{T0 = 0} ∈ F0 =⇒ P[{T0 = 0}] ∈ {0, 1}

Notice that P[{Wt > 0}] = 1
2 for all t > 0 since the Gaussian distribution is centered at mean zero. By Theorem

19.3 it holds
{Wt > 0} ⊂ {T0 < t} =⇒ P[{T0 < t}] > 0 ∀t > 0

And as t→ 0 it holds that:
P[{T0 = 0}] > 0 =⇒ P[{T0 = 0}] = 1 a.s.

Corollary 19.11 (Highly oscillatory behavior of Wt at zero). There are ∞ many crossings for any time interval
starting from zero. Namely:

for a.e. ω ∃u1 > t1 > s1, u2 > t2 > s2, . . .→ 0 s.t. Wun
(ω) > 0,Wtn(ω) = 0,Wsn(ω) < 0

Proof. (△ start) for all ϵ > 0 there exists u < ϵ such that Wu(ω) > 0 in Proposition 19.10.
(□ mid) there exists s < ϵ such that Ws(ω) < 0 by symmetry (Thm. 18.16#1).
By △,□ and continuity of the map t→Wt (Thm. 18.22) it holds that:

∀ϵ > 0∃0 < s < t < u : Ws(ω) < 0, Wt(ω) = 0, Wu(ω) > 0

Corollary 19.12 (Highly oscillatory behavior of Wt at infinity).

for a.e. ω∃u1 > t1 > s1, u2 > t2 > s2, . . .→ ∞ s.t. lim
n→∞

Wsn = −∞, lim
n→∞

Wun
= +∞

Proof. Use Corollary 19.11 and time inversion (Thm. 18.16#3) with Wt = tW 1
t

to show that :

{
u1 > t1 > s1 → 0

Wu1
,Wt1 ,Ws1

⇐⇒


1

u1
<

1

t1
<

1

s1

W 1
u1

,W 1
t1

,W 1
s1

W 1
t
=

1

t︸︷︷︸
→∞

Wt︸︷︷︸
∈R

in general

Giving us that: 

W 1
u
=

1

u︸︷︷︸
→∞

Wu︸︷︷︸
>0

= +∞

W 1
t
=

1

t︸︷︷︸
→∞

Wt︸︷︷︸
=0

= 0

W 1
s
=

1

s︸︷︷︸
→∞

Ws︸︷︷︸
<0

= −∞
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♢ Observation 19.13 (About the hitting time process (Ta)a≥0). Analyze (Ta)a≥0 as a process. By Proposition
19.10 T0 = 0 a.s. like a Lévy process (Def. 17.1). In the next arguments, we will aim to show that it an increasing
stable process (Ex. 15.23) with index α = 1

2 and c =
√
2. Next we show it is an increasing Lévy process (Def.

15.14) with density:

λ(dz) =
1√
2πz3

dz by Γ

(
1− 1

2

)
=

√
π

2

So that (Ta)a≥0 is such that Ta ∈ IN(a) with density:

fa(z) =
a√
2πz3

e−
a
2z

with the classic result that a2

Z2 ∼ IN(a) when Z ∼ N(0, 1).

♣ Theorem 19.14 (Strong Markov property of Lévy and Wiener processes). For T a stopping time wrt F0 (the
not augmented filtration) and X a Lévy process we have that:

1. ∀V bounded in G∞:
ET [V ◦ θT1{T<∞}] = E[V 1{T<∞}]

independent of FT and Lévy
2. shift operator version:

(Xt ◦ θT )t≥0 = (Xt+T )t≥0 ⊥⊥ FT , Lévy

The claims are also valid for Wiener processes by Theorem 18.4.

Proof. (Claim #1) see [Çin11], Theorem VII.3.10 and Theorem VIII.1.13 with the subsequent discussions. The
latter is just a reformulation of the former. We know Wiener processes are a special case of Lévy processes.
(Claim #2) is a specific case of #1 provided that T <∞ so that the indicator disappears.

♣ Theorem 19.15 (A property of Wiener functions & stopping times). Assume:

• T is stopping wrt F
• U : Ω → R+ is such that U ∈ FT
• W = (Wt)t∈R+

is a Wiener process
• f is a bounded Borel function on R
• g(u) := E[f ◦Wu], u ∈ R+

Then:
ET
[
f(WT+u −WT )1{T<∞}

]
= g(U)1{T<∞}

Proof. (△ monotone class Theorem) the functions f for which the claim hold for a monotone class, in the
sense of Definition A.19. Thus, we can show the claim holds for f ∈ Cb and use Theorem A.20.
(□ continuity and bounded convergence) assuming f ∈ Cb, g is necessarily bounded and continuous as well
by the continuity of the W (Thm. 18.22) and the bounded convergence Theorem for the expectation (Cor. 4.26).
(⃝ simple U) let U be simple, in the sense that U : Ω → D ⊂ R+ where |D| < ∞ is finite. Since U ∈ FT
(measurable), the event {U = u} is in FT for all u ∈ D. We derive:

ET
[
f(WT+U −WT )1{U=u,T<∞}

]
= ET

[
f(WT+u −WT )1{U=u,T<∞}

]
= g(u)1{U=u,T<∞}

where the last equality is an application of the strong Markov property (Thm. 19.14).
The sum

∑
u∈D gives us the desired claim for U simple.

(▽ U arbitrary) for U arbitrary, it holds U = limn→∞ Un where (Un) ⊂ FT by assumption. We know that for
each n, we can use the result of ⃝, we do so taking the limit as n→ ∞.

ET
[
f(WT+U −WT )1{U=u,T<∞}

]
= lim
n→∞

ET
[
f(WT+Un −WT )1{Un=un,T<∞}

]
[W is continuous, f ∈ Cb, bounded convergence Cor. 4.26]
= lim
n→∞

g(un)1{Un=un,T<∞} by ⃝

= g(u)1{U=u,T<∞}

= g(U)1{T<∞}
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♣ Theorem 19.16 (Hitting time (Lévy) distribution by reflection principle). As per Observation 19.13 we have:

(Ta)a≥0 : Ta ∼ IN(a) ∀a ∈ R+

Meaning that (Ta)a≥0 has the same distribution of a stable Lévy process for each time point. Notice that we are
not proving that it is a Lévy process, something we will show in Theorem 19.25.

Proof. (△ premise) notice that if Wt hits a at s < t then

Wt =Wt −Ws +Ws = (Wt −WTa) +WTa s = Ta

(□ strong Markov) we wish to apply the strong Markov property of Wiener processes (Thm. 19.14). To do
so, we first have to reduce u = t − Ta to the right form. This is viable thanks to Theorem 19.15 applied to Ta.
We then have that:

(W̃u)u≥0 = (Wu ◦ θTa)u≥0
Prop. 19.6

= (WTa+u −WTa)u≥0 ⊥⊥ FTa ,WTa , Ta

is Wiener.
(⃝ joint) We will prove next that Ta = Ta− (Prop. 19.26), where the latter is the time at which the barrier a is
hit. This fact, together with the continuity of W (Thm. 18.22), suggest that at the barrier a we have a = WTa

.
With this in mind, examinate:

P (Ta < t,Wt > a) = P (Ta < t,WTa+t−Ta
−WTa

> 0) △, a =WTa

= P
(
Ta < t, W̃t−Ta

> 0
)

□

= P (Ta < t)P
(
W̃t−Ta

> 0
)

independence from □

= P (Ta < t)P
(
W̃t−Ta

< 0
)

symmetry Thm. 18.16#1

= P
(
Ta < t, W̃t−Ta

< 0
)

independence from □

= P (Ta < t,Wt > a) △, a =WTa

so that paths above and below have the same probability.
(▽ marginal) by P(W̃u = 0) = 0∀u > 0 i.e. P(Wt = a) = 0∀a we have that:

P (Ta < t,Wt > a) + P (Ta < t,Wt < a) = P (Ta < t)

Which by the discussion of ⃝ also suggests that:

P (Ta < t) = 2P (Ta < t,Wt > a)

Notice that Wt > a means that the process hits a before t, namely the events are such that {Wt > a} ⊂ {Ta < t}.
Eventually:

P (Ta < t) = 2P (Wt > a)

= 2P (|Wt| > a) Gaussian symmetry
= P

(
W 2
t > a2

)
= P

(
(
√
tW1)

2 > a2
)

scaling of Wiener

= P
(
tZ2 > a2

)
= P

(
t >

a2

Z2

)

Which implies that
a2

Z2
has an inverse Gaussian distribution Ta ∼ IN(a) with density:

fa(z) =
a√
2πz3

e−
a2

2z z ∈ R+

For a visualization of the reflection, refer to Figure 19.3.
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Figure 19.3: Reflection principle for the Wiener process

19.2 Arcsine Laws

Lemma 19.17 (Elementary facts of Gamma, Beta and Cauchy distributions). For Z1 ⊥⊥ Z2, Z1
d
= Z2 ∼ N(0, 1):

1. (Chi-square) Z2
1
d
= Z2

2 ∼ χ2
1 = Gamma( 12 ,

1
2 )

2. (Beta) A =
Z2

1

Z2
1+Z

2
2
∼ Beta( 12 ,

1
2 ) with density:

f(u) =
Γ( 12 + 1

2 )

Γ( 12 )Γ(
1
2 )
u−

1
2 (1− u)−

1
2 =

1

π

1√
u(1− u)

by Γ(1) = 1,Γ( 12 ) =
√
π

3. (Beta cdf) A has cumulative distribution

FA(u) = P[A ≤ u] =
2

π
arcsin

√
u

4. (Cauchy-Beta link) for C = Z1

Z2
∼ Cauchy:

=⇒ A
d
=

Z2
1

Z2
2 + Z2

1

d
=

1

1 +
Z2

2

Z2
1

d
=

1

1 + C2

where C has density f(x) = 1
π(1+x2) for x ∈ R (full support)

♣ Proposition 19.18 (Arcsine law of Gt and Dt). Let A be as in Lemma 19.17. Define, as in Example 19.8:

Gt := sup{s ∈ [0, t] :Wt = 0} Dt := {u ∈ (t,∞) :Wu = 0}

Then:
∀t ∈ R+ Gt

d
= tA Dt

d
=

t

A

Proof. (△ previous results) for t > 0 we have by Proposition 19.10 that Wt ̸= 0 almost surely. Then:

Gt < t < Dt a.s.

Corollaries 19.11, 19.12 suggest that:
0 < Gt Dt <∞

While a hitting time process with Theorem 19.16 implies that Ta ∼ IN(a).
(□ graphical shifts) let Z1, Z2

iid∼ N(0, 1). Consider Rt = Dt − t > 0 a.s., which is the hitting time of the
barrier Wt(ω) = a. It could be seen as the hitting time for:

u→Wu ◦ θt =Wt+u −Wt T−a = inf{t > 0 :Wt < −a}
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of the barrier −a from above when a > 0 or −a from below when < 0. By the Markov property the process
W ◦ θt ⊥⊥ Ft and so is −W ◦ θt by symmetry (Thm. 18.16#1). We assign

(
W̃
)
u≥0

= (Wu ◦ θt)u≥0 and observe

that for arbitrary b > 0:

T−b = inf{u ≥ 0 : W̃u < −b} = inf{u ≥ 0 : −W̃u < −b}

= inf{u ≥ 0 : W̃u > b}
= Tb

which holds again by symmetry. Hence the time Rt is distributed as Rt
d
= Ta for a = |Wt|. By the reflection

principle (Thm. 19.16):

{Wt > a} ⊂ {Ta < t} =⇒ P(Ta < t) = 2P(Wt > a) Ta
d
=
a2

Z2
∼ IN(a), Z ∼ N(0, 1)

Which means that at position a =Wt it holds that

Rt
d
=
W 2
t

Z2
2

d
= t

Z2
1

Z2
2

Wt
d
=

√
tZ1 Z1 ∼ N(0, 1)

Moving on to Dt, we just recognize that by Dt = t+Rt it holds:

Dt
d
= t

Z2
1 + Z2

2

Z2
1

d
=

t

A

As per Gt, for s ∈ [0, t] we have by {Gt < s} = {Ds > t}:

P[Gt < s] = P[Ds > t] = P
[ s
A
> t
]
= P[tA < s] =⇒ Gt

d
= tA

Corollary 19.19 (More results from the Proposition). We could also get:

1. Rt
d
= tC2 (by direct application of Lemma 19.17#4) for C ∼ Cauchy

2. Gt has density f(x) = 2
π arcsin

√
s
t

3. Qt
d
= Gt

d
= tA

Proof. (Claim #1) trivial.
(Claim #2) from Gt

d
= tA using Lemma 19.17#3 we get:

P(Gt < s) = P(tA < s) = P
(
A <

s

t

)
=

2

π
arcsin

√
s

t

(Claim #3) consider Qt = t−Gt where:

P[Qt < s] = P[t−Gt < s]

= P[t− tA < s]

= P[t(1−A) < s] 1−A
d
= A

= P[tA < s]

= P[Gt < s]

We proved Qt
d
= Gt, a shift of proportions.

♡ Example 19.20 (Another arcsine law). We provide two examples.
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Figure 19.4: Running Maximum Process

1. W such that no touch on [s, u], namely {Wt ̸= 0, t ∈ [s, u]}. Then:

{Wt ̸= 0∀t ∈ [s, u]} = {Gu < s} =⇒ P [{Wt ̸= 0∀t ∈ [s, u]] =
2

π
arc sin

(√
s

u

)
s ≤ u

2. the occupation time, by [Çin11](Thm. VIII.6.22) could be seen as:

At =

∫
[0,t]

1{Ws>0}ds
d
= tA

19.3 Running Maximum and Poisson Jumps to interpret Hitting Times

♠ Definition 19.21 (Running maximum of process). Consider a process (Wt)t∈R+
, we define for later use:

Mt(ω) := max
0≤s≤t

Ws(ω) t ∈ R+, ω ∈ Ω

♣ Proposition 19.22 (Running maximum vs hitting time). Recognize that:

1. Mt is continuous and increasing in R, with M0(ω) = 0 and limt→∞Mt(ω) = ∞
2. (Mt)t≥0 and (Ta)a≥0 the hitting time process (Def. 19.2) are functional inverses:

{Mt > a} = {Ta < t}

Proof. (Claim #1) trivial.
(Claim #2) it holds:

Ta = inf{t > 0 :Wt > a} = inf{t > 0 :Mt > a} =⇒ {Ta < t} =⇒ {Mt > a}

Where the direction {Mt > a} =⇒ {Ta < t} is rather trivial. Proof by words is also useful to understand.

♢ Observation 19.23 (Why running maximum and the general idea). In Theorem 19.14 we used {Wt > a} ⊂
{Ta > t}. Now we use the more precise equivalence of sets {Mt > a} = {Ta < t}.
We also use in Proposition 19.26 the hitting time of point a, constructed as:

Ta− = inf{t > 0 :Wt = a} = inf{t > 0 :Wt ≥ a} = lim
u↑0

Ta−u = lim
u↑0

inf{t > 0 :Wt > a−u} Ta = inf{t > 0 :Wt > a}

One problem is that while Mt is continuous, the path a→ Ta is only right continuous, as is shown below.

♡ Example 19.24 (Graphical interpretation of the Observation). See Figure 19.4.

♣ Theorem 19.25 (Hitting time process is stable Lévy). The process T = (Ta)a≥0 is a strictly increasing pure
jump Lévy process (Defs. 17.1, 17.7) with index 1

2 and Lévy density:

λ(dz) =
1√
2πz3

dz z ∈ R+
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Proof. (△ aim) wts that the definitions are verified.
(□ a+ b split) fix a, b ∈ (0,∞)the process W hits a+ b if it hits a and the shifted process W̃ =W ◦ θTa

hits b.
This means that:

Ta+b = Ta + Tb ◦ θTa

By the strong Marjov property (Thm. 19.14) and the fact that Ta < ∞ almost surely (i.e. version without
indicators) we get:

W̃ =W ◦ θTa
⊥⊥ FTa

, Ta, Wiener =⇒ Ta+b − Ta = Tb ◦ θTa

d
= Tb

We have independence and stationarity, which, together with T0
a.s.
= 0 (Prop. 19.10) and right continuity means

(Ta)a≥0 is an increasing Lévy process.
(⃝ density) the density is that of a stable process by Theorem 19.16. The process is of pure jump type (Def.

17.7), stable of index
1

2
. From Ta = a2T1 and this discussion, every Lévy process of this form has density

λ(dz) = dz
c

t
3
2

by [Çin11](Ex. VII.2.1), which in our case, by a Laplace transform argument is precisely:

c =
1√
2π

E
[
e−pTa

]
= exp

{
−a
∫
R+

λ(dz)(1− e−rt)

}
= exp

{
−a
√

2p
}

♣ Proposition 19.26 (Properties of Ta−). Recall Observation 19.23 with Ta− = limu↑0 Ta−u = inf{t > 0 :Wt =

a}. Then:

1. Ta− is a stopping time for F0 the not augmented filtration, while Ta is a stopping time wrt F the aug-
mented filtration

2. sojourne time is zero almost surely
Ta− = Ta a.s.

Proof. (Claim #1) the claim holds by construction.
(Claim #2) by Theorem 19.16 we have that Ta ∼ IN(a), which means that Ta < ∞ almost surely. Clearly
Ta− ≤ Ta, and we have that Ta− <∞ almost surely. By Claim #1 we can also apply the strong Markov property
(Thm. 19.14):

Ta = Ta− + inf{u > 0 :WTa−+u −WTa−︸ ︷︷ ︸
=W◦θTa−

> 0} W ◦ θTa− ⊥⊥ FTa− , Ta−

= Ta− + T0 ◦ θTa−︸ ︷︷ ︸
⊥⊥FTa− ,Ta−

T0 ◦ θTa−
d
= T0

d
= Ta− + T0︸︷︷︸

=0 a.s.

Prop. 19.10

= Ta− a.s.

♡ Example 19.27 (Plots of Poisson Jumps). Consider Figure 19.5. Atoms of N(dx, dz) are marked with little
circles, corresponding to the atom (a, z) there is a jump of size z from Ta− to Ta− + z = Ta. The path t → Mt

stays constant at level a during [Ta−, Ta], an interval of length z. Since N(dx, dz) has only countably many
atoms, the situation occurs at countably many levels a only. Since there are infinitely many atoms in the strip
[a, a+ b]×R+, the path t→Mt stays flat at infinitely many levels on its way from a to a+ b. However, for every
ϵ > 0, only finitely many of those sojourns exceed ϵ in duration. The situation at fixed a is simpler. For a > 0

almost surely, there are no atoms on the line {a} × R+, therefore Ta−
a.s.
= Ta = 0.

♢ Observation 19.28 (Poisson jump structure). By the Itô-Lévy decomposition [Çin11](Thm. VII.5.2) we have
that (Ta)a≥0 is an increasing Lévy process (Def. 15.14). For a general one we have S = (St)t∈R+

with Lévy
measure satisfying: ∫

(1 ∧ z)λ(dz) <∞
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Figure 19.5: Poisson Jumps final plot

which is described in the sense of Definition 15.16 as an integral wrt the underlying p.r.m. on R+ × R+ with
mean dxλ(dz):

St =

∫
[0,t]×R+

zN(dx, dz) =
∑
i:Xi≤t

Zi

In our specific case we obtain the jump structure by means of a p.r.m. N(dx, dz):

N(B) =
∑
a

1B (a, Ta − Ta−) B ∈ B(R+ × R+) mean dxλ(dz) = dx
1√
2πz3

If (a, z) is an atom then the map a→ Ta controls the abstract jumps of size a at time z. With:

Ta =

∫
[0,a]×R+

zN(dx, dz) =
∑

i:Xi≤a

zi
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Chapter Summary

Objects:
• right continuous augmented filtration, a peek in the future with all negligible sets from the start

Ft+ = ∩ϵ>0Ft+ϵ

• hitting time of barrier a is Ta = inf{t > 0 : Xt > a}
• shift operator for a class of continuous maps C is θs such that (θs ◦ w)(t) = w(s + t) for all
s ∈ R, t ∈ R+

• running maximum of a process Mt(ω) = max0≤s≤tWs(ω)

Results:
• hitting times are stopping times in the augmented right continuous filtration
• Lévy processes X (and thus Wiener processes W ) are Markovian

Et [V ◦ θt] = E [V ] t ∈ R+, ∀V ∈ G∞ bounded

which is an equivalent characterization with G = σ(X)

• time shifts on Wiener process Wt ◦ θs =Wt+s −Ws

• time shifts on Brownian motion Xt ◦ θs = Xt+s

• Blumenthal’s 0-1 law

F augmented, right continuous =⇒ ∀A ∈ F0 P[A] ∈ {0, 1}

• the hitting time process (Ta)a≥0 is such that T0
a.s.
= 0

• Wiener highly oscillatory behavior at zero, there are ∞-many crossing for any time interval starting
from zero

• Wiener highly oscillatory behavior at infinity
• Lévy (and thus Wiener) processes are strongly Markovian in the Brownian formulation for stopping

times in the natural filtration F0 (the not augmented filtration). Namely:
– ∀V bounded in G∞, where G = σ(X):

ET [V ◦ θT1{T<∞}] = E[V 1{T<∞}] ⊥⊥ FT , Lévy

independent of FT and Lévy
– shift operator version:

(Xt ◦ θT )t≥0 = (Xt+T )t≥0 ⊥⊥ FT , Lévy

• for T a stopping time wrt F augmented, U : Ω → R+ such that U ∈ FT , W = (Wt)t∈R+
a Wiener

process, f a bounded Borel function on R it holds:

ET
[
f(WT+u −WT )1{T<∞}

]
= g(U)1{T<∞} g(u) := E[f ◦Wu], u ∈ R+

• reflection principle, (Ta)a≥0 is inverse Gaussian distributed Ta ∼ IN(a) ∀a ∈ R+

• recap about elementary connections of Gamma, Beta, Cauchy distributions
• arcsine law of Gt and Dt derived in the exercises is for A ∼ Beta

(
1
2 ,

1
2

)
and C ∼ Cauchy,C = Z1

Z2
:

Gt
d
= tA, Dt

d
=

t

A
, RttC

2, QtGt : f(x) =
2

π
arcsin

√
s

t

• running maximum is continuous and increasing in R, starting at zero
• running maximum is the functional inverse of the hitting time process
• the hitting time process is a pure jump Lévy process stable of order 2 with density:

λ(dz) =
1√
2πz3

dz z ∈ R+

• the pre hitting time Ta− is such that Ta = Ta− almost surely



Chapter 20

Path Properties of Wiener processes

20.1 Variation

♠ Definition 20.1 (Subdivision & mesh). We denote for an interval [a, b] a subdivision as a finite collection of
intervals whose union is the interval itself (ignoring the start).

A := {(s, t]},
⋃

(s,t]∈A

(s, t] = (a, b]

Given a subdivision, we also identify the mesh as:

∥A∥ := sup {t− s : (s, t] ∈ A}

♠ Definition 20.2 (True p-variation, total variation, quadratic variation). For a function f : R+ → R, right
continuous, an interval [a, b] ∈ R+, and a positive coefficient p > 0 the true p-variation is the quantity:

sup
A

∑
(s,t]∈A

|f(t)− f(s)|p

Where for p = 1 we call it total variation and for p = 2 true quadratic variation. It turns out that this formulation
is not very well suited for random processes, as it is infinite in both p = 1, p = 2. Below we prove the results for
a reasonable surrogate.

♠ Definition 20.3 (A dyadic subdivision). In the fashion of Definition 18.14, and Lemma A.17 we could
construct a subdivision of equally spaced intervals using tk = kt

2n for k = 0, . . . , 2n.

♣ Theorem 20.4 (Wiener probabilistically finite L2 quadratic variation). For a Wiener process (Wt)t∈R+
and

a sequence of subdivisions (An)n∈N with ∥An∥ → 0 we have:

1. Vn =
∑

(s,t]∈An
|Wt −Ws|2

L2

→ b− a

2. Vn
P→ b− a

We call Vn the quadratic variation, not to be confused with the true quadratic variation. It is rather a probabilistic
version of the latter. In some terms, the sup can be replaced with the lim sup of a sequence of meshes with size
decreasing to zero (i.e. ∥An∥ → 0).

Proof. (Claim #1)(△ expectation) by the scaling property (Thm. 18.16#2) it holds:

Wt −Ws
d
=

√
t− sZ Z ∼ N(0, 1) =⇒ |Wt −Ws|2

d
= (t− s)Z2 :


Z2 ∼ χ2

1 = Gamma

(
1

2
,
1

2

)
E
[
Z2
]
= 1

V [Z2] = 2

219
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So that the expectation of the quadratic variation is:

E [Vn] =
∑

(s,t]∈An

E
[
(Wt −Ws)

2
]

linearity

=
∑

(s,t]∈An

(t− s)E
[
Z2
]

=
∑

(s,t]∈An

(t− s)

= b− a telescopic sum

(□ variance) it holds:

V [Vn] =
∑

(s,t]∈An

V [|Wt −Ws|2] [t, s) are disjoint increments of a Wiener process

=
∑

(s,t]∈An

V [(t− s)Z2]

=
∑

(s,t]∈An

(t− s)2V [Z2]

≤ 2 ∥An∥
∑

(s,t]∈An

(t− s)

= 2 ∥An∥ (b− a) telescopic sum
n→∞→ 0

(⃝ convergence) by △,□ it holds:

E
[
|Vn − (b− a)|2

]
= V [Vn]

n→∞→ 0 =⇒ Vn
L2→ b− a

(Claim #2) Just an application of Proposition 9.19.

♣ Proposition 20.5 (Almost sure dyadic subdivision for quadratic variation). ∀n ∈ N let An be a subdivision
of the form presented in Definition 20.3. Then, with the hypothesis of Theorem 20.4 it also holds that:

Vn =
∑

(s,t]∈An

|Wt −Ws|2
a.s.→ b− a

Proof. From the previous results we proved E [Vn] = b − a. In this case, the size of the subdivision is ∥An∥ =
1

2n
∀n, by the dyadic construction. Clearly, by the subdivisions having equal length:

V [Vn] = 2 ·
∑

(s,t]∈An

(t− s)2 as in Thm. 20.4 with = instead of ≤

= 2

2n−1∑
k=0

(
b− a

2n

)2

= 2 · 2n (b− a)2

22n

= 2
(b− a)2

2n

By Chebychev’s inequality (Cor. 7.5) we obtain the bound:

P

|Vn − (b− a)︸ ︷︷ ︸
E[Vn]

| > ϵ

 ≤ V [Vn]

ϵ2
=

1

ϵ2

(
2

2n
(b− a)2

)
∀ϵ > 0
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From which we are in the position to apply BC1 (Thm. 9.6) as in Example 9.9:

∀ϵ > 0
∑
n

P (|Vn − (b− a)| > ϵ) ≤
∑
n

1

ϵ2

(
2

2n
(b− a)2

)
=

(b− a)2

ϵ2

∑
n

1

2n−1︸ ︷︷ ︸
= 1

2

<∞ =⇒ Vn
a.s.→ b− a

♣ Proposition 20.6 (Infinite total variation of Wiener process). For a Wiener process (Wt)t∈R+
we have:

TV = sup
A

∑
(s,t]∈A

|Wt −Ws| = ∞ almost surely

over any interval [a, b]

Proof. (△ setting) We make use of the sequence of subdivisions (An)n∈N with ∥An∥ → 0 from Prop. 20.5 and
the result of Theorem 20.4. Let Ωab be the a.s. set in which Vn

a.s.→ b− a. Denote the total variation as v∗ ≤ +∞
over [a, b].
(□ calculation) Then for ω ∈ Ωab:

Vn(ω) =
∑

(s,t]∈An

|Wt −Ws|2 ≤ sup
(s,t]∈An

{Wt −Ws}
∑

(s,t]∈An

|Wt −Ws| = sup
(s,t]∈An

{Wt −Ws} · v∗

(⃝ argument) We know the LHS is b− a as n → ∞ since we are in Ωab. The first term of the RHS is by the
Hölder continuity of W (Thm. 18.22) is:

|Wt −Ws| ≤ C|t− s|α = C ∥An∥α
n→∞→ 0 =⇒ sup{|Wt −Ws|} ≤ C ∥An∥α

Which means that the second term, v∗, necessarily diverges to ∞.
Let Ω0 =

⋂
a,b:0≤a<bΩab, the event is almost sure, and the total variation is infinite in it.

♢ Observation 20.7 (Consequences of infinite total variation). By Proposition 20.6 For a fixed path ω ∈ Ω we
almost surely cannot define an integral with respect to Wt in the Steltjes-Lebesgue Riemaniann way (Def. 12.7),
as there is no limit of subdivisions in the Riemann sense and ∄ ∫ f(s)dWs.
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Chapter Summary

Objects:
• subdivision, a finite collection of intervals covering [a, b] without the start

A = {(s, t]},
⋃

(s,t]∈A

(s, t] = (a, b]

• mesh of a subdivision
∥A∥ = sup {t− s : (s, t] ∈ A}

• true p-variation of a right continuous function f : R+ → R on an interval [a, b] ∈ R+

sup
A

∑
(s,t]∈A

|f(t)− f(s)|p p ∈ R+

Where for p = 1 we call it total variation and for p = 2 true quadratic variation. Both are infinite
for a Wiener process

• dyadic subdivision, a subdivision of equally spaced intervals using tk = kt
2n for k = 0, . . . , 2n

Results:
• the Wiener process (Wt)t∈R+

has a probabilistically bounded quadratic variation when (An)n∈N
with ∥An∥ → 0

Vn =
∑

(s,t]∈An

|Wt −Ws|2
L2

→ b− a Vn
P→ b− a

We call Vn the quadratic variation, not to be confused with the true quadratic variation. It is rather
a probabilistic version of the latter.

• the Wiener process has an almost sure dyadic subdivision limit of the quadratic variation

Vn =
∑

(s,t]∈An

|Wt −Ws|
a.s.→ b− a

• the Wiener process has infinite total variation

TV = sup
A

∑
(s,t]∈A

|Wt −Ws| = ∞ almost surely

• we cannot define a Steltjes-Riemann-Lebesgue integral with respect to a Wiener process after fixing
the path ω ∈ Ω
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Chapter 21

Recap of Part II

The following is a meta Chapter to ease help organize ideas.

21.1 Results Collection

Throughout the second part of the course (Chapters 11-20), many results were reported on different occasions,
the purpose of this Section is collecting them under the same discussion. It is just a copy paste. No proofs are
reported.

21.1.1 Martingales and Processes

Definition (Background notation). Assume that we are now in a probability space (Def. 10.45) (Ω,H,P). We
will index sequences by a countable collection N = {0, 1, 2, . . .} or an uncountable collection such as R+ or a
generic T.
A stochastic process will be an indexed sequence of random variables (Def. 10.58).
Occasionally, we might denote measurable functions over a measurable space (E,E) with the symbol f ∈ E and
accordingly with signs ± for negative and positive cases.

Definition (Filtration). For an index set T a filtration is a sequence (Ft)t∈T such that:

1. Ft ⊂ H ∀t and Ft is a σ-algebra (Def. 1.6) ∀t
2. Fs ⊂ Ft ∀s < t

Intuitively, it is a sequence of increasing information in the probability space.

Definition (Filtration generated by a random variable). Given a stochastic process (Xt)t∈T the filtration gener-
ated by it is denoted as:

Ft = σ({Xs : s ≤ t})

Which can be seen as a flow of information accumulated at each time point.

Definition (Finer, coarser filtration). Consider F = (Ft)t∈T,G = (Gt)t∈T to be two filtrations. We say F is finer
(coarser) than G is ∀t ∈ T Ft ⊃ (respectively, ⊂) Gt.

Definition (Stochastic process adapted to filtration). Consider a filtration F = (Ft)t∈T and a stochastic process
X = (Xt)t∈T taking values on (E,E). We say that X is adapted to F if ∀t Xt measurable w.r.t. F&E

Proposition (Equivalent statements for filtrations and adaptedness). Consider a stochastic process X = (Xt)t∈T
and a filtration F = (Ft)t∈T. Then:

1. X adapted to F (Def. 11.7) ⇐⇒ ∀t, s ≤ t, f ∈ E f ◦Xs ∈ Ft

225
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2. since G = σ(X) =⇒ X adapted G we have that:

X adapted F ⇐⇒ F finer G

Definition (Stopping times). For a filtration F a stopping time with respect to it is a random function T : Ω →
T ∪ {∞} such that:

{T ≤ t} ∈ Ft ∀t ∈ T

Which is equivalent to requiring the process Zt = 1{T≤t} ∈ Ft for all t ∈ T.
In the special case in which T = N or N the condition reduces for Ẑn = Zn − Zn−1 to:

Ẑn = 1{T=t} ∀t ∈ T

Definition (Counting process (Nt)t∈T). Let ) < T1 < T2 < . . . be random times of the form Tn : Ω → T = R+

such that limn→∞ Tn = +∞.
These can be seen as a sequence of distinct arrival times.
A counting process is a stochastic process (Def. 10.58) of the form:

Nt =
∑
n

1[0,t](Tn)

Proposition (Properties of (Nt)t∈T). The map t→ Nt is:

1. right continuous
2. increasing in t

3. has jumps of size 1

4. N0 = 0, Nt <∞∀t ∈ R+, limt→∞Nt = ∞

Definition (End of time information F∞, extended filtration (Ft)t∈T). We define F∞ = limt→∞ Ft =
∨
t Ft,

where the union symbol is different as it is over σ-algebras.
Then, the extended filtration is a filtration which accounts for P[T = ∞] > 0:

(Ft)t∈T T = T ∪ {∞}

Definition (Stopped filtration FT at T , past until T ). For F a filtration on T, extended to T, and T a stopping
time, the stopped filtration is defined as:

FT =
{
H ∈ H : H ∩ {T ≤ t} ∈ Ft ∀t ∈ T

}
Lemma (Properties of FT ). A stopped filtration FT is such that:

1. FT is a σ-algebra (Def. 1.6)
2. FT ⊂ F∞ ⊂ H ∀t

Theorem (Formalizing Observation 11.22). Drawing from the previous comment, for a stopped filtration FT ,
with stopping time T , index T, and filtration F:

1. stopped filtration filtration identification

V ∈ FT ⇐⇒ V 1T≤t ∈ Ft∀t ∈ T

2. stopped filtration identification for a discrete process

N = T V ∈ FT ⇐⇒ V 1T=t ∈ Ft∀t ∈ T

Which are both an extension of the comments of adaptedness from Definition 11.7 for deterministic times.

Definition (F processes collection). Using the same notation for positive measurable functions as f ∈ E we let:

F =
{
right continuous processes on T adapted to F

}
Where F is extended to T.
This means that X ∈ F whenever:
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1. X = (Xt)t∈T is adapted to F = (Ft)t∈T
2. t→ Xt(ω) where Xt : T → R is right continuous ∀ω ∈ Ω

Theorem (Comparing different stopping times). Let S, T be stopping times of a filtration F (Def. 11.9), where
S ≤ T almost surely, meaning S(ω) ≤ T (ω)∀ω ∈ Ω. Then:

1. S ∧ T , S ∨ T are stopping times of F
2. specifically S ≤ T =⇒ FS ⊂ FT
3. FS∧T = FS ∩ FT

4. V ∈ FS =⇒


V 1S≤T ∈ FS∧T

V 1S=T ∈ FS∧T

V 1S<T ∈ FS∧T

Definition (Expectation in Filtration Et). Given a filtration F = (Ft)t∈T (Def. 11.2) use as notation:

Et[X] := E[X|Ft] = EFt
[X] = XFt

t ∈ T

Proposition (Repeated conditioning of Et). For X ≥ 0 a.s. it holds that:

Et [Es[X]] = Es∧t[X] ∀s, t ∈ T

Definition (Expectation with respect to stopped filtration ET ). Given FT a stopped filtration (Def. 11.19),
recalling that FT is a σ-algebra, simply define:

ET [X] := E[X|FT ] = EFT
[X] = XFT

Theorem (Properties of ET ). Consider X,Y,W ≥ 0 a.s. and S, T stopping times (Def. 11.9) of a filtration F

(Def. 11.2). Then:

1. Projection defining property

ET [X] = Y ⇐⇒ Y ∈ FT E[V X] = E[V Y ] ∀V FT -measurable positive

2. unconditioning
E [ET [X]] = E[X]

3. repeated conditioning/towering
ESET [X] = ES∧TX

4. conditional determinism
ET [WX] =WET [X] ∀W FT -measurable

Definition (Martingales). For T = R+ and F a filtration, possibly extended to T a F-martingale is a stochastic
process X = (Xt)t∈T such that:

1. X is adapted to F (Def. 11.7)
2. ∀t Xt is integrable ⇐⇒ E[|Xt|] <∞∀t ⇐⇒ Xt ∈ L1 ∀t
3. martingale equality

Es[Xt −Xs] = 0 ∀s < t, ∀t

Definition (Submartingale, supermartingale). we recognize two additional options for the last property:

• a submartingale satisfies Definition 11.35 but has ≥ in the martingale equality
• a supermartingale satisfies Definition 11.35 but has ≤ in the martingale equality

Proposition (Best guess of future is present characterizes martingale equality). It holds that:

Def. 11.35#3 ⇐⇒ Es[Xt] = Xs ∀s < t

Proposition (Martingale implies stationarity).

X F-martingale =⇒ E[Xt] = E[X0]∀t ∈ T
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Proposition (Discrete time martingale check). For a discrete process over T = N it is sufficient to check for one
step forward the martingale equality if the other two conditions are satisfied (integrability and adaptedness):

En[Xn+k −Xn] = 0 ∀k > 0,∀n ∈ N ⇐⇒ En[Xn+1 −Xn] = 0 ∀n

Corollary (Jensen’s for martingales). This is a Corollary of Jensen’s inequality.
For a martingale X and a convex function f : R → R then:

f ◦Xt integrable ∀t ∈ T =⇒ f ◦X submartingale

Definition (Uniformly integrable martingale). We define e u.i. martingale as in Definition 7.3 with as arbitrary
index set T. Namely:

(Xt)t∈T lim
b→∞

sup
t

E|Xt|1[b,∞) (|Xt|) = 0

Proposition (Uniformly integrable martingale by integrable random variable). Let Z ∈ L1(Ω,H,P) and F a
filtration.

=⇒ X = (Xt)t∈T : Xt = Et[Z] ∀t ∈ T uniformly integrable martingale

To prove this result, we need a Theorem from the book, which is reported in the Appendix.

Lemma (A more general result). It actually holds that:

Z ∈ L1(Ω,H,P) =⇒ K = {X | X = EG[Z], G ⊂ H} uniformly integrable

Definition (Wiener process W ). A stochastic process W = (Wt)t∈R+
is Wiener with respect to the filtration F

if:

1. W is adapted to F (Def. 11.7)
2. Gaussian intervals

Es[f(Ws+t −Ws)] =

∫
f(x)

1√
2πt

e−
1
2tx

2

dx ∀s, t, ∀f ∈ E+

Where E+ is to be intended as positive Borel functions mapping to R.
3. W0 = 0

Proposition (Definitional implications of Wiener process). We have that by requirement 2 of a Wiener process
W :

1. Markov
Ws+t −Ws ⊥⊥ Fs ∀s

2. stationarity
Ws+t −Ws ⊥⊥ s ∀s

3. normality
Ws+t −Ws ∼ N(0, t) ∀t ̸= 0

Proposition (Martingale characterization of Wiener Process, exponential).

W = (Wt)t∈R+
Wiener︸ ︷︷ ︸
Def. 11.55

⇐⇒ Mt = erWt− 1
2 r

2t F-martingale︸ ︷︷ ︸
Def. 11.35

∀r ∈ R

Proposition (Wiener processes are martingales).

W = (Wt)t∈R+ Wiener︸ ︷︷ ︸
Def. 11.55

=⇒ W F-martingale︸ ︷︷ ︸
Def. 11.35

Proposition (Martingale characterization of Wiener process, square).

W = (Wt)t∈R+
Wiener︸ ︷︷ ︸
Def. 11.55

=⇒ Yt =W 2
t − t F-martingale︸ ︷︷ ︸

Def. 11.35
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Theorem (Combination of Wiener martingale characterization). It actually holds that W is Wiener if and only
if:

1. W is an F-martingale
2. Yt =W 2

t − t is an F-martingale

Namely, the two previous results together characterize Wiener processes.

Definition (Poisson Process Pois(c)). A counting process (Nt)t∈T is Poisson with rate c > 0 with respect to a
filtration F (Def. 11.2) when:

1. N is adapted to F (Def. 11.7)
2. increments are Poisson distributed in expectation:

Es [f(Ns+t −Ns)] =

∞∑
k=0

e−ct(ct)k

k!
f(k) ∀s, t, f ∈ E+

Where, as usual, by f ∈ E+ we mean a positive measurable function in (R,B(R)), the space where the process
takes values on.

Proposition (Definitional Properties of Pois(c)). Definition 12.2 has some direct implications. For N ∼ Pois(c)

it holds that:

1. markov property
Ns+t −Ns ⊥⊥ Fs ∀s, t

2. stationarity
(Nt)t∈T ⊥⊥ t

3. Poisson increments
Nt+s −Ns ∼ Po(ct)

Theorem (Pois(c) characterization). For a counting process N (Def. 11.13) and a filtration F over which it is
a Poisson process we can see that:

N ∼ Pois(c) ⇐⇒ (Nt − ct)t∈T F-martingale (Def. 11.35)

Definition (Predictable process). A natural process (Fn)n∈N is predictable with respect to (Fn)n∈N when F ∈ F0

and Fn+1 ∈ Fn ∀n, where by ∈ we mean measurable with respect to (see the background notation for context).

Definition (Steltjes-Lebesgue integral). For (Fn)n∈N a random function and (Mn)n∈N a signed measure with
mass Mn −Mn−1 ∀n and M0 = 1 we define:

X = (Xn)n∈N : X =

∫
FdM

⇐⇒ Xn =

∫
[0,n]

FdM =M0F0 +

n∑
m=1

(Mm −Mm−1)Fm

A series of increasing in n integrals.

Theorem (Martingality of integral for bounded processes). For X a Steltjes-Lebesgue integral as in Definition
12.7 with (Fn)n∈N bounded (i.e. P[|Fn| ≤ b] = 1 for some b ∈ R) it holds that:

1. (Mn)n∈N martingale =⇒ X martingale
2. (Mn)n∈N submartingale, (Fn)n∈N positive ∀n =⇒ X submartingale

Corollary (Stopped time process martingality). Let T be a stopping time (Def. 11.9) and (Xn)n∈N with Xn =

Mn∧T as in Example 12.8. Then:

1. (Mn)n∈N martingale =⇒ X martingale
2. (Mn)n∈N submartingale =⇒ X submartingale

Notice that by the result of Example 12.8 this means that Mn∧T is a martingale/submartingale since Xn =Mn∧T
for all n ∈ N.
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Proposition (Doob’s Theorem I). Let (Mn)n∈N be a martingale, T a stopping time (Defs. 11.35, 11.9), with T
bounded P[T ≤ k] = 1 for some k ∈ R. Then

E[M0] = E[MT ] = E[Mk]

Corollary (Double stopping Time Doob’s Theorem I). Let (Mn)n∈N be a martingale, T a stopping time (Defs.
11.35, 11.9), with T bounded P[T ≤ k] = 1 for some k ∈ R as before. If S ≤ T is another stopping time:

E [MS ] = E [MT ]

Theorem (Doob’s decomposition). Let (Xn)n∈N be adapted to F and integrable Xn ∈ L1. The following state-
ments are true:

1. decomposition, with M a martingale, M0 = 0, and (An)n∈N a predictable process, A0 = 0 (Defs. 11.35,
12.5)

Xn = X0 +Mn +An ∀n ∈ N

2. the decomposition at point 1 is unique up to equivalence
3. if (Xn)n∈N is a submartingale, (An)n∈N is an increasing predictable process, if (Xn)n∈N is a supermartingale,

(An)n∈N is decreasing predictable

Theorem (Doob’s Theorem II, fully general). For a process (Mn)n∈N adapted to (Fn)n∈N the following are
equivalent:

1. (Mn)n∈N is a martingale
2. for bounded stopping times S ≤ T MS and MT are integrable and ES [MT −MS ] = 0

3. for bounded stopping times S ≤ T MS and MT are integrable and E[MT −MS ] = 0

Definition (Upcrossing, downcrossing and counter). Let (Mn)n∈N be adapted to (Fn)n∈N (Def. 11.7), a < b and
T0 = −1 for convenience.
For all natural k ≥ 1 define:

Sk := inf{n ≥ Tk−1 :Mn ≤ a}
Tk := inf{n ≥ Sk :Mn ≥ b}

By the adaptedness of (Mn)n∈N we can say that {S1, T1, S2, T2, . . .} is an increasing sequence of stopping times
(Def. 11.9).
Sk can be seen as the kth downcrossing of the interval (a, b), while Tk is the kth upcrossing of the interval (a, b).
We then define the number of upcrossings of (a, b) as:

Un(a, b) =

∞∑
k=1

1[0,n] (Tk)

Definition (Fn formalism). The number of buy/sell cycles in [0, n] is exactly Un(a, b). In this context we let:

• Fn be such that: {
Fn =

∑∞
n=1 1(Sk,Tk] (n)

F0 = 0
=

{
1 if ∃k : Sk < n ≤ Tk

0 else

So that F represents the number of stocks owned at (n, n+ 1]

• we already saw that the value of the portfolio is formalized as:{
Xn =

∫
[0,n]

FdM

X0 = 0

With this context, the profit is in general:

Xn −X0 ≥ (b− a)Un(a, b)

where we put ≥ instead of = since it could be that the price at the end is less than the price at the start! See the
plot of Example 12.22 for reference.
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Proposition (Upcrossing inequality).

(Mn)n∈N submartingale =⇒ (b− a)E[Un(a, b)] ≤ E[(Mn − a)+ − (M0 − a)+]

Theorem (Martingale Convergence Theorem, MCT). For a submartingale (Xn)n∈N (Def. 11.36):

sup
n

E[X+
n ] <∞ =⇒ Xn

a.s.→ X∞, X∞ ∈ L1

So that we can establish an almost sure limiting distribution.

Corollary (An equivalent sufficient condition). We can restate the problem in terms of a more useful condition
noting that: {

supn E[X+
n ] <∞

X+
n ∈ L1 ∀n

⇐⇒

{
supn E[|Xn|] <∞
|Xn| ∈ L1 ∀n

Namely, an L1 bound on the martingale, not L1 convergence!

Corollary (Special cases). We recognize a number of familiar situations in which the requirements are easily
verified:

1. (Xn)n∈N non positive submartingale
2. (Xn)n∈N non negative supermartingale
3. (Xn)n∈N non positive or non negative martingale
4. (Xn)n∈N bounded above or below by an integrable random variable

Lemma (A quick Lemma for L1 convergence). If (Xn)n∈N
L1→ X then:

lim
n→∞

E [XnY ] = E [XY ] ∀Y bounded a.s.

Theorem (Uniform Integrability vs a.s. L1 characterization). For a martingale (Mn)n∈N it holds:

1. Same convergence by uniformity{
Mn

a.s.→ M∞

Mn
L1→M∞

⇐⇒ (Mn)n∈N uniformly integrable

2. Martingale equality extends at infinity as a martingale X if Mn = En[Z] for Z ∈ L1:

Mn = En[Z], Z ∈ L1 =⇒ M∞ = lim
n→∞

Mn : X = (Xn)n∈N

Corollary (Appying Theorem the almost sure L1 limit for u.i. martingales to characterize Observation 12.37).
Conclude that:

1. ∀Z : E[|Z|] <∞ it holds En[Z]
a.s.→
L1

E∞[Z] = E[Z|F∞]

2. Z ∈ F∞ =⇒ En[Z]
a.s.→
L1

Z

So that Z is eventually revealed.

Proposition (Frequentist validation of Bayesian mean estimator). Recall the setting of Example 12.39

identifiability : Pθ(A) = P[Y ∈ A|θ] : Pθ(·) ̸= Pθ′(·)∀θ ̸= θ′ =⇒ θ ∈ F∞

In other words, identifiability is a sufficient condition for the true value to be revealed at the end of time.

Corollary (Frequentist perspective validation). ∀θ0 in almost sure sets of π(·):

Yi
iid∼ Pθ0 = P[Yi ∈ ·|θ0] =⇒ θ̂n → θ0 in P∞

θ0 a.s.

Theorem (Levy’s 0-1 law).
A ∈ F∞ =⇒ En[1A]

a.s.→ 1A
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21.1.2 Random Measures and Processes

Definition (Random Measure M(·, ·), r.m.). The concept is equivalent to that of a Transition Kernel (Def.
B.13) from (Ω,H) onto (E,E). Consider a probability space (Ω,H,P) and a measurable space (E,E). A random
measure on (E,E) is a mapping:

M : Ω× E → R+

Such that:

1. ω →M(ω,A) is a r.v. ∀A ∈ E denoted as M(A), which is H-measurable and takes values on (E,E)

2. A→M(ω,A) is a measure on (E,E) denoted as Mω(dx) for all ω ∈ Ω

Definition (Measure description of M). The measure in M denoted as Mω(dx) can be atomic or diffuse (Def.
A.32), finite, σ-finite or Σ-finite (Defs. A.26, A.27).

Definition (Random counting measure). M(dx) such that Mω(dx) atomic and with weight 1 a.s. is a random
counting measure. It is the equivalent of a counting measure after fixing ω.

Definition (Recap of integral notation). Let f : E → R be a Borel function and assume we wish to integrate
wrt M(dx). Recalling that for a fixed measure ν we have νf =

∫
f(x)ν(dx) then:

Mf : E → R |Mf :=

∫
E

f(x)M(dx) is an r.v.

Notice also that:
M(A) =

∫
A

M(dx) =

∫
E

1AM(dx) =M1A ∀A ∈ E

Definition (Expected version of random measure, mean measure). For a random measure as in Definition 13.1
we refer to the mean measure ν when considering the measure such that:

1. ν(A) = E[M(A)] ∀A ∈ E

2. equivalently νf = E[Mf ] ∀f ∈ E+

In particular:

ν(A) = E [M(A)] =

∫
Ω

M(ω,A)P[dω]

Where we are integrating out the ω of the random measure over the underlying probability space.

Lemma (Mean in terms of tail).

X ≥ 0 a.s. =⇒ E[X] =

∞∑
i=1

P[X ≥ i] =

∞∑
i=0

P[X > i]

Definition (Laplace functional). This definition resembles that of Def. 6.11.
For a random measure M and a positive Borel function f ∈ E+ we define the Laplace functional as:

P̂M (f) = E
[
e−Mf

]
Which can be seen as the Laplace transform of Mf , which is a r.v., evaluated at r = 1.

Definition (Poisson random measure, p.r.m.). N(dx) ∼ Pois(ν(dx)) is a Poisson random measure (Def. 13.1)
with mean measure ν(dx) when:

1. N(A) ∼ Po(ν(A)) ∀A ∈ E

2. For {Ai}ni=1 ⊂ E disjoint =⇒ {N(Ai)}ni=1 is an independency (Def. 6.9)

Proposition (Mean Variance for sets of Poisson random measure). For N(dx) ∼ Pois(ν(dx)) such that ν(A) <
∞ ∀A ∈ E:

1. E[N(A)] = ν(A)

2. V [N(A)] = ν(A)

3. If ν(A) = ∞ =⇒ E[N(A)] = ∞ a.s. and V [N(A)] is undefined a.s.
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Proposition (Mean and variance for functions, Poisson random measure). Let N be a p.r.m. and f ∈ E+:

1. E[N(f)] = ν(f)

2. V [N(f)] = ν(f2) if νf <∞

Theorem (Laplace functional of Poisson random measure characterization). Using the theory of Laplace trans-
forms, for a random measure N on (E,E) (Def. 13.1) with mean measure ν:

N ∼ Pois(ν) (Def. 13.13) ⇐⇒ E[e−Nf ] = e−ν(1−e
−f ) ∀f ∈ E+

Lemma (Laplace functional uniqueness and continuity). The Laplace functional mapping f → E[e−Mf ] for
f ∈ E+ is such that:

1. (fn) ⊂ E, fn ↗ f =⇒ limn→∞ E
[
e−Mfn

]
= E

[
e−Mf

]
2. N =M on (E,E) random measures ⇐⇒ P̂M (f) = P̂N (f) ∀f ∈ E+

Corollary (Extending the results of Theorem). Clearly:

P̂M (f) = P̂N (f) ∀f ∈ E+ ⇐⇒ M = N a.s. ⇐⇒ M r.m. specified by ν only

Proposition (Laplace function of N(A)). We provide quickly an intuition of the =⇒ direction in the Proof of
Theorem for the simplest case possible.
We can show for r = 1 that :

E
[
e−1·N(A)

]
= exp{−ν(1− e−1A)}}

and then reason by simple functions approximation.

Definition (Proper random variable for random measure). Given f ∈ E+ we say Mf =
∫
E
f(x)M(dx) is proper

when P[Mf <∞] = 1, namely Mf
a.s.
= 1.

Lemma (Finiteness of random variable by Laplace function).

X ≥ 0 a.s. =⇒ P[X <∞] = lim
r→0

P̂X(r)

Proposition (Finiteness of Poisson random measure). Let f ∈ E+ and N ∼ Pois(ν). Then:

ν(f ∧ 1) <∞ =⇒ Nf <∞ a.s.

Else Nf = ∞ a.s.

Definition (Independent random measures). Two random measures N,M are such that N ⊥⊥M when N(A) ⊥⊥
M(A) ∀A ∈ E

Theorem (Poisson random measure existance). Let ν be Σ-finite on (E,E). Then:

∃(Ω,H,P) & N(ω, ·) on (E,E) : N ∼ Pois(ν) ∀ω ∈ Ω

Theorem (Random counting measure and diffusivity of Poisson random measure). Let N be a p.r.m. on (E,E)

according to Definition 13.13, with Σ-finite mean measure ν. Then:

N random counting measure (Def. 13.3) ⇐⇒ ν diffuse (Def. A.32)

Corollary (Extension to special case). Let N ∼ Pois(ν) on E = R+ × R+ and E = B(E).
Let ν = Leb× λ, with

• λ({0}) = 0

• λ((ϵ,∞)) <∞ ∀ϵ > 0

We can interpret N(t, z) for a time of arrival t of an object of size z. Then:

1. for a.e. ω ∈ Ω Nω is a counting measure that:
2. (no simultaneity) has not atom at t = 0, no atom of size z = 0, i.e. no simultaneity of Xi, Xj : ti = tj
3. (finite big activity) ∀t <∞, ϵ > 0 there are finitely many atoms before t with size z > ϵ
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4. (infinite small activity) claim #3 holds for ϵ = 0 if λ is finite. Otherwise there are ∞ many atoms of size
z ≤ ϵ ∀ϵ > 0

Definition (Image of N under h, N ◦ h−1). This is equivalent to Definition B.1.
Let N be a p.r.m. on (E,E), and h : E → F a measurable map (satifies Eqn. 3.1). The image of N under h is
a random measure on (Ω,H,P), (F,F) (Def. 13.1) defined as:

N ◦ h−1 : (N ◦ h−1)(B) = N ◦ (h−1(B)) ∀B ∈ F

the last expression is:

N(h−1(B)) =

∫
E

1h−1(B) (x)N(dx)

=

∫
x:h(x)∈B

N(dx)

=

∫
E

1B (h(x))N(dx)

= N(1B ◦ h)

Where we infer that instead for a borel map f : F → R:

(N ◦ h−1)(f) = N(h−1(f)) = N(f ◦ h)

which by Nf =
∑
f(Xi) for (Xi) atoms of N suggests that:

(N ◦ h−1)(f) = N(f ◦ h) =
K∑
i=1

f(h(Xi)) =

K∑
i=1

f(Yi)

For (Yi) the atoms of N ◦ h−1.

Proposition (Image measure is a Poisson random measure). N ◦ h−1 on (Ω,H,P), (F,F) satisfies the require-
ments of Definition 13.13 and has mean µ = ν ◦ h−1.

N ∼ Pois(ν), h : E → F =⇒ N ◦ h−1 ∼ Pois(ν ◦ h−1)

Definition (Arrival process formalism). Let N(dx) be a p.r.m. on E = R+ with diffuse mean ν(dx), such that
c(t) = ν((0, t]) <∞ ∀t.
By Theorem the previous Theorem we know that ν is diffuse ⇐⇒ N is a random counting measure.
With this premise we can interpret (Tk)k≥1 as distinct ordered arrival times. We want to simulate this random
measure.

Proposition (Arrival process simulation by inverse image). For N as in Definition the arrival process formalism
of Definition 14.16 let h : R+ → R+ be such that in the arrival process formalism:

h(u) = t ⇐⇒ c(t) = u

Namely, the inverse of the cdf. Then for Ñ a p.r.m. with mean measure Leb:

1. ν = Leb ◦ h−1

2. (ui)i≥1 are the atoms and (h(ui))i≥1 are the atoms of N

Definition (Trace of random measure, also restriction). For D ⊂ E and a random measure M on E we call
restriction the measure MD characterized as:

MD(B) :=M(B ∩D) ∀B ∈ E

Which has mean µD(B) = µ(B ∩D) ∀B ∈ E
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Definition (Intensity or expected arrival time r). In the context of the arrival process formalism of Definition
14.16 further let ν be σ-finite and such that ν ≪ Leb. By Radon Nikodym Theorem we have that:

∃r Leb-measurable, ν(A) =

∫
A

r(t)dt

We call r(t) = dν
dLeb (t) the Radon-Nykodym derivative also with the term intensity.

Recall the discussion we did in Chapter 5. It is not granted that the measure ν will be σ-finite once it is absolutely
continuous to the Lebesgue measure. The observation we did when introducing the Radon-Nykodim theorem made
it precise that this requirement was lifted for probability measures, but ν in principle could be just a measure.
This comment can be ignored in most of the cases.

Proposition (Arrival process simulation by intensity). Using the interpretation of Definition 14.19 for an in-
tensity r we also let:

• h(t, z) = t

• D = {(t, z) : z ≤ r(t)} ⊂ R+ × R+

• MD be the trace of the p.r.m. M on R+ ×R+ with mean Leb, so that it is a p.r.m. with mean µD ≪ Leb.
The mean measure µD is also σ-finite since it is just a restriction of Leb inside the set D

Then:

1. N = MD ◦ h−1 is a p.r.m. with mean ν = µD ◦ h−1. N here is the counting measure on R+ whose atoms
are arrival times Ti with size Zi ≤ r(Ti), according to the restriction D.

2. can simulate (Ti, Zi)i≥1 from M and set Nf =
∑
i:Zi≤r(Ti)

f(Ti)

Assumption 21.1 (Setting for transformations). We consider measurable spaces (E,E), (F,F), and collections
{Xi : i ∈ I}, {Yi : i ∈ I}.
N is a p.r.m. on (E,E) with mean ν (Def. 13.13) =⇒ Nf =

∑
i∈I f ◦Xi f ∈ E+.

For a measurable map h : E → F , satisfying Equation 3.1, we set Yi = h ◦Xi and derive the new p.r.m. N ◦h−1

using the Proposition in which we proce the image measure is a random measure.
Yi is ultimately the random transform associated to the kernel (Def. B.13):

Yi ∈ B w.p. Q(x,B) if Xi = x ⇐⇒ P[Y ∈ B|X = x] = Q(x,B) ∀B ∈ F

Where Q : E × F → E

Theorem (Transformation independence poissonity). For a measure ν on (E,E), and a kernel Q from (E,E)

to (F,F) such that:

• X is a p.r.m. with mean ν

• Yi|X
ind∼ Q(Xi, ·)

It holds:

1. Y is a p.r.m. on (F,F) with mean π(Q) : π(Q(B)) =
∫
F
ν(dx)Q(x,B) ∀B ∈ F or in other terms

π(dy) =
∫
F
Q(x, dy)ν(dx)

2. (X,Y ) is a p.r.m. on (E × F,E⊗ F) with mean µ = ν ×Q so that:

µ(dx, dy) = ν(dx)Q(x, dy)

Corollary (Special case Kernel is probability measure). For X ∼ Pois(ν) on (E,E) and Y ⊥⊥ X such that Y ∼ π

on (F,F):

=⇒ (X,Y ) ∼ Pois(µ) on (E × F,E⊗ F) µ = ν × π : µ(dx, dy) = ν(dx)π(dy)

Definition (Compound Poisson process (St)t≥0). We give a precise definition of the object presented in the above
example.
For arrival times T1 < T2 < . . . atoms of a p.r.m. on R+ with mean cdx = ν(dx) we consider a sequence of
random variables Yi

iid∼ π on R where Y ⊥⊥ T .
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The compound Poisson process that arises is the continuous time process of the random sum:

(St)t≥0 : St =
∑
i:Ti≤t

Yi =
∑
i

1[0,t] (Ti)Yi

=

∫
R+×R

y1[0,t] (x)N(dx, dy)

Where by the previous Theorem N is a p.r.m. and the expression makes sense.

Definition (Borel version of compound Poisson process). (St)t∈R+
can be seen as a cumulative version of a r.m.

(Def. 13.1) on R+:

St = L((0, t]) L(dx) r.m. : L(A) =

∫
A×R

yN(dx, dy)

Indeed the Laplace transform of St would be:

E
[
e−rL((0,t])

]
= E

[
e−rSt

]
= exp

{
−ct

∫
R+

(1− e−ry)π(dy)

}

= exp

{∫
(0,t]×R+

(1− e−ry)dxcπ(dy)

}
Which we write for general A below the Observation that follows.

Definition (Additive random measure). A random measure (Def 13.1) M is said to be additive when for disjoint
sets {Ai}ni=1 ⊂ E the set of random variables {M(Ai)}ni=1 is an independency according to Definition 6.9.

Proposition (Compound Poisson process has underlying additive measure). L as in Definition 15.5 is an
additive random measure.

Lemma (Automatic additive random measure). For a countable set D ⊂ E and an independency of positive
random variables {Wx : Wx ≥ 0 x ∈ D} the random measure:

K(ω,A) =
∑
x∈D

Wx(ω)1A (x) ω ∈ Ω, A ∈ E

is additive.

Theorem (A form of additive random measure decomposition). Consider a measure α on (E,E), a random
measure K as in the Lemma for the automatic random measure, purely atomic with fixed atoms, and a random
measure L as in the previous Proposition, namely:

L(A) =

∫
A×R+

yN(dx, dy) N ∼ Pois(ν)

Then:

1. any additive r.m. (Def. 15.8) can be decomposed in a sum M = α+K + L

2. if M is a Σ-bounded kernel (Def. B.23) the same decomposition holds and if additionally α is diffuse, and
the mean measure of K ν(· × R+) is diffuse the decomposition is unique

Definition (Increasing Lévy process). A process S = (St)t∈R+
is increasing Lévy when it is such that:

1. independence of increments:

St1 − St0 , . . . , Stn − Stn−1
⊥⊥ ∀n ≥ 2, 0 ≤ t0 < t1 < . . . < tn

2. stationarity of increments
St+u − Su

d
= St ∀u, t ∈ R+

3. increasing, right continuous and starting at S0 = 0

Assumption 21.2 (Structure of compound Poisson process revisited). We know by the previous Proposition
in which we proved that the compound Poissoin process is additive, that the underlying random measure of a
compound Poisson process is additive. We now impose that:
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• St(ω) =M(ω, [0, t]) for M an additive r.m., so that St is increasing and right continuous
• St <∞ a.s.∀t which will ensure independence by the additivity of M
• α(dx) = bdx b ∈ R+ to ensure linearity, which will guarantee stationarity of increments

Definition (Candidate Poisson additive random measure). We present here the r.m. we will feed to the following
results, carefully constructed according to Assumption 15.15 and Observation 15.13:

St = bt+

∫
[0,t]×R+

zN(dx, dz) =M(ω, [0, t]) b, t ∈ R+,M additive

for N a Poisson random measure with mean ν(dx, dz) = Leb× λ(dz).

Proposition (Candidate compound Poisson with weak integrability is increasing Lévy). Let b ∈ R+, N a p.r.m.
on R+ × R+ with mean ν = Leb× λ. If the integrability condition:∫

R+

λ(dz)(z ∧ 1) = λ(z ∧ 1) <∞

is satisfied then:

1. (Lévyness) (St)t∈R+
the candidate of Definition 15.16 is an increasing Lévy process in the sense of Definition

15.14
2. (characterization) the Laplace transform is:

E[e−rSt ] = exp

{
−t

[
br +

∫
R+

λ(dz)(1− e−rz)

]}
r ∈ R+

Definition (Lévy process terminology). We say that:

• b ∈ R+ is the drift
• λ is the Lévy measure

Where the two of them uniquely identify S via the Laplace transform of the previous Proposition.

Lemma (Finite measures Lévyness). It is rather easy to check for E ⊂ R+ that:

λ : λ(E) <∞ =⇒ λ(z ∧ 1) <∞

and we can say that the candidate Poisson process is Lévy.

Proposition (Link integrability & infinite activity). Consider a measure on R+ which is not finite. We link the
above Proposition and the Corollary for diffusivity of the counting measure by:∫ ∞

0

(z ∧ 1)λ(dz) <∞ =⇒ λ((ϵ,∞)) <∞ ∀ϵ > 0

but still λ((ϵ,∞))
ϵ→0→ ∞

Definition (Inverse Gaussian distribution). We consider a stable process (St)t∈R+
as in Example 15.23 with

a = 1
2 , c =

√
2. The Lévy measure becomes:

λ(dz) =
1√
2πz3

dz

The density associated to such measure is available in closed form:

f(z) =
t√
2πz3

e−
t2

2z z ∈ R+

We know that this is the density function of an inverse gaussian distribution, so we can safely say that St
d
= a2

Z2

for Z ∼ N(0, 1) and write St ∼ IN(a).
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Definition (Generalized inverse j). To implement the truncation, we make use of:

j(u) = inf {ϵ > 0 : λ((ϵ,∞)) < u}

Where the inf accounts for possible discontinuities. Notice that j is decreasing since λ is decreasing in ϵ.

Proposition (Generalized inverse properties). We have that:

1. λ(A) = (Leb ◦ j−1)(A) = Leb(1A ◦ j) ∀A ∈ E

2. λ(f) = Leb(f ◦ j)
3. St =

∑∞
i=1 j(Ui)1[0,t] (Ti) =

∑
i:Ti≤t j(Ui) for ((Ui, Ti))i≥1 ∼ N(dx, du)

Definition (Incomplete Gamma function Γ(s, x)). Also known as upper incomplete gamma function:

γs(x) = Γ(s, x) =

∫ ∞

x

ts−1e−tdt

Where for s = 0 we see that Γ(0, x) = γ0(x)
x→0→ ∞.

Lemma (Incomplete gamma-χ2 link). Let χ2
d,(qt)

:= upper quantile of the chi-square distribution such that
P[χ2

d > χ2
d,(α)] = α. Then:

1. γ0(u) = Γ(0, u)
d→0
≈ 1

2χ
2
d,( du

2 )

2. Accordingly:

St
d→0
≈

∞∑
i=1

1

c

1

2
χ2

d,( d
2

Gi
at )

Theorem (Poisson process, random measure & counting process equivalence). Let c > 0, TFAE:

1. M is a p.r.m. (Def. 13.13) with mean µ = cLeb

2. N is a poisson (counting) process (Defs. 12.2, 11.13) with rate c
3. N is a counting process (Def. 11.13) and Ñ = (Nt − ct)t≥0 is an F-martingale (Def. 11.35)
4. (Tk)k≥1 is an increasing sequence of F-stopping times (Def. 11.9) and:

T1, T2 − T1, . . .
iid∼ Exp(c)

Theorem (Poisson increasing Lévy characterization). For a counting process N (Def. 11.13) we conclude that:

N increasing Lévy (Def. 15.14) ⇐⇒ N Poisson (Def. 12.2)

Proposition (Strong Markov Property of Poisson Processes). We establish independence of future events from
the past even when the present is a stopping time.
For a Poisson process N ∼ Pois(c) and a stopping time S:

ES [f(NS+t −NS)1{S<∞}] =

∞∑
k=0

f(k)
e−ct(ct)k

k!
1{S<∞}

Proposition (Total unpredictability of jumps). This result is mirroring that of the Proposition in which we
prove that Brownian motion’s hitting time process hits zero almost surely, which will be proved later.
Consider a Poisson process N , of which the first jump is T = T1, and a stopping time S wrt F. Then:

0 ≤ S < T a.s. =⇒ S = 0 a.s.

Namely, we cannot find a sequence of stopping times that would approximate T .

21.1.3 Continuous Time Processes and Path Properties

Definition (Lévy process). A process X = (Xt)t∈R+
is Lévy wrt a filtration (Ft)t∈R+

if:

1. (adaptedness) it is adapted to (Ft)t∈R+
(Def. 11.7)
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2. (right continuity and starts at zero) for a.e. ω ∈ Ω the path t→ Xt is right continuous and X0(ω) = 0

3. (stationary and independent increments) ∀s, t ≥ 0 Xs+t −Xs ⊥⊥ Fs
d
= Xt

Definition (Infinite divisibility). We express a Lévy process (Xt)t∈R+
as
∑n
i=1Xi = Xt ∀n, t where the elements

are all Lévy processes:

δ =
t

n
=⇒ Xt = Xt1[0,δ] (t) +Xt1[δ,2δ] (t) + · · ·+Xt1[δ(n−1),δn] (t)

where the increments are independent and identically distributed.

Definition (Characteristic exponent ψ(r)). This is a direct result of the infinite divisibility, which makes the
process decompose into independent processes. A Lévy process can be described by the characteristic exponent, a
complex valued function such that:

ΦXt
(r) = E[eirXt ] = etψ(r) t ∈ R+, r ∈ R

Where ψ : R → C is complex valued.

Definition (Pure jump process). Consider on R the Lévy process

Xt =
∑

s∈[0,t]∩Dω

∆Xs ∀t ∆Xs = Xs(ω)−Xs−(ω), Dω = {t > 0 : ∆Xt(ω) ̸= 0}

Then:

• the jumps are positive or negative, we could see Xt = X+
t +X−

t where both are increasing Lévy
• if the jumps are countable (e.g. arising from arrival times (Tn)) then we can evaluate the sum, we do so

by intersecting the time interval with Dω

We call this a pure jump process, notice that it is not necessarily increasing.

Definition (Total Variation Vt of the pure jump). We give a first definition of total variation of a path of a pure
jump process t→ Xt as:

Vt =
∑

s∈[0,t]∩Dω

|∆Xs| ∀t ∈ R+

Proposition (General representation & existance conditions of Lévy process). For a p.r.m. M on R+×Rd with
mean Leb× λ and λ({0}) = 0 if:

λ(|x| ∧ 1) =

∫
Rd

λ(dx)(|x| ∧ 1) <∞ (21.1)

then:

1. for a.e. ω the process arising from the integral Xt(ω) =
∫
[0,t]×Rd Mω(ds, dx)x converges absolutely ∀t and

it has bounded total variation Vt <∞ ∀t
2. X is a pure jump Lévy process with characteristic exponent

ψ(r) = λ(eir·x − 1) =

∫
Rd

λ(dx)(eir·x − 1) ∀r ∈ R

Definition (Basis notation). denote:

• B = {x ∈ R : |x| ≤ 1}
• Bϵ = {x ∈ R : ϵ < |x| ≤ 1} for ϵ ∈ (0, 1)

Theorem (Infinite total variation Lévy existance as compensated sum of jumps). Let M ∼ Pois(Leb× λ) (Def.
13.13) on R+ × B where λ({0}) = 0 and:

λ(|x|21B) =
∫
B
λ(dx)|x|2 <∞ (21.2)

For ϵ ∈ (0, 1) consider:

Xϵ
t (ω) =

∫
[0,t]×Bϵ

xMω(ds, dx)− t

∫
Bϵ

λ(dx)x ω ∈ Ω, t ∈ R+

Then:
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1. ∃X Lévy such that limϵ↓0X
ϵ
t (ω)

a.s.
= Xt(ω) uniformly convergent over bounded intervals

2. ψ(r) =
∫
B λ(dx)(e

irx − 1− irx) r ∈ R

Lemma (An identity for distribution and Φ). For X a r.v. on R with density f(x):

ΦX(r) =

∫
R
eirxf(x)dx ⇐⇒ f(x) =

1

2π

∫
R
e−irxΦX(r)dr

Definition (Brownian motion). A process X = (Xt)t∈R+
on (R,B(R)) such that:

1. the path t→ Xt is continuous
2. it has stationary and independent increments

Theorem (Lévy characterization as Wiener). As a first step, notice that:

1. Xt = at+ bWt continuous Lévy =⇒ Wt Wiener
2. Wt Wiener =⇒ Xt = at+ bWt continuous Lévy

Which establish an ⇐⇒ relation

Corollary (Applying Theorem in the Brownian-Wiener-Lévy context). Combine the results to obtain:

Xt Brownian Obs. 18.3
=⇒ Xt −X0 Lévy Thm. Lévy-Wiener⇐⇒ Xt −X0 = bt+ cWt : Wt Wiener

Definition (Brownian motion decomposition). We build a Brownian motion from Definition 18.2 as:

Xt = X0 + bt+ cWt

for a drift coefficient b, a volatility coefficient c and a Wiener process W .

Definition (Wiener process as Brownian motion revisited). According to our results, a Brownian motion W =

(Wt)t∈R+
with W0 = 0,E[Wt] = 0, V [Wt] = t (namely, X0 = 0, b = 0, c = 1) is also a Wiener process!

We will see in the next result that a Wiener process is a Gaussian process with continuity. However, while
constructing a Gaussian process is immediate, as it is only required to specify the functions m,K (see Def.
10.61), it is not granted that there exists a probability space where such process is continuous. We will eventually
see that this condition is satisfied, but the question at the moment is proving that Wiener processes exist in the
Brownian formulation.

Lemma (Gaussian Transformation linearity). Quickly recall that:

X ∼ Nd(µ,Σ), A ∈ Rp × Rd =⇒ Y = AX ∼ Nd(Aµ,AΣAT )

Theorem (Wiener-Gaussian characterization). The previous observations suggest a useful conclusion. For W =

(Wt)t∈R+
a process on R we establish:

W Wiener ⇐⇒


W continuous

W ∼ GP(m, k) Gaussian Def. 10.61
E[Wt] = 0, CoV [Ws,Wt] = s ∧ t

where m(t) ≡ 0 and k(s, t) = s ∧ t.

Lemma (Kolmogorov’s maximal inequality). Assume {Xi}ni=1 is an independency where E[Xi] = 0∀i. Setting
Sn =

∑n
Xi:

a2P
[
max
k≤n

|Sk| > a

]
≤ V [Sn]

Definition (Recap about Dyadic rationals). Dyadic rationals are also discussed in Lemma A.17. Here we denote
them as:

D = {x ∈ R+ : x = k2−m, k,m ∈ N}

Proposition (Dyadics are dense in R). This is a very important result. It is reported here to reference it when
needed.

∀t ∈ R,∀ϵ > 0 ∃k,m ∈ N : t ∈ (k2−m, (k + 1)2−m], t− k2−m < ϵ

which is the exact definition of dense set.
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Theorem (Wiener Process properties, Brownian formulation). Let W = (Wt)t∈R+
be a Wiener process according

to the updated Definition of Wiener process as Brownian motion. Then:

1. (symmetry) (−Wt)t∈R+
is Wiener

2. (scaling) (Wct)ct∈R+
Wiener =⇒ Ŵ = (

√
cWt)t∈R+

is Wiener ∀c ∈ (0,∞)

3. (time inversion) setting W̃0 = 0 for convention, the process W̃t = tW 1
t

is Wiener

In the previous proof we make use of right continuity only. We are missing the continuity stated in the Wiener-
Brownian Definition for Wiener processes, which would ensure existance of the process W = (Wt)t∈R+

. We do so
by Kolmogorov extension. For a finite collection of ordered times {ti}ni=1 the multivariate Gaussian with mean
zero and covariance {ti ∧ tj} is denoted as µt1,...,tn . Such distribution is a consistent family, in the sense of
Definition 10.54. For Ω = {ω : R+ → R} a set of functions put:

Wt(ω) = ω(t) H = σ {ω ∈ Ω : ω(t) ∈ A,A ∈ B(R)}

Using Kolmogorov extension Theorem:

∃!P on (Ω,H) s.t. P[ω : ω(ti) ∈ Ai ∀i = 1, . . . , n] = µt1,...,tn(A1 × · · · ×An)

Yet to evaluate continuity, we would need to check the paths t → ω(t) at uncountable time points, while H is
constructed from countably many coordinates. The collection of continuous functions is not a priori measurable.
What we do is a modification of the process (Wt)t∈R+

into
(
W̃t

)
t∈R+

so that:

∀t∃Ωt :Wt = W̃t, W̃t continuous

where Ωt is an almost sure set.
Precisely, we establish Hölder continuity instead of continuity.

Definition (Uniform continuity). the map t→Wt is uniformly continuous if:

∀ϵ > 0∃δ = δ(ϵ) |t− s| < δ =⇒ |Wt −Ws| < ϵ ∀t, s

Where δ depends on ϵ only.

Definition (Hölder continuity). The path t→Wt is Hölder continuous when:

∃C ∈ R |Wt −Ws| ≤ C|t− s|α, for α ∈ [0, 1] ∀t, s

Which means uniform continuity for δ = ( ϵC )
1
α .

Lemma (Kolmogorov moment condition). For a process X = (Xt)t∈[0,1] on R and D the dyadic set of the
Definition just introduced if:

∃c, p, q ∈ (0, 1) : E[|Xt −Xs|p] ≤ c|t− s|
1
q ∀s, t ∈ [0, 1]

Then:

1. ∀α ∈ [0, qp )∃K r.v. such that:
(a) E[Kp] <∞
(b) |Xt −Xs| ≤ k|t− s|α for s, t ∈ D

2. if X is continuous then #1 holds ∀s, t ∈ [0, 1]

Theorem (Brownian continuity of Wiener process). We prove the local Höldercontinuity of the paths of a Wiener
process, closely linked to the Gaussian process (see Wiener Gaussian characterization Thm.). This result is
parallel to the existance of a p.r.m. (Existance of p.r.m. Thm.).
(Def. 10.61) If W = (Wt)t∈R+

is a Wiener process with:

• E[Wti ] = 0∀i
• CoV [Wti ,Wtj ] = ti ∧ tj ∀i, j
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Then there exists an almost sure version of W that is locally Hölder continuous:

t→ W̃t Hölder continuous W
a.s.
= W̃

Definition (Right continuous augmentation of filtration). For this object and its properties, refer also to Ap-
pendix D, especially from Definition D.4 onwards.
For a filtration

(
F0
t

)
t∈R+

we let it be generated by the process itself. Namely
(
F0
t

)
t∈R+

= σ({Xs : s ≤ t}). In this
context, we define the right continuous augmentation as:

(Ft)t∈R+
: ∀t Ft =

⋂
s≥0

F0
t+s = lim

s↓0
F0
t+s

Since
(
F0
t

)
t∈R+

is increasing by Definition of filtration. This new filtration can be interpreted as a peek into the
future. From now on, when referring to F it will be the augmented filtration.

Definition (Hitting time of barrier a, Ta). For a random time T : Ω → R+ we define:

Ta := inf{t ≥ 0 : Xt > a}

Namely, the entrance time in the interval (a,∞). Notice that we intuitively assume Ta to be almost surely finite
for a Wiener process.

Theorem (Hitting times are stopping in augmentation). Let F be augmented and right continuous as in the
above Definition, a process X on E be right continuous and adapted to F. Then:

∀B ∈ B(E) TB = inf{t ∈ R+ : Xt ∈ B} stopping time wrt F

According to the usual stopping time knowledge (Def. 11.9).

Definition (Shift operator θ·). For a collection of continuous maps C = {t → w(t) | continuous} we define an
operator:

θs : C → C , s ∈ R (θs ◦ w)(t) := w(s+ t)

Theorem (Markov property of Lévy processes). This is Theorem VII.3.5 in [Çin11].
For X = (Xt)t∈R+

a Lévy process (Def. 17.1), for any time t, the process X ◦ θt is independent of Ft and has
the same law of X. Equivalently:

Et [V ◦ θt] = E [V ] t ∈ R+, ∀V ∈ G∞ bounded

where the boundedness of V is used to ensure existance of the expectation, but the result is extended to positive
or integrable random variables in G∞ the underlying end of time filtration generated by the process.
In terms of Wiener processes, which are Lévy by the Lévy Wiener characterization Theorem for a = 0, b = 1 we
have that:

∀s ≥ 0 (W ◦ θs) =
(
W̃t

)
t∈R+

= (Ws+t −Ws)t∈R+
⊥⊥ Fs Wiener law

Proposition (Conciliating time shifts to Wiener and Brownian). While a Wiener process (on a stochastic base
[Çin11]) is such that:

Wt ◦ θs =Ws+t −Ws

A Brownian motion as in Definition 18.2 is such that:

Xt ◦ θs = Xt+s

Corollary (Blumenthal’s 0-1 law). It holds that:

F augmented, right continuous =⇒ ∀A ∈ F0 P[A] ∈ {0, 1}

Namely, a suitable augmented filtration makes every event in the infinitesimal peek in the future at the start either
certain or null.
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Proposition (Hitting zero almost surely). This result is like that of the total unpredictability of jumps Proposition
for discrete times.
For T0 = inf{t > 0 :Wt > 0} the hitting time of the barrier 0 as in Definition 19.2 we have:

T0 = 0 a.s.

Corollary (Highly oscillatory behavior of Wt at zero). There are ∞ many crossings for any time interval starting
from zero. Namely:

for a.e. ω ∃u1 > t1 > s1, u2 > t2 > s2, . . .→ 0 s.t. Wun
(ω) > 0,Wtn(ω) = 0,Wsn(ω) < 0

Corollary (Highly oscillatory behavior of Wt at infinity).

for a.e. ω∃u1 > t1 > s1, u2 > t2 > s2, . . .→ ∞ s.t. lim
n→∞

Wsn = −∞, lim
n→∞

Wun
= +∞

Theorem (Strong Markov property of Lévy and Wiener processes). For T a stopping time wrt F0 (the not
augmented filtration) and X a Lévy process we have that:

1. ∀V bounded in G∞:
ET [V ◦ θT1{T<∞}] = E[V 1{T<∞}]

independent of FT and Lévy
2. shift operator version:

(Xt ◦ θT )t≥0 = (Xt+T )t≥0 ⊥⊥ FT , Lévy

The claims are also valid for Wiener processes by the Lévy-Wiener characterization.

Theorem (A property of Wiener functions & stopping times). Assume:

• T is stopping wrt F
• U : Ω → R+ is such that U ∈ FT
• W = (Wt)t∈R+

is a Wiener process
• f is a bounded Borel function on R
• g(u) := E[f ◦Wu], u ∈ R+

Then:
ET
[
f(WT+u −WT )1{T<∞}

]
= g(U)1{T<∞}

Theorem (Hitting time (Lévy) distribution by reflection principle). As per Observation 19.13 we have:

(Ta)a≥0 : Ta ∼ IN(a) ∀a ∈ R+

Meaning that (Ta)a≥0 has the same distribution of a stable Lévy process for each time point. Notice that we are
not proving that it is a Lévy process, something we will show in a subsequent Theorem.

Lemma (Elementary facts of Gamma, Beta and Cauchy distributions). For Z1 ⊥⊥ Z2, Z1
d
= Z2 ∼ N(0, 1):

1. (Chi-square) Z2
1
d
= Z2

2 ∼ χ2
1 = Gamma( 12 ,

1
2 )

2. (Beta) A =
Z2

1

Z2
1+Z

2
2
∼ Beta( 12 ,

1
2 ) with density:

f(u) =
Γ( 12 + 1

2 )

Γ( 12 )Γ(
1
2 )
u−

1
2 (1− u)−

1
2 =

1

π

1√
u(1− u)

by Γ(1) = 1,Γ( 12 ) =
√
π

3. (Beta cdf) A has cumulative distribution

FA(u) = P[A ≤ u] =
2

π
arcsin

√
u

4. (Cauchy-Beta link) for C = Z1

Z2
∼ Cauchy:

=⇒ A
d
=

Z2
1

Z2
2 + Z2

1

d
=

1

1 +
Z2

2

Z2
1

d
=

1

1 + C2

where C has density f(x) = 1
π(1+x2) for x ∈ R (full support)
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Proposition (Arcsine law of Gt and Dt). Let A be as in the previous Lemma. Define, as in Example 19.8:

Gt := sup{s ∈ [0, t] :Wt = 0} Dt := {u ∈ (t,∞) :Wu = 0}

Then:
∀t ∈ R+ Gt

d
= tA Dt

d
=

t

A

Corollary (More results from the Proposition). We could also get:

1. Rt
d
= tC2 (by direct application of the Lemma above) for C ∼ Cauchy

2. Gt has density f(x) = 2
π arcsin

√
s
t

3. Qt
d
= Gt

d
= tA

Definition (Running maximum of process). Consider a process (Wt)t∈R+
, we define for later use:

Mt(ω) := max
0≤s≤t

Ws(ω) t ∈ R+, ω ∈ Ω

Proposition (Running maximum vs hitting time). Recognize that:

1. Mt is continuous and increasing in R, with M0(ω) = 0 and limt→∞Mt(ω) = ∞
2. (Mt)t≥0 and (Ta)a≥0 the hitting time process (Def. 19.2) are functional inverses:

{Mt > a} = {Ta < t}

Theorem (Hitting time process is stable Lévy). The process T = (Ta)a≥0 is a strictly increasing pure jump Lévy
process (Defs. 17.1, 17.7) with index 1

2 and Lévy density:

λ(dz) =
1√
2πz3

dz z ∈ R+

Proposition (Properties of Ta−). Recall Observation 19.23 with Ta− = limu↑0 Ta−u = inf{t > 0 : Wt = a}.
Then:

1. Ta− is a stopping time for F0 the not augmented filtration, while Ta is a stopping time wrt F the aug-
mented filtration

2. sojourne time is zero almost surely
Ta− = Ta a.s.

Definition (Subdivision & mesh). We denote for an interval [a, b] a subdivision as a finite collection of intervals
whose union is the interval itself (ignoring the start).

A := {(s, t]},
⋃

(s,t]∈A

(s, t] = (a, b]

Given a subdivision, we also identify the mesh as:

∥A∥ := sup {t− s : (s, t] ∈ A}

Definition (True p-variation, total variation, quadratic variation). For a function f : R+ → R, right continuous,
an interval [a, b] ∈ R+, and a positive coefficient p > 0 the true p-variation is the quantity:

sup
A

∑
(s,t]∈A

|f(t)− f(s)|p

Where for p = 1 we call it total variation and for p = 2 true quadratic variation. It turns out that this formulation
is not very well suited for random processes, as it is infinite in both p = 1, p = 2. Below we prove the results for
a reasonable surrogate.

Definition (A dyadic subdivision). In the fashion of the dyadics Definition, and their properties in Lemma A.17
we could construct a subdivision of equally spaced intervals using tk = kt

2n for k = 0, . . . , 2n.
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Theorem (Wiener probabilistically finite L2 quadratic variation). For a Wiener process (Wt)t∈R+
and a sequence

of subdivisions (An)n∈N with ∥An∥ → 0 we have:

1. Vn =
∑

(s,t]∈An
|Wt −Ws|2

L2

→ b− a

2. Vn
P→ b− a

We call Vn the quadratic variation, not to be confused with the true quadratic variation. It is rather a probabilistic
version of the latter. In some terms, the sup can be replaced with the lim sup of a sequence of meshes with size
decreasing to zero (i.e. ∥An∥ → 0).

Proposition (Almost sure dyadic subdivision for quadratic variation). ∀n ∈ N let An be a dyadic subdivision of
the form presented in Definition 20.3. Then, with the hypothesis of the previous Theorem it also holds that:

Vn =
∑

(s,t]∈An

|Wt −Ws|2
a.s.→ b− a

Proposition (Infinite total variation of Wiener process). For a Wiener process (Wt)t∈R+
we have:

TV = sup
A

∑
(s,t]∈A

|Wt −Ws| = ∞ almost surely

over any interval [a, b]

21.2 Examples Collection

Throughout the second part of the course (Sections 11-19), many examples were reported on different occasions,
the purpose of this Section is collecting them under the same discussion. It is just a copy paste with a horizontal
line every time the Example changes.

21.2.1 Counting process

Counting process and Stopping Times

Some stopping & not stopping times we provide three examples:

• Let F = σ({Nt}). If we denote as Tk the kth occurrence time in [0, t] we can safely say that it is a stopping
time of F since:

∀k ≥ 1, k ∈ N,∀t ∈ R+ {Tk ≤ t} = {Nt ≥ k} ∈ Ft

since N is adapted to F by construction
• The first time that an interval a passes without an arrival, namely:

T = inf {t ≥ a : Nt = Nt−a} a > 0

Needs the formalism of stopped filtration (Def. 11.19) and we will show it is a stopping time in the next
points.

• instead a random time such as the time of last arrival before b > 0:

L = inf {t : Nt = Nb} b > t

is not a stopping time since we need the information from the interval [t, b] to establish what occurs at time
t.
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Counting Process (△ setting) Consider the counting process on T = R+ from Definition 11.13. If we
consider H ∩ {S < T} we could tell if H and S < T happened in FS∧T . For any t it holds that:

∃k : Tk(ω) ≤ t < Tk+1(ω)

Recall also that all of these Tk are stopping times of F = σ({Nt}t≥0).
We set T0 = 0 for convenience, and consider the random time:

τ = inf {t ≥ a : Nt = Nt−a} a > 0

denoted in blue for convenience. Before this Example, the symbol T was used, but here we wish to distinguish
many objects that are similar in notation. After this Example, we will not use the symbol τ .
We want to show that τ is a stopping time in the sense of Definition 11.9.
(□ solution) Notice that ∀ω we have for some k:

τ(ω) = Tk(ω) + a k ∈ N∗ ⇐⇒ {τ ≤ t} =
⋃
k≥1

{{τ = Tk + a} ∩ {τ ≤ t}}

Where the union over k statement comes from the fact that we have ∃k as a condition. Recall the objects of
Theorem 11.23, visualizing them as T = Tk+1, S = Tk + a : S ≤ T . Be careful as it may lead to confusion, left is
old and red, right is this Example. It holds:

τ stopping ⇐⇒ {τ = Tk + a} ∩ {τ ≤ t} ∈ Ft k ∈ N∗

Using Theorem 11.23#1, we need to check that V = {τ = Tk + a} ∈ FTk+a ⊂ FT to conclude.
To clear out why, recognize that it is equivalent to {τ = Tk + a}1{Tk+a≤t} = {τ ≤ t} ∈ Ft∀t ∈ T by the very
Theorem invoked.
For this purpose, observe that for any k:

{τ = Tk + a} = {T1 − T0 ≤ a, . . . , Tk − Tk−1 ≤ a}︸ ︷︷ ︸
∈FS ,S=Tk+a

∩{Tk + a <

T=Tk+1︷ ︸︸ ︷
Tk+1 }︸ ︷︷ ︸

S<T

By Theorem 11.26#4 we will have that:

H ∈ FS =⇒ H ∩ 1{S<T} ∈ FS∧T

Where S = Tk + a, T = Tk+1, H = {T1 − T0 ≤ a, . . . , Tk − Tk−1 ≤ a}. Eventually:

{τ = Tk + a} ∈ FTk+a∧Tk+1
= FTk+a = Fτ ⇐⇒ {τ = Tk + a} ∩ {τ ≤ t} ∈ Ft ∀k, ∀t

⇐⇒ {τ ≤ t} ∈ Ft ∀t

Counting process: age perspective We propose a different view on the counting process (Def. 11.13).

(△ setting) let 0 < T1 < T2 < . . . be such that limn→∞ Tn = +∞ and:

Nt =

∞∑
n=1

1[0,t] (Tn) F = σ((Nt)t∈T)

See Nt as the number of replacements of some object. Then, the duration of the kth object can be formalized as:

At(ω) := t− Tk(ω) if Tk(ω) ≤ t ≤ Tk+1(ω)

Where the map t→ At is:

• strictly increasing in each interval
• right continuous at each jump

See Figure 21.1 for an intuition. We can further define for a > 0:

T := inf{t ≥ 0 : At ≥ a}

As the first time the age of a replacement is at least a.
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Figure 21.1: A visualization of (At)t∈T

(□ A is adapted) if t < a =⇒ At = ∅ ∈ Ft∀t and the statement is trivial.
Else consider:

{At ≥ a} ∈ Ft ⇐⇒ At ∈ Ft

⇐⇒ {t− Tk ≥ a} = {Tk < t < Tk+1} ∩ {At ≥ a}
= {t < Tk+1}︸ ︷︷ ︸

Ft

∩{t− Tk ≤ a}︸ ︷︷ ︸
Ft−a⊂Ft

So that by closedness under countable intersections (Lem. 1.7):

{At ≥ a} =
⋃
k

({Tk < t < Tk+1} ∩ {At ≥ a}) ∈ Ft ∀t

(⃝ equivalence to counting) we aim to show that:

inf{t ≥ 0 : Nt = Nt−a} = inf{t ≥ 0 : At ≥ a}

The time above a is the union of disjoint [·, ·) intervals such that Tk+1 − Tk ≥ a by construction, implying that:

{t ≥ 0 : At ≥ a} =
⋃

k:Tk+1−Tk≥a

[Tk + a, Tk+1)

which infimized:

=⇒ inf{t ≥ 0 : At ≥ a} = min
k

{Tk + a : Tk+1 − Tk ≥ a}

⇐⇒ {T = Tk + a} = {T1 − T0 < a, . . . , Tk − Tk−1 < a} ∩ {Tk+1 > Tk + a}

(♢ T is a stopping time) we eventually show that T is again a stopping time. Differently from the paragraph
where we already showed it, with respect to G = σ((At)t∈T).

{T ≤ t} =
⋃
s<t

{As ≥ a}

=
⋃

s∈Q,s<t
{As ≥ a} By the continuity in △ unless At = 0

=
⋃

s∈Q,s<t
{ As︸︷︷︸
∈Fs

≥ a} where Gs ⊂ Gt∀s < t

∈ Gt by countable unions (Thm. 1.5)

The discussions of △,♢ =⇒ {T ≤ t} ∈ Gt and T is a stopping time in the sense of Definition 11.9.
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Counting process random measure For ordered distinct arrival times 0 < T1 < . . . the counting process
Nt =

∑∞
n=1 1[0,t] (Tn) can be seen as the measure arising from a random measure:

Nt =M([0, t]) E = R+, A = [0, t]

Interarrivals of stopping times distribution Consider the random time:

S = inf {t ≥ a : Nt = Nt−a}

Where Tk+a k > 0 is equivalent to having the first k interarrivals of size at most a and the (k+1)th exceeding
a. It holds that S <∞ almost surely, since the union over k of the events has probability one.
Let T be the next jump, and note that S falls in a+ (T − S). We ask the following question:

Is it true that a→ ∞ =⇒ T − S → 0?

This is False. Indeed, notice that:

{T − S > t} = {NS+t −NS = 0} ⊥⊥ FS =⇒ T − S ∼ Exp(ct)

Where we exploited the loss of memory property, namely the second set being strong Markovian. The probability
is:

P(T − S ≥ t) = E
[
1{T−S>t}

]
= E

[
ES
[
1{T−S>t}

]]
unconditioning

= E [ES [1{NS+t −NS = 0}]] set equivalence above
= ES [f(NS+t −NS)] f(x) = 1 · 1{x=0}

= E
[
1{x=0}

]
Strong Markov Prop. 16.6

= P(X = 0) distr as Po(ct)

= e−ct ⊥⊥ FS , a

And the distribution is completely independent of a.

21.2.2 Random Walk

Sum of independent random variables martingale Let (Xn)n∈N be an independency where E[Xn] = 0∀n.
The sum r.v. is such that S0 = 0, Sn = Sn−1 + Xn∀n ≥ 1, and the underlying filtration is generated by the
process itself F = σ

(
(Xn)n∈N

)
. Then:

• (Sn)n∈N = S is adapted to F trivially
• E[Sn] = E [

∑n
k=1Xk] = 0∀n ⇐⇒ E[|Sn|] <∞ so that Sn ∈ L1(Ω,H,P)

• using Proposition 11.40 we only check the martingale for one step forward:

En[Sn+1 − Sn] = En[Xn+1] recursion
= E[Xn+1] independence hyp.
= 0 hypothesis

So (Sn)n∈N is a martingale.
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Random times alone do not satisfy martingale equality in a symmetric random walk Let:

S0 = 1, Sn = Sn−1 + ξn ξn ∼ Bern±1

(
1

2

)
, ξn ∈ {−1,+1} ∀n

Assign Xn = ST∧n. To see that (Sn)n∈N is a martingale, refer to the discussion above. To see that Xn is a

nonnegative martingale, use Theorem 12.9. In particular E[Sn] = E

E0[Sn]︸ ︷︷ ︸
=E0[S0]

 = E [1] = 1∀n. Consider the

random time:
T = inf {k : Sk = 0}

T is a stopping time wrt F = σ
(
(Sn)n∈N

)
(for this recover the paragraph of the previous Section in which we

prove T is a stopping time), or observe that:

{T ≤ t} ⊂
⋃

k≤t,k∈N
{Sk = 0} ∈ Ft

Namely, the sum being equal to zero is included in the event that at least one of the times before the sum
has reached zero which is in the increasing filtration. Clearly, ST = 0 with probability 1 since at time T the
martingale will be certainly null but:

0 = E[ST ] ̸= E[S0] = 1

Symmetric random walk We show that for a symmetric RW the MCT can be used, but it is not L1

convergent, namely a.s.→ ≠⇒ L1 at the same limit.
Recover the previous setting, where T = inf{m ∈ N : Sn = 0}. We have that E [Xi] = 0∀i and S = (Sn)n∈N
is a martingale with E [Sn] = 1∀n. The stopped martingale (Sn∧T )n∈N is such that Sn∧T ≥ 0 and by the MCT
(Thm. 12.27, Cor. 12.30) there exists an almost sure limiting process S∞. Now obviously Sn∧T

a.s.→ S∞ = 0

since convergence to k > 0 is impossible as it would mean that Sn = k > 0 =⇒ Sn+1 ∈ {k − 1, k + 1}, i.e. no
convergence. However, there is no L1 convergence. Indeed by Proposition 12.13:

E [Sn∧T ] = E [S0∧T ] = E [S0] = 1

but:
E [|Sn∧T − S∞|] = E [|Sn∧T − 0|] = E [|Sn∧T |] = E [Sn∧T ] = 1 ̸= 0 ∀n ∈ N

21.2.3 Bayesian Mean Estimation

A uniformly integrable martingale Let Zi
iid∼ N(0, 1), and θ ∈ L1(Ω,H,P) such that θ ⊥⊥ Zi∀i.

Define Yi = Zi + θ
iid∼ N(θ, 1) and aim to infer θ from a set of observations Y = {Yi}ni=1.

Why is θ random? We use a bayesian approach and assign a prior θ(A) = P[θ ∈ A] such that Yi|θ
iid∼ N(θ, 1).

Further assume the joint distribution (Y, θ) is absolutely continuous (Def. 2.6) wrt Leb and that θ ∼ N(µ0, σ
2
0).

Using Bayes theorem we can estimate:

πn(A) = P[θ ∈ A|Y1 = y1, . . . , Yn = yn]

By Ionescu-Tulcea Thm. 10.57 construct also a space:

(R∞ ×Θ,B(R∞)⊗B(Θ),P)

So that for a filtration F = σ((Yn)n∈N) by Proposition 11.50 since θ ∈ L1:

θ̂n = E[θ|Y] = En[θ] such that
(
θ̂n

)
n∈N

uniformly integrable
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Thanks to the θ ∼ N assumption we can explicitly compute the posterior distribution as:

πn(θ) ∝ π(θ)
∏

p(yi|θ)

∝ exp

{
− 1

2σ2
n

(θ − µn)
2

}
=⇒ θ|Y ∼ N(µn, σ

2
n)

µn = σ2
n

(
µ0

σ2
0

+ ny

)
σ2
n =

(
1

σ2
0

+ n

)−1

Uniform integrability of θ̂ process Using Lemma 11.51. We have:

θ̂n = σ2
n

(
µ0

σ2
0

+ nY

)
Y ∼ N

(
θ,

1

n

)
and for f(x) = x2 convex positive increasing and coercive:

E
[
f(|θ̂n|)

]
= E

[
θ̂2n

]
= V

[
θ̂n

]
−
(
E
[
θ̂n

])2
= V

[
θ̂n

]
− µ2

0

<∞ ⇐⇒ V
[
θ̂n

]
<∞

where we aim to find an upper bound for the variance. First notice that by the variance decomposition:

Y
(n)|θ ∼ N

(
θ,

1

n

)
V
[
Y

(n)
]
= E

[
V
[
Y

(n)
]]

+ V
[
E
[
Y

(n)
]]

= E
[
1

n

]
+ V [θ] =

1

n
+ σ2

0

Such variance is by the first term in the addition being constant:

V [θ̂n] = n2σ4
nV
[
Y

(n)
]

V
[
Y

(n)
]
=

1

n
+ σ2

0

= n2σ4
n

(
1

n
+ σ2

0

)
= n2σ4

n

(
1 + σ2

0n

n

)
= nσ4

n

(
1 + σ2

0n
)

σ2
n =

(
1

σ2
0

+ n

)−1

=
σ2
0

nσ2
0 + 1

=
n(1 + σ2

0n)σ
2
0

(1 + nσ2
0)

2
=

nσ2
0

1 + nσ2
0

≤ σ2
0 = V [θ0]

So that the variance is finite ∀n and E[f(θ̂n)] < ∞ for f convex and positive. Then,
(
θ̂n

)
n∈N

is a uniformly
integrable martingale.

Bayesian mean estimation, Corollary 12.38 Recall that Zi are iid standard normals and θ ∼ N(µ0, σ
2
0) is

independent from Zi, integrable and finite.
For Yi = θ + Zi =⇒ Yi|θ

iid∼ N(θ, 1) we have that for observables Y = {Yi}ni=1:

πn(A) = P[θ ∈ A|Y = y] F = σ({Y})
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Then θ̂n = En[θ] = E[θ|Fn] is a uniformly integrable martingale by Proposition 11.50.
Further, by Corollary 12.38#1 we conclude:

θ̂n
a.s.→
L1

E∞[θ] = E[θ|F∞]

Moreover, if the condition θ ∈ F∞ holds, we apply Corollary 12.38#2 and further state that:

θ ∈ F∞ =⇒ θ̂n
a.s.→
L1

θ

We prove a sufficient condition for this to be true in Proposition 12.40.

21.2.4 Branching Process

Branching Process, a uniformly integrable martingale The following is a discrete time biological model
for population evolution. We interpret Zn as the size of a population, which starts at Z0 = 1, has no overlapping
generations and lifetimes of unit one. At n + 1, the population is an offspring of the nth generation only. We
denote:

Z0 = 1, Z1 = ξ
(1)
1 , Z2 =

Z1∑
i=1

ξ
(2)
i

And assume: {
ξ
(n)
i , i ≥ 1, n ≥ 1

}
iid E[ξ(n)i ] = µ ≥ 0, pk := P

[
ξ
(n)
i = k

]
, k ≥ 0

where pk is referred to as the offspring distribution. The underlying filtration is generated by the sizes of past
families as Fn = σ

({
ξ
(m)
i , i ≥ 1,m ≤ n

})
.

(△ aim) we want to show that
(
Zn
µn

)
n∈N

is a martingale.

(□ solution) This is equivalent to showing that another process satisfies the martingale equality:(
Zn
µn

)
n∈N

⇐⇒ En[Zn+1] = µZn

Which follows by simple computation. Adaptedness and integrability are trivial. Maybe it is useful to notice
that E

[
|ξ(n)i |

]
= E

[
ξ
(n)
i

]
by positivity. The above formula can be checked for one time step only by Proposition

11.40. Then:

En[Zn+1] = En
[(
ξ
(n+1)
1 + · · ·+ ξ

(n+1)
Zn

)
1{Zn>0}

]
recursion hypothesis

= En

[ ∞∑
k=1

(
ξ
(n+1)
1 + · · ·+ ξ

(n+1)
Zn

)
1{Zn=k}

]

=

∞∑
k=1

En

(ξ(n+1)
1 + · · ·+ ξ

(n+1)
Zn

)
1{Zn=k}︸ ︷︷ ︸

∈Fn

 linearity, Prop. 10.19#2

=

∞∑
k=1

1{Zn=k}En
[(
ξ
(n+1)
1 + · · ·+ ξ

(n+1)
k

)]
conditional determ. Prop. 10.23#1

=

∞∑
k=1

1{Zn=k}

(
En
[
ξ
(n+1)
1

]
+ · · ·+ En

[
ξ
(n+1)
k

])
linearity

=

∞∑
k=1

1{Zn=k}kµ E
[
ξ
(n+1)
i

]
= µ ∀i

= µ

∞∑
k=1

1{Zn=k}k

= µZn ∀n
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Clearly (Zn)n∈N is a martingale for µ = 1, a submartingale for µ < 1 and a supermartingale for µ > 1. For free,

we also get that
(
Zn
µn

)
n∈N

is a martingale since:

En
[
Zn+1

µn+1

]
=

1

µn+1
µZn =

Zn
µn

= En
[
Zn
µn

]

Martingale Convergence Theorem for Branching In the previous example, we showed that
(
Zn
µn

)
n∈N

is

a martingale with µ = E
[
ξ
(1)
1

]
. We also have that:

En
[
Zn+1

µn+1

]
=
Zn
µn

=⇒ En[Zn+1] = µZn =


< Zn, µ < 1 supermartingale

= Zn, µ = 1 martingale

> Zn, µ > 1 submartingale

Here, using the MCT (Thm. 12.27) we want to show this as for Corollary 12.30. For this purpose, let µ = 1, p1 < 1.
Then (Zn)n∈N is a positive martingale an by the MCT Corollary:

∃Z∞ = lim
n→∞

Zn =⇒ Zn = Z∞ eventually Def. 9.3

(△ aim)In this context, we want to show that:

Z∞ = 0 ⇐⇒ P[Zn = k, ∀n ≥ N ] = 0 ∀k ∈ N, N sufficiently large

(□ solution) compute the following:

P[Zn = k,∀n > N ] = P[Zn = k, Zn+1 = k, . . .] stable limit

= P

[
k∑
i=1

ξ
(m+N)
i = k m = 1, 2, . . . , Zn, Zn = k

]
hypothesis

≤ P

[
k∑
i=1

ξ
(m+N)
i = k m = 1, 2, . . .

]
P[A ∩B] ≤ P[A]

=

∞∏
m=1

P

[
k∑
i=1

ξ
(m+N)
i = k

]
independence

m→∞→ lim
m→∞

(
P

[
k∑
i=1

ξ
(1)
1 = k

])m
identically distr.

By △ we need it to be null, this is the same as:

⇐⇒ P

[
k∑
i=1

ξ
(1)
1 = k

]
< 1

from which we get:

P

[
k∑
i=1

ξ
(1)
i = k

]
≤ P

[
k∑
i=1

ξ
(1)
1 > 0

]

= 1− P

[
k∑
i=1

ξ
(1)
1 = 0

]
= 1− pk0 iid
< 1 µ = 1, p1 < 1 =⇒ p0 > 0
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By the same arguments for µ < 1 we could show that (Zn)n∈N is a positive supermartingale and that by the
Corollary we have a limit which is almost sure. We call it Z∞. Then, by similar arguments, one can show for
k > 0 and N > 0 arbitrary that:

P[Zn = k, ∀n ≥ N ] = 0

since µ < 1 =⇒ p0 > 0. We then conclude Z∞
a.s.
= 0

More about martingale convergence for Branching We know µ = 1, p1 < 1 are such that (Zn)n∈N
a.s.→

Z∞ = 0 but not such that Zn
L1→ Z∞. Yet we also argued that Zn ̸= En[Z∞] = 0 since Zn > 0∀n with positive

probability. So, we cannot conclude that En[M∞] =Mn.

Simplest model is extinction or explosion Before we had µ < 1 or µ = 1 and p1 < 1 so that Zn
a.s.→ 0.

(△ aim) The assumptions now become p0 ∈ (0, 1) =⇒ µ < 1 and we want to show that:

Zn
a.s.→ 0 or Zn

a.s.→ ∞

Namely, if there is no extinction, then the population explodes. Another possible formulation is:

P
[
lim
n→∞

Zn ∈ {0,∞}
]
= 1

Continuous time Yule Branching process Consider Zt := # individuals at time t, with Z0 = 1. Assume
death is not possible and the chance of birth is dt, independently for each individual. Namely, one child in the
interval (t, t+ dt], with no influence within the population.
(△ aim) We show that for each individual the number of descendants is an independent copy of the counting
Yule process, upon time shifts to restart it.
(□ exponential interbirths premise) let Yk be the kth inter-birth time. It holds that:

Yk
ind∼ Exp(k)

Since the waiting time for the first birth is a unit rate with exponential variable, given the linear chance of
birth. For general k, there are k − 1 individuals plus one ancestor, each birthing at a rate dt. The first birth
is the minumum of k exponential unit random variables. We show that this is again exponential. Observe that
Y2 = min{E1, E2}, . . . , Yk = min{E1, . . . , Ek} where for each Ei ∼ Exp(1). We easily conclude:

P(Yk > t) = P(E1 > t, . . . , Ek > t)

= (P(E1 > t))
k iid

= e−kt

= P(E > t) E ∼ Exp(k)

(⃝ first result)wts

Zt ∼ Geom(e−t) ⇐⇒ P(Zt = x) = e−t(1− e−t)x−1 x = 1, 2, . . .

Notice that the interarrivals denoted with Yk allow to define the arrivals process S = (Sn)n∈N as

Sn =

n∑
k=1

Yk
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Which is equivalent to:

⇐⇒ {Sn ≤ t} = {Zt − 1 ≥ n} ⇐⇒ {Sn ≤ t} = {Zt > n} (21.3)

Meaning that the arrival times are stopping times for the underlying counting process Z in the usual sense (Def.
11.9).
Notice that in the p.r.m. case of the compound Poisson process (Def. 15.5) we had that Sn was a sum of unit
exponentials, returning a Gamma(n, 1) distribution (Thm. 16.2). Here instead:

Sn =

n∑
k=1

Yk︸︷︷︸
∼Exp(k)

=

n∑
k=1

1

k
E1︸︷︷︸

∼Exp(1)

d
= max{E1, . . . , Ek}

By a reverse time heuristic argument or a mgf argument. Eventually:

P(Sn < t) = P(E1 ≤ t, . . . , En ≤ t) Ek
iid∼ Exp(1)

= (P(E1 < t))
k

iid

= (1− e−t)k

= P(Zt > n) Eqn. 21.3

=⇒ P(Zt = n) = e−t(1− e−t)k =⇒ Zt ∼ Geom(e−t)

(▽ growth rate)wts
Zt

E [Zt]

a.s.→ W ∼ Exp(1)

First of all, observe that the unnormalized rate would explode exponentially fast:

E [Zt] =
1

e−t
= et ↗ ∞

thus a normalized version. Let Wt = e−tZt =
Zt

E [Zt]
and inspect the process (Wt)t∈R+

.

(▽♠ subpoint, W is a martingale) we show for F = σ(Z) that W is a martingale according to Definition
11.35. Adaptedness and integrability are easily verified. The martingale equality holds since:

Es[Wt] = E[Wt|Zs] Z only determinator
= e−tE [Zt|Zs]
= e−tE [Zt−s|Z0 = Zs]

= e−tZsE [Zt−s|Z0 = 1]

= e−tZse
t−s previous results

= e−sZs =Ws

(▽♣ subpoint, Gumbell limit identity) recall that for S = (Sn)n∈N = max{E1, . . . , En} it holds that:

Sn − log(n)
d→ Ψ ∼ Gumbell P[Ψ = x] = e−e

−x

21.2.5 Poisson Process

Poisson Process basics Let N be a counting process (Def. 11.13) such that Nt =
∑∞
k=0 1[0,t] (Tk) is adapted

to F (Def. 11.7).

(△ aim) we want to show that:

N ∼ Pois(c) Def. 12.2 =⇒ Mt = exp{−rNt + ct− cte−r} F-martingale ∀r ∈ R+ Def. 11.35

The relation is actually ⇐⇒ but we only show one side.
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(□ Laplace approach) recall that by Definition 6.11 for a Poisson random variable we have that:

X ∼ Po(λ) ⇐⇒ P̂X(r) = E[e−rX ] = exp{−λ(1− e−r)}

From this simple fact we could show that for any time point the martingale equality holds by noticing that from
Definition 12.2 we have Nt ∼ Po(ct) and Nt − Ns|Fs ∼ Po(c(t − s)) by Proposition 12.3#3. This allows us to
say that the Laplace transform of Nt −Ns is:

Es [exp {−r(Nt −Ns)}] = exp
{
−c(t− s)(1− e−r)

}
(21.4)

And we could instead check that:

Es
[
Mt

Ms

]
= Es

[
exp{−r(Nt −Ns + c(t− s)(1− e−r)}

]
= Es [exp{−r(Nt −Ns}] exp{c(t− s)(1− e−r)}
= exp{−c(t− s)(1− e−r)}exp{c(t− s)(1− e−r)} Eqn. 21.4
= 1

(▽ adaptedness and integrability) we have:

Mt = exp{−r Nt︸︷︷︸
∈Ft

+c t︸︷︷︸
∈Ft

− cte−r︸ ︷︷ ︸
∈Ft

} ∈ Ft ∀t

Which proves adaptedness. Concerning integrability:

E[|Mt|] = E[Mt] = ectexp
{
−cte−r

}
E[e−rNt ]

= ectexp
{
−cte−r

}
P̂X(r)

= ectexp
{
−cte−r

}
exp{−ct(1− e−r)} by Xt ∼ Po(ct)

= 1 <∞

Poisson compound process, customers in a store Consider a sequence of arrival times (Ti)i≥1 from a
p.r.m. N ∼ Pois(cLeb). We can visualize a sequence of customers spending random money Y ⊥⊥ T where Y ∼ π

has mean a and variance b2.
Applying Corollary 15.3 we can safely say (T, Y ) is a p.r.m. such that:

(T, Y ) ∼ Pois(cLeb× π) on R+ × R+

Where for a fixed time t ≥ 0 we have that the amount of money spent is:

Zt =
∑
Ti≤t

Yi =

∞∑
i=1

Yi1[0,t] (Ti) =

∞∑
i=1

f(Ti, Yi) f(x, y) := y1[0,t] (x)

=

∫
[0,t]×R+

Ñ(dx, dy)y

= Ñf

where Ñ = (T, Y ) is a Poisson Random measure.
We can use the previous results for p.r.m.s from Chapter 13 and 14. The new mean is µ = cLeb × π with
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µ(dx, dy) = cdxπ(dy) and:

E[Zt] = E[Ñf ] = µf Prop. 13.18#1

=

∫
R+×R+

f(x, y)µ(dx, dy)

=

∫
R+×R+

y1[0,t] (x) cdxπ(dy)

= ct

∫
R+

yπ(dy)

= cta by a = E[Y ]

Similarly the variance is:

V [Zt] = V [Ñf ] = µf2 Prop. 13.18#2

=

∫
R+×R+

(y1[0,t] (x))
2cdxπ(dy)

= ct(a2 + b2) by a2 + b2 = E[Y ]2 + V [Y ] = E[Y 2]

Concluding with the Laplace transform:

P̂Zt
(r) = P̂Ñ (rf) = E[e−rÑf ]

= exp
{
−µ(1− e−rf )

}
Thm. 13.19

= exp

{
−
∫
R+×R+

1− e−r(y1[0,t](x))cdxπ(dy)

}

= exp

{
−ct

∫
R+

1− e−ryπ(dy)

}

Notice that we used the random variable version with r instead of the functional version since Zt is a random
variable and not the underlying random measure.

Poisson jump structure By the Itô-Lévy decomposition [Çin11](Thm. VII.5.2) we have that (Ta)a≥0 is an
increasing Lévy process (Def. 15.14). For a general one we have S = (St)t∈R+

with Lévy measure satisfying:∫
(1 ∧ z)λ(dz) <∞

which is described in the sense of Definition 15.16 as an integral wrt the underlying p.r.m. on R+ × R+ with
mean dxλ(dz):

St =

∫
[0,t]×R+

zN(dx, dz) =
∑
i:Xi≤t

Zi

In our specific case we obtain the jump structure by means of a p.r.m. N(dx, dz):

N(B) =
∑
a

1B (a, Ta − Ta−) B ∈ B(R+ × R+) mean dxλ(dz) = dx
1√
2πz3

If (a, z) is an atom then the map a→ Ta controls the abstract jumps of size a at time z. With:

Ta =

∫
[0,a]×R+

zN(dx, dz) =
∑

i:Xi≤a

zi
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Figure 21.2: Poisson Jumps final plot

Plots of Poisson Jumps Consider Figure 21.2. Atoms of N(dx, dz) are marked with little circles, correspond-
ing to the atom (a, z) there is a jump of size z from Ta− to Ta− + z = Ta. The path t → Mt stays constant at
level a during [Ta−, Ta], an interval of length z. Since N(dx, dz) has only countably many atoms, the situation
occurs at countably many levels a only. Since there are infinitely many atoms in the strip [a, a + b] × R+, the
path t→Mt stays flat at infinitely many levels on its way from a to a+ b. However, for every ϵ > 0, only finitely
many of those sojourns exceed ϵ in duration. The situation at fixed a is simpler. For a > 0 almost surely, there
are no atoms on the line {a} × R+, therefore Ta−

a.s.
= Ta = 0.

21.2.6 Stones in a field

The "stones in a field" perspective Let K ∼ Po(c) be Poisson distributed. Consider K to be the random
number of stones in a field E ⊂ R2. This throwing process is done always with the same mechanism with no
regard to total or previous positions (i.e. independence).

P[K = k] =
e−cck

k!
1[0,1,...] (k)

Let Xi be the ith stone position. Xi ∼ λ(dx⃗) is a distribution over E ⊂ R2.
Assume K ⊥⊥ {Xi}, as argued before.
The random measure M(dx) assigns the number of stones to the A ⊂ E region, mathematically:

M(A) =

K∑
i=1

1A (Xi)

Is the number of stones in region A.
We will show that M(dx) is atomic counting whenever λ is diffuse, i.e. no two stones are in the same position
(i.e. Thm. 14.10).

Mean measure In the "Stones in a field" formalism, the mean measure is:

cλ c = E[K]
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We can see this as follows.
For f = 1A it holds:

Mf =M1A =

K∑
i=1

1A (Xi)

Similarly for f ∈ E+:

Mf =

∫
E

f(x)M(dx) =

K∑
i=1

f(Xi) =

∞∑
i=1

f(Xi)1{K≥i}

namely, a sum of images under a random number of K atoms. The last form is for convenience. Then, applying
the Definition of mean measure (Def. 13.6):

E [Mf ] = E

[ ∞∑
i=1

f(Xi)1{K≥i}

]

=

∞∑
i=1

E
[
f(Xi)1{K≥i}

]
linearity

=

∞∑
i=1

E [f(Xi)]E
[
1{K≥i}

]
independence

= E [f(X1)]

∞∑
i=1

E
[
1{K≥i}

]︸ ︷︷ ︸
=P[K≥i]

iid

= E [f(X1)]E [K] Lem. 13.7

=

∫
E

f(x)λ(dx) · c

= c(λf) integral notation
= (cλ)f

Eventually, the mean measure is ν(dx) = cλ(dx) where c = E [K] as claimed.

Laplace functional For c = E[K] it holds that:

P̂M (f) = exp
{
−c(λ(1− e−f ))

}
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(□ solution) We perform the following long computation:

E
[
e−Mf

]
= E

[
exp

{
−

K∑
i=1

f(Xi)

}]
mean measure

= E

[
K∏
i=1

exp {−f(Xi)}

]

= E

[
EK

[
K∏
i=1

exp {−f(Xi)}

]]
unconditioning

= E

[
K∏
i=1

E [exp {−f(Xi)}]

]
independence & Fubini Thm. B.30

= E
[
(E [exp {−f(X1)}])K

]
iid

= E

[(∫
E

e−f(x)λ(dx)

)K]
= E

[(
λ(e−f )

)K]

=

∞∑
k=0

(
λe−f

)k P[K=k]︷ ︸︸ ︷
e−cck

k!︸ ︷︷ ︸
pgf of K at t = λe−f

λ(e−f ) is a number

= exp
{
−c
(
1− λe−f

)}
pgf closed form X ∼ Po(λ) =⇒ pgf(s) =

∑
x≥0

P[X = x]sx = e−λ(1−s)

= exp

{
−c
(∫

E

λ(dx)− λe−f
)}

= exp
{
−c
(
λ(1)− λe−f

)}
= exp

{
−c
(
λ(1− e−f )

)}
linearity

"Stones in a field" is a Poisson Random measure N(dx) is a p.r.m. in the Definition 13.13 sense.
(□ solution) (△ setup) wts for {Ai}ni=1 ⊂ E disjoint it holds:

P[N(A1) = i1, . . . , N(An) = in] =
e−ν(A1)(ν(A1))

i1

i1!
· · · e

−ν(An)(ν(An))
in

in!

ν = cλ : Xi
iid∼ λ, c = E [K]

(□ baseline) wlog let n = 2 and A1 ∩ A2 = ∅ with A3 = (A1 ∪ A2)
c. The collection {A1, A2, A3} is a partition

of E and we might show △ there. Indeed:

{
λ(A1) + λ(A2) + λ(A3) = 1

i1 + i2 + i3 = k
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where we call the former □(1) and the latter □(2), with k a realization of the r.v. K.
(⃝ work) it holds that:

P[N(A1) = i1, N(A2) = i2, N(A3) = i3] = P[N(A1) = i1, N(A2) = i2, N(A3) = i3,K = k]

[□(2)]

= P[N(A1) = i1, N(A2) = i2, N(A3) = i3|K = k]

[distribution is Multinom
(
3, (λ(Ai))

3
i=1

)
]

=
e−cck

k!

k!

i1!i2!i3!
(λ(A1))

i1 (λ(A2))
i2 (λ(A3))

i3

=
e−(λ(A1)+λ(A2)+λ(A3))ci1+i2+i3

i1!i2!i3!
(λ(A1))

i1 (λ(A2))
i2 (λ(A3))

i3

[□(1),□(2)]

=
e−cλ(A1) (λ(A1))

i1

i1!

e−cλ(A2) (λ(A2))
i2

i2!

e−cλ(A3) (λ(A3))
i3

i3!

21.2.7 Gamma process

The Poisson compound process we consider has form:

St =

∫
R+×R+

f(x, z)N(dx, dz) N ∼ Pois(Leb× λ), f(x, z) = 1[0,t] (x) z

Namely, the c constant in the Lebesgue measure is ignored. It is a simplified version of the candidate of Definition
15.16.

Gamma process, basics Consider the (soon to be) Lévy measure:

λ(dz) = a
e−cz

z
dz z ∈ R+, a ∈ (0, 1), c > 0

We call the arising compound Poisson process (Def. 15.5) S = (St)t∈R+
a Gamma process, and aim to show that

it is also an increasing Lévy process (Def. 15.14) with the construction just explained.
(△ integrability) we want to show that

∫
λ(dz)(z ∧ 1) <∞. This holds since:

•
∫∞
1
λ(dz)(z ∧ 1) =

∫∞
1
λ(dz) =

∫∞
1
a e

−cz

z dz → 0 as z → ∞ sufficiently fast (we take this for granted)
•
∫ 1

0
λ(dz)(z ∧ 1) =

∫ 1

0
λ(dz)z =

∫ 1

0
a e

−cz

z zdz =
∫ 1

0
ae−czdz <∞

Given that the condition of Proposition 15.17 is satisfied, we conclude that S is an increasing Lévy process.
(□ why Gamma?) wts (St)t∈R+

is such that St
d
= Xt ∼ Gamma(at, c) ∀t

We do this by using the Laplace functional. We recall that a Gamma distribution is such that:

P̂Xt
(r) =

(
c

r + c

)at
(21.5)

For the Gamma process at a fixed t ∈ R+:

E[e−rSt ] = exp

{
−t
∫ ∞

0

(1− e−rz)λ(dz)

}
Prop. 15.17#2

= exp

{
−t
∫ ∞

0

(1− e−rz)a
e−cz

z
dz

}
= exp

{
−at

∫ ∞

0

e−cz − e−(c+r)z

z
dz

}
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(⃝ blue integral) We focus on the highlighted part for a moment and observe that the inside can be seen as
the integral in dt:∫ ∞

0

e−cz − e−(c+r)z

z
dz =

∫ ∞

0

−e−tz

z

∣∣∣∣c+r
t=c

dz

=

∫ ∞

0

∫ c+r

c

−d
dt

e−tz

z
dtdz

=

∫ ∞

0

∫ c+r

c

e−tzdtdz deriving

=

∫ c+r

c

∫ ∞

0

e−tzdzdt Fubini Thm. B.30

=

∫ c+r

c

−e−tz

t

∣∣∣∣∞
z=0

=

∫ c+r

c

1

t
dt

= log t

∣∣∣∣c+r
t=c

= log

(
c+ r

c

)
(♢ back to Laplace) we plut the result of ⃝ into □ and conclude that:

E[e−rSt ] = exp

{
−at log

(
c+ r

c

)}
= exp

{
log

(
c+ r

c

)−at
}

=

(
c

c+ r

)at
Which is equal to the Laplace transfom of Xt ∼ Gamma(at, c). By Theorem 6.12 this means that the two
variables are equivalent. This holds ∀t ∈ R+.

j approximation for simulation For a Lévy density as that of the gamma process the integral:

λ((ϵ,∞)) =

∫ ∞

ϵ

a
e−cz

z
dz

is not available in closed form. To simulate from it, we resort to the notion of incomplete Gamma function (Def.
15.36) and the result of Lemma 15.37. Indeed:

Γ(0, x) = γ0(x) =

∫ ∞

x

u−1e−udu Γ1(x)
x→0→ ∞

And we can express the Lévy measure as:

λ((ϵ,∞)) =

∫ ∞

ϵ

a
e−cz

z
dz

=

∫ ∞

cϵ

a
e−x

xc
cdz let x = cz, dx = cdz

=

∫ ∞

cϵ

ae−xx−1dx

= aγ0(cϵ)
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So that the following chain holds:

aγ0(cϵ) = u ⇐⇒ cϵ = γ−1
0

(u
a

)
⇐⇒ j(u) =

1

c
γ−1
0

(u
a

)
And eventually:

St =

∞∑
i=1

j

(
1

t
Gi

)
Obs. 15.33

=

∞∑
i=1

1

c
γ−1
0

(
Gi
at

)

And we know how to approximate the inverse of the incomplete Gamma function (Lem. 15.37).

Symmetric Gamma process Recall that a Gamma process is an increasing Lévy process (Def. 15.14) with
measure and distribution:

λ(dz) =
ae−cz

z
dz, z ∈ R+, Xt ∼ Gamma(at, c) ∀t ∈ R+

Let X+
t ⊥⊥ X−

t be independent copies, and set Xt = X+
t −X−

t . Then, Xt is a pure jump Lévy process according
to Definition 17.7 with measure:

λ(dz) =
ae−c|z|

|z|
dz

We aim to evaluate its characteristic function to see if it coincides with some known distribution.

E
[
eirXt

]
= E

[
eirX

+
t

]
E
[
ei(−r)X

−
t

]
independence

=

(
c

c+ ir

)at(
c

c− ir

)at
previous result

=

(
c2

(c+ ir)(c− ir)

)at
=

(
c2

c2 + r2

)at
Which means that the characteristic exponent is real:

ψ(r) =
1

t
log
[
E[eirXt ]

]
= a log

[
c2

c2 + r2

]
∈ R

While Xt has no known distribution, it can be shown that the total variation V = X+ +X− is such that:

Vt ∼ Gamma(2at, c) ∀t ∈ R+

21.2.8 Stable process

The Poisson compound process we consider has form:

St =

∫
R+×R+

f(x, z)N(dx, dz) N ∼ Pois(Leb× λ), f(x, z) = 1[0,t] (x) z

Namely, the c constant in the Lebesgue measure is ignored. It is a simplified version of the candidate of Definition
15.16.
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Stable process of index α Consider the (soon to be) Lévy measure:

λ(dz) =
1

Γ(1− a)
acz−1−adz z ∈ R+, a ∈ (0, 1), c > 0

We will see that the arising process S = (St)t∈R+
in the postulated form above is an increasing Lévy process

(Def. 15.14) and has some nice properties.
(△ integrability) we aim to show that the integrability condition for being increasing Lévy holds. For this
purpose, notice that:

Γ(x) :=

∫ ∞

0

tx−1e−tdt Γ(n) = (n− 1)! ∀n ∈ N

So that:

•
∫∞
1
λ(dz)(z ∧ 1) =

∫∞
1
λ(dz) = 1

Γ(1−a)ac
∫∞
1
z−1−adz = 1

Γ(1−a)ac
1
a − z−a

∣∣∣∣∞
z=1

= 1
Γ(1−a)c

1
a <∞

• by a ∈ (0, 1) ∫ 1

0

λ(dz)(z ∧ 1) =
1

Γ(1− a)
ac

∫ 1

0

z−1−az =
1

Γ(1− a)
ac

∫ 1

0

z−a

=
1

Γ(1− a)
ac

1

1− a
z1−a

∣∣∣∣1
z=0

=
1

Γ(1− a)

ac

1− a
<∞

Making their sum finite. By
∫∞
0
λ(dz)(z ∧ 1) <∞ we can apply Proposition 15.17#1 and conclude that S is an

increasing Lévy process.

About the stable process Notice that even though St <∞ a.s. the process has no expectation. Infact:

E[St] = E

[∫
(0,t]×R+

z N(dx, dz)

]
postulated form of St b = 0

= E [Nf ] f(x, z) := 1[0,t] (x) z

= νf Def. 13.6

=

∫
fν(dx)

=

∫
1[0,t] (x) zdxλ(dz)

=

∫ t

0

∫ ∞

0

zλ(dz)dx

= t

∫ ∞

0

zλ(dz)

= t

∫ ∞

0

z
1

Γ(1− α)
acz−1−adz

=
tca

Γ(1− α)

∫ ∞

0

z−adz improper integral

Where the improper integral diverges at ∞, and St has no expectation. For the sake of completeness, we report
the calculation here below. An improper integral of this form can be calculated considering the discontinuity at
zero and the divergent limit on the other side:∫ ∞

0

z−adz =

∫ 1

0

z−adz +

∫ ∞

1

z−adz = lim
b→0

∫ 1

b

z−adz + lim
c→∞

∫ c

1

z−adz

while the indefinite integral is easily found as 1
1−az

−a+1 + K,K ∈ R. Ignoring the constant which is positive
since a ∈ (0, 1) by construction and 1− a > 0, we get:

lim
b→0

z−a+1

∣∣∣∣1
z=b

= 1− lim
b→0

b1−a = 1 <∞
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But

lim
c→∞

z1−a
∣∣∣∣c
z=1

= lim
c→∞

c1−a − 1 = ∞

and the sum diverges. All the constants are positive and the claim is proved.

The stability of the stable process S = (St)t∈R+
from the first paragraph is stable in the sense that:

Sut
d
= u

1
aSt ∀u, t ∈ R+ i.e. St

d
= t

1
aS1 ∀t ∈ R+

(△ Laplace approach) use the Laplace transform from Proposition 15.17#2.

E
[
e−rSt

]
= exp

{
−t
∫ ∞

0

(1− e−rz)λ(dz)

}
= exp

{
−t
∫ ∞

0

(1− e−rz)
ac

Γ(1− a)
z−1−adz

}
= exp {−tcra} proved below in □

Where the last equality is
∫∞
0

(1− e−rz)az−1−adz = raΓ(1− a).
(□ missing equality) by direct computation:∫ ∞

0

(1− e−rz)az−1−adz =

∫ ∞

0

(1− e−t)a

(
t

r

)−1−a
dt

r
t = rz dt = rdz

= ra
∫ ∞

0

(1− e−t)at−1−adt

= −ra
∫ ∞

0

(1− e−t)︸ ︷︷ ︸
g

(−at−1−a)︸ ︷︷ ︸
f ′

dt integrate by parts

= −ra

(1− e−t)t−a
∣∣∣∣∞
0︸ ︷︷ ︸

=0

−
∫ ∞

0

e−tt−adt

 t−a = t1−a−1

= −ra
(
−
∫ ∞

0

e−tt1−a−1dt

)
Gamma integral at 1− a

= raΓ(1− a)

(♠ back to Laplace) by △ the general form at time ut is:

E
[
e−rSut

]
= exp {−utcra}

= exp
{
−ct

(
u

1
a r
)a}

= E
[
e−u

1
a rSt

]
= E

[
e−r(u

1
a St)

]
=⇒ Sut

d
= u

1
aSt ∀u, t

Stable process j, for simulation Remember that λ(dz) = ac
Γ(1−a)z

−1−adz and:

λ((ϵ,∞)) =
c

Γ(1− a)
ϵ−a
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Using Definition 15.31 for j we have that the solution in ϵ to the infimization is:

j(u) : λ((ϵ,∞)) = u =⇒ j(u) =

(
c

Γ(1− a)

) 1
a

u−
1
a

Using Observation 15.33 we can safely say that by the exponential distribution of the Gi ∼ Exp(1) with 1
t

∑
Gi ∼

Exp(1) it is the case that: 
St =

∑
i:Ti≤t ĉ(Ui)

− 1
a =

∑∞
i=1 ĉ

(
1

t
Gi

)− 1
a

ĉ =

(
c

Γ(1− a)

) 1
a

If we take t = 1, (Ui) forms a p.r.m. with unit intensity. In particular the arrival times of the allied counting
process (that is Ui in increasing order) are equal in distribution to:

G1 = E1, G2 = E1 + E2, . . . , Gk = E1 + · · ·Ek

Where (Ei) are exponential iid of unit rate. Hence:

S1 =

∞∑
i=1

ĉG
− 1

a
i

while in general:

St =

∞∑
i=1

ĉ

(
1

t
Gi

)− 1
a 1

t
Gi

iid∼ Exp(1)

Isotropic stable process Let X+
t ⊥⊥ X−

t be independent copies of the stable process from the second para-
graph. The density of Xt = X+

t −X−
t is:

λ(dz) =
ac

Γ(1− a)
|z|1−adz, z ̸= 0, a ∈ (0, 1)

Such a process is pure jump Lévy according to Definitions 17.1, 17.7 and has Laplace transform:

E[eirXt ] = exp

{
t

∫
R
(eirz − 1)λ(dz)

}
= exp

{
tc cos

(
1

2
πa

)
|r|a
}

With characteristic exponent:

ψ(r) =

∫
R
(eirz − 1)λ(dz) = −c cos

(
1

2
πa

)
|r|a

Which is stable since Xt
d
= t

1
aXt ∀t.

21.2.9 Wiener Process

Wiener process is stable We showed that a Wiener process W = (Wt)t∈R+
(Def. 11.55) is such that:

Wt =
√
tW1,Wt ∼ N(0, t),W1 ∼ N(0, 1)

which is the result of Proposition 11.56#3 for s = 0.
This is equivalent to saying that the process is stable as that of the first paragraph.
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Figure 21.3: Recurrence times of a Wiener process

Recurrence times Define Gt as the last time at zero before t and Dt as the first time at zero after t. Namely:

Gt := sup{s ∈ [0, t] :Ws = 0} Dt = inf{u ∈ (t,∞) :Wu = 0}

Accordingly, the forward recurrence time is Rt = Dt − t and the backward recurrence time is Qt = t−Gt.
By the process (Wt)t∈R+

being such that Wt ∼ N(0, t)∀t we have P[Wt = 0] = 0 a.s. by the diffusivity of a
normal distribution. Then:

Gt < t < Dt a.s. & s ∈ [0, t] =⇒ {Gt < s} = {Ds > t}

an intuition is given in Figure 21.3. So, if Wt = a > 0 =⇒ Rt is the hitting time from above of the barrier −a
of the rescaled process:

(Wu ◦ θt)u≥0 = (Wt+u −Wt)u≥0

By the markov property of Wiener processes W̃u =Wt+u −Wt ⊥⊥ Ft is again Wiener and we can see that:

Rt = inf{u > 0 : W̃u < −a}

Additionally, by symmetry (Thm. 18.16#1) we have:

W̃u < −a ⇐⇒ −W̃u > a ⇐⇒ W̃u > a

So that:
Rt

d
= Ta = inf{u > 0 :Wu ◦ θt = W̃u > a} a =Wt, Ta ⊥⊥Wt

Which means that if Ta is known ∀a > 0 =⇒ Rt is known and so is Dt = Rt+t and Gt via P[Gt < s] = P[Ds > t],
as well as Qt = t−Gt.

More results from the Proposition We could also get:

1. Rt
d
= tC2 (by direct application of Lemma 19.17#4) for C ∼ Cauchy

2. Gt has density f(x) = 2
π arcsin

√
s
t

3. Qt
d
= Gt

d
= tA
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Proof. (Claim #1) trivial.
(Claim #2) from Gt

d
= tA using Lemma 19.17#3 we get:

P(Gt < s) = P(tA < s) = P
(
A <

s

t

)
=

2

π
arcsin

√
s

t

(Claim #3) consider Qt = t−Gt where:

P[Qt < s] = P[t−Gt < s]

= P[t− tA < s]

= P[t(1−A) < s] 1−A
d
= A

= P[tA < s]

= P[Gt < s]

We proved Qt
d
= Gt, a shift of proportions.

21.2.10 Cauchy Process

Standard Cauchy process Let the Lévy measure be:

λ(dz) =
1

πz2
dz z ∈ R+

It holds that (be careful with the second as it is a bit tricky):∫ 1

−1

z2λ(dz) =

∫
B
z2λ(dz) =

2

π
<∞∫

B
|z|λ(dz) =

∫ 1

−1

|z| 1

πz2
dz

=

∫ 0

−1

−z 1

πz2
dz +

∫ 1

0

z
1

πz2
dz basically without modulus undefined

=
1

π

(∫ 1

0

1

z
dz −

∫ 0

−1

1

z
dz

)
=

1

π

(
ln(|z|)

∣∣∣∣1
0

− ln(|z|)
∣∣∣∣0
−1

)

=
1

π
(∞+∞)

= +∞

So we can apply Theorem 17.16 having infinite total variation.
Let Xt = Xd

t +Xe
t where:

Xd
t =

∫
[0,t]×B

z (N(dx, dz)− dxλ(dz)) jumps size ≤ 1

Xe
t =

∫
[0,t]×Bc

zN(dx, dz) jumps size > 1

Here Xe
t is such that

∫∞
1
λ(dz) <∞.

The characteristic exponent is:

ψ(r) =

∫
B
(eirz − 1− irz)λ(dz) +

∫
Bc

(eirz − 1)λ(dz)
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since we can split the process into the infinite variation part and the finite one. Recalling Observation 17.17 we
also have that:

Xd
t = lim

ϵ↓0
Xd,ϵ
t Xd,ϵ

t =

∫
[0,t]×Bϵ

zN(dx, dz)− t

∫
Bϵ

zλ(dx, dz)︸ ︷︷ ︸
=0 by symmetry

so that Xd,ϵ
t requires no compensation and we eventually get:

Xt = lim
ϵ↓0

∫
[0,t]×Bϵ

zN(dx, dz) +

∫
[0,t]×Bc

zN(dx, dz)

= lim
ϵ↓0

∫
[0,t]×Rϵ

zN(dx, dz) +

∫
[0,t]×Bc

zN(dx, dz) Dominated conv. Thm. A.51

where Rϵ = {x : |x| > ϵ} dominates Bϵ. Notice that this is not a pure jump process in the sense of Definition
17.7. Nevertheless, the Laplace transform is:

E[eirXt ] = exp

{
t lim
ϵ↓0

∫
Rϵ

(eirz − 1)
1

πz2
dz

}
= exp

{
t

∫
R
(eirz − 1)

1

πz2
dz

}
= exp

{
t

∫
R
(cos(rz) + i sin(rz)− 1)

1

πz2
dz

}
= exp

{
t

∫
R
(cos(rz)− 1)

1

πz2
dz

}
sin(rz)

πz2
symm around 0

= exp {t|r|} Prop. 17.21#2

And we have that Xt
d
= t

1
1X1 (stability with index 1). Moreover by:

X1
d
=
Z1

Z2
, Z1, Z2 ∼ N(0, 1), X1 ∼ Cauchy(1) (Prop. 17.21#1), f(x) =

1

π(1 + x)2

We have that:
Xt : f(x) =

t

π(t2 + x2)
∀x ∈ R,∀t ∈ R+

Concluding Example Standard Cauchy process In the context of the standard Cauchy process we add
that:

1. X1 ∼ Cauchy(1)

2.
∫
R(cos(rz)− 1)

1

πz2
dz = |r|

(Claim #1) use Lemma 17.20 and the fact that the Characteristic function of a Cauchy(1) distribution is
Φ(r) = e−|r|. We have:

1

2π

∫
R
e−irxe−|r|dr =

1

π

∫
R
eir(−x)

1

2
e−|r|︸ ︷︷ ︸

density Laplace

dr

=
1

π

1

1 + (−x)2
characteristic function Laplace

=
1

π(1 + x2)

= f(x) X1

(Claim #2) by the symmetry of the integrated function, the claim is equivalent to:

2

∫ ∞

0

(1− cos(rz))
1

π(z2)
dz = |r|
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(△ first step) for a triangular distribution U + U ′ − 1 where U ∼ Unif(0, 1) the density is

f(x) = 1− |x| |x| < 1

with characteristic function:

Φ(r) =

∫ 1

−1

e−rx(1− |x|)dx

=

∫ 1

−1

(cos(rx) + i sin(rx))(1− |x|)dx

=

∫ 1

−1

cos(rx)(1− |x|)dx symmetry of second term

= 2

∫ 1

0

cos(rx)︸ ︷︷ ︸
f ′

(1− x)︸ ︷︷ ︸
g

dx cos(−x) = cos(x) ∀x

= 2
− sin(rx)(1− x)

r

∣∣∣∣1
x=0︸ ︷︷ ︸

=0

−2

∫ 1

0

− sin(rx)(−1)

r
dx integration by parts

= − 2

r2
cos(rx)

∣∣∣∣1
x=0

=
2

r2
(1− cos(r)) cos′ = − sin′, sin′ = cos

(□ density) using Lemma 17.20 for the triangular distribution of △ we have

f(x) = (1− |x|)1[−1,1](x) =
1

2π

∫
R
e−irx

2

r2
(1− cos(r))dr =⇒ 1 =

1

π

∫
R

1− cos(r)

r2
dr at x = 0

where, using r = u, u = rx : du = |r|dx:∫
R

1− cos(u)

πu2
du =

∫
R

1− cos(rx)

πr2x2
|r|dx =

∫
R

1− cos(rx)

π|r|x2
dx = 1

So that: ∫
R

1− cos(rx)

πx2
dx = |r|

and we have proved the claim.

21.2.11 Miscellaneous Examples

Product of independent random variables martingale Let:

• R1, R2, . . . be independent and such that E[Rk] = 1 and V [Rk] <∞ ∀k
• M0 = 1 and Mn =Mn−1Rn =M0R1R2 · · ·Rn

We check that M is a martingale with respect to its natural filtration according to Definition 11.35.
(adaptedness)Clearly (Mn)n∈N is adapted to F = σ ((Mn)n∈N).
(integrability) Observe that:

E[|Mn|] = E [|Mn−1Rn|] = E

[∣∣∣∣∣M0

n∏
k=1

Rk

∣∣∣∣∣
]

Where by induction we can show that:

• E[|M1|] = E[|M0R1|] = E[|R1|] <∞ by hypothesis
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• one step forward

E[|M2|] = E[|M0R1R2|] M0R1R2 =M1R2

≤
√

E[|M2
1 |]E[|R2

2|] Cauchy-Schwartz

=
√

E[R2
1]E[R2

2]

<∞ by V [Rk] <∞∀k

• naturally iterate

So that E[Mn] <∞∀n.
(martingale equality) Using Proposition 11.40 we check only for k = 1 increments:

En[Mn+1] = En[MnRn+1] =MnEn[Rn+1] since Mn ∈ Fn and deterministic conditioning
=MnE[Rn+1] remove n since Rn+1 ⊥⊥ Rn

=Mn · 1 hypothesis

And the claim holds: (Mn)n∈N is a martingale.

An investment strategy Let T be the random time to exit the market. Assume T is a stopping time wrt
(Fn)n∈N as per Definition 11.9.
Let Fn = 1[0,T ] (n) be a random indicator. Then:

Xn =

∫
[0,n]

FdM

=

∫
[0,n]

1[0,T ]dM

=

∫
1[0,n]1[0,T ]dM

=

∫
1[0,n∧T ]dM

=Mn∧T

=

{
Mn n < T

MT n ≥ T

Namely, the simplest strategy one can think of invest everything up to time T , and sell right after. With perfectly
shared information, there is no profit or loss.
We will show in Corollary 12.10 that up to reasonable conditions this is again a martingale.

Some predictable processes and their integral martingales We present four easy examples with S ≤ T

almost surely two stopping times and V ∈ FS .
(one extreme) let T be a stopping time. Then the process Fn = 1[0,T ] (n) is such that :

Fn+1 = 1[0,T ] (n+ 1) = 1{n+1≤T} = 1{T≤n}c ∈ Fn

Since T is a stopping time. Clearly the process (Fn)n∈N is predictable.
(other extreme) Let Fn = V 1(S,∞) (n) for S ≤ T two stopping times, and V ∈ FS . Then:

V ∈ FS =⇒ Fn+1 = V 1(S,∞) (n+ 1) = V 1{n+1≥S} = V 1{S≤n}c ∈ Fn

Where we applied Theorem 11.23#1. The process is predictable.
(two extremes) for Fn = 1(S,T ] (n) = 1[S,∞) (n) ·1[0,T ) (n) the product of two predictable processes, the process
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is predictable.
(two extremes + V ) let Fn = V 1(S,T ] (n), the result is trivial by the previous ones.
For all three cases, we have a stochastic integral:

Xn =

∫
[0,n]

FdM

Where (Xn)n∈N is a martingale by Theorem 12.9.

Occupancy problem Consider n independent bins and m balls. We are interested in the number of empty
bins, denoted as Z.

(△ setting) We set:

Ci := bin chosen at ith ball : P[Ci = j] =
1

n
j = 1, . . . , n

Which are iid random variables.

(□ Azuma inequality by martingales) let (Fn)n∈N = σ({Ci}mi=1) and Zt := Et[Z]. In this setting, Zt is the
estimate of the number of empty bins at the end having observed t throws.
Using Proposition 11.50 we have:

Z ∈ [0, n] bounded =⇒ (Zn)n∈N uniformly integrable

Then set Z0 = E0[Z] = µ = by the martingale equality (Def. 11.35#3).
Notice that Z ∈ Fm =⇒ Zt = Z∀t ≥ m, meaning that after having thrown all the balls (m throws), Z belongs
to the σ-algebra. This is rather intuitive.

(⃝ Azuma inequality applied) We have that:

□ =⇒ P[|Z − µ| > δµ] = P[|Zm − Z0| > δµ]

And using Azuma Inequality (Thm. 12.49), by |Zt+1 − Zt| ≤ 1 we set c = 1 and get that:

=⇒ P
[
|Zt − Z0| > λ

√
t
]
≤ 2e−

λ2

2 : c = 1

With

λ
√
t = δµ =⇒ λ =

δµ

c
√
m

=⇒ P[|Z − µ| > δµ] ≤ 2exp

{
−−δ2µ2

2m

}
c = 1 (21.6)

(♢ finding µ) letting Xj := # balls in j ∈ {1, . . . , n} we get:

Z =

n∑
j=1

1{Xj = 0} : X1, . . . , Xn ∼ Multinom

(
m,

(
1

n
, . . . ,

1

n

))

Xj ∼ Binom

(
m,

1

n

)
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So that:

E[Z] = Z0 = µ =
∑

E [1{Xj = 0}] linearity of integral

=
∑

P({Xj = 0})

= nP[X1 = 0] iid assumption

= n

(
1− 1

n

)m
= np p :=

(
1− 1

n

)m
And Equation 21.6 in □ becomes:

P[|Z − µ| > δµ] ≤ 2exp

{
−1

2

δ2n2p2

m

}
= exp

{
−1

2
δ2np2

}
if n = m

Notice also that as m = n→ ∞ we also have that p→ e−1

(▽ informal Chernoff’s bound) ignoring the dependency let δ ∈ (0, 1), c > 0, µ = np and derive a much
more restrictive bound on the probability by Theorem 7.25:

P[|Z − µ| > δµ] ≤ 2e−
1
2 cnpδ

2

Averages We show that the average process needs a specific condition to be a martingale, as discussed earlier.
Assume a discrete process (Xn)n∈N is adapted to (Fn)n∈N and is integrable. Then let:

Xn =
1

n

n∑
Xi assume En[Xn+1] = Xn

(△ aim) we want to show that
(
Xn

)
n∈N an F-martingale according to Definition 11.35.

(□ adaptedness) as Xn = 1
n

∑n
Xi : Xi ∈ Fn ∀i ≤ n adapteness is trivial.

(⃝ integrability) Notice that E[|Xn|] ≤ 1
n

∑
E[|Xi|] <∞, by trivial application of linearity,Jensen’s inequality

and the hypothesis of integrability.

(♢ martingale equality) we proceed by manipulation:

En
[
Xn+1 −Xn

]
=

1

n(n+ 1)
En

[
n

(
n+1∑

Xi

)
− (n+ 1)

(
n∑
Xi

)]

=
1

n(n+ 1)
En

[
n

(
n+1∑

Xi

)
− n

(
n∑
Xi

)
−

(
n∑
Xi

)]

=
1

n(n+ 1)
En

[
nXn+1 −

(
n∑
Xi

)]

=
1

n(n+ 1)
En

[
n

∑
Xi

n
−

(
n∑
Xi

)]
by hypothesis

= 0
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And the equality holds. By □,⃝,♢ =⇒ △ claim is verified.
Notice however that Xn ̸= 0 a.s. since Xn+1 ⊥⊥ Fn so that:

E[Xn+1] = Xn = 0 ⇐⇒ Xi = 0 ∀i

Homogeneous counting measure and Weibull] Let N(dx, dy) be a p.r.m. on E = R2, with mean measure
ν(dx, dy) = cLeb(dx, dy). It holds that N is invariant to translations and rotations (i.e. homogeneous). Let R be
the distance of the closest atom of N from the origin 0 = (0, 0). We describe R via its probability distribution
P[R > r]. It turns out that this is equivalent to a ball having null mass:

Br(0) = {(x, y) : x2 + y2 ≤ r2} : N(Br(0)) = 0 ∀r > 0

This can be seen as:

P[R > r] = P[N(Br(0)) = 0]

= e−ν(Br(0)) N(Br(0)) ∼ Po(ν(Br(0)))

= exp {−c · Leb(Br(0))}
= exp {−c ·Area(Br(0))}
= exp

{
−cπr2

}
Which is the well known Weibull distribution.

Homogeneous Poisson random measure visibility Let the atoms of N have radius a ≈ 0. We interpret
the model as a forest with density c = E [K] and mean measure ν = Leb. For simplicity, we ignore the overlapping
trees. By construction, N is homogeneous, and the horizontal direction is as good as any by rotation invariance.
We refer to the distance between the origin and the closest tree as a measure of visibility. An atom with radius
a intersects y = 0 if and only if the distance between y and the center is ≤ a. Then:

{V ≥ x} = {N(Dx) = 0} Dx = [0, x]× [−a, a]

is the expression in terms of sets of the visibility being greater than x. We describe the r.v. in terms of its
distribution as:

P[V ≥ x] = P[N(Dx) = 0] N(Dx) ∼ Po(ν(Dx))

= e−ν(Dx)

= exp {−cLeb([0, x]× [−a, a])}
= exp{−c(2ax)}

Shot Noise, Ornstein Uhlenbeck process The following is a descriptive discussion of a famous process,
which will be generalized in Example 22.28.
(△ R case) We aim to describe a p.r.m. N on the real line R with mean ν(dx) = cdx. The arrival times in this
case are:

. . . < T−2 < T−1 < T0 < 0 < T − 1 < . . .

This could model the arrivals to an anode of electrons producing a current intensity g decreasing as a function
of the elapsed time u ≥ 0. We assume for simplicity that currents are additive.
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The total current at time t is then modelled as:

Xt =
∑

n:Tn≤t

g(t− Tn)

=

∞∑
n=∞

g(t− Tn)1(−∞,t] (Tn)

=

∫
g(t− x)1(−∞,t] (x)N(dx)

= Nf f(x) := g(t− x)1[0,t] (x)

We wish to describe the moments and the Laplace functional of this process on R:

E[Xt] = E[Nf ] = νf Prop. 13.18#1

=

∫
R
g(t− x)1(−∞,t] (x) cdx

= c

∫ t

−∞
g(t− x)dx let u = t− x, du = −dx

= c

∫ 0

∞
−g(u)du

= c

∫ ∞

0

g(u)du

Which is ⊥⊥ t once we integrate. Moving on to the variance:

V [Xt] = V [Nf ] = νf2 Prop. 13.18#2

=

∫
R

(
g(t− x)1(−∞,t] (x)

)2
cdx

= c

∫ t

−∞
[g(t− x)]2dx let u = t− x, du = −dx

= c

∫ 0

∞
−[g(u)]2du

= c

∫ ∞

0

[g(u)]2du

Again ⊥⊥ t. Lastly, the Laplace transform is:

E[e−rXt ] = E[e−rNf ] = exp
{
−ν(1− e−rf )

}
Thm. 13.19

= exp

{
−
∫
R
(1− e−rg(t−x)1(∞,t](x))cdx

}
= exp

{
−c
∫
R
(1− e−rg(t−x))1(−∞,t] (x) dx

}
move indicator out

= exp

{
−
∫ t

−∞
(1− e−rg(t−x))dx

}
let u = t− x, du = −dx

= exp

{
−c
∫ ∞

0

(1− e−rg(u))du

}
(21.7)

Since the independence from t carries over to the Laplace functional, we can safely say that by Theorem 13.19
we have that:

Xt
d
= X̃0 ∀t X̃0 with transform as above

(□ (0,∞) case) consider now a more realistic p.r.m. on R+, which would allow a researcher to simulate the
phenomenon1. We consider as intensity function

g(u) = ae−bu a > 0, b > 0

1indeed, a physicist has to start somewhere, but the process in reality does not have a starting point itself.



21.2. EXAMPLES COLLECTION 275

and set a starting current to our Xt amount:
Xt = e−btX0 +

∑∞
n=1 ae

−b(t−Tn)︸ ︷︷ ︸
=g(t−Tn)

1[0,t] (Tn)

X0 ⊥⊥ T1 < T2 < . . .

In this context, we want to show that Xt
d→ X̃0 as before. Proceeding in the same way, we inspect moments and

Laplace functional:

E[Xt] = E[e−btX0 +Nf ] f(x) := g(t− x)1[0,t] (x)

= e−btE[X0] +

∫ t

0

g(t− x)cdx again by Prop. 13.18#1

= e−btE[X0] + c

∫ t

0

g(u)du same ch. variable

which is dependent on t. For what concerns the variance

V [Xt] = E
[
(e−btX0 +Nf)2

]
− E

[
e−btX0 +Nf

]2
the result is the same. Moving to the Laplace transform:

E[e−rXt ] = E
[
e−re

−btX0

]
E
[
e−rNf

]
by X0 ⊥⊥ t

= E
[
e−re

−btX0

]
exp

{
−c
∫ t

0

(
1− e−rg(t−x)

)
dx

}
let u = t− x, du = −dx

= E
[
e−re

−btX0

]
︸ ︷︷ ︸

→1 as t→∞

exp

{
c

∫ t

0

(
1− e−rg(u)

)
du

}

t→∞→ exp

{
c

∫ t

0

(
1− e−rae

−bu
)
du

}

In the limit, the laplace transform converges pointwise to that of X̃0 of Equation 21.7. Laplace pointwise
convergence ensures that Xt

d→ X̃0 (Thm. 9.39).
(⃝ stationarity) we aim to show X0

d
= X̃0 =⇒ Xt

d
= X̃0 ∀t ∈ R+. This would mean that the distribution

is stationary around the realistic one over R, but feasible for experimentation as argued in □. We start with a
split:

E[e−rXt ] = E[e−re
−btX̃0 ]︸ ︷︷ ︸

=A

exp

{
−c
∫ t

0

e−rg(u)du

}
︸ ︷︷ ︸

=B

(⋆)

A is the Laplace transform of X̃0 at r′ = re−bt > 0. Using Theorem 13.19 together with the explicit form in
Equation 21.7 we get that:

A = exp

{
−c
∫ ∞

0

(
1− e−re

−btg(u)
)
du

}
= exp

{
−c
∫ ∞

0

(
1− e−re

−btae−bu
)
du

}
= exp

{
−c
∫ ∞

0

(
1− e−rae

−b(t+u)
)
du

}
let x = t+ u, dx = du

= exp

{
−c
∫ ∞

t

(
1− e−rae

−bx
)
dx

}
for clearness, let x = u

= exp

{
−c
∫ ∞

t

(
1− e−rae

−bu
)
du

}
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So that (⋆) becomes:

E[e−rXt ] = exp

{
−c
∫ ∞

t

(
1− e−rae

−bu
)
du

}
exp

{
−c
∫ t

0

e−rg(u)du

}
= exp

{
−c
∫ ∞

0

(
1− e−rg(u)

)
du

}
⊥⊥ t

=⇒ Xt
d
= X0

d
= X̃0 ∀t ∈ R+

(♢ stochastic differential equation) we want to show that such a process satisfies the SDE:

Xt = X0 − b

∫ t

0

Xsds+ aN([0, t])

Also written as dXt = −bXtdt+ aN(dt). This is equivalent to:

⇐⇒ Xt = e−btX0 +

∫ t

0

g(t− x)N(dx) = X0 − b

∫ t

0

Xsds+N([0, t])

Where the form we have is the LHS and the form we want is the RHS. Inspecting the integral in the RHS with
the result of the LHS 2:∫ t

0

Xsds =

∫ t

0

e−bsX0ds+

∫ t

0

∫ s

0

g(s− x)N(dx)ds where s ≤ x ≤ t

=
1

b
X0(1− e−bt) +

∫ t

0

∫ t

x

g(s− x)dsN(dx) order change in accordance with s ≤ x ≤ t

Where the blue integral is precisely∫ t

0

∫ t

x

g(s− x)dsN(dx) =

∫ t

0

−a
b
e−b(s−x)

∣∣∣∣t
s=x

N(dx) =

∫ t

0

a

b

(
1− e−b(t−x)

)
N(dx)

Eventually substituting in the RHS one gets:

X0 − b

∫ t

0

Xsds+ aN([0, t]) = X0 + e−btX0 −X0 − a

∫ t

0

N(dx) + a

∫ t

0

e−b(t−x)N(dx)

= e−btX0 +

∫ t

0

g(t− x)N(dx)

Which is the LHS.

2this is slightly informal to say



Chapter 22

Itô Integration

The content of this Section is based on the last two lectures, not included in the exam, and presented for the
sake of completeness only. For this reason, it might be less informal, especially at the end. A reference is [BZ99].

Disclaimer: due to changes in the layout of the digital document it may refer to the wrong statements when
cross referencing other Chapters.

♢ Observation 22.1 (Setting). We want to integrate wrt a Wiener process (Wt)t∈R+
adapted to a filtration F

(Defs. 11.2, 11.7). Just like in the didactic derivation of the Riemann sum we will proceed step by step. The
ingredients of the first part are:

• trying to characterize an integral in terms of L2 convergent sequences exploiting the result of Theorem 20.4
• circumavigating the difficulty of W being nowhere differentiable, a result of Proposition 20.6

♡ Example 22.2 (Differences with Riemann integral). Recall the classic definition of Riemann sum for a
function f : R+ → R:

n−1∑
j=0

f(sj)(tj+1 − tj)

where n is the number of sub-intervals and a very useful property is that the choice of sj does not influence
the final result.
Contrarily, a stochastic integral in terms of a Wiener process of the form:

n−1∑
j=0

f(sj)(Wtj+1
−Wtj )

behaves differently. We will show that the choice of sj ∈ [tj , tj+1] for a subdivision tnj = ( jTn )j partitioning the
interval [0, T ] is dependent on the choice. To do so, we choose as test function f(t) = Wt and we assign the
symbol △ to the choice sj = tj and □ to the choice sj = tj+1. It suffices to show that the two are different.
(△ case) we will make use of the trivial identity:

a(b− a) =
b2 − a2

2
− (b− a)2

2

277
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Computations show that:

n−1∑
j=0

f(sj)(Wtj+1
−Wtj ) =Wtj (Wtj+1

−Wtj )

=
1

2

n−1∑
j=0

W 2
tj+1

−W 2
tj −

1

2

n−1∑
j=0

(Wtj+1
−Wtj )

2 trivial equality

=
1

2
(W 2

T −W 2
0 )−

1

2

n−1∑
j=0

(Wtj+1
−Wtj )

2 telescopic sum

n→∞→ 1

2
W 2
T − 1

2
T W0 = 0 a.s. by Def. and Thm. 20.4

(□ case) similarly, we use another trivial identity

b(b− a) =
b2 − a2

2
+

(b− a)2

2

and get:

n−1∑
j=0

f(sj)(Wtj+1
−Wtj ) =Wtj+1

(Wtj+1
−Wtj )

=
1

2

n−1∑
j=0

W 2
tj+1

−W 2
tj +

1

2

n−1∑
j=0

(Wtj+1 −Wtj )
2 trivial equality

=
1

2
(W 2

T −W 2
0 ) +

1

2

n−1∑
j=0

(Wtj+1 −Wtj )
2 telescopic sum

n→∞→ 1

2
W 2
T +

1

2
T W0 = 0 a.s. by Def. and Thm. 20.4

For T > 0 we have △ ≠ □ and the Stochastic integral depends on the choice of the point for each subinterval.

♢ Observation 22.3 (Intuition). By Theorem 20.4 we have that the quadratic variation for over an interval

[a, b] is such that Vn
L2

→ b− a. This means that E[Vn] <∞ and so Vn <∞ a.s.
For this reason, we might as well use sj = tj in a subdivision (tnj ) by the adaptedness of f(tj) ∈ Ftj and work
with square integrable r.v.s.

22.1 Constructive Definition of the Itô Integral

♠ Definition 22.4 (Random step processes M2
step). M2

step is a collection of functions of the form f : R+ → E

such that:

∃0 < t0 < t1 < . . . < tn : f(t) =

n−1∑
j=0

ηj1tj ,tj+1
(t)

with:

• (measurability) ηj ∈ Ftj∀j
• (square integrability) ηj ∈ L2∀j

By construction, we get for free that f(t) ∈ Ft∀t and f ∈ L2.

♠ Definition 22.5 (Stochastic integral of step process). For f ∈M2
step its integral is:

I(f) =

∫
R+

f(t)dWt =

n−1∑
j=0

ηj(Wtj+1 −Wtj )
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♣ Proposition 22.6 (Isometry of step process integral). The integral of a step process is square integrable,
f ∈M2

step =⇒ I(f) ∈ L2 and:

E[|I(f)|2] = E
[∫ ∞

0

|f(t)|2dt
]

♠ Definition 22.7 (Random process class M2). Making use of M2
step we define the broader class of random

step approximable functions as:

M2 :=

{
f : R+ → E : f ∈ L2,∃(fn) ⊂M2

step : lim
n→∞

E
[∫ ∞

0

|f(t)− fn(t)|2dt
]
= 0

}
♠ Definition 22.8 (Itô stochastic integral). For f ∈M2 the integral ∫∞0 f(t)dWt is defined via:

lim
n→∞

E
[
|I(f)− I(fn)|2

]
= 0 (fn) ⊂M2

step

♣ Proposition 22.9 (Itô isometry of stochastic integral). For f ∈ M2∃!I(f) ∈ L2 a.s. (the integral is square
integrable and uniquely defined a.s.), with form:

E[|I(f)|2] = E
[∫ ∞

0

|f(t)|2dt
]

♠ Definition 22.10 (Extension to finite times). ∀T > 0 we define

M2
T := {f : R+ → E : 1[0,T )f ∈M2}

with integral

IT (f) = I(1[0,T )f) =

∫ T

0

f(t)dWt

♢ Observation 22.11 (What is missing and specifications). we used the linearity of the integral I in I(fn) −
I(fm) = I(fn − fm) in the proof of Proposition 22.9. This is rather easy to prove for fn, fm ∈ M2

step but holds
also for f ∈M2

T , we will do this in Theorem 22.15#1.
Additionally, we are missing existance conditions, a result shown in the next Theorem.

22.2 Properties of the Itô Integral

♣ Theorem 22.12 (Itô integral existance). Let f : R+ → E be such that:

• (continuity) t→ f(t) is a.s. continuous
• (adaptedness) f(t) ∈ Ft∀t

Then:

1. the Itô integral exists

E
[∫ ∞

0

|f(t)|2dt
]
<∞ =⇒ f ∈M2 i.e. ∃I(f)

2. the Itô integral exists at finite times

E

[∫ T

0

|f(t)|2dt

]
<∞ =⇒ f ∈M2

T i.e. ∃IT (f)

♡ Example 22.13 (Back to Example 22.2). Recall that for a Wiener process W :

• the map t→Wt is continuous a.s. (Thm. 18.22)
• the integrability condition holds

E[
t

∫
0
|Ws|2ds] <∞ ∀t
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Then, by Theorem 22.12 we can use a sequence (fn) ⊂M2
step of the form:

fn(t) =

n−1∑
k=0

Wtk1[tk,tk+1] (t)

With (tnk ) made of equally spaced intervals and make an approximation of the form:∫
fn(s)ds

L2

→
n→∞

1

2
W 2
T − 1

2
T

A second example could be setting f(t) =W 2
t . In this case the integrability condition is:

E[
∞
∫
0
|W 2

s |2ds] <∞

which is easily checked. To ease out the computation, we use the trivial equality:

a2(b− a) =
b3 − a3

3
− a(b− a)2 − 1

3
(b− a)3

To get as an approximation:

n−1∑
j=0

W 2
tj (Wtj+1

−Wtj ) =

n−1∑
j=0

W 3
tj+1

−W 3
tj

3
−
n−1∑
j=0

Wtj (Wtj+1
−Wtj )

2 − 1

3

n−1∑
j=0

(Wtj+1
−Wtj )

3

=
1

3
(W 3

tn −W 3
t0)−

n−1∑
j=0

Wtj (tj+1 − tj)−
1

3

n−1∑
j=0

(Wtj+1
−Wtj )

3

[telescopic sum & Thm. 20.4]

=
1

3
W 3
tn −

n−1∑
j=0

Wtj (tj+1 − tj)−
1

3

n−1∑
j=0

(tj+1 − tj)
3
2Z3

k

[Wt0 = 0 and scaling Thm. 18.16#1]

=
1

3
W 3
T −

n−1∑
j=0

Wtj (tj+1 − tj) T = tn

Where in the last passage we also use E[Z3] = 0, i.e. null kurtosis of a normal distribution. Eventually in the
n→ ∞ limit the result becomes: ∫ T

0

W 2
s dWs =

1

3
W 3
T −

∫ T

0

Wsds

Where the second term is a Riemann integral, which can be computed with classical methods.

♢ Observation 22.14 (The example in the context of stochastic differential equations: Itô correction). Stochas-
tic differential equations (SDEs) are an interesting topic in which Itô integrals are instrumental. It is worth
noticing that we have just established:∫ t

0

WsdWs =
1

2
W 2
t − 1

2
t ∀t =⇒ W 2

t = 2

∫ t

0

WsdWs + t, dW 2
t = 2WtdWt + dt

which looks like the usual differential equation:

X2(t) = 2

∫ t

0

X(s)dX(s) dX2(t) = 2X(t)dX(t)

except for an added red term. We call this Itô correction.
Similarly for the second part of the example:∫ t

0

W 2
s dWs =

1

3
W 3
t −

∫ t

0

Wsds ∀t =⇒ W 3
t = 3

∫ t

0

W 2
s dWs + 3

∫ t

0

Wsds, dW 3
t = 3W 2

t dWt + 3Wtdt

as well corrected wrt the classic integral formulation.
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♣ Theorem 22.15 (Properties of Itô integral). Let f, g ∈M2
t and α, β ∈ R. Then ∀0 ≤ s < t it holds that:

1. (linearity)
∫ t
0
(αf(r) + βg(r))dWr = α

∫ t
0
f(r)dWr + β

∫ t
0
g(r)dWr

2. (general isometry) E
[
|
∫ t
0
f(r)dWr|2

]
= E

[∫ t
0
|f(r)|2dr

]
3. (martingale property) Es

[∫ t
0
f(r)dWr

]
=
∫ s
0
f(r)dWr

Lemma 22.16 (Square integrable L2 convergence in conditional expectation). Let (ξn), ξ ∈ L2(Ω,F,P) then:

ξn
L2

→ ξ =⇒ E[ξn|G]
L2

→ E[ξ|G] ∀G ⊂ F

♠ Definition 22.17 (Versions of stochastic process). For two stochastic processes ξ(t), ζ(t) on t ∈ T ⊂ R seen
as functions, we say that they are a version of each other when:

P[{ξ(t) = ζ(t)}] = 1 ∀t ∈ T

Namely, they are a.s. equal.

♣ Theorem 22.18 (Almost sure continuous version of stochastically integrable processes). Let f ∈ M2
t , then

the integral process:

ξ(t) =

∫ t

0

f(s)dWs

is such that we can always find an almost continuous version:

∃ζ(t) a.s.= ξ(t) t→ ζ(t) a.s. continuous

Corollary 22.19 (Direct consequence of almost continuous version existance). We can safely say that the mod-
ification of ξ(t) is in MT

2

Assumption 22.20 (Almost sure continuity). From now on, we work with the always existing (Thm. 22.18)
almost continuous version of the stochastic integral process we consider.

♠ Definition 22.21 (Itô process). A process ξ(t) on R+ is an Itô process when:

1. the path t→ ξ(t) is almost surely continuous
2. ξ(T ) = ξ(0) +

∫ T
0
a(t)dt+

∫ T
0
b(t)dWt a.s.

3. b(t) ∈M2
T ∀T > 0

4. a(t) is adapeted i.e. a(t) ∈ Ft ∀ and such that
∫ T
0
|a(t)|dt <∞ a.s. ∀T > 0

We write this result in compact differential form as:

dξ(t) = a(t)dt+ b(t)dWt

♡ Example 22.22 (Observation 22.14 as an Itô process). Recognize that:

dW 2
t = 2WtdWt + dt a(t) ≡ 1, b(t) = 2Wt :Wt ∈M2

T∀T > 0

and also

dW 3
t = 3W 2

t dWt +Wtdt a(t) =Wt : E
[∫ t

0

|Ws|ds
]
<∞, b(t) = 3W 2

t ∈M2
T∀T > 0

♠ Definition 22.23 (L1
T space for the function a(t)). The function a(·) from Definition 22.21 is enclosed in a

space denoted as:

L1
T :=

{
a(t) adapted F,

∫ T

0

|a(t)|dt <∞ a.s. ∀T > 0

}
Where the second requirement is equivalent to having finite expectation a.s.

♣ Theorem 22.24 (Itô formula, simplified). For F (t, x) a real valued function such that:

Ft(t, x) =
∂F (t, x)

∂t
, Fx(t, x), Fxx(t, x) ∈ C(R) ∀t ≥ 0,∀x ∈ R
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where additionally Fx(t,Wt) ∈M2
T∀T > 0 is such that:

F (T,WT )− F (0,W0) =

∫ T

0

Ft(t,Wt) +
1

2
Fxx(t,Wt) dt+

∫ T

0

Fx(t,Wt) dWt a.s. integral form

dF (t,Wt) =

(
Ft(t,Wt) +

1

2
Fxx(t,Wt)

)
dt+ Fx(t,Wt)dWt a.s. differential form

♡ Example 22.25 (Itô formula for Example 22.22). Let ξt = F (t,Wt) = W 2
t . Using Theorem 22.24, the

differential form is:

dξt =

(
∂W 2

t

∂t
+

1

2

∂2W 2
t

∂W 2
t

)
dt+

∂W 2
t

∂Wt
dWt

=

(
0 +

1

2
2

)
dWt + 2WtdWt

= dt+ 2WtdWt

As in the form of Example 22.22. Similarly for ξt = F (t,Wt) =W 3
t :

dξt =

(
∂W 3

t

∂t
+

1

2

∂2W 3
t

∂W 2
t

)
dt+

∂W 3
t

∂Wt
dWt

=

(
0 +

1

2
6Wt

)
dt+ 3W 2

t dWt

= 3Wtdt+ 3W 2
t dWt

again as in Example 22.22.

♡ Example 22.26 (Brownian bridge). Consider a Wiener process W = (Wt)t∈R+
and a second process Xt =

Wt − tW1 for t ∈ [0, 1]. This construction is such that:{
Xt =W0 = 0 a.s. t = 0

Xt =W1 −W1 = 0 a.s. t = 1

We explore its properties.
(△ mean) we have E[Xt] = 0 being a sum of Wiener processes.
(⃝ distribution) Xt is Gaussian ∀t since it is a sum of Gaussians
(□ variance) after some computations:

V [X − t] = V [Wt − tW1]

= V [Wt] + t2V [W1]− 2tCoV [W1,W1]

= t+ t2 · 1− 2tCoV [Wt,W1] Wiener-Gauss Thm. 18.11

= t+ t2 − 2t(t ∧ 1) Wiener as Brownian Def. 18.7

= t+ t2 − 2t2 t < 1

= t− t2

(▽ covariance) for s ̸= t:

CoV [Xs, Xt] = CoV (Ws − sW1,Wt − tW1)

= CoV (Ws,Wt)− sCoV (W1,Wt)− tCoV (Ws,W1) + stCoV (W1,W1)

= (s ∧ t)− t(s ∧ 1)− s(t ∧ 1) + st · 1
[as above Thm. 18.11, Def. 18.7]

= s ∧ t− st− stm+ st s, t < 1

= s ∧ t− st

=

{
s(1− t) s < t

t(1− s) s ≥ t
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(♢ conditionals) wts for t1 < t2 it holds:

P[Wt1 ∈ dx2,Wt2 ∈ dx2|W1 = 0] = P[Xt1 ∈ dx1, Xt2 ∈ dx2]

namely, the two points in the path of X are equivalent to two the same times of a Wiener process conditioned on
the future W1 = 0. This is rather difficult to work with, so we will use another property, that of time inversion,
Theorem 18.16#3 and the Markov property Thm. 19.5. Namely:

tW 1
t

d
=Wt

{
Wt|Ws = x Brownian s < t

Wt −Ws
d
=Wt−s

While we known the LHS, we do not known how the RHS behaves. In this context, for s ≥ t:

P[Wt ≤ y|Ws = x] = P[tW 1
t
≤ y|sW 1

s
= x]

= P
[
W 1

t
≤ y

t

∣∣∣∣W 1
s
=
x

s

]
= P

[
W 1

t
+
x

s
− x

s
≤ y

t

∣∣∣∣W 1
s
=
x

s

]
notice

x

s
=W 1

s
and ±x

s

= P
[
W 1

t
−W 1

s
≤ y

t
− x

s

∣∣∣∣W 1
s
=
x

s

]
= P

[
t(W 1

t
−W 1

s
) +

xt

s
≤ y

]
Markov property

Where Wt|Ws
d
= t(W 1

t
−W 1

s
) + tx

s

d
= t(W 1

t−
1
s
) + tx

s so that:

=⇒ Wt|W1 = 0
d
= tW 1

t
− 1 + 0 setting s = 0

Which has mean 0 and variance V [tW 1
t
− 1] = t2

(
1

t
− 1

)
= t(1− t). The joint distribution then becomes:

Ws,Wt|W1 = 0
d
=
(
sW 1

s−1, tW 1
t−1

)
with covariance:

CoV [Ws,Wt] = CoV
(
sW 1

s−1, tW 1
t−1

)
= st

[(
1

s
− 1

)
∧
(
1

t
− 1

)]
= st

[(
1

s
∧ 1

t

)
− 1

]
= st

(
1

s
∧ 1

t

)
− st

=

{
s− st t ≥ s

t− st t < s

Just like ▽, proving the claim.

♡ Example 22.27 (Exponential martingale). For t ≥ 0 consider the process Xt = eWte−
t
2 .

(△ aim) wts Xt is an Itô process according to Definition 22.21, namely, an Itô stochastic integral (Def. 22.8.
The form should be that of:

dXt = XtdWt, Xt = X0 +

∫ t

0

XsdWs, X0 = 1

(□ recap of idea) An Itô process ξt is such that:

dξt = a(t)dt+ b(t)dWt, ξt = ξ(0) +

∫ T

0

a(s)ds+

∫ t

0

b(s)dWs,

{
E[∫ t0 |a(s)|ds] <∞ ∀t i.e. a ∈ L1

t

E[∫ t0 |b(s)|2ds] <∞ ∀t i.e. b ∈M2
t
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We use the simplified Itô formula (Thm. 22.24) setting ξt = F (t, x) = exe−
t
2 which is differentiable:

dF (t,Wt) =

(
∂

∂t
F +

∂2

∂W 2
t

F

)
dt+

(
∂

∂Wt
F

)
dWt

=

(
−1

2
eWte−

t
2 +

1

2
eWte−

t
2

)
dt+

(
eWte−

t
2

)
dWt

=
(
eWte−

t
2

)
dWt

= ξtdWt

(⃝ conditions check) we want to check the conditions on the functions a and b. Clearly, a(t) ≡ 0 is in
L1
t∀t ∈ R+. For b(t) = Xt instead:

E
[∫ t

0

|X(s)|2
]
ds =

∫ t

0

E
[
|X(s)|2ds

]
Fubini Thm. B.30 provided that it exists

=

∫ t

0

E
[
e2Wse−s

]
ds

=

∫ t

0

e−sE
[
e2Ws

]
ds

=

∫ t

0

e−s exp

{
1

2
2V [Ws]

}
ds mgf

=

∫ t

0

e−sesds Wiener variance

=

∫ t

0

1 <∞ ∀t ∈ R+

By the arguments of □,⃝ =⇒ △ and the process is an Itô process.

♡ Example 22.28 (Continuous Ornstein-Uhlenbeck process). We inspect the traditional version in continuous
time of the process from Example 16.9.
(△ symmetris and definition) the process analyzed is:

Xt = X0e
−bt +

∫ t

0

ae−b(t−s)dWs, t ∈ R+

Focusing on the integral, in Example 16.9 it was the integral of a p.r.m. on R, shown to be equivalent to the
experimentally feasible case of a p.r.m. on R+ subject to a specific value of the starting point. We then showed
that the process satisfied a SDE of the form:

dXt = −bXt + adWt, Xt = X0 − b

∫ t

0

Xtdt+ aWt

Where a was the number of arrivals at time t.
(□ gaussianity of integral) wts:

∫ t

0

ae−b(t−s)dWs
d
= ae−btW e−2bt−1

2b

⇐⇒
∫ t

0

ebsdWs
d
=W e−2bt−1

2b

∼ N

(
0,
e2bt − 1

2b

)

(⃝ two facts) we take for granted without proof that:

• any integral of the form
∫ t
0
f(s)dWs is a martingale by Theorem 22.15#3, and thus has constant mean

•
∫ 1

0
f(s)dWs is such that f(s) ∈ L1 is Gaussian itself.
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For this reason, to prove the claim in □ we just need to inspect the variance.
(▽ variance) continuing the discussion:

V

[∫ t

0

ebsdWs

]
= E

[(∫ t

0

ebsdWs

)2
]

mean zero martingale

= E
[∫ t

0

(ebs)2ds

]
Itô isometry Thm. 22.15#2

=

∫ t

0

e2bsds deterministic value

=
e2bs

2b

∣∣∣∣t
0

=
e2bt − 1

2b

which is the variance needed to prove the claim in □.
(♢ limiting distribution) wts

Xt
d→
√
a2

2b
Z ∼ N

(
0,
a2

2b

)
Where

Xt = X0e
−bt︸ ︷︷ ︸

→0 as t→∞

+ae−btW e2bt−1
2b

→ ae−btW e2bt−1
2b

= ae−btWηt−η0

Where we let ηt = e2bt

2b which → ∞ as t→ ∞. At the limit, the second term is:

ae−btWηt−η0 =
a√
2b

√
2b

ebt
Wηt−η0

=
a√
2b

√
1
e2bt

2b

Wηt−η0

=
a√
2b

1

(ηt)
1
2

Wηt−η0

Where the Mgf is that of a gaussian, since ignoring the coefficient in front:

E
[
exp

{
r

1

(ηt)
1
2

Wηt−η0

}]
= exp

{
1

2

r2

ηt
[ηt − η0]

}
ηt − η0 is the variance

= exp

{
r2

2

ηt − η0
ηt

}
t→∞→ exp

{
r2

2

}
mgf of Z ∼ N(0, 1)

Concluding the claim that:

Xt = X0e
−bt + ae−btW e2bt−1

2b

d→ o(1) +
a√
2b
Z ∼ N

(
0,
a2

2b

)

(⋆ stationarity) assume X0 ∼ N

(
0,
a2

2b

)
. Then the process is such that:

• E[Xt] = 0∀t easily by sum of Gaussians
• Xt is Gaussian by sum of Gaussians

• V [Xt] = V [X0e
−bt + ae−btWηt−η0 ] = e−2bt a2

2b + a2e−2bt e2bt−1
2b =

a2

2b
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Which is the same variance of X0. This means that the process is stationary at N
(
0,
a2

2b

)
.

(♠ SDE and general Itô formula) wts:

dXt = −bXtdt+ adWt, Xt = X0 − b

∫ t

0

Xsds+ aWt

to do so, we will resort to a constructive derivation of the general Itô formula.

Xt = X0e
−bt + ae−bt

∫ t

0

ebsdWs

= e−bt
(
X0 + a

∫ t

0

ebsdWs

)
= e−btξt

with ξt = X0 +

∫ t

0

aebsdWs

dξt = aebtdWt = a(t)dt+ b(t)dWt a(t) ≡ 0, b(t) = aebt

Here we set Xt = F (t, ξt) so that F (t, x) = e−btx in general. In this context, we aim to do a 2nd order Taylor
expansion, and corrected according with a procedure similar to the result of Obs. 22.14. A normal expansion of:

dF (t, x) =
∂F

∂t
dt+

∂F

∂x
dx+

1

2

∂2F

∂x2
dx2 +

1

2

∂F

∂t2
dt2 +

1

2

∂2F

∂x∂t
dxdt+

1

2

∂2F

∂t∂x
dtdx

in the context of SDEs becomes:

dF (t, ξt) =

(
∂F

∂t
+
∂F

∂ξt
a(t) +

1

2

∂2F

∂ξ2t
b(t)2

)
dt+

∂F

∂ξt
b(t)dWt

=
(
−be−btξt + 0 + 0

)
dt+ e−btb(t)dWt

= −bXtdt+ e−btaebtdWt b(t) = ae−bt

= −bXtdt+ adWt

Which is equivalent to the claim. We have also "formally" proved the SDE of Example 16.9.
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While some results in previous sections were not part of the course, the content of the Appendix is 100% not
study material. I decided to add it to better understand arguments presented in class, and make the notes almost
self contained. For this reason, I most likely will not copy over the handwritten proofs, typing only the claims
on LATEX.
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Appendix A

Sets, Measures, Probability

A.1 The p-system extension

♠ Definition A.1 (d-system). A collection D = {A1, . . .} where Ai ⊂ E ∀i is a d-system when:

1. E ∈ D

2. A,B ∈ D, B ⊂ A =⇒ A \B ∈ D

3. (closedness for increasing sequences) (An) ⊂ D, An ↗ A =⇒ A =
⋃
An ∈ D

♣ Proposition A.2 (σ-algebras, p&d systems equivalence). Recalling Definitions 1.6 and 1.8:

{A1, . . .} : Ai ⊂ E ∀i σ-algebra ⇐⇒ p, d-system on E

Lemma A.3 (Nested d-system form). Let D be a d-system on E. Then, for a given D ∈ D:

D̂ = {A ∈ D : A ∩D ∈ D} is a d-system

♣ Theorem A.4 (Monotone Class Theorem I). For C a p-system (Def. 1.8) and D a d-system:

C ⊂ D =⇒ σ(C) ⊂ D

♠ Definition A.5 (Product of measurable spaces). Let (E,E) and (F,F) be measurable spaces (Def. 2.1).
Consider A ⊂ E, B ⊂ F .

• A ∈ E, B ∈ F =⇒ A×B is a measurable rectangle
• E⊗ F is the product σ-algebra on E × F

Accordingly, we define the product measurable space as:

(E × F,E⊗ F) = (E,E)× (F,F)

Lemma A.6 (Mapping properties). Let f : E → F , where f−1(B) = {x ∈ E : f(x) ∈ B} ⊂ E ∀B ∈ F. Then
for all B,C, {Bi}:

1. f−1(∅) = ∅
2. f−1(F ) = E

3. f−1(B \ C) = f−1(B) \ f−1(C)

4. f−1 (
⋃
iBi) =

⋃
i f

−1(Bi)

5. f−1 (
⋂
iBi) =

⋂
i f

−1(Bi)

♠ Definition A.7 (Measurable function). We enclose the results of Lemma A.6 in a Definition. For measurable
spaces (E,E), (F,F) a function f : E → F is measurable when:

f−1(B) ∈ E ∀B ∈ F

♣ Proposition A.8 (Generating algebra measurability). We characterize measurability as:

f : E → F measurable wrt E,F ⇐⇒ f−1(B) ∈ B ∀B ∈ F0 : σ(F0) = F

289
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A.2 More about measures

♣ Proposition A.9 (Composition of measurable functions measurability). For f measurable wrt E,F and g

measurable wrt F,G their composition is measurable as well:

f ◦ g measurable wrt E,G

♠ Definition A.10 (Numerical functions, measurable). For a measurable space (E,E) a numerical function is
a mapping to R. Namely:

f : E → R = [−∞,∞]

The measurability condition is wrt E,B(R) and using the results of Propositions 1.21 and A.8:

f measurable ⇐⇒ ∀r ∈ R f−1([−∞, r]) ∈ E

Since {[−∞, r] : r ∈ R} is the generating Borel set of R.
For numerical functions, we omit saying that they are measurable wrt E,B(R) and simply write wrt E.

♢ Observation A.11 (About numerical functions). Consider f : E → F where F ⊂ R is countable. Then:

f E-measurable ⇐⇒ f−1({a}) = {x ∈ E : f(x) = a} ∈ E ∀a ∈ F

♣ Proposition A.12 (Positive-negative decomposition measurability). Any measurable function can be decom-
posed into measurable functions since:

f measurable ⇐⇒ f+ = f ∨ 0, f− = f ∧ 0 measurable

♠ Definition A.13 (Canonical form of simple function ). A numerical function can always be reduced to its
canonical form when it is simple. We say it is simple when:

f =

n∑
ai1Ai

ai ∈ R, Ai ∈ E

And in this case we can safely say that:

∃m ∈ N∗, distinct {bi}mi=1 & {Bi} measurable partition

which compose the canonical form of the simple function:

f =
m∑
i=1

bi1Bi

♣ Proposition A.14 (Properties of simple functions). Let f, g be simple. Then:

1. f is always E-measurable
2. f + g, f − g, fg, f

g (provided that g ̸= 0∀x), f ∨ g, f ∧ g are E-measurable
3. for f E-measurable taking finite values in R =⇒ f is simple

♠ Definition A.15 (Limits of sequences of functions). According to previous discussions, for a numerical
function fn (Def. A.10) it holds that:

• inf fn, sup fn, lim inf fn, lim sup fn are pointwise extremizations
• lim inf fn = lim sup fn = f =⇒ lim fn = f as usual

♣ Theorem A.16 (Limits of sequences measurability). For f numerical all the functions of Definition A.15 are
E-measurable. lim fn is so if it exists.

Lemma A.17 (Dyadic functions properties). For n ∈ N∗ dyadic functions:

dn(r) =

n2n∑
k=1

k − 1

2n
1[ k−1

2n , k
2n ] (r) + n1[n,∞] (r) r ∈ R+

are such that:
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1. ∀n dn(r) is increasing, right continuous and simple
2. limn→∞ dn(r) = r ∀r ∈ R+

♣ Theorem A.18 (Positive function measurability with respect to simple functions).

f : E → R+ E-measurable ⇐⇒ (fn) ↗ f : (fn) positive simple

♠ Definition A.19 (Monotone class of functions M). A collection of numerical functions M = {f : E → R}
with subsets M+,Mb of positive/bounded functions such that:

1. 1 ∈ M

2. f, g ∈ Mb, a, b ∈ R =⇒ af + bg ∈ M

3. (fn) ⊂ M+, (fn) ↗ f =⇒ f ∈ M

♣ Theorem A.20 (Monotone Class Theorem II). This is a revisited version of Theorem A.4.
For M monotone on E, C a p-system (Def. 1.8). Then:

1A ∈ M ∀A ∈ C, σ(C) = E =⇒ M ⊃
{
positive or bounded E-measurable f : E → R

}
♠ Definition A.21 (Isomorphism of measurbale spaces ∼=). A function f between measurable spaces (E,E), (F,F)
that is a bijection induces an isomorphism. The inverse map: f̂(y) = x ⇐⇒ f(x) = y is measurable wrt F,E.

♠ Definition A.22 (Standard measurable space). A measurable space (E,E) is standard if:

(E,E) ∼= (F,B(F )), F ⊂ R

♣ Theorem A.23 (Some standard measurable spaces). Recognize that:

1. R,Rd,R∞ and their respective Borel σ-algebras are standard
2. for E complete and separable =⇒ (E,B(E)) is standard
3. ([0, 1],B([0, 1])) is standard
4. (N∗, σ(N∗)), (N, σ(N)) are standard

♢ Observation A.24 (Confusing notation). Notice that we may use the following symbol:

E \ F

To denote functions that are measurable wrt the two σ-algebras.

♣ Proposition A.25 (Arithmetic of measures). Let (E,E) be measurable and µ be a measure on it (Def. 2.2).
Then:

1. ∀c ∈ R+ cµ is a measure
2. if ν a measure on (E,E) =⇒ ν + µ is a measure
3. for countably many measures µ1, µ2, . . . =⇒

∑
n µn is a measure

♠ Definition A.26 (σ-finite measure). A measure µ on (E,E) such that ∃{En} measurable partitioning E with:

µ(En) <∞∀n

♠ Definition A.27 (Σ-finite measure). A measure µ on (E,E) such that ∃{µn} finite measures with:∑
n

µn = µ

♣ Proposition A.28 (Order of measure types).

µ finite =⇒ µ σ-finite =⇒ µ Σ-finite

And properties propagate in the opposite direction as always.

♣ Proposition A.29 (Measure specification in p-systems, finite measures case). Let (E,E) be measurable, and
µ, ν measures on it, both finite, and C be a p-system generating E, i.e. σ(C) = E. Then:

µ(A) = ν(A) ∀A ∈ C =⇒ µ = ν
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♢ Observation A.30 (Extensions extended). We can prove the result of the Theorem for σ-finite measures as
well. Notice that this holds also for probability measures on (R,B(R)), and their Borel sets of intervals.

♠ Definition A.31 (Atom of a measure). For a measurable space (E,E, µ) we say:

x ∈ E atom : µ({x}) = 0

♠ Definition A.32 (Diffuse & purely atomic measures). Measures can be distinguished in terms of presence of
atoms, but can also be of mixed types. We call:

• µ diffuse when ∄x ∈ E atom
• µ purely atomic when ∀x ∈ E x is an atom

♡ Example A.33 (Some diffuse and purely atomic measures). in some cases we will work with

• Leb (Def. 2.8), which is diffuse
• δ Dirac (Def. 2.3) which is purely atomic
• any discrete random variable (Def. 5.11) which has a purely atomic probability measure.

Lemma A.34 (Finite & Σ-finite countability of atoms). Establish that:

1. µ(E) <∞ =⇒ x atoms are countably many
2. µ Σ-finite =⇒ x atoms are countable

♣ Proposition A.35 (Atomic Diffuse decomposition of measures). For µ on (E,E) Σ-finite it holds that:

µ = λ+ ν λ diffuse, ν purely atomic

♠ Definition A.36 (Negligible sets in measurable spaces). For a measure space (E,E, µ) we say:

• B is measurable negligible when µ(B) = 0

• an arbitrary subset (not necessarily measurable) Ei ⊂ E is negligible if Ei ⊂ B, where B measurable
negligible

♠ Definition A.37 (Complete measurable space). A measure space (E,E, µ) such that ∀B ⊂ E : µ(B) = 0 the
set B is measurable.

♠ Definition A.38 (Completion (E,E, µ)). Let N be a collection of negligible subsets. Define:

• E = σ(E ∪N)

• µ(A ∪N) for A ∈ E and N ∈ N

♣ Proposition A.39 (Completion properties). For a completion (E,E, µ) it holds that:

1. ∀B ∈ E B = A ∪N,A ∈ E, N ∈ N

2. µ(A ∪N) = µ(A) is the unique measure on E such that µ(A) = µ(A)∀A ∈ E

3. the completion is complete according to Definition A.37

♠ Definition A.40 (Almost everywhere (almost every x)). When a property is true ∀x ∈ E but negligible
sets we say the property holds almost everywhere (a.e.). When considering multiple measures, we say µ-almost
everywhere.

♡ Example A.41 (Equivalence almost everywhere on functions). See handwritten notes

A.3 More about integrals of measures

Lemma A.42 (Integral properties for simple positive functions). Recall Definition 4.1 and 4.4, the following is
a similar result for general measures (Def. 2.2):

f =
∑

ai1Ai : µ(f) =
∑

aiµ(Ai) =

∫
E

µ(dx)f(x)

Satisfies:
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• linearity
• positivity
• monotone convergence

♠ Definition A.43 (Integral over a set). Let f ∈ E be a measurable function, and A be measurable. Then
f1A ∈ E and:

µ(f1A) =

∫
E

µ(dx)f1A

∫
A

µ(dx)f(x) =

∫
A

fdµ

Lemma A.44 (Finite additivity of positive measurable functions). Let f ∈ E+, A,B ∈ E be such that A∩B = ∅
and A ∪B = C. Then:

µ(f1A) + µ(f1B) = µ(f1C)

Lemma A.45 (Positivity and monotonicity of integral). For f ∈ E+ it holds that:

1. µf ≥ 0

2. g ∈ E+ : f ≤ g =⇒ µf ≤ µg

♣ Theorem A.46 (General monotone convergence theorem). This is the expanded result of Theorem 4.21, with
proof.
Let (fn)n≥1 ∈ E+ be increasing. Then:

=⇒ µ
(
lim
n→∞

fn

)
= lim
n→∞

µ(fn)

♣ Proposition A.47 (Linearity of integration). For f, g ∈ E+ it holds:

µ(af + bg) = aµf + bµg ∀a, b ∈ R+

♣ Proposition A.48 (Insensitivity of the integral). The following conclusions can be drawn when dealing with
measures.

1. A ∈ E : µ(A) = 0 =⇒ µ(f1A) = 0 ∀f ∈ E

2. f, g ∈ E+, f = g a.e. x =⇒ µf = µg

3. f ∈ E+, µf = 0 =⇒ f = 0 a.e. x

Lemma A.49 (Fatou’s Lemma). This is a very important result.

(fn) ⊂ E+ =⇒ µ
(
lim inf

n
fn

)
≤ lim inf

n
µ(fn)

Corollary A.50 (lim sup bounds for integrable bounded functions). For (fn) ⊂ E and g integrable we have:

1. fn ≥ g ∀n =⇒ µ (lim infn fn) ≤ lim inf µ(fn)

2. fn ≤ g ∀n =⇒ µ (lim supn fn) ≥ lim supn µ(fn)

♣ Theorem A.51 (General dominated convergence theorem). This is the result with proof for the general case
of Theorem 4.24.
Let (fn)n≥1 ⊂ E where |fn| ≤ g ∀n and g is integrable according to Definition 4.5. Then:

∃ lim
n→∞

fn =⇒ f ∈ L1, µ
(
lim
n→∞

fn

)
= lim
n→∞

µ(fn)

Corollary A.52 (General bounded convergence Theorem). This is the result of Corollary 4.26 for finite mea-
sures.

(fn) ⊂ E, (fn) bounded, µ finite, ∃ lim
n→∞

fn =⇒ f ∈ L1 bounded, µ
(
lim
n→∞

fn

)
= lim
n→∞

µ(fn)

♢ Observation A.53 (About sequential continuity and monotone convergence). Sequential continuity comes
from sets assumed in the definition of measure (Def. 2.2).
Monotone convergence (Thm. A.46) holds for measurable functions.
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♢ Observation A.54 (Almost everywhere version). For the results of this Section, one can derive an almost
everywhere version and work with completions using Proposition A.39.

♣ Theorem A.55 (Characterization of integral). For a measurable space (E,E) and a function L : E+ → R+

we state that:
∃!µ on (E,E) : L(f) = µf ∀f ∈ E+

satisfying the properties of an integral over a measure:

1. f = 0 =⇒ L(f) = 0

2. L is linear
3. L is monotone convergent in E+

Namely, once we have a general function satisfying properties 1, 2, 3 we are working with a valid measure induced
by the integral representation. This characterization is unique on both directions.



Appendix B

Transforms, Kernels, Product Spaces

B.1 Combining measures through kernels

♠ Definition B.1 (Image measures of ν under h, ν ◦h−1). For measurable spaces (F,F), (E,E) and ν on (F,F)

consider:
h : F → E measurable wrt F,E

Then we define:
ν ◦ h−1 : E → R+ ν ◦ h−1(B) = ν(h−1(B)) ∀B ∈ E

Which is well defined since h−1(B) ∈ F by the measurability of h (refer to Eqn. 3.1). This makes ν ◦ h−1 a
measure.

♢ Observation B.2 (Other notions for ν◦h−1). It often happens that the notation changes to h◦ν, h(ν), ν◦h, νh.

Lemma B.3 (Finiteness relations). Recalling Definitions A.26, and A.27 it trivially holds that:

1. ν finite =⇒ ν ◦ h−1 finite
2. ν Σ-finite =⇒ ν ◦ h−1 Σ-finite
3. ν σ-finite ≠⇒ ν ◦ h−1 σ-finite

but =⇒ ν ◦ h−1 Σ-finite

♣ Theorem B.4 (Integral of image measure, integral change of variable).

∀f ∈ E+ (ν ◦ h−1)(f) = ν(f ◦ h)

♢ Observation B.5 (Extending the Theorem). The limitation f ∈ E+ can be removed upon noting that we just
require that both parts of an arbitrary f ∈ E need to be well defined.

♢ Observation B.6 (Relationship to change of variable). Let µ = ν ◦ h−1 then:∫
F

ν(dx)f(h(x)) =

∫
E

µ(dy)f(y) (B.1)

In calculus we refer to this formula in the euclidean case for E = Rd and F = Rd′ with ν, µ expressed in terms
of the Lebesgue measure and the Jacobian of h.
In probability we often define ν through Equation B.1 in terms of µ, h.

♣ Theorem B.7 (Lebesgue measure and Σ-finite h map link). Let (E,E) be standard measurable (Def. A.22),
µ be Σ-finite on (E,E) and b = µ(E) ∈ R+. Then

=⇒ ∃h : [0, b) → E measurable wrt B([0, b)),E

Such that:
µ = λ ◦ h−1 λ = Leb[0, b) → R+

295
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♠ Definition B.8 (Indefinite integral of a function). Let (E,E, µ) be a measurable space, p ∈ E+. We can define:

ν(A) = µ(p1A) =

∫
A

µ(dx)p(x) ∀A ∈ E

as the indefinite integral of p wrt µ.

♣ Proposition B.9 (Properties of ν(A)). For ν(A) as in Definition B.8 we have that:

1. ν(A) is a measure according to Definition 2.2
2. ∀f ∈ E+ it holds ν(f) = µ(pf)

♢ Observation B.10 (About the indefinite integral definition). We can create new measures by simply using
the fact that: ∫

E

ν(dx)f(x) =

∫
E

µ(dx)p(x)f(x)

Informally we may write ν(dx) = µ(dx)p(x) for x ∈ E, ν, µ measurable, p ∈ E+.
We call p the mass density of ν wrt µ.

♠ Definition B.11 (Density function p). We write p = dν
dµ or p(x) = dν(x)

dµ(x) for x ∈ E.

The next result is equivalent to Theorem 5.7, we state it here for the purpose of keeping the discourse flow.

♣ Theorem B.12 (Radon-Nykodym Theorem). Let µ be σ-finite, and ν ≪ µ.

=⇒ ∃p ∈ E+ :

∫
E

ν(dx)f(x) =

∫
E

µ(dx)p(x)f(x)

Where p is unique up to equivalences meaning that if ∃p, p′ satisfying the requirement then p(x) = p′(x) for
a.e. x ∈ E.

♠ Definition B.13 (Transition Kernel K).

A transition kernel is a function between measurable space (E,E), (F,F), of the form:

K : (E × F) → R+

such that:

1. x→ K(x,B) is E measurable ∀B ∈ F

2. B → K(x,B) is a measure on (F,F) ∀x ∈ E

♡ Example B.14 (A transition kernel). we will later show that for ν finite on (F,F) a kernel K ∈ (E⊗F)+ is:

K(x,B) =

∫
B

ν(dy)K(x, y) x ∈ E,B ∈ F

♣ Theorem B.15 (Measure kernel function). Let K be as in Definition B.13, conclude that:

1. For x ∈ E we have Kf(x) =
∫
F
K(x, dy)f(y) ∈ E+ ∀f ∈ F+

2. for B ∈ F sets µ(K(B)) =
∫
E
µ(dx)K(x,B) is a measure on (F,F) for any measure µ on (E,E)

3. For f ∈ F+ functions (µK)f = µ(Kf) =
∫
E
µ(dx)

∫
F
K(x, dy)f(y) is a measure on (F,F) for any measure

µ on (E,E)

♢ Observation B.16 (About the Theorem). The notation Kf, µK can be seen as f ≡ columns and µ ≡ rows
generalized.
To specify K it is enough to find a form of Kf ∀f ∈ F+.

Corollary B.17 (K specification, a "converse" of Theorem B.15). A mapping K : F+ → E+ such that f → Kf

is a transition kernel where K(x,B) = K1B (x) if and only if:

⇐⇒


K0 = 0 #1

K(af + bg) = aKf + bKg ∀f, g ∈ F+, a, b ∈ R #2

Kfn ↗ Kf ∀(fn) ↗ f ∈ F+ #3
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♠ Definition B.18 (Product Kernel). For a kernel K from (E,E) to (F,F) and a kernel L form (F,F) to (G,G)

we define the product as the function KL from (E,E) to (G,G).

♣ Proposition B.19 (Product is a transition kernel). It holds that:

1. KL is a transition kernel
2. KL(x,B) =

∫
F
K(x, dy)L(y,B) for x ∈ E and B ∈ G is the representation

♠ Definition B.20 (Markov, subMarkov kernel). A kernel K is Markov when K(x,E) = 1 ∀x, subMarkov
if K(x,E) ≤ 1 ∀x.

♠ Definition B.21 (Identity Kernel I). The identity Kernel is a kernel from (E,E) to (E,E) defined as:

I(x,A) = δx(A) = 1A (x) x ∈ E, A ∈ E

♣ Proposition B.22 (Kernels relations). We establish the following results:

1. For a Kernel K =⇒ K0 = I,K2, . . . are kernels
2. for µ a measure and f a function: If = f, µI = µ, µIf = µf, IK = KI = K

3. for K a Markov kernel =⇒ Kn is Markov ∀n ≥ 1

♠ Definition B.23 (Finite Kernels, Bounded Kernels). Using the notions already encountered in Definitions
A.26, A.27 and other discussions accordingly define:

• K finite such that K(x, F ) <∞)∀x
• K σ-finite such that B → K(x,B) is σ-finite ∀x
• K bounded: x→ K(x, F ) bounded
• σ-bounded: ∃{Fn} a measurable partition such that x→ K(x, Fn) is bounded ∀n
• Σ-finite: Kn kernels are such that K =

∑
Kn

• Σ-bounded: Kn are bounded in a partition ∀n

♠ Definition B.24 (Transition probability kernel). A kernel is a probability kernel when it has mass 1 for each
of its measures, i.e. K(x, F ) = 1∀x.

♢ Observation B.25. Markov Kernels (Def. B.20) are as in Definition B.24 and on (E,E) to (E,E).

♣ Proposition B.26 (Measurable functions of products). Conclude that for f ∈ E⊗ F measurable:

1. {
x→ f(x, y) ∈ E ∀y ∈ F

y → f(x, y) ∈ F ∀x ∈ E

2. the opposite in general is not true!

♣ Proposition B.27 (A Σ-finite kernel makes measurable functions). Let K be Σ-finite from (E,E) to (F,F).
Then:
∀f ∈ (E⊗ F)+ the map:

Tf(x) =

∫
F

K(x, dy)f(x, y) x ∈ E

is such that:

1. Tf ∈ E+

2. T : (E⊗ F)+ → E+ is linear an continuous under increasing limits and such that:
(a) T (af + bg) = aTf + bTg ∀f, g,∀a, b ∈ R+

(b) Tfn ↗ Tf ∀fn, f : f + n↗ f

B.2 Noteworthy results at divergent sizes & Fubini’s Theorem

♣ Theorem B.28 (Measures on product space). Let µ be a measure on (E,E), K a Σ-finite kernel on (E,E)

to (F,F). Then:
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1. πf =
∫
E
µ(dx)

∫
F
K(x, dy)f(x, y) for f ∈ (E⊗ F)+ is a measure on the measurable space (E × F,E⊗ F)

2. if µ is σ-finite and K is σ-bounded additionally:

∃!µ : π(A×B) =

∫
A

µ(dx)K(x,B) A ∈ E, B ∈ F

♢ Observation B.29 (Special case of the Theorem). If K(x,B) = ν(B) a Σ-finite measure on (F,F) then π is
said to be a product measure and we write π = µ× ν.

♣ Theorem B.30 (Fubini’s Theorem). Let µ, ν be Σ-finite measures respectively on (E,E) and (F,F). Then:

1. ∃!Σ-finite π = µ× ν : ∀f ∈ (E⊗ F)+ it holds:

πf =

∫
E

µ(dx)

∫
f

ν(dy)f(x, y) =

∫
F

ν(dy)

∫
E

µ(dx)f(x, y)

2. if f ∈ (E⊗ F) is π-integrable then:
y → f(x, y) ν-integrable µ-a.e. x
x→ f(x, y) µ-integrable ν-a.e. y
#1 holds again

Corollary B.31 (Extending results to finite products). For
⊗n

i=1(Ei,Ei) such that the sigma algebra is generated
by the rectangles, namely: E1 ⊗ . . .⊗ En = σ(A1 × · · · ×An) and for µ1, . . . , µn finite measures:

1. π =×n

i=1
µi is such that:

πf =

∫
E1

µ1(dx1) ·
∫
En

µn(dxn)f(x1, . . . , xn)

2.
⊗n

i=1(Ei,Ei, µi) is a measure space
3. for f positive or π-integrable Theorem B.30 hods with any order of the integrals

Corollary B.32 (More general measures for finite products). For µ1 on (E1,E1) and {Ki}ni=2 kernels on (Ei,Ei)

to (Ei+1,Ei+1)∀i we can define:

πf =

∫
E1

µ1(dx1)

∫
E2

K2(x1, dx2)

∫
E3

· · ·
∫
En

Kn(xn−1, dxn)

Such that π is a measure on
(×n

i=1
Ei,
⊗n

i=1 Ei
)

and π = µ1 ×K2 × · ×Kn.

♠ Definition B.33 (Infinite products measurability setting). For T an arbitrary index set where (Et,Et) is
measurable ∀t ∈ T we can let:

×
t∈T

At = {X = (Xt)t∈T product space : Xt ∈ At ∀t ∈ T} where At ̸= Et for {ti}ni=1 finite

So that the measurable space is
⊗

t∈T(Et,Et)

♣ Proposition B.34 (Infinite products measurability condition). Let:

• (Ω,H) be measurable and (F,F) =
⊗

t∈T(Et,Et)

• ∀t ∈ T ft : Ω → Et
• ∀ω ∈ Ω (ft(ω))t∈T ∈ F

Then:
f : Ω → F measurable wrt H,F ⇐⇒ ft measurable wrt H,Et ∀t ∈ T
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Miscellaneous Results

C.1 Martingales & Stopping times

♣ Theorem C.1 (Uniform integrability & convex function). This is the supporting proof for Lemma 11.51
extended.
The following are equal (TFAE):

1. C u.i.

2. h(b) = sup
C

∫∞
b
dy P[|X| > y] → 0 as b→ ∞

3. for some increasing positive convex function f : R → R+ with lim
x→∞

f(x)
x → ∞ we have

sup
C

E [f ◦ |X|] <∞

C.2 Random Variables

What follows is a treatment of the theoretical results needed to reach Carathéodory’s Theorem and eventually
prove Theorem 3.21.

♠ Definition C.2 (Outer measure µ∗ for an algebra). For µ a measure (Def. 2.2) on a σ-algebra C we define:

µ∗(A) := inf
∑
n

µ(An) ∀A ∈ Ω :

{
(An) ⊂ C

A ⊂
⋃
nAn (An) is a cover

Where the sequence covers the set.

♠ Definition C.3 (µ∗ measurability). A ∈ Ω is µ∗-measurable when:

µ∗(A ∪B) + µ∗(Ac ∪B) = µ∗(B) ∀B ⊂ Ω

♠ Definition C.4 (µ∗-measurable sets M). We denote the collection of µ∗-measurable sets as M.

♣ Proposition C.5 (Trivial properties of µ∗). For an outer measure µ∗ on a σ-algebra F:

1. (nullity) µ∗(∅) = 0

2. (non negativity) µ∗(A) ≥ 0 ∀A ⊂ Ω

3. (monotonicity) A ⊂ B =⇒ µ∗(A) ≤ µ∗(B)

♣ Proposition C.6 (Countable subadditivity of µ∗). For a collection (An) ⊂ M:

µ∗

(⋃
n

An

)
≤
∑
n

µ∗(An)

299
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Corollary C.7 (Measurability in µ∗ characterization). It holds:

A ∈ M ⇐⇒ ∀B ⊂ Ω µ∗(A ∩B) + µ∗(Ac ∩B) ≥ µ∗(B)

♣ Proposition C.8 (M is an Algebra). M from Definition C.4 is an algebra in the sense of Definition 1.4.

♣ Proposition C.9 (Intersection union rule of disjoint sets). For a collection of disjoint countable sets (An) ⊂ M:

µ∗

(
B ∩

(⋃
n

An

))
=
∑
n

µ∗(B ∩An) ∀B ∈ Ω

♣ Proposition C.10 (M is a σ-algebra and the restriction of µ∗ additivity). As the title preludes:

1. M is a σ-algebra (Def. 1.6)
2. µ∗

M is countably additive

♣ Proposition C.11 (Agreement of measure and outer measure + order). Consider a measure µ, a measurable
σ-algebra C an the outer measure µ∗. The collectio M with the conditions of Definition C.4 is such that:

1. ∀A ∈ C µ∗(A) = µ(A)

2. C ⊂ M

♣ Theorem C.12 (Carathéodory extension Theorem).

µ finite on C σ-algebra =⇒ ∃! extension µ∗ on σ(C)

♢ Observation C.13 (What we know so far). We briefly recollect some facts already in hand:

• (Prop. A.29 and the subsequent Obs.) for a p-system (Def. 1.8) C and ν, µ both σ-finite (Def. A.26) on
σ(C) equality ∀A ∈ C implies equality ∀A ∈ σ(C)

• (Thm. C.12) µ finite on an algebra A =⇒ ∃!µ∗ on σ(A )

• (Prop. A.2) A algebra ⇐⇒ A is a p-d-system (Defs. 1.8, A.1)

Are such that ν, µ on E = σ(A ) are finite on A and agree ∀A ∈ A then they agree ∀A ∈ E.
However, in practical cases, we can do more by requiring less that equality over an algebra A , and we can also
extend Theorem C.12 for σ-finite measures while doing so.

♠ Definition C.14 (Semi algebra B). Let B ̸= ∅ be a collection of subsets of the sample space of arrival:

B = {Bi : Bi ⊂ E}

Additionally let A := {
⋃n
i=1Bi, Bi ∩Bj = ∅, Bi ∈ B∀i} where:

1. B1, B2 ∈ B =⇒ B1 ∩B2 ∈ B
2. B ∈ B =⇒ Bc ∈ A
3. we refer to A as the algebra (semi)generated by B and we write A = σ̃(B)

♢ Observation C.15 (Setting). Suppose µ is a map on the semialgebra B such that µ(B) ∈ [0,∞] ∀B ∈ B.
Additionally A = σ̃(B) and E = σ(A ) = σ(σ̃(B)). By the additivity of measures:

A =

n⋃
i=1

Bi, disjoint, A ∈ A , µ(A) =

n∑
i=1

µ(Bi)

However, how do we assign µ(B) for B ∈ B?

♣ Proposition C.16 (Semialgebra to Algebra extension). Let B be a semialgebra on E and A = σ̃(B). Then,
the map:

µ : B → [0,∞]

is uniquely extended to A if and only if:

1. (nullity) ∅ ∈ B =⇒ µ(∅) = 0

2. (finite additivity) {Bi}ni=1 ⊂ B finite disjoint =⇒ µ(A) = µ(
⋃n
i=1Bi) =

∑n
i=1 µ(Bi)
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3. (countable subadditivity) (Bn) ⊂ B countable disjoint and B ⊂
⋃
nBn, B ∈ B =⇒ µ(B) ≤

∑
n µ(Bn)

Corollary C.17 (Double extension). This is a corollary of Carathéodory’s extension Thm. C.12.
For a semialgebra B where A = σ̃(B) and µ a measure on A , σ-finite (Def. A.26), then:

∃! extension µ on E = σ(A ) = σ(σ̃(B))

satisfying the requirements of Proposition C.16.

♡ Example C.18 (Proving Theorem 3.21). Recall that B(R) = σ({(−∞, a], a ∈ R}) (Ex. 1.20), also:

∀b ≥ a Leb([a, b]) = Leb([a, b)) = Leb((a, b]) = Leb((a, b)) = b− a

Notice that {(−∞, a], a ∈ R} is trivially a semialgebra (Def. C.14) by being a p-system (Def. 1.8). Then:

σ̃({(−∞, a], a ∈ R}) = A Algebra

And by Proposition C.16 since µ satisfies #1,#2,#3 we can extend it to a measure µ = Leb on A to µ where
µ(I) := Leb(I) ∀I ∈ B.
Now µ is on A = σ̃(B), thus on finite disjoint unions. Additionally, µ is σ-finite since:

R =
⋃
a∈Q

[−a, a]

by Q being dense in R (Prop. 18.15) and we could decompose the measure to a countable set of measures. Then,
by Carathéodory’s Extension Thm. C.12 we identify a further unique extension of µ into µ∗ on the σ-algebra
generated by A which is:

E = σ(A ) = σ({(−∞, a], a ∈ R}) = B(R)

And we can safely say that:

FX(x) = FY (x) ∀x ∈ R ⇐⇒ PX(A) = PY (A) ∀A ∈ B(R)

a result which can be adapted to sample spaces E different than R.

C.3 Laplace, More filtration types, Poisson vs Martingale

In this Section we give more context for the treatment of Sections 18, 19, 22 and provide a proof of the missing
piece of Theorem 12.4. The very first result is a useful property.

♣ Proposition C.19 (Laplace transforms and finiteness). This result is used in Lemma 14.3.
Recall the definition of Laplace transform (Def. 6.11). Then:

X ≥ 0 a.s. =⇒ lim
r↓0

P̂X(r) = P[{X <∞}]

♠ Definition C.20 (F-predictable σ-algebra Fp). For:

Fpp = {H × (s, t] : 0 ≤ s < t <∞, H ∈ Fs} ∪ {H × {0} : H ∈ F0}

We set F p = σ(Fpp) on Ω× R+.
A process F = (Ft)t∈R+

is said to be F-predictable if its path is measurable wrt Fp. Namely, (ω, t) → Ft(ω) ∈ Fp.
We call elements of Fpp primitive sets and indicators primitives.

♣ Proposition C.21 (Predictability, left continuity and adaptedness). Say Fp = σ(G) then:

G =
{
G = (Gt)t∈R+

: adapted, left continuous on Ω× R+

}
♠ Definition C.22 (Setting). For the results of this Section, we consider:

• N = (Nt)t∈R+
an increasing, right continuous process adapted to F
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• νt = E[Nt] <∞ ∀t and Es[Nt −Ns] = νt − νs ∀s ≤ t ∈ R+ which means that:

Ñt = Nt − νt F-martingale

♢ Observation C.23 (Feasibility of the Definition requirements). Observe that for a process N with ⊥⊥ incre-
ments and finite expectation at all times E[Nt] <∞∀t ∈ R+ we are in the setting of Definition C.22.

♣ Theorem C.24 (Stochastic integrals reduce to the mean in expectation). Consider a process F = (Ft)t∈R+

positive and predictable (Def. 12.5). Then:

E
∫
R+

FtdNt = E
∫
R+

Ftdνt

Corollary C.25 (Stopping times version). For a positive predictable process F = (Ft)t∈R+
∈ Fp and stopping

times S, T (Def. 11.9) such that S ≤ T it holds that:

ES
∫
(S,T ]

FtdNt = ES
∫
(S,T ]

Ftdνt

♣ Theorem C.26 (Martingale Creation by predictability). Predictability and boundedness are sufficient to form
a martingale once integrating.

F = (Ft)t∈R+
∈ Fp : ∀t Ft ≤ b ∈ R+ =⇒ Mt =

∫
[0,t]

FsdÑs t ∈ R+ F-martingale

Where Ñs was constructed in Definition C.22.

Lemma C.27 (Counting process decomposition of bounded functions). For f a bounded function and N a
counting process (Def. 11.13) we can decompose f into:

f(Nt) = f(0) +

∫
[0,t]

f(Ns− + 1) + f(Ns−)dNs Ns− = lim
r↑s

Nr

♣ Proposition C.28 (Martingale is Poisson counterdirection). This is the opposite direction required for the
proof of Theorem 12.4.
For a counting process N = (Nt)t∈R+

(Def. 11.13) adapted to F:

Ñ = (Nt − ct)t∈R+
F-martingale (Def.11.35) =⇒ N ∼ Pois(c) (Def.12.2)

C.4 More about characteristic functions

The following is a quick explanation of the result of Lemma 17.20.

Lemma C.29 (Characteristic function "symmetry"). Recall Definition 6.17 for ΦX(t).
For densities f, g of X,X ′ it holds that:∫

R
ΦX(t)g(t)dt =

∫
R
f(t)ΦX′(t)dt

Lemma C.30 (A strange consequence of the CLT). For X a r.v. and ϵ > 0 it holds that:

X ⊥⊥ Nϵ ∼ N(0, ϵ) =⇒
∫
R
g(y)ρϵ(x− y)dy

ϵ→0→ g(x)

For ρϵ the Radon Nykodym density (Def. 5.9) of N(0, ϵ).

♢ Observation C.31 (Idea for inverse of ΦX(t)). By the above Lemma g(x) = limϵ→0 g(y)ρϵ(x− y)dy. Then,
given x, ϵ we can find a map:

hx,ϵ(·) s.t. y → Φh(y) is y → ρϵ(x− y)

so that applying Lemma C.29:

g(x) = lim
ϵ→0

g(y)ρϵ(x− y)dy = lim
ϵ→0

∫
R
Φg(t)hx,ϵ(t)dt

which, together with the continuity and monotonicity of the characteristic function (a form of Theorem 6.18)
ensures uniqueness of the relationship x ⇐⇒ hx,ϵ.
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Lemma C.32 (An identity for distribution & characteristic function). For X a r.v. in R = E with density f(x):

ΦX(r) =

∫
R
eirxf(x)dx ⇐⇒ f(x) =

1

2π

∫
R
eirxΦX(r)dr
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Appendix D

Completing Chapter 18 and 19, Brownian
Motion

♣ Theorem D.1 (Lévy characterization as Wiener). This is the proof of Theorem 18.4#2.

Xt = at+ bWt : (Xt)t∈R+
Lévy =⇒ (Wt)t∈R+

Wiener

Lemma D.2 (Kolmogorov Maximal inequality). This is the proof of Lemma 18.13.
For an independency of r.v.s {Xi}ni=1 with E[Xi] = 0∀i with sum Sn =

∑n
Xi it holds:

a2P[max
k≤n

|Sk| > a] ≤ V [Sn] ∀a ∈ (0,∞)

♣ Proposition D.3 (Dyadics are dense in R). This is the proof of Proposition 18.15.

∀r ∈ R,∀ϵ > 0, ∃k,m ∈ N : t ∈ (k2−m, (k + 1)2−m), t− k2−m < ϵ

D.1 More about augmented filtrations

This Section is devoted to providing the additional details needed to understand well the results arising from the
augmented filtration construction, such as Blumenthal’s law or relations with stopping times. The starting point
for this context is Definition 19.1, here we start from a parent of it.

♠ Definition D.4 (Augmented filtration). A filtration F on a complete (Def. A.37) space (Ω,H,P) is a filtration
such that:

∀N ∈ H : P[H] = 0 N ∈ F0

Namely, the filtration always contains (from the start onwards) negligible sets of a given probability space.

♢ Observation D.5 (About augmented filtrations). For a complete probability space, a filtration F and the set
of negligible sets N ⊂ H we can say that the filtration:

F = σ ({Ft ∪N∀t})

is augmented and that the original fitration F is augmented if and only if F = F.

♠ Definition D.6 ("Right continuous" filtration F+). we define the filtration:

Ft+ :=
⋂
ϵ>0

Ft+ϵ ∀t ∈ R+, F+ = (Ft+)t∈R+

Notice that F+ is finer (Def. 11.6) than F. Additionally, it is right continuous if the sense that Ft = Ft+ ∀t ∈ R+.

305
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♡ Example D.7 (Interpreting the new filtrations). For a smooth motion t→ Xt we could see Ft as the σ-algebra
containing all the information about past and present positions, while Ft+ contains also the velocity at time t,
which formally is:

v = lim
ϵ→0

Xt+ϵ −Xt

ϵ
as well as the acceleration etc.

♣ Theorem D.8 (Augmentation and stopping times). For a filtration F and a random time T : Ω → R+:

T stopping F+ (Def.11.9) ⇐⇒ {T < t} ∈ Ft ∀t ∈ R+

Namely, T is a stopping time of the right continuous filtration if it is so for the filtration itself.

Corollary D.9 (Right continuous variant). F right continuous s.t. Ft = Ft+∀t ⇐⇒ {t < T} ∈ Ft∀t which is
in accordance with Definition 11.9.

♠ Definition D.10 (Past until T ). For a filtration F and a stopping time T for F+ the corresponding past until
T is:

FT+ := {H ∈ H : H ∩ {T ≤ t} ∈ Ft+ ∀t ∈ R+}
Which in case of right continuity can be declined to the classical Definition of stopped filtration (Def. 11.19).

♣ Proposition D.11 (Sequences of stopping times). For a sequence of random times (Tn)n∈N stopping either
F or F+ it holds:

1. T = inf Tn is stopping F+

2. FT+ =
⋂
n FTn+

♢ Observation D.12 (Building limits with the result and right continuity). If F is right continuous and (Tn)n∈N
is a sequence of stopping times then lim inf, lim sup, sup, inf are all stopping times.

♣ Proposition D.13 (Partitions of independencies). Given an independency {Ft, t ∈ T} and a sequence
{T1, . . .} partitioning T we can say that:

=⇒ FT := {Ft : t ∈ Ti} i ∈ N∗ : {FT1 , . . . ,FTn} independency

♠ Definition D.14 (Future σ-algebras and tail σ-algebra Tn,T). define:

• Tn =
∨
m>n Gm for (Gn) ⊂ H

• T =
⋂
n Tn the remote future tail σ-algebra

♣ Theorem D.15 (Kolmogorov’s 0-1 law). For an independency the evens in the tail σ-algebra are either null
or certain:

(Gn) ⊂ H independency =⇒ ∀H ∈ T P[H] ∈ {0, 1}

♢ Observation D.16 (Setting for next Theorem). The probability space is (Ω,H,P), X : Ω → Rd is a stochastic
process, and G = σ({X}) is the filtration it generates.
The completion (Def. A.38) is denoted as (Ω,H,P) with sigma algebra generated by the negligible sets denoted
as N = σ({N ∈ H : P[N ] = 0}).
Here the augmented filtration is G built as Gt

∨
N ∀t.

Recall that right continuity is defined as: ⋂
ϵ>0

Gt+ϵ = Gt ∀t ∈ R+

This fact will hold in the specific setting of the next Theorem.

♣ Theorem D.17 (Lévy process in augmentation is Lévy). Let X = (Xt)t∈R+
be a Lévy process (Def. 17.1)

wrt G over (Ω,H,P). Then:

1. X is Lévy wrt G over (Ω,H,P)
2. G the augmentation is (augmented and) right continuous

Corollary D.18 (Blumenthal’s 0-1 law). The results of this Section eventually allow us to prove Corollary 19.9.
With the setting of the last Theorem:

∀G ∈ G0 P[G] ∈ {0, 1}



Bibliography

[Çin11] Erhan Çinlar. Probability and Stochastics. Vol. 261. Graduate Texts in Mathematics. New York, NY:
Springer, 2011. isbn: 978-0-387-87858-4 978-0-387-87859-1. doi: 10.1007/978-0-387-87859-1. url:
http://link.springer.com/10.1007/978-0-387-87859-1 (visited on 11/07/2022).

[Ver18] Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in Data Science.
1st ed. Cambridge University Press, Sept. 27, 2018. isbn: 978-1-108-23159-6 978-1-108-41519-4. doi: 10.
1017/9781108231596. url: https://www.cambridge.org/core/product/identifier/9781108231596/
type/book (visited on 12/12/2022).

[BZ99] Zdzisław Brzeźniak and Tomasz Zastawniak. Basic Stochastic Processes. Springer Undergraduate Math-
ematics Series. London: Springer London, 1999. isbn: 978-3-540-76175-4 978-1-4471-0533-6. doi: 10.
1007/978-1-4471-0533-6. url: http://link.springer.com/10.1007/978-1-4471-0533-6 (visited
on 11/07/2022).

[Dur19] Richard Durrett. Probability: Theory and Examples. Fifth edition. Cambridge Series in Statistical and
Probabilistic Mathematics 49. Cambridge ; New York, NY: Cambridge University Press, 2019. isbn:
978-1-108-47368-2.

307

https://doi.org/10.1007/978-0-387-87859-1
http://link.springer.com/10.1007/978-0-387-87859-1
https://doi.org/10.1017/9781108231596
https://doi.org/10.1017/9781108231596
https://www.cambridge.org/core/product/identifier/9781108231596/type/book
https://www.cambridge.org/core/product/identifier/9781108231596/type/book
https://doi.org/10.1007/978-1-4471-0533-6
https://doi.org/10.1007/978-1-4471-0533-6
http://link.springer.com/10.1007/978-1-4471-0533-6

	List of Symbols
	Read Me
	I Measure Theoretic Probability
	Classes of Sets
	Sigma algebras, Borel sets

	Measures & Probablity Spaces
	Probability & other measures
	First properties

	Random Variables
	Realizations over the domain, distribution, the pdf, the cdf

	Expectation
	Building the expectation step by step
	Properties of Expectation and integral
	Notions of convergence and results

	Density Functions
	Radon-Nikodym Perspective

	Random Vectors, Transforms
	Multivariable approach
	Transforms

	Uniform Integrability & Inequalities
	More requirements for integrability
	Concentration inequalities
	A Graph Theoretic Application

	Independence & Convolutions
	Sigma algebra approach to independence
	Convolutions and Radon-Nykodym again

	Borel Cantelli Lemmas & Convergence
	Borel-Cantelli Lemmas
	Convergence revisited
	Inner product space and Orthogonal Projection Theorem
	Weak Convergence

	Conditionals & Stochastic Processes
	Constructing conditional Probabilities
	The infinite dimensional case for stochastic processes


	II Stochastic Processes
	Martingales & Stopping Times
	Filtrations, Stopping times and easy notions
	Random Expectation and Martingales
	Uniform integrability of martingales
	Wiener Processes

	More Processes & Integration
	Poisson processes
	Stochastic Integrals
	Doob's results and Martingale Convergence
	Exercise Session

	Poisson Random Measures
	Random Measures
	Stones in a Field and Poisson Random Measures
	Properties of Poisson Random Measures

	Atomic View of Poisson Random Measures
	Other Properties of Poisson Random Measures
	Simulation
	Arrival Process

	Transformations & Increasing Lévy Processes
	Stable and Gamma Processes

	Poisson Processes
	Lévy Processes
	Compensated sum of jumps from relaxed integrability conditions

	Brownian Motion
	A Different Perspective of Wiener Processes
	Continuity

	Arcsine laws, Hitting times
	Augmentations and Hitting Times
	Arcsine Laws
	Running Maximum and Poisson Jumps to interpret Hitting Times

	Path Properties of Wiener processes
	Variation


	III Additional Material
	Recap of Part II
	Results Collection
	Martingales and Processes
	Random Measures and Processes
	Continuous Time Processes and Path Properties

	Examples Collection
	Counting process
	Random Walk
	Bayesian Mean Estimation
	Branching Process
	Poisson Process
	Stones in a field
	Gamma process
	Stable process
	Wiener Process
	Cauchy Process
	Miscellaneous Examples


	Itô Integration
	Constructive Definition of the Itô Integral
	Properties of the Itô Integral

	Sets, Measures, Probability
	The p-system extension
	More about measures
	More about integrals of measures

	Transforms, Kernels, Product Spaces
	Combining measures through kernels
	Noteworthy results at divergent sizes & Fubini's Theorem

	Miscellaneous Results
	Martingales & Stopping times
	Random Variables
	Laplace, More filtration types, Poisson vs Martingale
	More about characteristic functions

	Completing Chapter 18 and 19, Brownian Motion
	More about augmented filtrations



