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List of Symbols

The list collects basic symbols used in the document.

Physics

x¨y¨ expectation in the Boltzmann distribution

F free energy

N number of micro-states, degeneracy function

E energy

O observable

S Gibbs entropy, Boltzmann entropy

U internal energy

kB Boltzmann constant

T, β temperature, inverse temperature

Statistics and Mathematics

pΩ,F ,Pq probability space

X,x random vector, vector

Z partition function

δ Dirac Delta distribution

E¨ r¨s expectation in a distribution that is not Boltzmann

Hp¨q entropy

Hp¨, ¨q cross entropy

Frf sp¨q Fourier Transform of f

Lrf sp¨q,L˘rf sp¨q Laplace Transform of f , bilateral Laplace transform

Lrf sp¨q Legendre-Fenchel transform of f

X space of configurations, phase space

A matrix and random matrix

Ω sample space

ϕXp¨q Characteristic Function of X

KXp¨q, κn Cumulant Generating Function of X, nth cumulant

MXp¨q Moment Generating Function of X
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Foreword

While diving deep into the intricacies of Statistical Physics, I often found that I
was not prepared for some sub-topics and terminology appearing. This document
is an attempt to collect part of the aspects that might bridge the gap. The intention
is not to be comprehensive, but rather to be as self-contained as possible in the
discussion of interesting topics.

Clear emphasis is given to techniques and observations that are needed to treat
the intersection of Inference and Statistical Physics, which is eventually what I had
time to focus on. Said so, this is not the right document if the reader is interested in
the branch of the field that still focuses on the purely Physical aspects. For example,
a strong influence was the course (Krzakala and Zdeborová 2021), the book (Mezard
and Montanari 2009), or in general the works of those researchers that sit at the
boundary between Inference, Information Theory, Physics, and Machine Learning.

The topic is very fascinating, wide, and complex. Given that here we focus only
on giving the underlying ideas, there will be very little emphasis on modern uses of
the tools. The reasons are twofold:

1. I wanted to write down a relaxed treatment of what is considered introductory
knowledge in the field;

2. the document itself would have been too large and dispersive.

In some sense, the following Chapters could be taken as a quick crash-course on
each of the subtopics for inexperienced readers like me, who cannot make sense of
some terms and concepts when they first read them.
For a discussion of one of the many leaves of research where Statistical Physics is
useful, I have written a thesis (link), of which these pages are effectively a spin-
off. Even more importantly, any reference cited in the Chapters is a valuable
source of interesting and wonderful works. With some care, I have made the effort
of combining Publications, Books, Blogs, and Conference papers, as to provide
something for every reading taste.

Note for the reader I am very much happy to receive feedback. This is a draft
and I do wish to add a Chapter on Graphical Models with some nice results, and
maybe also on the REM. . .

Content Outline Chapter I is a brief introduction to Thermodynamics, which
one of the fields where the first relevant questions for modern Statistical Physics
originated. In Chapter II we collect more formal statements about objects and
techniques often used in practice, with an emphasis on those required for replica
computations, which is unfortunately not treated here in detail. In Chapter III we
zoom out again, and reinterpret some previously stated results in the context of
Information Theory, giving further justification towards the fact that all fields have
a very wide overlap, obscured by different terminologies, and different questions.

1
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Chapter I

Thermodynamics, Statistical
Mechanics

This Chapter is a Physics-style discussion of the foundations of Thermodynam-
ics/Statistical Mechanics. It serves the purpose of introducing terminology and
concepts that are not common in Machine Learning. Nice resources that approach
the field independently are (S. J. Blundell and K. M. Blundell 2009, Chaps. 1, 2,
4), the lecture notes (Schwartz 2021), especially Lecture 7 and 8, or the manuscript
(Tong 2012), which is more comprehensive. Since the subject is very old and at-
tractive, the list is not exhaustive.
In terms of style, we will be as concise as possible and leverage intuition. The prac-
tical purpose is providing a definition of entropy and a quick treatment of ensembles
and their importance.
In Section I.1, the building blocks of Thermodynamics are presented, to later ar-
rive at Sec. I.2, where Temperature is introduced. Then, we attempt to give a
self-contained description of ensembles, in Section I.3. To conclude, we present a
discussion on the notion of mean-field approximation and one type of inequality
which is widely used under the rug.

Preliminaries Throughout pΩ,F ,Pq is a probability space. Emphasis on n is
placed especially when the size of the sample will matter. When we need no dis-
tinction and the probability space is clear from context, we will use P. As always,
random variables may take values X : Ω Ñ X , where X Ď Rd. In particular, we
choose the following construction, which appears in (Ellis 2006, Sec. I.1). Despite
being more general than what we will need, it provides a good understanding of how
the probability space is designed and is of great importance for large deviations.
We will introduce the concept in Section III.5.
A system is an idealized experiment where a random process is isolated from its sur-
roundings. In a system, there will be a collection of random variables tXi : i P I u,
where I is an index, defined on the probability space pΩ,F ,Pq taking values in a
common state space X . Any result will depend solely on the random variables, so
a natural choice is to take the sample space as the product space X I , and tXiuiPI

is its coordinate representation process. Mathematically, for an ω⃗ “ tωiuiPI P X I

denoting the sample space realization across the index1 , we let Xipω⃗q “ ωi which
is the ith coordinate (vector) of ω⃗. The interpretation is that Ω “ X I is the set
of all possible micro-states, i.e. all possible ways in which the phenomenon of ran-
domness realizes, and ω⃗ P Ω will be a configuration/micro-state of the system. For
a suitable choice of P, the construction is valid. We provide the canonical example
below, and a simplification in terms of coin tossing.

Example I.0.1. Adapted from (Ellis 2006, Ex. I.1.1)
Choose as index set I “ Z, or for a realistic experiment t1, . . . , nu, which is a
subset of it. Let X Ď Rd. Define P to be the product measure of X I of identical

1Notice that we somehow abuse notation and use the vector notation on bolds ω⃗. This is to be
understood as ω⃗ being a vector of vectors. Nevertheless, all the construction will be needed only
tangentially throughout the document.

3



4 CHAPTER I. THERMODYNAMICS, STATISTICAL MECHANICS

d-dimensional marginals on the space X . For the set of integers, it is an infinite
product measure, for the experiment set, it is finite. We are describing a set of
iid random variables. As a byproduct, given I ,X it suffices to specify one-sample
marginals P to obtain P “

Â

iPI P uniquely. To conclude that the second example
makes sense in the construction, the conclusions of (Ellis 2006, Chap. II) are
needed.
In particular, let I “ Z, X “ t0, 1u. The marginals are on a binary space. If they
are all identical, then P “

Â

iPI P for a choice P ” Bernpαq with α P r0, 1s. In
other words, we are describing an infinite sequence of coin tosses.
In particular, let I “ t1, . . . , nu,X “ Rd, take P ” N p0, Idq. Then P describes
the law of n iid standard multivariate Gaussians.

I.1 Postulates
We place ourselves in the metaphorical scenario of a thermodynamic system. For
the beginning, we will take the perspective of energy. Theoretically, Energy will be
the result of a configuration of random variables with a well defined function. We
will reconcile the two notions when “defining” the Hamiltonian, which is the right
formalism for the above construction. If it causes difficulties, energy can be directly
taken as a function of X.
Before getting into concrete matters, we will consider four foundational principles.

(P1) Energy E is a scalar quantity that describes a thermodynamic system. It is
a thermodynamic property that is to some extent measurable or observable.

(P2) An isolated system is not allowed to interact with external entities. We can
think of it as a perimeter with a strong boundary at fixed volume that al-
lows for no exchange of energy. Its energy is the sum of a kinetic term and
a potential term. The former concerns particle-level energy contributions,
the latter is a term accounting for relative positions and interactions intra-
particles. A closed system does not exchange particles with the environment
but can exchange energy.

(P3) An ideal gas is a system of n non-interacting particles.2 Its internal energy is
thus only the sum of the individual kinetic energies.

(P4) Heat is the phenomenology of energy in transit. For two systems allowed to
exchange energy, we say they are in thermal contact. Experimentally, heat
flows to reach equilibrium, with an equal share rather than a polarized sce-
nario.3

It is fundamental to pair these principles with some of the famous laws of thermo-
dynamics. While these can be justified on many grounds (e.g. see (S. J. Blundell
and K. M. Blundell 2009) or any book on the subject), we will largely avoid such
discussion, since it is not relevant.

Zeroth Law of Thermodynamics

Two systems in equilibrium with a third are in equilibrium with each other.
In other words transitivity applies.

We consider non-deterministic systems with n particles, where n is large. Due
to randomness, a collection of possible realizations in a space Ω is available. We also
assume that physical constraints force the statistician to access the configuration
only at a global scale, which might however come from many different realizations.
Different realizations are called micro-states, while what is observable is a macro-
state. In other words, given the overwhelmingly numerous amount of particles, we
will be interested and allowed to measure only macro-states.

2the assumption of Molecular Chaos and coarse Graining in Ehrenfest’s and Maxwell’s work
(Ehrenfest et al. 1960; Maxwell 1860), (Schwartz 2021, Lecture 3)

3Namely, “hot” flows into “cold”, but notice that we are not defining temperature yet! For now,
it can be visualized as energy exchange.
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In the first appearance of Thermodynamical theories, it was justified by the scaling
of the playground. A Physicist deals with n „ 1023 particles, of the order of
Avogadro’s number, which is the number of atoms in a mole of matter. With such a
number of degrees of freedom, it is hopeless to describe the model with Newtonian
mechanics, and one must resort to probabilistic arguments.
Despite the seemingly tailored adaptation, we will see that many results adapt by
analogy to other theoretical frameworks, and more interestingly than others, to high
dimensional data. We give a taste of these large scale phenomena in the example
below.

Example I.1.1. Consider a fair coin, where each realization xi P t0, 1u. For n
throws, we represent a single outcome ω P Ωn as xpωq “ px1pωq, . . . , xnpωqq, which
is a string of digits. While every binary string is equally likely with probability (wp)
1
2n , there are

`

n
k

˘

ways of having exactly k heads. For n big, the probability of having
k heads is not uniform in k, since there is not a single occurrence for which k heads
are sampled. Consider n “ 20, k “ 5, then:

ˆ

n

k

˙

“ 15504 P

«

n
ÿ

i“1

xi “ k

ff

“
15504

220
« 0.14 "

1

2n
« 9.53 ¨ 10´7. (I.1.2)

In a thermodynamics setting, such notion is justified by the fact that if we have
n " 1 particles, it is very unlikely that we will be able to measure e.g. the velocity
of each of them individually. Physicists thus pursue a treatment of the subject that
deals with aggregate phenomena stemming from the small scale into the big scale.
On a different perspective, the peculiarity of exploding numbers spurs from the small
scale indistinguishability, which mathematically translates in factorial expressions
that blow up quickly as n grows.

Remark I.1.3. Notice that we are finding the number of micro-states by fixing
the macro-state of observation. It is easy to understand why this choice is made:
since for each micro-state there will be only one macro-state, while each macro-state
refers to many micro-states. Therefore, the other direction would be meaningless:
the function that maps micro-states to macro-states is trivial, though difficult to
measure, while the function that maps macro-states to micro-states multiplicity is
not friendly, but easy to derive.

Definition I.1.4 (Observable). A function O : X Ñ R, which ideally represents
the outcome of an experiment. Given the randomness, it will eventually be a random
function. An observable is a quantity, a function, a macroscopic property. All
names are equivalent.

Having outlined the starting scenario, we now develop in parallel the treatment
of first-principles and their direct consequences.

I.2 A Statistical Definition of Temperature
Consider two systems in thermal contact. When external contributions are negligi-
ble, these are thought of as an isolated system, for which energy is conserved. We
write:

E “ EA ` EB ` EAB dE “ 0 (I.2.1)

to enforce these constraints, where the pedices denote that individual contribu-
tions are summed, and the interaction energy EAB is negligible.4 Implicitly, we are
leveraging another law.

First Law of Thermodynamics

Energy is conserved and may just appear in different forms. The law is
equivalent to the more famous statement “No energy is created or destroyed”.

4In practice, this is the energy on the layer of contact. For sufficiently large volumes, the surface
is negligible.
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It must be stressed that Energy is in units of measure, so a different choice of
units of measure leads to equivalent notions. Fixing the sum of the two energies to
any value thus implies that to know a macro-state of the system it is sufficient to
know the value of EA. If we denote as N the number of micro-states of a system,
system A can be in any of its NApEAq micro-states and system B in any of its
NBpEBq.

Example I.2.2. In a probabilistic sense, one can see that |Ω| “ N , where the two
are allowed to depend on pn,E q. In the two systems setting, only NA varies as EA

varies. Such fact is justified by the observation that the probability space is fixed,
and the macroscopic property is itself random. The way of letting X and N vary
is crucially different. It is done ab-initio, the other is during the calculations. Basi-
cally, a choice pn,E q will lead to a system. While we could interpret the evolution at
each n, for our purposes, we will define problems at finite n, but when considering
a Thermodynamically isolated system, we will see its behavior at n Ñ 8.

As already observed in Example I.1.1, many micro-states may map to a single
macro-state energy. Hence, it makes sense to introduce an object that collects
configurations with the same behavior up to measurements.

Definition I.2.3 (Degeneracy function). Recall that E is a scalar function, assume
it takes values on a space E Ď R. The degeneracy is then a function N : E Ď R Ñ

N such that N pE pωqq counts the number of micro-states that attain such energy
level. If energy takes continuous values, we take with some care N pE q to represent
the number of micro-states with energy in rE ,E `δE q for a small variation δE of the
energy, which is reasonable as long as we implicitly assume that our measurement
tools have accuracy less than δE .

Example I.2.4 (Avogadro Scaling of Degeneracy). For nA “ 1023 particles, with
possible individual states t0, 1u, there are 210

23

arrangements.

When two systems are in contact, there are NApEAqNBpEBq possible micro-
states by a simple combinatorial argument. We imagine that the two are left in
contact for enough time t as to reach an equilibrium, which in our case could be
regarded with the expressions dEA “ 0,dEB “ 0 (as time dependent quantities).

Assumption I.2.5 (Fundamentals). We (reasonably) assume that in thermal equi-
librium:

(A1) Postulate of equal a priori probabilities: each micro-state is equally
likely;5

(A2) Variability: micro-states are continuously changing in time;

(A3) Ergodicity: for t Ñ 8 all micro-states will be visited for an equal amount of
time. It could also be implied by a detailed balance condition and irreducibility.
An argument with such flavour is found in (Jaynes 1957).

Remark I.2.6. What is referred to as ergodic hypothesis mostly regards statement
(A3). We do not discuss much about this matter, but it is common to take it
as granted. The crucial advantage of ergodicity is that time-averages become
sample-space averages, and the Central Limit Theorem (CLT) can be used for
a sequence of observations in time t rather than in ω P Ω. Without it, any compu-
tation would be on different grounds, as we are doomed to observe only one ω for
each sequence of observations.

From these foundations, which can be added to (P1)-(P4), we are ready to state
another law.

Second Law of Thermodynamics

The macro-state of an isolated system in Thermal Equilibrium is the one
with highest multiplicity of accessible micro-states associated. By accessible
we mean in the timescale of the observation

5With reasonable work, this can be seen as a consequence of Boltzmann’s H Theorem (Schwartz
2021, Lecture 3)



I.2. A STATISTICAL DEFINITION OF TEMPERATURE 7

Example I.2.7. Consider the fair coin example, and ignore punctual estimations,
it is sensible that by the CLT the average of n “ 106 throws will be very close to 1

2 .
In principle exactly 1

2 is not true at finite n, but if we allow for some error and let
n be very big, the almost sure convergence will give the result.

Coming back to our two systems, we aim to maximize the product of micro-states
with respect to (wrt) the energy values at fixed total energy. Mathematically

max
EA:dE “0

NApEAqNBpEBq, (I.2.8)

which by usual rules of differentiation leads to the system:
$

&

%

dNApEAqNBpEBq

dEA
“ 0

dE “ 0
“

$

&

%

NApEAq
dNBpEBq

dEB

dEB

dEA
` NBpEBq

dNApEAq

dEA
“ 0

dEA ` dEB “ 0
.

(I.2.9)
From the second equation (i.e. the constraint of energy conservation), we derive
dEA “ ´dEB , which substituted into the first gives the following expression:

´NApEAq
dNBpEBq

dEB
` NBpEBq

dNApEAq

dEA
“ 0 (I.2.10)

multiplying by 1
NApEAqNBpEBq

and using the identity d ln fpxq

dx “ 1
fpxq

dfpxq

dx one gets

d lnNApEAq

dEA
“

d lnNBpEBq

dEB
. (I.2.11)

In simple words, two systems isolated from the rest, in contact and at thermal
equilibrium will most likely be found with a share of the total energies that obeys
Eqn. I.2.11.

Remark I.2.12. Enforcing that energy is conserved and maximizing with respect
to the energy of the first system is implicitly assuming that system B admits an
energy E ´ EA. It is not in principle guaranteed, but can be if we get back to the
reasoning that the energy levels are so fine grained that our tools are not able to be
as accurate as their description.

At this moment, it is worth considering what is the notion of thermal equilib-
rium in day to day life. Empirically, temperature is a quantity that we measure. In
houses there are no energy scales, but rather thermometers, and if two objects are
put into contact for enough time they will eventually average out their tempera-
tures. Temperature is a rather arbitrary notion6 like any other quantity in units of
measure, but we can formally give it an origin from the exact equilibrium condition.
Thus we let:

1

kBT
:“

d lnN pE q

dE
, kB “ 1.3807 ¨ 10´23JK´1 (I.2.13)

which formalizes the object and allows for mathematical treatment. Here kB is
a constant which is derived by how other objects are defined in terms of units of
measure. Since the result is dependent on the reference system, and we are not
interested in experimental measurements that depend on Physical units of measure,
we might as well make the simplification of taking kB “ 1. Note also that by
construction T ě 0.

Remark I.2.14. We avoid most of the times the notation T for the more amenable
β :“ 1

T , which might refer to a “final time”. This will allow for a unified treatment
with the same symbol all around. Obviously, when T Ñ 0 we have β Ñ 8 and when
T Ñ 8, β Ñ 0. There two are in a bijection. In rare cases, we will use T and
make it explicit.

Definition I.2.15 (Boltzmann Entropy). For ease of notation in an isolated system
with equally likely micro-states let

S :“ kB lnN pE q, (I.2.16)

so that we can express Eqn. I.2.11 as β “ dS
dE .

6what is it in principle? Where does the concept of temperature start at all?
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Such construction leads to a mathematical statement of the first law of thermo-
dynamics, which reads:

dE “ T dS ´ P dV (I.2.17)

where pP, V q are pressure and volume. The statement holds in a variety of cases,
most importantly with reversible changes and in absence of phase transitions. We
will discuss the latter, and avoid dealing with the former. For simplicity, it can be
taken to be true with some care. On the other hand, the more general statement
that dE “ d̄Q ´ d̄W where Q,W are heat and work and the symbol d̄ denotes an
inexact differential is always true but requires different notions. A starting point
for the approach is any classical thermodynamics book such as (S. J. Blundell and
K. M. Blundell 2009). The discussion is still interesting once the focus moves to a
finer analysis of the second law of Thermodynamics.

Remark I.2.18 (An equivalent statement of the second law). The second law of
thermodynamics says that entropy tends to maximize. Taking two systems, not in
contact with entropies pSA,SBq, one then derives that when put in contact:

SpA,Bq ě SA ` SB , (I.2.19)

which brings to the statement that dS ě 0. A direct proof is by arguing that
the micro-states of A,B are a subset of the micro-states of pA,Bq combined. In
“microscopic” words, allowing a system for more freedom increases its number of
accessible states. However, this is a subtle matter when doing statistical mechanics.
Entropy tends to increase, and only increases effectively when the system size is
large. We will always consider cases in which the limiting effect holds.

While Boltzmann entropy is just one possible example that restricts to the uni-
form distribution over micro-states, it is already of great importance. First of all,
it can be shown that it implies the thermodynamic definition of entropy change in
terms of heat (Schwartz 2021, Lecture 6), which is yet another statement of the
second law. Secondly, it has strong links with other definitions of entropy. To par-
tially deal with such matter it is worth introducing descriptive terms of quantities
that are common in Physics but not in other fields.

Definition I.2.20 (Extensive and Intensive quantities). Consider a system A with
size n. An observable Opxq or a property of it is:

• extensive if it is proportional to n, i.e. Opx;nq9n. It is also called extrinsic.

• Intensive if it is independent of n, i.e. if Opx;nq ” Opxq. It is also called
intrinsic.

The definition is somehow sloppy, it could be that extensivity is verified also when
proportionality with system size is of higher order. We do not allow this. An ob-
servable Opx;nq9n2 is not extensive. To make the claim clearer, extensivity is
found by requiring additivity for sub-systems. Then, we give a nicer definition that
accounts for all of these facts at the thermodynamic limit n Ñ 8, which is in the
end what we implicitly study. It will however need the notion of density, which is
discussed in Remark I.2.23 below.
A quantity is

• extensive if Opx;nq “ nopxq ` o pnq, i.e. it is made of a size times size-
independent term and a vanishing term in system size

• intensive if Opx;nq “ O p1q, i.e. it is constant wrt system size

Definition I.2.21 (State Quantities). In a thermodynamic system, a state quantity
is a descriptor of the current “appearance” of the system. More formally, it is
independent of the dynamics that brought the system to its current form.

Example I.2.22 (Ideal Scenario). In general, one can hope/verify/construct struc-
tures such that: Energy is extensive, Entropy is extensive, Temperature is intensive.
All of them are state variables. An example of a variable that is not a state variable
is heat, but we will not deal much with it.
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Remark I.2.23 (Extensivity implies density notion). When a quantity is extensive,
its thermodynamic limit n Ñ 8 diverges. Evaluating it is problematic, but the
definitional property is helpful. Let an observable be extensive, then

opxq :“ lim
nÑ8

Opx;nq

n
(I.2.24)

is a well defined object. It is the per-particle equivalent of the original observable,
and it is of constant order.

Definition I.2.25 (Conjugate quantities). Some extensive quantities are conserved
(e.g. energy), others are allowed to vary (e.g. entropy). Notably, if we split a
system into subsystems (i.e. consider an isolated system, at fixed volume), changes
in energy will always be balanced out, while changes in entropy need not to. When
the latter happens, an intensive quantity of reference varies as well. In the current
entropy-energy comment, it will be temperature. Another example is volume and
pressure (volume being extensive, pressure being intensive). When such a pairing
between two quantities is found, these are called conjugate, and are denoted inside
the brackets t¨, ¨u.
Developing additional tools, we will formally see that the relation tS , βu holds.

Remark I.2.26 (Entropy Desiderata). It can be noticed that Entropy as per Def.
I.2.15 is extensive. Indeed when we considered two systems there were NApEAqNBpEBq

possible micro-states, with associated entropy ln pNApEAqNBpEBqq “ SA `SB. By
being the logarithm of a natural number, it is also positive. By analogy, any candi-
date notion for a comparison must at least satisfy these principles.

I.3 Ensembles
We are now drawn to a presentation of how micro-states constructions lead to
different global scale phenomena. Recall Ex. I.2.2. The set of possible micro-
states, i.e. the sample space Ω, will depend on the choice of some parameters
ab-initio. In the construction carried out to define Boltzmann’s Entropy and the
temperature we built it such that total energy, number of particles and volume were
fixed. Furthermore, it is not the only choice, and different constructions will lead to
different collections of micro-states, also known as ensembles. An ensemble is made
of systems, that can be thought of as different identical copies (i.e. realizations
ω P Ω) of a probabilistic system. They were first introduced by (Gibbs 1878). We
restrict ourselves to two types:

• in the micro-canonical ensemble each system has fixed energy, volume and
sample size: this is what allowed us to define entropy;

• in the canonical ensemble each system is in contact with a large (imaginary)
reservoir of heat with which it can exchange energy, with volume, temperature
and sample size fixed.

It is crucial to understand that the two are just toy examples and serve for
the purpose of understanding what will be the equations that describe the sys-
tem, especially the probability law. Therefore they must be interpreted as thought
experiments.

I.3.1 Probability Distributions
Let N pn,E q ” N pnq. We ignore the volume since it will always be fixed, and will
not serve for any discussion.
Since we treat the subject from a Thermodynamics perspective, there is not much
to say here in the micro-canonical case. We already know that there are equal a
priori probabilities so:

Prxs “
1

N pE q
. (I.3.1)

In the most immediate terms, the important object in the micro-canonical ensemble
is the entropy, not the probability distribution, which is trivial by assumption. On
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the other hand, a system obeying such construction presents non-trivial properties
arising from first principles, and is fundamental to aid the derivation of the canonical
probability law, as we will see in the next discussion. To vindicate the usefulness
of micro-canonical ensembles independently of others, we report one early result in
the box below.

Maxwell-Boltzmann Distribution

In a micro-canonical ensemble of non-relativistic classical mechanical par-
ticles with mass m at equilibrium the distribution of velocities v⃗ in space
is:

dP rv⃗s “ dπv2
ˆ

mβ

2π

˙
3
2

e´
βmv2

2 dv⃗ (I.3.2)

Moving to the canonical ensemble, we remove the constraint on energy, which is
now allowed to fluctuate. The construction starts with the observation that fixing
part of the energy to Ei we get a number of possible micro-states of N pE ´Eiq with
associated probability Pris “

N pE ´Eiq

N pE q
. Thus, in such a thermodynamical system

one can say that Pris „ e´βEi , where i is a collection of states subjected to some
constraint on the energies allowed.
It will be shown that the above concept can be greatly generalized to non-physical
particles, if one considers the celebrated principle of maximum entropy by Jaynes
(Jaynes 1957). However, to stick to the simplest discussion possible, we keep the
timeline to before Information Theory.
The heat reservoir exchanges energy with the system. The system alone is then a
closed system, and the dynamics of energy are established by letting it in thermal
contact with the reservoir.7
Before going deeper, we stress again that when we consider such perspective, all is
a thought experiment. Accepting this, we imagine that the bath is so big relative to
the system that, despite exchanging energy, the exchange is negligible on its scale,
while greatly noticeable on the scale of the system. In some sense, zooming out,
the system ` reservoir is interpreted as a micro-canonical ensemble where dE “ 0,
whilst still most of E is in the bath. Clearly, the temperature change of the whole
system will be negligible, since most of the contribution is from the reservoir, but we
are now allowing the energy to vary through the process in the scale of the system.
In this context, we wish to evaluate the probability distribution of the energy of
the system Esyspωq, where we explicitly denote its randomness. Again recognizing
that the total energy is fixed, it holds Erespωq “ E ´ Esyspωq. For the moment, to
avoid using ω explicitly, we use lowercase ε, εsys, εres letters, to denote that we are
dealing at fixed ω. It is then safe to say that:

P rω P Ω|Esys “ εsyss “ P rω P Ω|Eres “ ε ´ εsyss (I.3.3)
9NrespEres “ ε ´ εsysq (I.3.4)
“ NrespE ´ Esys “ ε ´ εsysq (I.3.5)

where we have fixed the values to “collect” all micro-states into their realizations.
The purpose now becomes finding a polished expression for the energy of the system,
by exclusively working at the scale of the heat bath to exploit thermodynamic
properties at n Ñ 8.
Knowing that the heat bath is by construction larger, εres " εsys. Thus, we can
use ε ´ εsys « εsys to Taylor expand the number of micro-states of the reservoir.
The clearest way of doing so is to directly expand its logarithm around ε:

lnNrespε ´ εsysq « lnNrespεq ´
d lnNrespEresq

dEres

ˇ

ˇ

ˇ

ˇ

Eres“ε

εsys ` h.o.t. (I.3.6)

where, we have denoted higher order terms (h.o.t.). Neglecting their contribution
for small enough εsys and recalling that at the reservoir level we are dealing with a

7Sometimes the reservoir is referred to as a heat bath
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micro-canonical ensemble one gets that at equilibrium via Eqn. I.2.11

lnNrespε´εsysq “ lnNrespεq´βεsys ðñ Nrespε´εsysq “ Nrespεqe´βεsys . (I.3.7)

Reconciling with Eqn. I.3.3 and isolating the system terms the following expression
is derived:

P rω P Ω|Esys “ εsyss “
1

Zpβq
e´βεsys Zpβq9

1

Nrespεq
(I.3.8)

where Zpβq is a normalization factor to allow the probability to be well defined (i.e.
to have total mass one). Recalling that ε is really fixed and Esys is instead a random
variable, by the arbitrariness of ω and the postulate of equal a priori probabilities,
the random variable E has a well defined distribution. Indeed we have the scaling
„ e´βE and know that the rest must be set to make it a valid distribution. A
careful retraction of the steps leads us to the following very important remark.8

Remark I.3.9. From now on, we drop the reservoir notion since we found a for-
mula that is independent of it. The symbol E will denote the energy of the system.

Definition I.3.10 (Boltzmann Canonical Distribution). The Boltzmann canonical
distribution, in short Boltzmann distribution is the probability density function (pdf)
of the energy in a canonical ensemble at the equilibrium temperature. Concisely:

P rE ;βs :“
1

Zpβq
e´βE Zpβq “

ÿ

i

e´βEi (I.3.11)

where Zpβq is the normalization factor, also known as partition function.
When averaging wrt the Boltzmann distribution, we denote the expectation as x¨yβ
or x¨y if the temperature is clear from context, constant or redundant.

Remark I.3.12 (A first word about the partition function). Most of this document
will be focused on the complications that arise when computing different partition
functions. The most formal justification of such claim is in Section II.3.1. For
the moment, we just notice that the sum can be rearranged into different forms.
Assuming that the degeneracy function is available, if E takes discrete values in an
alphabet:

Zpβq “
ÿ

Ω

e´βE pωq “
ÿ

Ei

N pEiqe
´βEi , (I.3.13)

while if E is so fine grained that it is continuous:

Zpβq “

ż

N pE qe´βE dE . (I.3.14)

Remark I.3.15 (Probability cross-post). In Bayesian probability the partition
function would be the normalization factor. Some textbooks also use the same ter-
minology of Physics. The scope of Z goes well beyond Thermodynamics (as all of
its ideas). It is not a coincidence that the problems in Bayesian Probability involve
computing the very same object. Incidentally, for the same reason, we are taking
this starting detour to introduce the terminology and historically justify some tricks.

We avoid discussing the structural properties of the last object, which will be
dealt with at the right time, and opt to continue with the physical interpretation.
It is however crucial to informally state one concept, which will be justified later in
Section II.3:

The Partition Function is all you need

By manipulating the partition function a statistician can access all the ther-
modynamical observables, especially the key ones.

8As a side note, it also allows to discard completely the thought experiment we carried.



12 CHAPTER I. THERMODYNAMICS, STATISTICAL MECHANICS

Example I.3.16. In the canonical ensemble energy is random. Let E take values
in an alphabet. Notice that this is without loss of generality (wlog). Then:

xE y“

ÿ

i

EiPrEis “
ÿ

i

Ei
e´βEi

Zpβq
“

1

Zpβq

ÿ

i

´
Be´βEi

Bβ
“ ´

1

Zpβq

“BβZpβq
h nl j

Bβ

ÿ

i

e´βEi “ ´
B lnZpβq

Bβ
,

(I.3.17)
where we have used B to ensure that the expression is general.

Remark I.3.18. As discussed previously, energy levels are just a simplification for
expository treatment, we will gloss over the complications of the continuous case, but
one can consider the energy levels to be so close to each other that macroscopically
they look like a continuum.

In many problems of interest in inference, a realization of the energy is related
to the phenomenology of an assumed-to-exist model, and in particular to some
“teacher” variable. To make it explicit, we will often use the object below. Notice
that it is not the exact Physics definition of Hamiltonian but it will be sufficient for
our purpose.

Definition I.3.19 (Hamiltonian). Consider a random variable X. If such random
variable is the sole descriptor of the energy of the system, then its randomness is
described by how it induces different values of the energy. We make it explicit with
the relation E pωq “ H pXpωqq. In this case, the distribution of the random variable
reads:

P rX “ xs “ P rx;βs “
1

Zpβq
e´βH pxq Zpβq “

ÿ

i

e´βEi “
ÿ

X

e´βH pxq. (I.3.20)

If the random variable X has a measure ν we allow ourselves to write:

Zpβq “

ż

X

e´βH pxq dνpxq. (I.3.21)

In particular, we will consider only the case in which X is a continuous random
variable for simplicity, but it can be extended.

Remark I.3.22. Notice that we are moving from a discrete energy to a continuous
Hamiltonian when X is continuous. We are not making energy levels continuous.

Remark I.3.23. In some sense, X can be seen as the sufficient statistic for in-
ferring the behavior of the Hamiltonian. There is no need to access the abstract
micro-states pωq discussed in the preliminary section. At the same time, X can be
on its own high dimensional, therefore making the task of retrieving it non-trivial.
When X P Rd and d " 1 is large, it can be thought of as a micro-state on its
own, which carries all the information about the system. At the same time, many
configurations can map to the same energy value!
Notice also that nothing says it will also be necessary. As a matter of fact, in
some regimes, it will not be.

I.3.2 Entropies
We first notice that the Boltzmann Entropy (Def. I.2.15) is the adequate entropy
notion for a micro-canonical ensemble at thermal equilibrium, where one can exploit
the property that all micro-states are equally likely in the only manifested macro-
state. Concerning the canonical ensemble, a natural question would be finding a
function that can describe settings with non-uniform probabilities. A generaliza-
tion achieving such objective was argued by Gibbs. We outline below the quickest
argument to derive it.
Assume that instead of completely indistinguishable particles, we group them into
i P rms groups of size ni such that

řm
i“1 ni “ n. This super-construction can be

thought of as a set of macro-states, each with probability pi “ ni

n .
Even though the original entropy is Stot “ lnpnq, we assume it is impossible to
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measure a priori due to experimental limitations. We instead consider the entropy
at the level of some α super-sets, denoted as SA. A statistician with less knowledge
could conclude that it is the entropy of the system. Fortunately, a statistician with
more fine grained tools arrives. These instruments reveal a tree structure on the
α-level micro-states, so that each α there are ni sub-micro-states. By the combina-
torial argument made previously, the total entropy will read S “ SA ` SB where
B is the entropy of one of the ni sized subsets. By assumption it is impossible to
measure it directly, so we resort to its mean across subgroups, which is expressed
as SB “

ř

i piSi “
ř

i pi lnpniq. Hence, letting kB “ 1:

S “ lnpnq “ SA`
ÿ

i

piSi ðñ SA “ lnpnq´
ÿ

i

piSi “
ÿ

i

piplnpnq´Siq “ ´
ÿ

i

pi lnppiq

(I.3.24)
where in the last equality we used the definition lnpnq ´ lnpniq “ ln

`

ni

n

˘

“ lnppiq.

Remark I.3.25. A closer look at how we deal with the different macro-states shows
that the energy varies over them, identifying it with a canonical ensemble.

Another derivation is as follows. Letting the energy vary, we assume it takes
a values on a discrete collection, indexed by i. If we had access to a very large
number N of copies of the same ensemble, the number of ensembles with energy
Ei would be almost surely NPrEi;ns by a simple application of the Strong Law of
Large Numbers (SLLN). Combinatorially, the number of ways in which one can
arrange the values of N copies into energy levels PrEi;nsN is:

N “
N !

ś

ipPrEi;nsNq!
ùñ SN “ kB lnN « ´kBN

ÿ

i

P rEi;ns lnP rEi;ns ,

(I.3.26)
where we have used Stirling’s approximation. By extensivity of the entropy, the
entropy of the N copies expression suggests that for a single copy:

S “
1

N
SN “ ´kB

ÿ

Ei

P rEi;ns lnP rEi;ns (I.3.27)

Before giving it a formal definition, we trivially check that it is extensive and always
positive, according to the comments below Remark I.2.26. Additionally, we notice
it can be viewed as an extension of Definition I.2.15, which appears for the equally
likely distribution pi “ 1

N and m “ |Ω| “ N .

Definition I.3.28 (Gibbs Entropy). The entropy of a canonical ensemble at equi-
librium is:

S :“ ´kB
ÿ

i

pi lnppiq (I.3.29)

where i runs over the realizations of the energy Ei, and pi is its probability, which
follows a Boltzmann distribution.

Remark I.3.30. Notice that the canonical entropy is a function of temperature,
differently from the micro-canonical one, which is a function of energy.

Remark I.3.31. While we have restricted the discussion to energies, it takes little
time to understand that the concept of canonical entropy extends without loss of
generality to any distribution. Potentially on a more subtle note, if energy varies,
we find that the entropy depends on Temperature. By analogy, we expect that at the
right scale of units of measure, any random variable will have entropy dependent on
a parameter (a temperature-like parameter), which itself can be seen in the flipped
perspective as the random variable of a (micro-canonical-like) ensemble where such
parameter is uniformly random in its domain, and has entropy dependent on the
random variable (entropy of the micro-canonical ensemble will depend on the energy-
like-random variable). This can be seen as a first taste of the notion of conjugacy
introduced in Definition I.2.25.

Remark I.3.32. The concept of Gibbs entropy adapts to any object that is governed
by randomness. In this case, we have opted to represent the entropy of energy levels,
but might as well discuss the entropy of the variables X over which the energy
depends on.
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Remark I.3.33. Unless otherwise stated S will always be a Gibbs entropy. The
choice is made to simplify notation. Also, most of the time we will ignore the kB
term in front.
Later in Sections III.2 and I.3.4 we will argue more connections that will nurture a
deeper understanding of the ensembles.

It worth stating that as of now entropy is just a measure of complexity of micro-
states. Certainly Gibb’s entropy is equivalent to Shannon’s, an object that we will
see in Section III.1, but the two starting points are different. It was not until Jaynes
(Jaynes 1957) that the two were reconciliated.

Keeping our eyes on the objectives of this Chapter, we postpone the discussion
to the moment when connecting arguments will be possible. In the timeline of
Thermodynamics, we are now ready to define a very important object, that properly
highlights the importance of the perspective of Statistical Physics.

I.3.3 Free Energies

In an inference problem, the common example brought forward to explain the fal-
lacy of point-estimation (e.g. Maximum-Likelihood, Maximum a Posteriori) is very
intuitive. A simple plot of a bimodal distribution is sufficient. As a matter of fact,
any researcher interested in inference would like to find solutions that have stability
properties, to be understood as valleys of the configuration of the object of study
where local variations do not affect the global performance. Such trade-off is exactly
matched by the notion of free energy, which is studied extensively in Thermody-
namics since its early foundation. In words, it is a representation of the randomness
of the problem that “characterizes” it,9 and underlines how the competition between
Energy and Entropy needs to be balanced. The former, in the wide sense, is the
observable object of interest. The latter is the un-observable disorder of the con-
figurations induced by the randomness and the structure of the problem. For a
random problem, the two have to be considered to strike typical arrangements.

Definition I.3.34 (Helmoltz Free Energy). The free energy is a quantity

Fpβq :“ xE y ´
1

β
S “ U ´

1

β
S . (I.3.35)

We use the fraktur symbol since we will mostly deal with its adimensional version
F and identify xE y :“ U . Free entropy F :“ ´βF is more common in Computer
Science derivations of the subject. We will present the Computer Science object
when needed, and favour free energy for the moment.

As evident from its definition, the free energy/entropy captures the competition
between energy and entropy in a common ground of units of measure.
In the next paragraphs, we will see that it is closely linked to many of the quantities
we saw earlier. We will also statistically justify why it makes sense that the free
energy is as good as observing the system directly (see Sec. II.3, which will give us
for free an additional interpretation of Legendre transform.

Fact I.3.36 (Free energy is extensive). As per the entropy, we can see it by com-
bining two canonical ensembles A,B. Their free energy will be the log of the product
of the partition functions. Mathematically:

FpA,Bqpβq “ lnpZpA,Bqq “ lnpZAZBq “ lnZA ` lnZB “ FApβq ` FBpβq. (I.3.37)

If we instead take a more formal route, the assumption that the Energy is extensive
is sufficient. From extensive energy we have that lnZpβq is extensive as well, being
the logarithm of the sum of exponentials of an extensive quantity.

9as we will see in Section II.3 and throughout all of Chapter III
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Canonical Ensemble Version Expanding the Gibbs entropy we find that:

S “ ´
ÿ

i

pi lnppiq (I.3.38)

“ ´
ÿ

i

1

Zpβq
e´βEi ln

ˆ

1

Zpβq
e´βEi

˙

(I.3.39)

“ ´
ÿ

i

e´βEi

Zpβq
p´βEi ´ lnpZpβqqq (I.3.40)

“ ´ lnpZpβqq ` β xE y . (I.3.41)

A re-arrangment of the objects in the equality allows us to define a very important
object in Statistical Physics.

Proposition I.3.42 (Canonical Helmoltz Free Energy). In a canonical ensemble
the free entropy is the logarithm of the partition function, and the free energy follows
similarly. Mathematically:

Fpβq ” ´
1

β
lnpZpβqq, F pβq “ lnZpβq. (I.3.43)

Proof. Rearrange the above chain of equalities.

Adding Variables Allowing for the energy to vary is sufficient for the topics
we will encounter. Different generalizations that let the Volume or the number of
micro-states vary lead to different ensembles. For some ideas, see (S. J. Blundell
and K. M. Blundell 2009; Schwartz 2021). The key point to inspect is always the
connection between the free energies, partition functions, duality transforms and
learning problems. These will be partially cleared out in the next Chapters, as
different ways to generalize the Thermodynamics models we presented. In simple
words, to follow the classical result, we should assume that we also allowed the
volume V to vary, with its conjugate (in the sense of Def. I.2.25) variable being
the pressure, and entropy being dependent on both pV,E q. In practice, the state
variables (Def. I.2.21) wrt which we could express partial derivative equations
all depend on each other but on nothing else. Mathematically, a classical model
assumes:

E ” E pn, V,S q, S ” S pE , n, V q, n ” npE ,S , V q, V ” pS ,E , nq. (I.3.44)

From these, quantities like temperature10 will be derived. The inherent difficulty of
considering only the above state quantities is that they depend on values that are
not straightforward to measure. For example, energy depends on entropy and vice
versa. Contrarily, the free energy (which is the log of a normalization function) is
independent of these and depends on the derived quantities such as β ” 1

T , which is
easy to measure. We derive dependence by setting aside additional dependences.
To begin recognize from Eqn. I.2.11 that the following holds:

dS “

ˆ

BS

BE

˙

d xE y “ β d xE y ðñ d xE y “
1

β
dS , (I.3.45)

where the expression is rather general because the identity for temperature is in
partial derivatives, and the entropy could have depended on other terms. Then,
taking the differential:

dF “ d xE y ´
1

β
dS ´ S d

ˆ

1

β

˙

“ ´S dT, (I.3.46)

where we used Eqn. I.3.45, and can conclude that free energy/entropy depends on
measurable (derived) variables.

Remark I.3.47. From the Physics perspective, it is evident that F ” Fpβq. How-
ever, the process is somewhat more convoluted than a Bayesian approach, where one
realizes that the partition function Z will depend on the conditioning variables and
parameters only, by definition.

10If we allowed for more variability, Pressure and chemical potential would be in the list.
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Mathematically, this problem switch from easy to write & hard to measure to
easy to measure & hard to write is a well defined concept, that was largely studied
in the theory of Legendre Transforms. We will see some fundamental results in
Section III.4.

Local Versions Notice that it is straightforward to re-express the probabilities
in the canonical ensemble as:

pi “ epβFpβq´Eiq Zpβq “ e´βFpβq, (I.3.48)

where the last term can be thought of as the free energy being an energy if only
one micro-state is present.
On a similar note, consider a canonical ensemble at constant temperature and vol-
ume. Results in Statistical Mechanics show that the Helmoltz free energy, which is
only related to the system,11 will be minimized. Such fact can be understood in at
least two ways.
The first and most direct one is by derivation. It holds that F “ xE y ´ TS , so
since dS ě 0 and xE y is fixed the free energy will be such that dF ď 0.
The second one is borrowed from (Kittel 2004; Young 2012), and has wider gen-
erality at the thermodynamic limit. Taking kB “ 1 in the canonical ensemble, we
have:

Fpβq “ ´
1

β
lnZpβq “ ´

1

β
ln
ÿ

i

e´βEi “ ´
1

β
ln
ÿ

E

N pE qe´βE . (I.3.49)

Then, assuming that the Gibbs entropy counts the exponential order of the number
of configurations (more details about the assumption in the next Section), it holds
that N pE q “ exp tS pE qu (the degeneracy function of Def. I.2.3), since the RHS
expression effectively counts the number of micro-states at energy E . Then, the
free energy expression becomes:

Fpβq “ ´
1

β
ln
ÿ

E

eS pE q´βE “ ´
1

β
ln
ÿ

E

e´βrFpβ;E q, (I.3.50)

where we put emphasis on the fact that rF is a generalized free energy, for a system
not necessarily at equilibrium, constrained to have energy E . Similarly, S pE q is
not necessarily at equilibrium. Defining:

E ‹ “ argmax e´βrFpβ;E q “ argmin rFpβ;E q, (I.3.51)

by extensivity of the generalized free energy and large size n Ñ 8, it is safe to say
that the maximum of the first expression will dominate the sum, with lnpnq

n error.12
and the free energy takes form:

βFpβq “ ´ ln
ÿ

E

e´βrFpβ;E q nÑ8
« βrFpβ;E ‹q. (I.3.52)

In words, the free energy at equilibrium on the LHS is the minimum of the general-
ized free energies on the RHS. Recalling also that in a canonical ensemble Pris9e´βEi

for a single state and PrEis9N pEiqe
´βEi for an energy level, the probability of the

energy can be written down as:

PrE s9e´βrFpβ;E q, (I.3.53)

so the most probable value of the energy is the one that minimizes the generalized
free energy, which in turn is up to vanishing corrections the equilibrium free energy,

11not also the heat bath
12this is a simple principle, the maximum term method. Consider a sum of N exponentials,

increasingly ordered as envmax ď Sn “
ř

iě1 e
nvi “ envmax p1 `

ř

iě1 e
npv´vmaxq ď Nenvmax .

Applying the ln and using continuity, one can show that the limiting density is squeezed by the
two limiting densities which are both vmax. Notice that N “ O plnnq usually since n „ 1023

while the number of energy values is implicitly assumed to be bounded, or at least that to a single
macro-state there correspond an exponential number of micro-states.
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where the dynamics stop. Any system initialized out of equilibrium is drawn to get
to E ‹ and minimize the free energy, at least in a local neighborhood sense.
In the next subsection, we give more details about the assumption that the Gibbs
Entropy can be regarded as a counter of configurations, in analogy with the entropy
for micro-canonical ensembles.

I.3.4 Asymptotic Equivalence of micro-canonical and Canon-
ical Ensemble

Before getting into the details, we need a very quick digression on heat. Recall that
in (P4) we stated that heat, denoted as Q, is energy in transit. Logically, it will be
an extensive variable, and heat capacity, defined as C :“ dQ

dT will be extensive too.13
Skipping some details, and simplifying for kB “ 1 as always, we observe that for a
canonical ensemble:

C “
B xE y

BT
“ β2

@

E 2
D

´ xE y
B lnZpβq

BT
“ β2p

@

E 2
D

´ xE y
2
q (I.3.54)

where the only informal passage is giving a justification for the first equality, which
can be seen to follow from the first law of Thermodynamics (Eqn. I.2.17) at constant
volume. The last term on the RHS is a variance wrt the Boltzmann distribution,
so we can say that

Var rE sβ “
C

β2
, (I.3.55)

and in the thermodynamic limit n Ñ 8 using extensivity of the quantities, the
fluctuations of the energy will be

b

Var rE sβ

U
“

1

β

?
C

U
“ O

ˆ?
n

n

˙

nÑ8
Ñ 0. (I.3.56)

In other words, as n Ñ 8 the average energy will concentrate on a single mean
value. Such result solves the potential ambiguity between using the symbol xE yβ
and E , concluding that it will be a constant, up to vanishing fluctuations. Being
that the energy is constant, at the thermodynamic limit a canonical ensemble “is”
a micro-canonical ensemble, and the Gibbs entropy inherits the counting properties
of Boltmann’s entropy (Def. I.2.15).

A crucial point we have ignored is how to ensure extensivity. In our applications,
it is sufficient to take the energy to be extensive, so we will need a Hamiltonian of
order H pXq P O pnq. In general, neglecting long-range interactions makes the
system well defined, with a convex in pn,S q energy U and concave in T entropy
S .

Other topics With some care about evaluations of the integrals, one could also
have shown this by a saddle point approximation, which will be overviewed in
Section II.6.

Further References

For a more formal treatment, one can use Large Deviation Principles (Sec.
III.5), where a nice reference is (Touchette 2015). Relaxations to the princi-
ple hold in more generality but are not commented on. A review of modern
approaches is found in (Tsallis 2019). A quick and clear note on Equivalence
of ensembles from the Physics point of view is (Teitel 2021).

For simplicity, we will take equivalence of ensembles as an assumption to deal
with the next chapters
In the coming subsection, we introduce the basic terminology to tackle a problem
in Statistical Physics.

13A fraction of extensive and intensive quantities is extensive
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I.4 Phase transitions
In Physics, Phase transitions are phenomenons of co-existance of equilibrium states.
They are the result of competition between microscopic effects. Roughly, one will
tend to order the system, while the other will induce disorder. The generality of
this concept is well understood upon having presented the words used to describe
it, as we do below.

By phase we mean a region of the phase space that can be summarized under
the same macroscopic properties. An order parameter is a macroscopic quantity
with the further property that it differs greatly across phases. In other words, it is
a characterization of the different regions of the phase space, and knowing it allows
to be aware of the system phenomenology. When changes in a set of parameters are
the cause of the change in the order parameter, the system has a phase transition.
If the parameters are more than one, there will be a phase boundary rather than a
point. Often, everything is visualized in a phase space, which is just a plot in the
Cartesian plane of the parameters that highlights when the order parameter varies.
A word of caution is needed here. The free energy is an analytic function of the
parameters (Def. II.2.1), and cannot exhibit non-analytic behavior in a system of
size n, as we will see in the next Chapter. Nevertheless, the n Ñ 8 limit of an
analytic function need not be analytic, and can have points where it is not. We will
refer to these as singularities, and identify a phase transition in their location. In
other words, an abrupt change in the order parameter is identified when there is a
non-analytic behavior of the free energy.

Coming back to our main discussion, we recall that a canonical ensemble is a
collection of energy configurations with a Boltzmann distribution. It is at fixed tem-
perature, and has fluctuating energy levels with asymptotic guarantees. In perfect
alignment with the order/disorder competition in Phase transitions, its Helmholtz
Free Energy (Def. I.3.34, Prop.I.3.42) is sufficient for a full understanding of its
macroscopic properties, and expresses the energy/entropy antagonism of the sys-
tem. It is then natural to claim that free energy will be a good descriptor of the
system’s phases, and that it will depend on the order parameter(s), identifying
phase transitions.

Classifications, Examples Ehrenfest (Ehrenfest et al. 1960) designed a classi-
fication that will be sufficient for our purposes. Being at the thermodynamic limit
of an extensive quantity, it is natural to work instead with the free entropy density
f to have an intensive quantity.

Definition I.4.1 (Erhrenfest classification of Phase transitions). Let the order pa-
rameter be m, and the parameters of the phase space be ϑ. Consider fpm,ϑq “

limnÑ8
1
nF pm,ϑq, which is intensive.

• A first order phase transition happens when the derivative Bf
Bϑ “ m is dis-

continuous.

• A second order phase transition happens when the second derivative B
2f

Bϑ2 “ m
is discontinuous.

• Phase transitions of order k follow analogously.

Example I.4.2. One can easily see that BF
BT “ S so if the phase space parameter

is the temperature then the discontinuity is in the entropy, which serves as order
parameter. Boiling temperature of water is a practical example.
Similarly, second order derivatives of the free energy are often associated to suscep-
tibilities, which are order parameters that (roughly) measure the variance of some
observable. A second order phase transition will relate to the discontinuous behavior
of these quantities.

The minimization of the free energy depends on the realization of the parameters
on which it depends. Often in this context the optimization leads to equations of
the form:

m “ hpm;ϑq, (I.4.3)
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for which one wishes to find a fixed point. By the usual fixed point theory, different
regions of values of ϑ may make certain fixed points stable, unstable, attractive or
repulsive. Moreover, the dynamics of the iterative map mt`1 “ hpmtq give great
information about the dynamics of procedures to find these non-analytic points.
However, on the phase space, the free energy, despite being convex, can be non
strictly convex, and develop local minima. We term these sub-optimal points
metastable states: despite being stable fixed points, they are not global minima.
Out of the thermodynamic limit, they are states of the system that will eventually
be escaped in exponential time in size t P O penq, to reach the global minima. Each
of these hops is the result of overcoming an energy barrier. Additionally, in some
cases, variations of ϑ make metastable states disappear, and the boundary in the
phase space for which the local minima disappears is termed spinodal, with symbol
ϑspinodal.
We report below a summary of one of the first examples in (Krzakala and Zdeborová
2021), which has many of the phenomenological aspects discussed.

Example I.4.4 (Curie-Weiss Model). Details are found in (Krzakala and Zdeborová
2021, Chap. 1, App. 1.A). We also provide a similar Example in Subsection I.5.1.
Assume there are n particles, each with spin σi P t˘1u, placed in a fully connected
graph. The Hamiltonian of the system reads:

H pσ;nq “ ´
1

2n

n
ÿ

i“1

σiσj ´ h
n
ÿ

i“1

σi, (I.4.5)

where h P R is a scalar external magnetic field. In the canonical ensemble:

Prσ “ v;n, β, hs “
1

Zpβ;n, hq
e´βH pvq. (I.4.6)

A good order parameter turns out to be the empirical mean of the magnetization,
which is the Boltzmann mean of the random variable:14

σ “
1

n

n
ÿ

i“1

σi P R. (I.4.7)

It is crucial to notice that H p¨q is extensive when seen as a function of σ and
that the control parameters for the phase space will be pβ, hq since Bf

Bh “ m, where
m “ xσyβ.
After some calculations, one finds that:

lim
nÑ8

fpβ;nq “ max
mPr´1,1s

ϕpmq ϕpmq :“
β

2
m2 ` βhm ` H

ˆ

1 ´ m

2
,
1 ` m

2

˙

(I.4.8)

H
ˆ

1 ´ m

2
,
1 ` m

2

˙

“
1 ´ m

2
ln

1 ´ m

2
`

1 ` m

2
ln

1 ` m

2
, (I.4.9)

where the function above is defined with a symbol consistent with future notation,15
and we have used as order parameter m “ xσyβ. Setting the derivative of ϕp¨q to
zero gives a function in m of which we seek a fixed point:

1

2
ln

1 ` m

1 ´ m
“ βpm ` hq ðñ m “ tanhβph ` mq. (I.4.10)

First of all, we notice that despite ϕp¨q being analytic, its extremization could lead
to non-analyticities. Also, there is a more general phenomenon of energy-entropy
competitition, which can be observed by the normalized expression for the definition
of free energy f “ e ´ βs. We split the results into some subcases, which are the
phases in the phase space values pβ, hq P R` ˆ R.

14note the tricky fact that we take the mean of a vector along the particles, therefore obtaining
a scalar

15it is the Gibbs entropy (Def. I.3.28) of a system with two states and probabilities
`

1´m
2

, 1 ´ 1´m
2

˘
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• paramagnetic, h “ 0, β Ñ 8

as β Ñ 0`, s dominates, and it has a unique minimizer at m‹ “ 0

• ferromagnetic h “ 0, β ě 1
the point m‹ “ 0 becomes a maxima, and two symmetric local minima appear.
The first derivative remains continuous since it is proportional to the entropy,
suggesting a second order phase transition, which is indeed verified. While at
β ď 1 magnetizations sampled were null, at β ě 1 the samples “spontaneously”
break symmetry, and are either positive or negative. By “spontaneously”, we
mean without inducing preference, since the symmetry of the Z2 group in the
spins (i.e. flip all the spins) is still satisfied.

• explicit symmetry breaking h ‰ 0
we lose the group symmetry and favour some alignments by construction. The
behavior are distinguished into two cases:

– β Ñ 0`, convex free energy, single minimum at full alignment with the
external field h “ m

– β Ñ 8 yet another split in terms of a well defined value:
∗ h ă hspinodal, a local minima exists as a metastable state, in which

the system can be temporarily trapped depending on the initial con-
ditions

∗ h ě hspinodal, the local minima disappears

Remark I.4.11. When dealing with phase transitions, the definition of free energy
as a simple Legendre transform is inexact. First of all, we are at the thermodynamic
limit, so it is infinite, secondly, there are problems with its derivative. For this
reason, we must resort to the more general version of Legendre-Fenchel transform.
More comments are provided in Section III.4.

In the last subsection, we provide a simple interpretation of mean field models
through a fundamental inequality. While the definition of mean field models is not
well-established in inference and machine learning, it serves the purpose of a bonus
idea of easy results derived from first principles in Thermodynamics.

I.5 GBF type Inequality and the Mean-Field Ap-
proach

It is often the case that a system with Hamiltonian H is difficult to solve. We will
provide a method that gives an approximation and later show how this is justified in
an Information Theoretical sense (see Secs. III.2, and III.3.1). Let the randomness
follow a Boltzmann canonical distribution. Assume that we can define a different
Hamiltonian that satisfies:

xH pXqy„ “

A

ĂH pXq

E

„
ùñ ∆H ” H ´ ĂH s.t. x∆H pXqy„ “ 0, (I.5.1)

where we emphasized that the expectations are wrt the new Hamiltonian. In a
canonical ensemble, the partition function would read:

Zpβq “

ż

e´βH pxq dx “ rZpβq

ż

1

rZpβq
e´βpH pxqq dx (I.5.2)

“ rZpβq

ż

1

rZpβq
e´βpH pxq` ĂH pXqq´ ĂH pXqq dx (I.5.3)

“ rZpβq

ż

e´β ĂH pxq

rZpβq
e´βpH pxq´ ĂH pxqq dx (I.5.4)

“ rZpβq

A

e´β∆H pXq
E

„
(I.5.5)

ě rZpβqe´βx∆H pXqy„ Jensen’s Ineq. (I.5.6)

“ rZpβq, (I.5.7)
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where in the last passage we applied the centrality of the “error” Hamiltonian com-
ponent. Moving to the free energy, the statement is reformulated as:

Fpβq ď rFpβq, (I.5.8)

which is a termed a Gibbs-Bogoliubv-Feynman (GBF) type inequality.
In greater generality, assuming simply that H ” ĂH ` ∆H we inherit all the

passages until Eqn. I.5.5. To proceed, it is worth seeing the object from a different
perspective, since it is not anymore true that ∆H is null in expectation. We observe
that:
A

e´β∆H pXq
E

„
“

A

e´βp∆H pXq`x∆H pXqy„´x∆H pXqy„qq

E

„
(I.5.9)

“ e´βx∆H pXqy„ xexp t´βp∆H pXq ´ x∆H pXqqy„uy
„

(I.5.10)

ě e´βx∆H pXqy„ exp t´β px∆H pXqy„ ´ x∆H pXqy„qu (I.5.11)

“ e´βx∆H pXqy„ (I.5.12)
ě 0, (I.5.13)

where the first inequality is by Jensen’s. We have thus retrieved a more general
Gibbs-Bogoliubv-Feynman type inequality, which is:

H “ ĂH ` ∆H ùñ Zpβq ě rZpβqe´βx∆H pXqy„ . (I.5.14)

For sure, it will be the case that the GBF inequality holds in the free energies, but
the bound could be tighter or less depending on ∆H and its randomness. This is
the basis of the variational approach, which we will briefly review in Section III.3.

The best example of an application is given in the context of interacting particle
systems and the mean-field theory approximation. There we consider a Hamiltonian
such as that of the Ising model over a graph G “ pV, Eq:

H pσq “ J
ÿ

pi,jqPE

σiσj ` h
ÿ

i

σi J, h P R, (I.5.15)

where the spins σ P t˘1ud are sampled from a Canonical Boltzmann distribution
with energy H , i.e. P rσ “ v;βs – e´βH pvq for v P ˘t˘1ud.
The first term is very difficult to deal with in general. A mean-field approximation
consists in allowing each spin to feel the mean spin σ “ 1

n

ř

i σi from its neighbors,
instead of the neighbor itself. Therefore, we would derive the new Hamiltonian:

ĂH pσq “ ph ` rhq
ÿ

i

σi, (I.5.16)

where in particular for a d-regular graph rh “ dJ xσjy.

I.5.1 Sketch of the Mean-Field Solution of the Ising model
For a relevant example, consider the discussion in (Krzakala and Zdeborová 2021,
Chap. I), especially in Section 1.1, where the reasoning is the same, but with a
´ 1

n in front of the Hamiltonian object, and the coupling term J reabsorbed into h.
There, the Curie-Weiss model is treated, which is a complete graph, and the average
field is actually a full descriptor of the dynamics, making the solution exact.
We purposely present a different formulation in Equation I.5.15 to stimulate under-
standing of the various ways in which these models are presented. We reported part
of the argument in Example I.4.4.
Here we opt to give the quickest derivation of the approximation in a setting in
which it proves to be possibly inexact. It can be found in (Evans 2009), or with
more justification in (Utermohlen 2018). A fairly recent and interesting result in
these topics is (Basak and Mukherjee 2017).

Following the approximation done, without assuming a d regular graph, we
unroll some steps. Starting from the equation of the Hamiltonian, each spin j can
be seen to be subject to a “local” Hamiltonian

hpσjq “ Jσj

ÿ

iPNeighpjq

σi ` hσj H pσq “

n
ÿ

j“1

hpσjq. (I.5.17)
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The mean-field approximation amounts to postulating that the difficult local sum
over neighbors, which will be site-dependent,16 is replaced by the average of the
spins across the spatial model. Mathematically we do the following replacement:

σi ⇝ m “
1

n

n
ÿ

k“1

xσky σ “ pσkqnk“1 (I.5.18)

therefore vindicating the expression mean-field, since each spin is supposed to be
subject to the mean external field instead of the j-dependent the force exerted. A
little thought then shows that under such construction, if we further require the
number of neighbors to have some regularity (as in d-regular graphs), then the
computation will greatly simplify. For the sake of the Example, we take d-regular
graphs. Hence, we are led to the explicit approximation:

rhpσjq “ Jdmσj ` hσj “ hMFσj hMF :“ Jdm ` h. (I.5.19)

As a by product, the Boltzmann distribution of the approximated model is very
easy, since it factorizes, i.e. for v P t˘1un:

P rσ “ v;β, n, pJ, hq „s “

n
ź

j“1

P rσj “ vj ;β,m, pJ, hq,„s “ pP rσ “ v;β,m, pJ, hq,„sq
n
,

(I.5.20)
where the two steps are feasible since the mean-field choice makes the distribution
iid.17 To make matters clear, we have also expressed after the “;” what are the pa-
rameters of the local and global probabilities. The expression inside the parentheses
is:

P rσ “ v;β,m, pJ, hq,„s “
1

rzpβq
e´βrhpvq

rzpβq “
ÿ

vPt˘1u

e´βrhpvq (I.5.21)

“
e´βrhpvq

eβhMF ` e´βhMF
, (I.5.22)

where we have denoted the local partition function as rzpβq. For a model, we need
to specify pJ, h, βq. Since we do not know m in the equations, it is essentially a free
parameter. Therefore, two very important remarks must be made.

1. Logically, one degree of freedom must be enforced, as the probability derived
in Equation I.5.22 must be such that Eqn. I.5.18 is satisfied.

2. The efficacy of the approximation will depend on whether the predicted phe-
nomenology of the model, at some triplet pJ, h, βq P R2 ˆ R` and some m
is reasonable/exact wrt to rigorous solutions. A key object in the conclusion
will be the inverse temperature, by which the Boltzmann distribution is effec-
tively modified in the way it puts weights on configurations. Since the m is
not given by the model, but rather part of its phenomenology, we will judge
the accuracy of the approximation by comparing m at given pJ, β, hq.

For the former, we find that, since we have imposed a “vertical” average over j P rns

in Equation I.5.18, we obtain that a “horizontal” average over the spin values must
be satisfied. Indeed, in our notation for the surrogate model:

m “
1

n

n
ÿ

j“1

xσjy
„

“
1

n
n xσjy

„
“ xσjy

„
, (I.5.23)

by the decoupling, where σj P t˘1u. Using the expression for the probability in
Equation I.5.22, with less daunting notation:

m “
ÿ

vPt˘1u

P rσ “ v;β,m, pJ, hqs v (I.5.24)

“
eβhMF ´ e´βhMF

eβhMF ` e´βhMF
(I.5.25)

“ tanhpβhMFq. (I.5.26)
16for each j, the sum depends on j
17In Physics, the procedure is termed “decoupling”.
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Eventually, m must satisfy a so-called self-consistent equation:

m “ tanhpβh ` βJdmq. (I.5.27)

Concerning the latter point, we redirect the reader to the nice plots and comments
in the references (Evans 2009; Utermohlen 2018); for Curie-Weiss (Krzakala and
Zdeborová 2021, Chap. I); and (Basak and Mukherjee 2017) for more advanced
topics.

Remark I.5.28. The factorization property is an aspect that will return, on a
different light, in Chapter III, when we will discuss Variational Inference (Sec.
III.3).

Remark I.5.29. In classic sources, it is always implicitly assumed that the prob-
ability depends on pβ, J, h,mq. In other models, the same will be done for their
respective parameters. The choice is often forced: many objects come into the ex-
pressions at the same time, and the equations would become too convoluted. As a
consequence, the reader must keep in mind that often trivial dependencies are sup-
pressed in notation. To align with the other works, we will do the same from this
paragraph onwards.

Having discussed the foundations of a statistical definition of matter, we move
to the foundations of the tools for analyzing it. In Chapter II, we will present some
methods that are summoned frequently by Researchers. To give context, we will
also try to be as self-contained as possible, outlining the basis and motivations for
them.

Further References

For Statistical Physics and Thermodynamics (Arovas 2019; Cross 2006;
Mehran 2023a,b)
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Chapter II

Tools and Techniques in
Statistical Physics

In this Chapter, we will overview some often ignored aspects of the theory underlying
results in Statistical Physics. While we will spend sufficient time on each, by no
means the following is a comprehensive review.

In Section II.1, we report the basic Gaussian integrals used throughout com-
putations in literature. From these and other first principles, other results can
be derived. In Section II.2, we provide a self-contained introduction to Complex
Analysis, for the purpose of explaining the nature and peculiarities of an analytic
continuation, which is an essential step in the Replica formalism. The idea is to
reach the criticalities of the method, to shed light on arguments that involve such
continuation when reading about papers that develop the heuristic replica method
to retrieve the Thermodynamic properties of a model. Then, in Section II.3, we
link the notion of free entropy to a purely statistical object, vindicating the claims
mumbled in Chapter I. Section II.4 proceeds the discussion with the treatment of
similar objects: integral transforms. While we do not spend much time on them, we
argue the main principles behind the techniques, which are just nearly sufficient to
grasp their power in conjunction with the Legendre Transform, which is discussed
in Chapter III. Continuing, the content of Section II.5 is mainly a presentation of
Dirac’s delta distribution and two nice results involving it in Physics works. The
former often appears in replica computations, while the latter is mainly a way to
adjust units of measure in computations. Lastly, in II.6, we present two methods
to perform integrals when n is large and influences the computations. As in other
Sections, this method is often one of the many steps of Replica Theory.

II.1 Some useful Gaussian Integrals

The purpose of this collection is providing the less experienced reader with note-
worthy mathematical results.

The starting triplet is directly derivable from the first, or indirectly, using the
fact that a normal density sums to one, and reworking the coefficients. Many more
Gaussian integrals can be derived using similar techniques.

Fact II.1.1. It holds that:

1.
ş8

´8
e´x2

dx “
?
π

2.
ş8

´8
e´ax2

dx “
a

π
a @a ą 0

3.
ş8

´8
e´ax2

`bx dx “
a

π
a e

b2

4a , @a ą 0

Proof. (Claim #1) Let I “
ş8

´8
e´x2

dx “
ş8

´8
e´y2

dy since the summand is a

25
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dummy index. Then:

I2 “

ˆ
ż 8

´8

e´x2

dx

˙ˆ
ż 8

´8

e´y2

dy

˙

(II.1.2)

“

ż 8

´8

e´x2

ˆ
ż 8

´8

e´y2

˙

dy dx (II.1.3)

“

ż 8

´8

ˆ
ż 8

´8

e´px2
`y2

q

˙

dy dx bring inside x argument as x KK y

(II.1.4)

“

ż 2π

0

ż 8

0

e´r2r dr dϑ change to polar coordinates (‹) (II.1.5)

“ 2π

ż 0

´8

1

2
es ds substituting s “ ´r2, ds “ ´2r dr

(II.1.6)

“ π

ż 0

´8

es ds (II.1.7)

“ πpe0 ´ e´8q (II.1.8)

“ π ùñ
?
I2 “

ż 8

´8

e´x2

dx “
?
π. (II.1.9)

In (‹) we mean:
$

’

&

’

%

r “
a

x2 ` y2

ϑ “ tan´1p
y
x q

|J | “ r Jacobian determinant
. (II.1.10)

Warning: we have overlooked some improper integrals to give a sketch of the
proof. A more formal treatment is as follows. Let y “ xs,dy “ xds. Since e´x2

is
even we have the identity

ş8

´8
e´x2

dx “ 2
ş8

0
e´x2

dx. In the positive half plane of
x ě 0 the variables ps, xq have the same sign. By the symmetry observed:

I2 “ 4

ż 8

0

ż 8

0

e´px2
`y2

q dy dx “ 4

ż 8

0

ż 8

0

e´x2
p1`s2qxdsdx “ 4

ż 8

0

ż 8

0

e´x2
p1`s2qxdx ds

(II.1.11)

“ 4

ż 8

0

˜

e´x2
p1`s2q

´2p1 ` s2q

ˇ

ˇ

ˇ

ˇ

x“8

x“0

¸

ds “ 4
1

2

ż 8

0

1

1 ` s2
ds “ 2 arctan s

ˇ

ˇ

ˇ

ˇ

s“8

s“0

“ π,

(II.1.12)

where in the first line we have used Fubini’s Theorem.
(Claim 2) Rework the integral as follows:

ż 8

´8

e´ax2

dx “

ż 8

´8

e´u2 1
?
a

du substitute u “
?
ax, du “

?
adx (II.1.13)

“
1

?
a

ż 8

´8

e´u2

du (II.1.14)

“
1

?
a

?
π Claim #1 (II.1.15)

(Claim 3) We prove the result in Lemma II.1.16 which is equivalent.

Lemma II.1.16. Let X „ N p0, 1q. Then another perspective for Fct. II.1.1#3 is:

EX reκxs “ e
1
2κ

2

(II.1.17)
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Proof. Expanding the expectation:

EX reκxs “

ż 8

´8

1
?
2π

e´ x2

2 eκx dx (II.1.18)

“

ż 8

´8

1
?
2π

e´ x2

2 `κx dx (II.1.19)

“

ż 8

´8

1
?
2π

e´ 1
2 px2

´2κxq dx (II.1.20)

“

ż 8

´8

1
?
2π

e´ 1
2 rpx´κq

2
´κ2

s dx completing the square (II.1.21)

“

ż 8

´8

1
?
2π

e´ 1
2 rpx´κq

2
se´ 1

2 p´κ2
q dx (II.1.22)

“ e
1
2κ

2

ż 8

´8

1
?
2π

e´ 1
2 rpx´κq

2
s

l jh n

x„N pκ,1q density

dx (II.1.23)

“ e
1
2κ

2

. (II.1.24)

Lemma II.1.25. The following equality holds:
ż 8

´8

px ´ µqe´
px´µq2

2σ2 dx “ σ2, @µ, σ P R. (II.1.26)

Proof. Proceed by substitution, letting:

u “ ´
px ´ µq2

2σ2
ùñ du “ ´

x ´ µ

σ2
dx ùñ ´σ2 du “ px ´ µqdx.

We have:
ż 8

´8

exp

"

´
px ´ µq2

2σ2
l jh n

“u

*

px ´ µqdx
l jh n

“´σ2du

“ ´σ2

ż 8

0

eu du “ σ2. (II.1.27)

II.2 A primer on Complex Analysis

Further References

Some resources are (Arfken and Weber 2013), (Evans 2006, Lect. 2), (Weber
and Arfken 2004), (Rudin 1987).

In this Section, we collect some important results to develop a theory for free
energies, their phase transitions, and the saddle point method.

Definition II.2.1 (Analytic Function). A function f : R Ñ R is analytic on an
open set D Ă R if for x0 P D:

fpxq “

8
ÿ

n“0

cnpx ´ x0qn pcnq Ă R @x P Bx0
(II.2.2)

Namely, the function admits a convergent power series expression in a neighborhood
of x0. Similarly a function is complex analytic, or simply analytic, when the previous
sentence replaces R with C.

Remark II.2.3 (Direct property of analytic functions). A careful evaluation of Def-
inition II.2.1 shows that analytic functions are infinitely differentiable functions that
admit a Taylor expansion at x0 that is convergent point-wise in x to fpxq. This
gives the trivial counterexample that a non differentiable function is non-analytic.
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An analytic function is differentiable in every neighborhood. While the notion
is stronger than simple differentiability at a point, we will see that for complex
functions it is equivalent.

Definition II.2.4 (Cauchy-Riemann conditions). Two functions u, v : R2 Ñ R
satisfy the Cauchy-Riemann conditions when:

Bu

Bx
“

Bv

By

Bu

By
“ ´

Bv

Bx
. (II.2.5)

Definition II.2.6 (Laplace’s Equation). For a function in two variables f : R2 Ñ

R, we define Laplace’s equation as:

B2f

Bx2
`

B2f

By2
“ 0 (II.2.7)

Having introduced some starting objects, we choose to express an analytic func-
tion f : C Ñ C (Def. II.2.1) as:

fpzq “ ℜpfpzqq ` iℑpfpzqq :“ upx, yq ` ivpx, yq z “ x ` iy P C, (II.2.8)

and aim to define analogues of real-valued functions with real domain in the com-
plex domain-codomain setting. As an example the derivative naturally extends to
complex analysis, while the integral needs some care.

Definition II.2.9 (Derivative of complex function). Let f : C Ñ C. Its derivative
at z0 P C is defined as:

f 1pz0q :“ lim
hÑ0,hPC

fpz0 ` hq ´ fpz0q

h
, (II.2.10)

which as a byproduct, requires that the limit on the LHS does not depend on the
path taken to approach 0. Indeed, fpzq can be interpreted as a function of two real
variables px, yq via Eqn. II.2.8

Fact II.2.11. A complex function as above is differentiable at a point z0 if and
only if it satisfies the Cauchy-Riemann Conditions at z0 and pu, vq have continuous
partial derivatives.

Proof. By definition.

Definition II.2.12 (Complex integral, contour integral). Let γ : ra, bs Ñ C be a
parametric curve, piecewise differentiable, taking values in the complex space. We
define the integral of a complex function f : R Ñ C as:

ż

γ

fpzqdz “

ż b

a

fpγptqqγ1ptqdt. (II.2.13)

To unravel the RHS, we further define for fptq “ uptq ` ivptq the integral:

ż b

a

fptqdt “

ż b

a

uptqdt ` i

ż b

a

vptqdt. (II.2.14)

Lastly, a contour integral is a complex integral that takes place on a closed path
across the complex plane, we denote it as

ű

. To have a closed path, we will need
an orientation, and it will be always anti-clockwise, meaning that γ revolves
anti-clockwise in its evolution.

Definition II.2.15 (Holomorphic function). A complex valued function taking com-
plex values is holomorphic on an open set if it is complex differentiable for every
point in that set. It is holomorphic at a point if it is differentiable in every point
on some neighborhood of it.

Fact II.2.16. An analytic function is holomorphic.
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Proof. Functions admitting a power series representation in the sense of Def. II.2.1
are differentiable, see Rem. II.2.3.

In the discussion below, we present a collection of proved & unproved statements
to give sufficient acknowledgement to the roles in deriving some foundational results.

Proposition II.2.17 (Green’s Theorem). Let C Ă R2 be a countour, that closed,
piece-wise, smooth, and simple. It can be seen as the boundary of the region it
enclosed, i.e. C “ BR of a region R Ă R2, where R is bounded by BR. Further, let
f, g have domain D open, and such that R Ă D, with continuous partial derivatives
in R. Then:

¿

C

fpx, yqdx `

¿

C

gpx, yqdy “

ĳ

R

ˆ

Bgpx, yq

Bx
´

Bfpx, yq

By

˙

dxdy. (II.2.18)

Proof. We refer to (Greenlee 2005; Zenisek 1999).

Remark II.2.19. For further intuition, we suggest to consult (Weber and Arfken
2004) and (Arfken and Weber 2013, Chap. 1.11). In particular, we report some
comments of the latter, and (Arfken and Weber 2013, Eqns. 1.101a-1.104).
Seen from the practical perspective, the Proposition claims that the integral over a
surface of the vector field pf, gq is equivalent to the divergence of the vector field over
the whole enclosed region. The notation often seen starts from Gauss’ Theorem:

£

BR

F ¨ dv “

¡

R

∇ ¨ Fdr, (II.2.20)

and applies the following equalities for scalar valued functions:

∇ ¨ pf∇gq “ f∇ ¨ ∇g ` p∇fq ¨ p∇vq (II.2.21)
∇ ¨ pg∇fq “ g∇ ¨ ∇f ` p∇gq ¨ p∇fq. (II.2.22)

Indeed, subtracting the two, and integrating over px, yq P R, one obtains the expres-
sion:

¡

R

pf∇ ¨ ∇g ´ g∇ ¨ ∇fqd “

£

BR

pf∇g ´ g∇fq ¨ dv, (II.2.23)

which is the same as the statement above, but with different notation, hopefully
highlighting the interpretation.

Proposition II.2.24 (Cauchy-Goursat Theorem). If f is holomorphic on a con-
nected domain Z , and C is a closed contour inside the domain. Then:

¿

C

fpzqdz “ 0. (II.2.25)

As a consequence, if γ is a curve in Z that has endpoints rz1, z2s then:
ż

γ

f 1pzqdz “ fpz2q ´ fpz1q. (II.2.26)

Namely, the integral is independent of the path. And one can deform it as pleased.

Proof. We prove the statement here for continuous partial derivatives, reporting
the standard computation. For the full result, an option is (Moore 1900).
Let fpzq “ upx, yq ` ivpx, yq, in its real an imaginary part decomposition as in
Definition II.2.12. Its integration will then be in terms of dz “ dx ` idy, with an
integral that can eb written as:

¿

C

fpzqdz “

¿

C

pu ` ivdpx ` iyq (II.2.27)

“

¿

C

udx ´

¿

C

vdy ` i

¨

˝

¿

C

vdx `

¿

C

udy

˛

‚, (II.2.28)
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where the negative coefficient appears since i2 “ ´1 and we stress that u ”

upx, yq, v ” vpx, yq. Applying Green’s Theorem (Prop. II.2.17) to both parts re-
turns two “volume” integrals over R, the region enclosed by C ” BR:

¿

C

udx ´

¿

C

vdy “

ĳ

R

ˆ

´
Bv

Bx
´

Bu

By

˙

dxdy (II.2.29)

¿

C

vdx `

¿

C

udy “

ĳ

R

ˆ

Bu

Bx
´ ´

Bv

By

˙

dxdy. (II.2.30)

Recalling Definitions II.2.4, II.2.6 and II.2.11, the function f must satisfy Cauchy-
Riemann’s conditions, which in this case are:

Bupx, yq

Bx
“

Bvpx, yq

By
,

Bupx, yq

By
“ ´

Bvpx, yq

Bx
, (II.2.31)

Pluggin the first condition (resp. the second) into the second (first) result of Green’s
Theorem, we find that the integrands are null, and:

¿

C

fpzqdz “

£

R

0dxdy ` i

£

R

0dxdy “ 0, (II.2.32)

as claimed.

We provide two instrumental examples for a (potentially) non-zero complex
integral along a contour.

Example II.2.33. For any n P N, let the contour C be at fixed distance r from the
origin. Then:

¿

C

zndz “

ż 2π

0

rneinθireiθdθ “ rn`1 e
2πin ´ 1

n ` 1
, (II.2.34)

where the first step applies the substitution z “ reiθ for θ P r0, 2πs,dz “ ireiθdθ.
We will see that the only removable singularity of this result is n “ ´1.

Example II.2.35. Let a P R be contained in a contour C which is a ball with radius
r centered at the origin. Then:

¿

C

1

z ´ a
dz “

¿

C

1

w
dw substitute w “ z ´ a (II.2.36)

“

ż 2π

0

1

r
e´iθireiθdθ “ 2πi (II.2.37)

“ 2πi, (II.2.38)

which shows that if the n is chosen before integrating the integral of z1 over a closed
curve is non-zero. We will use this result in the next Theorem, that also tells us
that the other n ‰ ´1 will return null integrals.

With the above results, we can quickly derive the celebrated Cauchy’s integral
formula.

Theorem II.2.39 (Cauchy’s Integral Formula). Let f : A Ñ C be a holomorphic
function on an open subset of C, and C be the anti-clockwise oriented boundary of
a region R. Then, for any z0 P R:

fpz0q “
1

2πi

¿

C

fpzq

z ´ z0
dz. (II.2.40)

More in general, it is also true that the functions are automatically infinitely differ-
entiable (see Fct II.2.49 below) and:

f pkqpz0q “
n!

2πi

¿

C

fpzq

pz ´ z0qn`1
dz, (II.2.41)

where f pkq is the kth derivative of f .
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Proof. We prove the first statement. The second can be shown by just applying the
definition of limit, and observing that it can be brought inside the integral since the
denominator is never zero in the Formula of Cauchy when a displacement h Ñ 0 is
added to the input.
By the Cauchy-Goursat Theorem (Thm. II.2.24), any arbitrarily small closed curve
around z0 returns the same integration result. Therefore, we choose a circle with
radius ϵ, arbitrarily small. Since f is continuous (by f being holomorphic, this
follows by Definition), the value of fpzq will be arbitrarily close to fpz0q. Notice
also that by the previous examples, we have:

2πi “

¿

C

1

z ´ z0
dz ùñ fpz0q “

¿

C

2πi

z ´ z0
dz. (II.2.42)

Therefore, for arbitrary z P C in such circle of radius ϵ, we can express the difference
with the usual polar substitution z ” zpθq, with ϵ fixed:

0 ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

2πi

¿

C

fpzq

z ´ z0
´ fpz0qdz

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(II.2.43)

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

2πi

¿

C

fpzq ´ fpz0q

z ´ z0
dz

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(II.2.44)

“

ˇ

ˇ

ˇ

ˇ

1

2πi

ż 2π

0

fpzpθqq ´ fpz0q

ϵeiθ
iϵeiθdθ

ˇ

ˇ

ˇ

ˇ

(II.2.45)

ď
1

2π

ż 2π

0

|fpzpθqq ´ fpz0q|dθ, (II.2.46)

where the inequality is the simple triangle inequality for integrals. It suffices then to
observe that z0 is at the center of the circle, and zpθq lies on the boundary, therefore
|zpθq ´ z0| “ ϵ is constant, and we can bound by the maximum value attained on
the circle, i.e.:

1

2π

ż 2π

0

fpzpθqq ´ fpz0qdθ ď max
θ:|zpθq´z0|“ϵ

t|fpzpθqq ´ fpz0q|u . (II.2.47)

By continuity of f , as ϵ Ñ 0 the terms fpzpθqq and fpz0q get closer: for each set
resolution ε on the functions there exists a resolution ϵ ą 0 on pz, z0q that attains
it. Then:

lim
ϵÑ0

max
θ:|zpθq´z0|“ϵ

t|fpzpθqq ´ fpz0q|u “ 0. (II.2.48)

By positivity of the modulus, the difference of the objects in the claim, found just
after the first inequality, is squeezed in between null expressions.

Fact II.2.49. Let f be holomorphic on a set. Then it is infinitely differentiable on
that set and it can be expanded as a power series. By combining the two arguments,
it is analytic on that set.

We are eventually brought to consider in any case the words analytic and holo-
morphic to be equivalent for complex-valued functions.

Theorem II.2.50. A complex-valued function f is analytic if and only if it is
holomorphic.

Proposition II.2.51 (Morera’s Theorem). Let f : C Ñ C be continuous in a
simply connected region1 such that any closed countour integral within the region is
null, i.e.

ű

C fpzqdz “ 0 for all C in the region. Then f is analytic (Def. II.2.1) in
the region.

1this is a notion in topology, it roughly means a space with no holes. We can take it for granted
and assume it is the non-degenerate case.
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Proof. We report the proof since it is very quick. It is a rewriting of the one in
(Weber and Arfken 2004, Sec. 6.4), and build on an explicit construction of the
antiderivative. Let z2, z1 be the endpoints of a curve in the region. By Cauchy-
Goursat Theorem (Prop. II.2.24), integrals only depend on initial and final values
of the contour. Then:

F pz2q ´ F pz1q “

ż z2

z1

fpzqdz (II.2.52)

is well defined. By continuity of f and construction the following equalities hold:

lim
z2Ñz1

F pz2q ´ F pz1q

z2 ´ z1
´ fpz1q “ lim

z2Ñz1

şz2
z1

fpzq ´ fpz1qdz

z2 ´ z1
“ 0. (II.2.53)

Then, by definition of complex derivative (Def. II.2.9) we have that rearranging the
above result:

lim
z2Ñz1

F pz2q ´ fpz1q

z2 ´ z1
“ F 1pzq

ˇ

ˇ

ˇ

ˇ

z“z1

“ fpz1q. (II.2.54)

By arbitrariness of z2, z1, the claim is proved for any z in the region. Now we claim
that the Cauchy integral formula generalized to higher derivatives (Thm. II.2.39)
guarantees that taking F on the outer contour, an analytic function has analytic
derivatives. So by F 1pzq “ fpzq and F being analytic (it is holomorphic), we get
that fpzq is analytic since it is the derivative of an analytic function.

Having derived some basic results in complex analysis, we can proceed with
those that we actually need for our narrative on Statistical Physics and Machine
Learning/Inference.

Analytic Continuation

An interesting property of functions is the possibility of extending them to wider
domains. The natural question that comes into mind is if such extension is just
arbitrary or unique. We will briefly discuss the continuation scheme for analytic
functions since it is fundamental for the theory of Replicas in Statistical Physics.

Definition II.2.55 (Continuation). Let f : C Ñ C have domain U Ă C, where U
is open. Let g have domain V Ą U . If gpzq “ fpzq for all z P U , g is a continuation
of f .

Analytic (equivalently, holomorphic) functions require a mild condition to be
uniquely continued from one set to a larger one. The sufficient condition relates to
the smaller set having an accumulation point in the larger one.

Proposition II.2.56 (Identity Theorem for analytic functions). Let f, g be ana-
lytic on a domain D, open and connected. If f ” g on S Ă D where S has an
accumulation point in D then f ” g on the whole domain.

By the above result, functions that are equal on a set that is able to arbitrarily
approximate values in another larger set makes the candidates equivalent on the
latter. We emphasize that the notion of analytic function (Def. II.2.1) is however
stronger than simple differentiability. As a corollary, one obtains that analytic
continuations are unique as long as two continuations agree on a well behaved set.

Corollary II.2.57 (Analytic continuation is unique). Let f : C Ñ C be analytic
on a domain U open. Let two candidate continuations g1, g2 be analytic and satisfy
Def. II.2.55 for a set U Ą V. Then necessarily g1 ” g2 in V, and continuations are
unique.

Proof. Let g ” g1 ´g2. By the hypothesis, it vanishes on the open set U . The zeros
of g are not isolated in V since the subset U is open. By Prop. II.2.56 g ” 0 on V
and g1, g2 are identical.
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In the case we will see, the condition is not satisfied since we will want to perform
a continuation from U “ N to R which is not open in V “ R. Nevertheless, a field
of study has explored such question and led to some sufficiency statements. We
report two of them below with a counterexample. While the literature is out of the
scope of this document, these three instances should satisfy the reader wishing to
understand if uniqueness of analytic continuations holds from the natural numbers
to the real line.

Proposition II.2.58 (Carlson’s Theorem). Let f : C Ñ C satisfy the following:

1. f is holomorphic and of sub-exponential type, i.e. |fpzq| ď Ceτz for some C, τ
and all z P C

2. there exists k ă π such that |fpixq| ď Cek|x| for some C and all x P R

3. fpnq ” 0 for all n P N.

Then f ” 0 on C.

Corollary II.2.59 (Relaxations to Carlson’s conditions). The same conclusion of
Prop. II.2.58 holds when #1 is replaced with f being analytic in ℜpzq ą 0 and
continuous in ℜpzq ě 0 with the same exponential bound. One can also relax #3 by
requiring that f is null on a set A Ă N such that:

lim sup
nÑ8

“
|A X t0, 1, . . . , n ´ 1u|

n
“ 1, (II.2.60)

which was formulated by (Rubel 1956).
If one substitutes these in the statement, the result is sharp. As a consequence, if
the updated requirements are not satisfied, the function is not identically zero.

To verify the power of the statement, we briefly outline how to use it. Consider
a function f on the natural numbers and two candidate continuations g1, g2 which
agree on the natural numbers. If #1, #2 are further satisfied by g ” g1 ´ g2, then
the continuation is unique since g ” 0 on C. Replacing the statements with the
relaxed conditions, we also conclude that if the requirements are not satisfied, then
the continuation is not unique.

A similar condition is derived by another combination of statements. To apply
them, we will anticipate the Fourier Transform (Def. II.4.4).

Theorem II.2.61 (Paley-Wiener Theorem (Rudin 1987), Thm. 19.3). Let f satisfy
the following:

• f is holomorphic on C and square integrable, i.e.
ż 8

´8

pfpxqq2 dx ă 8, (II.2.62)

• fpzq ď ceC|z| for some c, C and all z P C.

Then f is the inverse Fourier transform (Fct. II.4.9) of some h P L2pr´C,Csq, i.e.
in our notation

fpzq “

ż C

´C

hpxqeixz dx @z P C. (II.2.63)

Corollary II.2.64 (Uniqueness of analytic continuation from Naturals II). Let f
be defined on the natural numbers. Consider two continuations g1, g2 to the set R.
If g1, g2 satisfy the hypothesis above, then g1 ” g2 on R.

Proof. Let g ” g1´g2. By construction g satisfies the requirements of Thm. II.2.61.
Then there exists some h P L2pr´C,Csq such that h “ gFou. Being continuations,
they agree on the domain of f , so:

fpnq “

ż C

´C

hpxqeinx dx “ 0 @n P N. (II.2.65)

As a consequence, h ” 0 by the arbitrariness of n and g ” 0.
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A straightforward counterexample is the evidence that there is more than one
extension of n! to the real numbers. The classic is the Gamma function, but one
can also derive the Hadamard Function, and other exotic objects. For historical
references, see (Luschny 2010).

The problem in Statistical Physics In Replica Theory, the continuation of a
certain Representation of the free energy lnZ will be needed. There, the free energy
lnZ “ limnÑ8 lnZn is in general hard to compute. To overcome its computation,
the replica trick is implemented

lnZn “ lim
rÑ0

Zr
n ´ 1

r
, (II.2.66)

where powers of partition functions are instead easier to compute as products of
integrals. As evident from the expression, while powers over the natural numbers of
an integral are well defined, the rth power for r Ñ 0 requires to peform an analytic
continuation of the function from the naturals to the real line.
However, one will need to apply the limit n Ñ 8 first to obtain a reliable free
energy (since it is an object that exists at the thermodynamic limit), inducing all
the potential singularities (phase transitions) discussed in Section I.4. In practice,
it amounts to exchanging limnÑ8 limrÑ0 Zr

n, which would be the mathematically
right but physically meaningless object with limrÑ0 limnÑ8 Zr

n “ limrÑ0 Zr, which
is representative of the right object, but potentially incorrect from the perspective
of Mathematics.

To finally justify why the partition function is such an important object, we
take a full Section, discussing very important objects in the Theory of Statistics
that provide a different interpretation, with apparently no link with the energy-
entropy competition argument.

II.3 Cumulants

In this Section, we give a formal justification of the claim that the partition func-
tion/free energy/free entropy is a complete descriptor of the system. The justifica-
tion is in statistical terms and applies to problems well out of Statistical Physics.

As a first step, we present three objects with very peculiar properties. Despite
being very similar , and equivalent in their power in many cases, they appear in
different procedures, and thus may provide different perspectives. These are the
Moment Generating Function (MGF), the Characteristic Function (CF) and the
Cumulant Generating Function (CGF).

Definition II.3.1 (Moment Generating Function). For a random variable X we
define:

MXptq :“ E
“

etX
‰

t P R, (II.3.2)

provided that in a neighborhood of t the expectation on the RHS is computable.

Definition II.3.3 (Characteristic function). Given a random variable X, define:

ϕXptq :“ E
“

eiXt
‰

t P R. (II.3.4)

A series expansion wrt t of the exponential inside the MGF around zero gives
the following nice interpretation:

MXptq “ 1 ` tE rXs `
t2

2
E
“

X2
‰

` . . . “ 1 `
ÿ

ně1

E rXns
tn

n!
, (II.3.5)

which suggests without the need of a proof that it is possible to determine the
moments of the random variable by differentiating:

E rXns “
dn

dtn
MXptq

ˇ

ˇ

ˇ

ˇ

t“0

. (II.3.6)
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Independency or random variables also ensures that the MGF of the sum is the
product of the MGFs, thanks to the elementary property of exponentials

MX`Y ptq “ EX,Y

”

etpX`Y q
ı

“ EX

“

etX
‰

EY

“

etY
‰

“ MXptqMY ptq. (II.3.7)

The characteristic function enjoys similar properties, but is also guaranteed to al-
ways exist since eitX is always integrable for any distribution X might have. We
will see it is as a (weaker) consequence of Fct. II.4.8, since the measure of a random
variable is always integrable and |eitx| ď 1.
Surpsingly enough, these properties extend to the logarithmic equivalent in a more
comfortable way.

Definition II.3.8 (Cumulant generating function, and cumulants). For a random
variable X the CGF is the logarithm of the MGF.

KXptq :“ lnE
“

etX
‰

. (II.3.9)

Cumulants are the Taylor series expansion of the CGF around t “ 0

KXptq “
ÿ

ně1

κn
tn

n!
κn “

dn

dtn
KXptq

ˇ

ˇ

ˇ

ˇ

t“0

. (II.3.10)

Remark II.3.11. The previous identity relating the MGF to moments does not
work. Indeed:

KXptq “ lnE
“

etX
‰

“ ln

˜

1 `
ÿ

ně1

E rXns
tn

n!

¸

. (II.3.12)

The immediate reason is that since the logarithm argument is a sum, not a product,
nothing much can be done. In other terms, cumulants are not the logarithm
of moments.

Nevertheless, calculations show that the cumulants are moments of the random
variable up to n “ 2. For n ą 2, cumulants are functions of the moments up to
the nth. We report below a summary of properties of the three with appropriate
references to the proofs. After this list, we will establish the existance conditions.

Proposition II.3.13 (Properties of the MGF, CF, and the CGF). The following
results hold:

1. The MGF and the CF uniquely determine the distribution of a random vari-
able.

2. the MGF and the CF of the sum of independent variables factorize

3. the MGF and the CF are linear operators

4. the CGF is translation invariant and homogeneous wrt constant factors c P R,
namely for a random variable X we have:

KX`cptq “ KXptq KcpXptq “ cpKXptq, (II.3.14)

5. the CGF exists whenever the MGF exists and uniquely determines distribu-
tions

6. the mth moment of a random variable admits an expression in terms of the
MGF and CF derivatives of order m

7. the mth moment of a random variable admits an expression in terms of the
CGF derivatives of order m for m ď 4 and ď m for above the third moment

Proof. Claims #2, 3, 4, 6 are trivial. Claim #7 involves tedious calculations but is
trivial as well. Claim #5 is implied by Claim #1 and noting that the CGF is just
the logarithm of the MGF by definition.
Claim #1 is implicitly proved in Fcts. II.4.9, II.4.12, and the discussion just below
their statements.
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We motivate the usefulness of the three generating functions by inspecting Prop.
II.3.13.

• Firstly, the expressions are in bijection with the distribution they refer to.
This allows to use them without ambiguities.

• Secondly, they provide closed form expressions for the moments of the original
random variable. Moments describe the shapes that a function has: the mean
is the center, the variance is the spread, the skewness is the third, the kurtosis
is the fourth, and so on. The more, the better, and having access to all of
them is equivalent to being able to draw the distribution in a heuristic sense.
More formally, having access to more moments means that the shape of the
distribution is easier to explore with dynamics.

• Lastly, they obey some nice properties that go beyond. Independent vari-
ables factorize in MGFs and CFs when summed. While the evaluation of the
distribution of a sum might be daunting, multiplying functions is not.

In the main model of Equilibrium Statistical Mechanics, they provide a clean jus-
tification of some of the claims we made in Chapter I, as we will see in the next
Subsection.

II.3.1 The Generating functions of the canonical ensemble
In a canonical ensemble the random variable is the energy. Assuming for simplicity
that it can take only discrete values the form is as in Chapter I

pi :“ ppEiq “
1

Zpβq
e´βEi

ÿ

i“1

pi “ 1 (II.3.15)

The MGF is easily found to be:

ME ptq “
@

etE
D

β
“
ÿ

i

ppEiqe
tEi “

1

Zpβq

ÿ

i

e´pβ´tqEi “
Zpβ ´ tq

Zpβq
. (II.3.16)

By the discussion above, the moments admit an expression as derivatives of the
MGF. A trivial calculation makes the claim explicit.

xE my “
dm

dxm
MXptq

ˇ

ˇ

ˇ

ˇ

t“0

“
1

Zpβq

Bm

Btm
Zpβ´tq

ˇ

ˇ

ˇ

ˇ

t“0

“ p´1qm
dm

dpβ´tqmZpβ ´ tq

Zpβq

ˇ

ˇ

ˇ

ˇ

t“0

“ p´1qm
dm

dβmZpβq

Zpβq
,

(II.3.17)
where it is useful to notice that the derivative is now wrt β. The identity allows us
to write nicely the first moment of the energy:

xE y “ ´
1

Zpβq

BZpβq

Bβ
“

1

Zpβq

ÿ

i

Eie
´βEi “

ÿ

i

Eipi. (II.3.18)

Remark II.3.19. We will see later (Subsec. III.2.2) that the identity in Eqn.
II.3.17 shows that up to normalization energy and temperature are conjugated (Def.
I.2.25).

From Eqn. II.3.16 we can directly express the CGF as:

KE ptq “ lnME ptq “ lnZpβ ´ tq ´ lnZpβq, (II.3.20)

and report below the first three cumulants for completeness.

κ1 “
d

dt
KE ptq

ˇ

ˇ

ˇ

ˇ

t“0

“ ´
1

Zpβq

d

dpβ ´ tq
Zpβ ´ tq “ ´

1

Zpβq

d

dβ
Zpβq “ xE y by the result of Eqn. II.3.18

(II.3.21)

κ2 “

d2

dβ2Zpβq

Zpβq
´

˜

d
dβZpβq

Zpβq

¸2

“
@

E 2
D

´ xE y
2 (II.3.22)

κ3 “ . . . “
@

pE ´ xE yq3
D

. (II.3.23)
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A simple argument allows us to reconcile the partition function with cumulants.
The derivative wrt t can be expressed as a derivative wrt β upon a change of sign
in the definition of CGF.
Assigning to the CGF KE pβq “ lnZpβq we recover the same cumulants of before
via a slightly modified definition:

κn “ p´1qn´1 dn

dβn
KE pβq. (II.3.24)

From now onwards, we will use such perspective when dealing with cumulants.

Remark II.3.25. Notice that in the new assignment of the CGF and the cumulants
the CGF is the Free Entropy F , defined just below the free energy (Def. I.3.34).

Here the jargon becomes daunting, but it is easy to conclude that the free en-
ergy/entropy2 happens to be the CGF of the canonical ensemble. This explains
briefly why working with the partition function/free energy/free entropy is bene-
ficial. In simple terms, we are able to recover any average over the randomness
we might desire, and Thermodynamic quantities (i.e. derivatives of the partition
function) are just functions of the moments of the random variable of the system.

Remark II.3.26. Having assumed no thermodynamic setting, the result extends
to any partition function object. Such conclusion is very important in the general
sense since most of Bayesian statistics seeks to answer questions around Zn even
without taking the limit n Ñ 8.

II.4 Integral Transforms

Further References

A non-exhaustive collection of useful resources is (Figueroa O’Farril 1998;
Weber and Arfken 2004), (Evans 2006, Lect. 12).

To begin, we define an object which will be of great interest.

Definition II.4.1 (Laplace Transform). For a function f defined on the positive
real axis, its Laplace transform is:

Lrf spsq :“

ż 8

0

fptqe´st dt s P C. (II.4.2)

In a similar way we define the bilateral Laplace transform for functions over the
real line taking values on the complex plane as:

L˘rf spsq :“

ż 8

´8

fptqe´st dt s P C. (II.4.3)

Up to constants, the bilateral Laplace transform is strongly related to the Fourier
Transform, which we reported below to choose one of the standard formulas for it.

Definition II.4.4 (Fourier Transform). Given a function f : R Ñ R, define:

Frf spwq :“ fFoupwq “
1

2π

ż 8

´8

fpxqe´iwx dx, (II.4.5)

whenever the integral is computable.

Remark II.4.6. The connection between bilateral Laplace transform and Fourier
transform is seen as:

2πFrf spiwq “ L˘rf spwq. (II.4.7)

Fact II.4.8 (Sufficient conditions for Laplace and Fourier transform). Let f : R Ñ

R be a function on the reals. Then:
2discarding a β factor if needed
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1. if ∥f∥22 “
ş8

´8
pfpxqq2 dx ă 8 then the Fourier transform exists

2. if |fpxq| ď Ceαx for all x and ℜpsq ą α the Laplace transform exists at
Lrf spsq

Fact II.4.9 (Inverse Laplace and Fourier). One can show that the inverse trans-
formation for Laplace integrals is given by the formula:

L´1rfLappsqs “
1

2πi
lim
τÑ8

ż γ`iτ

γ´iτ

fLappsqest ds τ P R (II.4.10)

where fLap is the Laplace transform and γ is big enough as to have it defined every-
where
Similarly, if f is square integrable and continuous, one has:

fpxq “

ż 8

´8

fFoupwqeiwx dw (II.4.11)

Sometimes, the function might only be square integrable, and we resort to the
more general result below.

Fact II.4.12 (Fourier Inversion Theorem). Let f be in the L2pRq space. Then:

ż 8

´8

fFoupwqeiwx dw “

#

fpxq f P C1

1
2 limyÒx fpyq ` 1

2 limyÓx fpyq else
(II.4.13)

An immediate observation is that the Laplace and Fourier Transform generalize
the MGF and CF in the following sense:

• the CF of a distribution ppxq is the complex conjugate of the Fourier Transform
of ppxq

• the MGF is the bilateral Laplace transform of ppxq with a ´t in the argument.

Additionally, Eqn. I.3.14 can be now reinterpreted with the statement that the
canonical partition function is the Laplace transform of the microcanonical entropy.
We gloss over the discussion on the conditions of existance, but stress on one very
important fact: the Laplace transform of L2 functions is analytic. This is a con-
sequence of its continuity and it being zero on closed countours, which allows to
apply Morera’s Theorem (Prop. II.2.51).

II.5 Dirac Delta Distribution, Hubbard-Stratonovich
Transformation

Further References

To begin, it is possible to consult (Krzakala and Zdeborová 2021; Salasnich
n.d.), (Evans 2006, Lect. 6).

We now turn to present two objects that are widely used in Physics.

Definition II.5.1 (Dirac Delta Distribution). The dirac delta distribution is such
that:

δpxq »

#

`8 x “ 0

0 x ‰ 0
s.t.

ż 8

´8

δpxqdx “ 1. (II.5.2)

One can see that is is not really a function (i.e. the first equation would make the
integral zero), but rather a generalization in the sense of limits of valid functions
where:

ż 8

´8

δpxqdx “ lim
ϵÑ0`

ż 8

´8

δϵpxqdx, lim
ϵÑ0`

δϵpxq “

#

8 x “ 0

0 x ‰ 0.
(II.5.3)
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These comments are largely indicatory and serve for an understanding. For rigorous
definitions, one can resort to Measure Theory or the Theory of Distributions, al-
lowing for some less applicable constructions but more rigor (see (Strichartz 2003)).
For what will serve here, we can take it a a heuristic. Also δ extends in the most
natural way to its multidimensional equivalent.

Example II.5.4. An infinite number of functions satisfies Definition II.5.1. One
interesting case is the Gaussian measure with vanishing variance

δϵpxq “
1

ϵ
?
π
e´ x2

ϵ2 , (II.5.5)

or in the more friendly form 1?
2πϵ

e´ 1
2ϵx

2

. Alternatively, the simple constant van-
ishing function:

δϵpxq “

#

1
ϵ |x| ď ϵ

2

0 else
(II.5.6)

is valid.

Lemma II.5.7 (Dirac Delta Property). for f : R Ñ R continuous at x:
ż

fpmqδpm ´ xqdm “ fpxq “

ż

fpmqδpnm ´ xqdm “
1

n
fpxq. (II.5.8)

Proof. We provide a sketch. Depending on the level of formality it can be made
more rigorous.
The Dirac delta is concentrated at 0 in its Definition. For the case δpm´xq we use
the second example above for simplicity.

lim
ϵÑ0`

ż

´8

δϵpm ´ xqfpmqdm “ lim
ϵÑ0`

1

ϵ

ż ϵ
2 `x

´ ϵ
2 `x

fpmqdm “ fpxq, (II.5.9)

by continuity of f . The second equality follows analogously. We recognize that
n is fixed and thus dnm “ ndm and that δpnm ´ xq “ δpm ´ x

n q as they both
concentrate at x “ nm. Clearly:

ż

fpmqδpnm ´ xqdm “
1

n

ż

fpmqδpnm ´ xqdnm “
1

n
fpxq. (II.5.10)

Remark II.5.11. The second result of Lemma II.5.7 is the most used version by
Physicists. Notice that if we take the logarithm we find that:

log fpxq

n

n
“

log fpxq

n
´

log n

n
nÑ8
Ñ

log fpxq

n
. (II.5.12)

Therefore, the n at the denominator can be neglected.

We also derive the relation between Fourier Transform (Def. II.4.4) and Delta
distribution by direct computation. If the distribution is centered at x0, then

Frδpx ´ x0qs “
1

2π

ż 8

´8

δpx ´ x0qeiwxdx “
1

2π
eiwx0 , (II.5.13)

which by Fourier Inversion (Fct. II.4.12) leads us to the integral representation for
the Dirac Delta distribution centered at x0:

δpx´x0q “ F´1rfpxqs “

ż 8

´8

fFoupwqe´iwx dw ùñ δpx´x0q “
1

2π

ż 8

´8

eiwpx´x0q dw.

(II.5.14)
A better interpretation in the Statistical Physics sense is provided by deriving the
identity with the Hubbard-Stratonovich transformation (Stratonovich 1957), which
is based on the exact identity:3

e´ a
2 x

2

“

c

1

2πa

ż 8

´8

e´
y2

2a ´ixy dy, a ą 0. (II.5.15)

3to prove it, one just completes the squares in the exponential and finds a Gaussian integral
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In general it is used to change from a particle theory to its respective field theory.
In other words, it is applied to decouple the sites xi, xj into a system of particles
x interacting with a field y.4 The cardinal example for Statistical Physics is found
in the steps of the replica method, where the powers of Zr entangle configurations
across replicas, and such a transformation will represent them as dis-entangled.

To reconnect with Fourier, for a Dirac delta distribution the Hubbard-Stratonovich
transformation recovers the integral representation via the Gaussian approximation:

δpx ´ x0q “

ż 8

´8

δpx ´ x0qdx “ lim
ϵÑ0`

1
?
2πϵ

ż 8

´8

e´ 1
2ϵ px´x0q

2

dx (II.5.16)

“
1

2π
lim
ϵÑ0`

ż 8

´8

ż 8

´8

exp
!

´w2 ϵ

2
` iwpx ´ x0q

)

dw dx (II.5.17)

“
1

2π

ż 8

´8

eiwpx´x0q dw, (II.5.18)

where in the last equality we used dominated convergence.

Remark II.5.19. We are effectively relating the Hubbard-Stratonovich transforma-
tion and the Fourier transform for the delta function.

Remark II.5.20. Neither the delta distribution nor its Fourier transform are
square integrable!

A suspicious Dirac; intuition on its meaning

In Physics, the dirac delta is often taken as a way to enforce a hard-constraint on
an integral. For example, in some cases we might want to restrict the integration
of a function f : Rd Ñ R to vectors of some norm, say

?
d. There are at least two

options to express this. On one side, a spherical integral
ş

Sd´1p
?
dq

is natural. On
the other, we might as well perform the integral over Rd, and enforce the selection
of x such that ∥x∥22 “ d, which would be written as:

ż

Rd

fpxqδp∥x∥22 ´ d2qdx. (II.5.21)

For the latter, Physicists develop tools to approximate the integral especially when
the dimensions are large.

On a related note, some papers present a peculiar expression involving the Dirac
delta. Without much context or motivation, we present below an example compu-
tation. Let us keep the matters simple, and imagine that we are working with
real-valued functions on the reals, since the reasoning extends naturally to Rd inte-
gration. Fix a resolution ∆. A collection of n discrete variables tx1, . . . , xnu, where
for each i P rns we have xi “ i∆, approximates in the Riemann sense a continuous
line x P r0, Ls, with L “ n∆. As usual, we might write the integral as the limit of
the Riemann sum, i.e.:5

lim
nÑ8

n
ÿ

i“1

fpxiq “

ż L

0

fpxq

∆
dx. (II.5.22)

Similarly, in the same limit, we can “identify” for two indexes i, j P rns the limit of the
Kronecker delta normalized by the discretization as Dirac’s Delta. We explain
this as follows. While Kroenecker’s Delta δij is a-dimensional in t0, 1u, Dirac’s delta
possesses the dimension of the inputs over which it is evaluated. Intuitively, if xi, xj

are in units of length, the dirac δpxi ´xjq will be in units of length. A little thought
then reveals that the correct assignment is:

lim
nÑ8

1

∆
δij “ lim

nÑ8

n

L
δij “ δpxi ´ xjq, (II.5.23)

4Understanding formally what a field is can be avoided. It suffices to notice that the entangling
on the LHS is lost on the RHS, and the y is integrated out. The RHS integral will turn out to be
easier.

5notice we are being sloppy here and leaving ∆ on the RHS despite taking n Ñ 8
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and in particular, choosing i “ j, we obtain:

lim
nÑ8

1

∆
“ δp0q. (II.5.24)

Therefore, we can say that:

fpxjq “ lim
nÑ8

n
ÿ

i“1

δi,jfpxiq “

ż L

0

δpx ´ xjqfpxqdx, (II.5.25)

and regarding Equation II.5.22, the most formal result would be:

ż L

0

δp0qfpxqdx. (II.5.26)

Remark II.5.27. On a mathematical basis, we are just performing Riemann inte-
gration. On the Physics side, the δp0q term serves the purpose of ensuring the same
dimensional meaning on both sides of the equation.

Remark II.5.28. In the inverted direction, when some Dirac distributions appear
in the form δpx´´xjq, they can be non-rigorously transformed into 1

∆δi,j to simplify
the equations into sums, and then brought back to their original limit taking ∆ Ñ 0.
Obviously, this requires reverting an integral and applying the limit ∆ Ñ 0 after
some operations, and must be taken with care in the formal sense.

II.6 Asymptotic Integrals

Remark II.6.1. Notice that throughout the section and the document we do not
perform analysis at the boundaries of integration and think of the integrals as eval-
uations in the interior of the extremes. The discussion could be generalized, but at
the cost of increased space. For related ideas, see (Akbari, Bury, and Phillips 2015;
Wong 2001)

Further References

The topic is very wide but the following are three useful resources (Akbari,
Bury, and Phillips 2015; Miller 2006; Wong 2001) and (Evans 2006).

We will just provide the basics of the two methods. The latter is especially
quite advanced and involves some knowledge in complex analysis. For the sake of
understanding when it is used in the replica computations, we will briefly present
it, and always assume that it holds in its simplest form. A satisfactory discussion
is carried out in (Miller 2006; Wong 2001).

Assume we wish to perform the integral of a function that has exponentially
decaying terms in some parameter. Explicitly, in our case will be n. We present a
result that is at the basis of two widely used tools.

Lemma II.6.2 (Watson’s Lemma (Watson 1918)). A more recent reference is
(Miller 2006)[Chap. 2, Sec. 2.2].
Assume the following conditions hold:

i) 0 ă R ď 8 fixed

ii) fpxq “ xλgpxq

iii) gpxq is C8 at x “ 0 and gp0q ‰ 0

iv) λ ą ´1

v) either |fpxq| ď Kebx for all x ą 0 and K, b KK x or
şR

0
|fpxq| dx ă 8

Then:
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1. an integrability condition holds for the exponentiated function, i.e.:
ˇ

ˇ

ˇ

ˇ

ż R

0

e´nxfpxqdx

ˇ

ˇ

ˇ

ˇ

ă 8, (II.6.3)

2. and most importantly, the integral of the exponentiated function admits an
asymptotic expression in terms of a series expansion of its content:

ż R

0

e´nxfpxqdx „

8
ÿ

t“0

gptqp0qΓpλ ` t ` 1q

t!nλ`t`1
pn ą 0, n Ñ 8q. (II.6.4)

Proof. See (Wong 2001, Chap. I, Sec. 5), (Miller 2006, Chap. 2, 2.2).

Remark II.6.5. Notice that we are giving an asymptotic approximation of the
Laplace integral!
The statement could be expanded to Laplace types of integrals, where the x in the
exponent is replaced by a function of x.

Consider the following type of integral:

In “

ż b

a

ϕpxqpfpxqqn dx. (II.6.6)

Especially with transforms such as the Fourier or Laplace, some steps require these
types of computations. We provide an example of (Wong 2001) below as a motiva-
tion, but others are found in Thermodynamics and Statistical Physics.

Example II.6.7. Let tXiu
n
i“1 be iid with pdf fpxq. Their sum has density fn :“

˚n
i“1f , where ˚ denotes the convolution operator.6 By independence, characteristic

functions (Def. II.3.3) ϕpζq multiply with each other and the characteristic function
of the sum is ϕnpζq “ pϕpζqqn. Applying the inverse Fourier Transform theorem7,
one finds a representation of the sum pdf as:

fnpxq “
1

2π

ż 8

´8

e´iζxpϕpζqqn dζ, (II.6.8)

which is of the form of Eqn. II.6.6.

Heuristically, for sharply peaked functions inside an integral, with peaking-
asymptotics-exogenous parameter n, we should expect that the integral value con-
centrates around the dominating value as n Ñ 8. Laplace’s result, which is of this
type, roughly says that for a function f which over the domain of integration is
unimodal concave with maximum at x‹ P pa, bq one has that:

Inpxq
nÑ8

„ ϕpx‹qpfpx‹qqn` 1
2

d

´
2π

nf2px‹q
. (II.6.9)

Equivalently, expressing fpxq “ ehpxq and assuming that h is unimodal at x‹ and
concave, the result is:

Inpxq “

ż b

a

ϕpxqenhpxq dx
nÑ8

„ ϕpx‹qenhpx‹q

d

´
2π

nh2px‹q
. (II.6.10)

Notice that the argument of the square root is positive since h2px‹q ă 0 by concavity.
6As a reminder, for two measures µ, ν on the same sample space X Ď Rd absolutely continuous

wrt a reference measure ρ, the convolution operator is defined as:

pµ ˚ νqpzq :“

ż

X
fpxqgpz ´ xqdρpxq,

where z P X and f, g are the respective densities. Equivalently, f, g convolve in the reference
measure dρ.

7i.e. the function of interest can be recovered from its Fourier transform, the characteristic
function
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We will report an informal justification and a rigorous Theorem. The former is
achieved by a Taylor expansion around the max x‹ of ϕ and hpxq, extending the
integration to R, and using properties of Gaussian integrals (Sec. II.1). Despite
being unjustified, it gives the same result.
ż b

a

ϕpxqenhpxq dx «

ż b

a

ϕpx‹qenhpx‹q`px´x‹q
2 h2px‹q

2 dx Taylor (II.6.11)

« ϕpx‹qenhpx‹q

ż 8

´8

enpx´x‹q
2 h2px‹q

2 dx domain of integration

(II.6.12)

“ ϕpx‹qenhpx‹q

d

´2π

nh2px‹q
Fct. II.1.1. (II.6.13)

Another very nice set of considerations and exmples on the heuristic method can
be found in (Shalizi 2024). Below, we report a formal Proposition.

Proposition II.6.14 (Laplace’s Method). We provide a statement sufficient for
our uses, a more general one is found in (Wong 2001, Chap II, Thm. 1.1), or
(Miller 2006, Chap. 4). Also (Krzakala and Zdeborová 2021, Chap. 1, Thm. 2)
provides a brief presentation.
Let hpxq´ 1

n log ϕpxq be twice differentiable on ra, bs and unimodal, with a maximum
at x‹ P pa, bq. Then:

lim
nÑ8

şb

a
ϕpxqenhpxq dx

ϕpx‹qenhpx‹q

c

´2π

nf2px‹q

“ 1, (II.6.15)

which is the same as the heuristic guess we computed just above.

Proof. The general statement proof is based on a rearrangement that gets to the
Laplace transform. Then Watson’s Lem. II.6.2 is applied. So a precise series of
sums is found, and the approximation can be made as tight as desired by adding
terms.

II.6.1 Steepest descent
We do not dwell much into the theory because it is extensive, but for complex inte-
grals one can consider as references (Rudin 1987; Weber and Arfken 2004)(Arfken
and Weber 2013, Chap. 6, 7). In particular, we build on a combination of argu-
ments from (Wong 2001, Chap. III, Sec. 4), (Akbari, Bury, and Phillips 2015),
(Evans 2006, Lect. 5), and (Weber and Arfken 2004, Sec. 6, 7) which present many
aspects of a method first devised by Debye (Debye 1909).
Consider integrals of the following form:

In “

ż

C
ϕpzqenhpzq dz n " 1, z P C, (II.6.16)

where C is a contour as the one in Def. II.2.12, and ϕ, h are analytic functions (Def.
II.2.1). We can evaluate it via a combination of the Laplace method and the method
of stationary phase.
Letting f “ u ` iv, we know that u is maximized in the Laplace method and v is
stationary, so that oscillatory contributions cancel far away from it and not close
to it (Evans 2006, Lec. 5), (Wong 2001, Chap. II, Sec. 3)(Cohn 2007; Rozman
2017). We will therefore argue that the integral above is dominated by the argument
evaluated at the stationary point of f .

Remark II.6.17. While this is just a heuristic, the references explain in detail the
various levels of understanding of such idea.

As a first step, we notice that the extremas of f,ℜpfq are saddle points.

Fact II.6.18. The conditions of maximization of u and stationarity of v imply that
the extremas of f,ℜpfq are saddle points.



44 CHAPTER II. TOOLS AND TECHNIQUES IN STATISTICAL PHYSICS

Proof. Cauchy-Riemann conditions imply that u, v satisfy Laplace’s Equation (Def.
II.2.6). The statement is easily seen by:

B2u

Bx2
`

B2u

By2
“

B2u

Bx2
`

B

By

ˆ

´
Bv

Bx

˙

“
B2u

Bx2
´

B

Bx

Bv

By
“

B2u

Bx2
´

B

Bx

Bu

Bx
“ 0 (II.6.19)

Where we have just exchanged derivatives and applied the conditions multiple times.
The result extends to higher order k ě 2 derivatives.

Thanks to the above result, we know that if B2
xu ą 0 then B2

yu ă 0 at a point
of interest. The opposite result also holds (negative, positive). If we denote the
point as z‹, we may apply Cauchy’s Theorem to deform the countour and let it
pass across z‹. The fact that the imaginary part is stationary gets us to evaluating
the integral over a real countour that passes through z‹ and has constant imaginary
portion:

In “

ż

C1

ϕpzqenhpzq dz “ einv
ż

C1

ϕpzqenupzq dz n " 1, z P C, (II.6.20)

where v is independent of z.
We now wish to find the path of steepest ascent of the real part to the stationary
point z‹. Some thought leads to the conclusion that it is exactly realized when the
imaginary part variation is null. Indeed:

δh “ hpzq ´ hpz‹q “ δu ` iδv ùñ |δu| ď |δh|, (II.6.21)

and δu is at its steepest when δv “ 0, i.e. the imaginary part is kept constant and
z‹ “ px‹, y‹q attains a constant value when plugged into v. We further say h has a
saddle point of the kth order at z‹ when:

dmh

dzm

ˇ

ˇ

ˇ

ˇ

z“z‹

“ 0 @ m P rks
dmh

dzm

ˇ

ˇ

ˇ

ˇ

z“z‹

‰ 0 @ m ą k. (II.6.22)

Therefore, at a k order saddle, the Taylor expansion of h reads:

hpzq « hpz‹q `
dk`1h

dzk`1

ˇ

ˇ

ˇ

ˇ

z“z‹

pz ´ z‹qk`1

pk ` 1q!
` h.o.t, (II.6.23)

over which we perform the following change of variables

z ´ z‹ “ reiϑ hpk`1qpz‹q “ ρeiξ ϑ, ξ P r0, 2πs, ρ, r P R. (II.6.24)

Focusing on the Taylor expansion, the expression becomes:

hpzq´hpz‹q «
rk`1eipk`1qϑ

pk ` 1q!
ρeipk`1qξ “ rcospξ ` pk ` 1qϑq ` i sinpξ ` pk ` 1qϑqs

rk`1ρ

pk ` 1q!
.

(II.6.25)
Thus, imposing stationarity of the complex part:

ℑphpzq´hpz‹qq “ i sinpξ`pk`1qϑq “ 0 ðñ ξ`pk`1qϑ “ qπ, q P N ðñ ϑ “ ´
ξ

k ` 1
`q

π

k ` 1
, q P N,

(II.6.26)
and from such condition, we can directly derive the steepest ascent direction:

ℜphpzq ´ hpz‹qq ă 0 ðñ cospξ ` pk ` 1qϑq ă 0 ðñ ϑ “ ´
ξ

k ` 1
` p2q ` 1q

π

k ` 1
,

(II.6.27)
and the steepest descent direction:

ℜphpzq ´ hpz‹qq ą 0 ðñ cospξ ` pk ` 1qϑq ą 0 ðñ ϑ “ ´
ξ

k ` 1
` 2q

π

k ` 1
.

(II.6.28)
Using such technique, we consider the simplest case in which ϕ is of constant order
around z‹ and the saddle is of order k “ 1, so that we can apply Fct. II.6.18 and
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know that the maximum of the real part at stationary imaginary part is a saddle
point. Taylor expanding the functions inside the integral we set:

ϕpzq « ϕpz‹q hpzq « hpz‹q `
1

2

d2h

dz2

ˇ

ˇ

ˇ

ˇ

z“z‹

px ´ z‹q2, (II.6.29)

and write the heuristic:8

In « ϕpz‹qenhpz‹q

ż b

a

e
1
2h

2
pz‹qpz´z‹q

2

dz. (II.6.30)

To evaluate the integral we perform a change of variables into polar coordinates
with:

z ´ z‹ “ reiϑ h2pz‹q “ |h2pz‹q|eiξ ϑ, ξ P r0, 2πs, r P R` (II.6.31)

where ϑ is the free to choose angle at which the countour passes through z‹. The
integral in polar coordinates is now:

In « ϕpz‹qenhpz‹q

ż 8

0

e
1
2 |h2

pz‹q|eiξr2e2iϑeiϑ dr, (II.6.32)

where the integration has moved to arbitrary r P R` without breaking the approx-
imation. This can be verified in terms of the result of Watson’s Lem. II.6.2, which
roughly says that the integral will be dominated by the terms close to r “ 0.
A clever choice, which turns out to be the one of steepest descent from the saddle
is ξ ` 2ϑ “ π, for which ϑ “

π´ξ
2 . This can be verified with the above reasoning or

in (Arfken and Weber 2013, Chap. 7.3). The integral now becomes:

In « ϕpz‹qenhpz‹qeiϑ
ż 8

0

exp

"

1

2
n|h2pz‹q|r2

*

dr
nÑ8

„ ϕpz‹qenhpz‹qeiϑ

d

2π

n|h2pz‹q|
ϑ “

π ´ ξ

2
.

(II.6.33)
The above approximation result can be made rigorous. A more systematic approach
is carried out in (Wong 2001, Chap. II, Sec. 4).

Remark II.6.34 (General remarks). We give four further heuristic comments.

1. If there are multiple saddle points, the contributions sum up;

2. the direction in which z‹ is approached is important;

3. in absence of a saddle point (e.g. if the function h is monotonic), the biggest
contribution is at the boundary, as stated at the beginning;

4. in our applications, we will blindly believe that the saddle point method may
be applied in the simplest case possible, by which we replace an integral in the
form of Eqn. II.6.16 with its maximum/minimum argument of the exponent
depending on the sign that the exponential has. Checking the reliability of the
method would be tedious, and we rather hope for n to be large enough as to
branch out all the unfriendly cases.

Having introduced some fundamental mathematical notions, we now turn to
explaining the connections between Information Theory and Statistical Mechanics,
through the lens of the work of Jaynes (Jaynes 1957) and Shannon (Shannon 1948).
The loose aim is to give a justification as to why the physical laws just discussed
are, in the words of Jaynes “merely an example of statistical inference” (Jaynes
1957). Reconnecting with the discussions in Chapter I, we will still be concerned
with describing thermodynamic-like properties of a system at equilibrium, but with-
out seeing it. Subject to some truth-revealing obsevations, we will understand that
statistical inference and information are treated under a surrogate of the concepts
derived earlier, but this time starting solely from a notion of entropy. The discus-
sion about physical laws and equations of motions mentioned will be latent in the
analysis, but still present. As an informal result, Statistics, Information Theory
and Thermodynamics have a large overlap.

8note that we are not taking out the imaginary component ℑphq “ v explicitly, but inside the
general form
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Chapter III

Mathematical Topics in
Statistical Physics

In this Chapter we formalize and extend some of the statements found in the pre-
vious discussions. In Setion III.1, we report the original axiomatic construction of
Entropy by Shannon (Shannon 1948). To continue and reconnect with Thermody-
namics, we overview the Maximum Entropy Principle of Jaynes and the comments
therein about the comparison with Boltzmann’s formulation (Jaynes 1957). In
Section III.3, we move the narrative to a more grounded justification and contextu-
alization of Free Energy, with an eye on Machine Learning and Bayesian methods.
In a related way, we summarize properties and ideas behind the Legendre-Fenchel
transform, an extension of the Legendre transform, in Section III.4. To conclude,
we just briefly overview two very important fields: large deviations and all of In-
formation Theory. For the former, we do relegate to extensive references the ideas.
For the latter, we do still bring some value to the document, by providing a broad
validation of Kullback-Leibler divergences and entropy, thanks to their ubiquity in
Inference.

Further References

On a similar note, two recent articles by the same author provide a three-
way concise jusification of entropy (Lairez 2022), and a quick derivation of
fundamental Thermodynamical objects from first principles (Lairez 2023),
which is useful in the context of Chapter I.

III.1 Formalizing Uncertainty

We will first take an Information Theoretic approach, which was initiated by Shan-
non in a foundational publication (Shannon 1948). The Thermodynamics construc-
tion can be shown to be equivalent on many terms.

Remark III.1.1 (Units of measure). The Physics perspective on entropy is at first
sight impossible to reconcile with Shannon’s notion due to kB, Boltzmann’s factor .
However, a careful inspection shows that it is merely a by product of the reference
system used, which endows physical quantities up to constants to estimate. A setting
in which kB “ 1 can be used, without loss of generality.

We take the discrete case for reference. Therefore, a random variable X takes
probabilities pi over a discrete space X “ tx1, . . . , xnu, where |X | “ n. The aim is
finding a nice measure of uncertainty H, or of “how much choice is involved in the
selection of an event” (Shannon 1948, Sec. 6) for a probability distribution, denoted
wlog as tpiu

n
i“1. Tautologically, the nice notion depends on some properties stated

ab-initio. We present those used originally below.

47
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X1X2

X3 X2X3

X1 Y „ Bern
`

2
3

˘

Figure III.1: Two “equally entropic” processes. Source (Shannon 1948, Fig.6)
Two sampling systems that are statistically equivalent should exhibit the same
entropy.

Shannon’s Uncertainty Properties

A good measure of uncertainty satisfies the following properties

(Sh1) tractability: continuity in tpiu
n
i“1 holds

(Sh2) monotonicity: if X „ UnifpX q then it is monotonically increasinga

in |X |

(Sh3) additivity: for an event decomposed into sub-events, the entropy of
the original event is a weighted sum of the entropy of the sub-events

ato an increasing number of equally likely outcomes corresponds increased uncertainty

To understand (Sh3), the example of (Shannon 1948, Fig. 6) is instrumental.
We report it below.

Example III.1.2. Given two outcome systems:

X “

$

’

&

’

%

X1 wp 1
2

X2 wp 1
3

X3 wp 1
6

X “

$

’

&

’

%

X1 wp 1
2

X2 if Y “ 1

X3 if Y “ 0

Y „ Bern
ˆ

2

3

˙

, (III.1.3)

depicted in Figure III.1.
It is easy to see that an information measure for the former would obey the

expression Hp 1
2 ,

1
3 ,

1
6 q, while the coarse grained version amounts to having entropy

Hp 1
2 ,

1
2 q on the first step (either X1 or one of X2, X3) and Hp 2

3 ,
1
3 q on the second

step (when the Y coin is thrown). Given that the probability distribution of X is
phenomenologically the same, property (Sh3) enforces that:

H
ˆ

1

2
,
1

3
,
1

6

˙

“ H
ˆ

1

2
,
1

2

˙

`
1

2
H
ˆ

2

3
,
1

3

˙

, (III.1.4)

where the 1
2 factor is a weighting for the sub-event since it happens only half of the

time.

At first sight one might think that there are plenty H obeying the uncertainty
principles. It turns out that the three are sufficient and necessary for a characteri-
zation.

Theorem III.1.5 (Shannon’s Uncertainty Measure Characterization, Thm. 2
(Shannon 1948)). There exists one and only one H satisfying (Sh1)-(Sh3), and
it is:

Hptpiu
n
i“1q “ ´K

n
ÿ

i“1

pi log2 pi K ą 0. (III.1.6)

Proof. We report the proof for the sake of completeness since it is self-contained
and nice to read.
Let Apnq :“ H

`

1
n , . . . ,

1
n

˘

. Observe that by (Sh3) we have that Aptnq “ nAptq,
since tn equally likely events decompose into n choices of t equally likely events.
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For any pair pn, tq where t is fixed and n is arbitrarily large, there is another pair
ps,mq such that sm ď tn ď sm`1. Taking logarithms and dividing by n log s one
finds:

m

n
ď

log t

log s
ď

m

n
`

1

n
, (III.1.7)

or the nicer expression:
ˇ

ˇ

ˇ

ˇ

m

n
´

log t

log s

ˇ

ˇ

ˇ

ˇ

ă ϵ ϵ arbitrarily small since n arbitrarily large. (III.1.8)

An application of monotonicity (Sh2) and the previous discussion on (Sh3) ensures
the chain of inequalities holds after applying Ap¨q

mApsq ď nAptq ď pm ` 1qApsq, (III.1.9)

which divided by nApsq gives:
ˇ

ˇ

ˇ

ˇ

m

n
´

Aptq

Apsq

ˇ

ˇ

ˇ

ˇ

ă ϵ ϵ arbitraily small. (III.1.10)

Combining Eqns. III.1.8, III.1.10 we reach the expression:
ˇ

ˇ

ˇ

ˇ

Aptq

Apsq
´

log t

log s

ˇ

ˇ

ˇ

ˇ

ă 2ϵ ϵ ą 0. (III.1.11)

Since t, s were arbitrary, it must be that Aptq “ K logptq, Apsq “ K logpsq where
K ą 0 is the constant that cancels out in the division. Note that K ą 0 is ensured
by (Sh2) and the expression is enforced since the bound is for arbitrary ϵ ą 0.
In general, for a clusterization of events i with relative frequency ni we have that an
uncertainty/information measure should satisfy for pi “ ni

ř

ni
the following identity:

K log
ÿ

ni “ H
`

tpiuiPrns

˘

` K
ÿ

pi log ni, (III.1.12)

where the choice was broken down into n possibilities and ni is the second (uniform)
number of choices.
Eventually:

Hptpiu
n
i“1q “ ´K

ÿ

i

pi ln pi (III.1.13)

by the simple observation that ln
ř

ni “
ř

j pj ln
ř

ni. Requirement (Sh1) ensures
that the definition of pi is wlog, since by continuity in pi we can always approximate
any p1

i by rationals, and obtain Eqn. III.1.13.

Definition III.1.14 (Shannon’s uncertainty, or entropy). For a discrete random
variable X its entropy is

HpXq :“ ´E rlnpPrXsqs , (III.1.15)

where by abuse of notation we write HpXq without referring to the probabilities. In-
deed, the entropy should be in terms of the distribution but we will mostly use it for
random variables. Whenever the focus is on a general distribution with probabilities
tpiuiPrns we write it as Hppq or HptpiuiPrnsq.
Notice also that the logarithm is in base e. Despite being originally formulated in
base 2, a trivial calculation shows that the two definitions are equivalent up to con-
stants.1
The terminologies entropy, uncertainty and information measure are used exchange-
ably. The third and second are opposites (high uncertainty, low information), the
first will be shown to be uncertainty in the next Section. By the previous discussion,
we are also setting K “ 1 wlog.

Note that up to a constant factor we have recovered the expression of Def. I.3.28,
which has Def. I.2.15 as a special case. Despite being equal, it does not mean that
they describe the same concept (Jaynes 1957). We will equivalence in a very peculiar
way, by establishing a relation in terms of performing least-biased inference when
approximating a distribution.

1It suffices to use the identity logb a “
logd a
logd b

for b “ 2, a “ PrXs, d “ e to see that the constant
is always ln 2
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III.2 The Maximum Entropy Principle
When doing inference, the objective is to minimize the bias of the procedure carried
out. In a Physics environment, the concept can be briefly explained as follows. It
is often the case that a measurement of an unknown function is available, but the
randomness of all the realizations is not. If the random variable takes n finitely
many values, the randomness is encapsulated in tpiu

n
i“1, and the measurement is

expressed as a weighted sum:

E rfpXqs “

n
ÿ

i“1

pifpxiq. (III.2.1)

With this information, we would like to estimate the mean of another function
g : X Ñ R, hoping to minimize the bias and be rightfully representing the truth.
Unfortunately, the available information is only in Eqn. III.2.1 and in the fact that
probabilities normalize

ř

i pi “ 1. The number of constraints is 2, the number of
variables is n: we are facing an undetermined problem. In particular, an infinite
number of distributions satisfies the constraints.

Historically, there have been many attempts to inject structure as to derive a
unique result. The main idea is that one needs to supplement the observable reality
with additional hypotheses that make sense. Since inference is on the probabilities of
a random variable, the path splits at two main branches, the frequentist-objectivist
(Cramér 1999; Feller 2009) and Bayesian-subjectivist (Jeffreys 1998; Keynes 2004)
interpretations of probability. Given the unsatisfiable nature of our question, we
are forced to implement the latter.

Summarizing, our task is to find a collection tppiu
n
i“1 that satisfies the constraints

and carries no more overflow of information coming from structural assumptions.
Maximizing the entropy, to aim for the highest possible amount of uncertainty, is
a principled way to solve the search problem. Remarkably, an object that we have
already presented appears.

Proposition III.2.2 (Maximum Entropy Principle leads to Boltzmann Distribu-
tion (Jaynes 1957)). Consider a random variable X, taking values in a finite dis-
crete space X “ tx1, . . . , xnu, and a function f : X Ñ R of which the expectation
E rfpXqs is known. Let µf be the expectation of f , and tpiu

n
i“1 represent any as-

signment of probabilities to the alphabet X . Then, the program:
#

argmax
tpiuni“1

HpXq s.t.
n
ÿ

i“1

pi “ 1, E rfpXqs “ µf

+

(III.2.3)

is solved by a set of probabilities tppiu
n
i“1 with canonical Boltzmann distribution (Def.

I.3.10) parametrized by pξ0, ξ1q. The optimal value of entropy is:

H‹pXq “ ξ0 ` ξ1µf . (III.2.4)

Proof. We introduce a Lagrange optimization problem for arbitrary distribution
tpiu

n
i“1. Following the usual formalism:

Lppi; ξ0, ξ1q “ HpXq ` ξ0

˜

ÿ

i

pi ´ 1

¸

` ξ1 pE rfpXqs ´ µf q ξ0, ξ1 P R. (III.2.5)

Solving for ∇Lppi; ξ0, ξ1q “ 0:

BL
Bpj

“ ´
ÿ

i

δij ln pi ´
ÿ

i

pi
B ln pi

Bpj
` ξ0

ÿ

i

δij ` ξ1

˜

ÿ

i

δijfpxiq

¸

“ 0, (III.2.6)

where δij are Dirac deltas, along with the two constraints mentioned above. The
solution to this problem is:

´ ln pj ´1 ` ξ0
l jh n

“ξ1
0

`ξ1fpxjq “ 0 ùñ ppj “ e´ξ1
0´ξ1fpxjq @j. (III.2.7)
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To continue, we use ξ0 in place of ξ1
0 since it is a constant. Working on the derivatives

wrt the multipliers:

eξ0 “
ÿ

i

e´ξ1fpxiq “ Zpξ1q ðñ ξ0 “ lnZpξ1q, (III.2.8)

and

E rfpXqs “ e´ξ0
ÿ

i

e´ξ1fpxiqfpxiq “ xfpXqyξ1 “ ´
B

Bξ1
lnZpξ1q. (III.2.9)

The set tppiu
n
i“1 is the specification of a Boltzmann distribution at temperature ξ1

and mean energy U “ E rfpXqs for the canonical ensemble (Def. I.3.10). If we
evaluate the entropy we find:

HpXq “ ´

n
ÿ

i“1

pi log pi “
ÿ

i

e´ξ0´ξ1fpxiq pξ0 ` ξ1fpxiqq (III.2.10)

“ ξ0
ÿ

i

e´ξ0´ξ1fpxiq

l jh n

“1

`ξ1
ÿ

i

e´ξ0´ξ1fpxiqfpxiq

l jh n

“µf “ErfpXqs

. (III.2.11)

Corollary III.2.12. The result is readily extended to a set of means pµ
p1q

f , . . . , µ
pkq

f q

of different functions pf p1q, . . . , f pkqq, for which one finds that the maximum entropy
distribution is:

pi “ exp

#

´ξ0 ´

k
ÿ

l“1

ξlµ
plq
f pxiq

+

Zpξ1, . . . , ξkq “
ÿ

i

exp

#

´

k
ÿ

l“1

ξlµ
plq
f pxiq

+

;

(III.2.13)

ξ0 “ lnpZpξ1, . . . , ξkqq µ
plq
f “ ´

B

Bξl
Zpξ1, . . . , ξkq, (III.2.14)

with attained value:

H‹pXq “ ξ0 `

k
ÿ

l“1

ξ1µ
plq
f . (III.2.15)

Therefore, the distribution that maximizes uncertainty under the constraint of
fixing the expectation of one or more functions is Boltzmann-like, with a well defined
structure. However, it should be noted that the second Lagrange multiplier equation
is not easy to solve. In the next computation, we show it is implicit.

Fact III.2.16. One Lagrange multiplier is easy and unique if the other is available,
since ξ0 “ lnZpξ1q. Regarding ξ1 it:

hpξ1q “

n
ÿ

i“1

pfpxiq ´ µf qe´ξ1pfpxiq´µf q “ 0, (III.2.17)

where h is monotonically decreasing and continuous in ξ1 and thus has only one
solution. Unfortunately, the solution has no closed form for any n, and is difficult
for n " 1. The expression extends to multiple constraints naturally.

Proof. Starting from the probability expression pi “ e´ξ0´ξ1fpxiq is easier. We left
and right multiply by fpxiqe

ξ0 , then we sum over i P rns. It gives:
ÿ

i

fpxiqpie
ξ0 “

ÿ

i

fpxiqe
ξ0e´ξ0´ξ1fpxiq ðñ µfe

ξ0 “
ÿ

i

fpxiqe
´ξ1fpxiq.

(III.2.18)
Using the expression for ξ0 and noticing that the LHS is also

ř

i e
´ξ1fpxiq ¨ µf we

can express everything on one side to get:
ÿ

i

pfpxiq ´ µf qe´ξ1fpxiq “ 0 ðñ
ÿ

i

pfpxiq ´ µf qe´ξ1pfpxiq´µf q “ 0, (III.2.19)

where in the last passage we have multiplied and divided by eξ1µf . Continuity and
strict monotonicity are trivial.
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From Prop. III.2.2, Cor. III.2.12 and Fct. III.2.16 it is understood that a set
of contraints by means of expectations on a probability distribution is represented
in the least biased way by the Boltzmann distribution. Moreover, the parameters
are uniquely identified, but not explicitly given. Such an approach covers the miss-
ing constraints in the problem presented at the beginning of the subsection. The
philosophy is being “maximally noncommittal with regard to missing information”
(Jaynes 1957).
Following the approach of Chapter I, and allowing for different energy levels Ei, we
can also recover the dimensional-aware expressions for Thermodynamic quantities.
Considering for simplicity the case in which only one mean is given, we find that
µf “ E rfpXqs “ xE yξ1 “ U , β “ ξ1 and Fpβq “ ´

ξ0
ξ1

, or more explicitly:

ξ1 “ β “
1

kBT
U ´

1

β
S “ Fpβq “ ´kBT lnZpβq; (III.2.20)

S “ ´
BFpT q

T
“ ´kB

ÿ

i

pi ln pi, (III.2.21)

where the two entropy concepts differ by a multiplicative constant, K (arbitrary)
on one side, kB on the other. As already argued, the two are just a by product of
which measurement units are chosen for experiments, and we could just set them
to unity.
An immediate consequence is that if the functions

␣

f plq
(k

l“1
depend on further

parameters of interest pρ1, ρ2, . . .q, then it is possible to recover the force associated
to any ρj via the expression:

Fρj “
1

β

B

Bρj
lnZ. (III.2.22)

Example III.2.23. In Physics, one often considers as additional parameters vol-
ume, electric/magnetic fields, and associates to them forces such as pressure or elec-
tric/magnetic potentials. Under a different light, conjugate quantities introduced in
Definition I.2.25 reappear.

Via simple arguments, we have shown that starting from entropy the thermody-
namics arena is established, in a much more straightforward manner. Previously,
we had to present various principles and approaches, while such last method just
requires a maximization of Shannon’s Entropy. The conclusion is that, when con-
sidering systems at equilibrium, the laws of physics do not bring any added value
if measurements (i.e. means) are available.2 In the next Subsection, we widen the
comparison by narrating the foundational differences of Statistics-based Scientific
Methods.

III.2.1 Subjective, Objective Probability, and the concept of
macroscopic uniformity

We briefly touch upon one principle that is best explained in (Jaynes 1957, Secs. 3,
4).
In Thermodynamics, there is a correspondence of rules derived from stated laws of
nature, and experimental facts. At first, the maximum entropy principle lacks the
latter, but we will explain why it is incorrect to say so.

A crucial aspect is that it is an inference structure built upon partial information,
and therefore implicitly makes use of the subjective interpretation of probability.
A more refined argument is that, if we allow to consider Entropy as a measure of
information, at each stage the process guarantees that probabilities sharpen towards
clear predictions, that should be in line with experiments only when information is
sufficient.
Such information, seen as “amount of knowledge”, is clearly governed by the number
of states n. A little abstraction eventually leads to the observations that:

2This specific comment is not alone valid if time is allowed to flow. Allowing particles to move
across time requires a specification of rules (equations) of motion.
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1. the perspective of maximizing the entropy is a sort of ergodic hypothesis
(Jaynes 1957);

2. the sharpening of predictions is to be interpreted in terms of the broadest
assignment of weights possible that the method ensures;

3. when all micro-states share the same macroscopic properties, sharp predictions
arise, and must be compared with experiments.

Conclusion #3 is referred to by Jaynes as macroscopic uniformity (Jaynes 1957).
A direct consequence of applying it is also that misalingnment of experiments and
sharp predictions is evidence for wrongful counting of states. This latter fact is
understood as follows. Sharp predictions are one to one with abundance of in-
formation, which means that the maximum entropy principle is not flattening the
macroscopic distribution due to lack of data. On the other hand, experiments dis-
agree with the theory. Clearly the theory should be wrong, and it is wrong in a
specific sense: given the generality of technique, it is implied that the issue is how
the entropy was evaluated.
Since enumerating the states of a system is the only step of the process in which laws
of Physics are used, such counting process is wrong and the experiments-maximum
entropy disagreement is evidence of existence of new laws of physics.3

III.2.2 Conjugate quantities

The result of the previous discussions motivates the following comment which is
related to the next topic; Legendre transforms. Reconsider the heat bath in Chapter
I, for two systems pA,Bq, where we are given the mean energy of EA, and the entropy
of system A is only an extensive function of it, i.e. SApEAq. Then, we could define
its temperature as β “ d

dEA
dSA. The way in which temperature is measured is by

means of considering the two systems as a whole, with transitions of the type i Ñ j
for system A and l Ñ m for system B, that preserve the total energy. As before we
would then enforce dE “ 0; or equivalently

Ei,A ` El,B “ Ej,A ` Em,B , (III.2.24)

where a state of the joint system is denoted as pilq and in this case it transitions
to pjmq. In practice, given the overwhelming number of states, having access to
the matrix of transitions is impossible, but conservation of energy enforces that
ppilq is a function of the total energy Ei,A ` El,B . Therefore, the maximum entropy
principle for the mean of EA and the conservation of the total energy allow to write
the partition function and associated condition on the Lagrangian parameter:

Zpξ1q “
ÿ

pilq

e´ξ1pEi,A`El,Bq “ ZApξ1qZBpξ1q xEAy “ ´
B

Bξ1
lnZApξ1q. (III.2.25)

Thus, the Lagrangian parameter is recovered by invoking the equation of the max-
imum entropy as ξ1 “ dSA

dxEAy
“ β.

Looking back at how we formulated the canonical ensemble, the last argument shows
why it makes sense to assume that the average energy will be fixed, and shows that
the two quantities are strongly related, in the sense of being conjugates (Def. I.2.25).
In the next Section, we will generalize this last fact with Legendre-Fenchel trans-
forms, that incidentally also allow for the extension of Legendre transforms to a
larger class of functions.

Example III.2.26 (Entropy via free entropy). It is possible to establish the relation
between free entropy and entropy. Indeed for a random variable E with Boltzmann
distribution we find

HpE q “ ´ xlnPpE qy “ β xE y ` lnZpβq “ β2 BF

Bβ
“ ´

BF

BT
. (III.2.27)

3A folkloristic example which we do not treat in any formal sense is the appearance of the
classical vs quantum mechanics dichotomy.
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Remark III.2.28. As argued before, Shannon Entropy has the same expression of
Gibbs’s entropy (Def. I.3.28). Provided that a random variable has the Boltzmann
distribution, it will return Helmholz free energy-like (Def. I.3.34) quantities.

We can then eventually say that the free entropy and the Shannon entropy are
related by a very nice duality relation via Legendre Transforms (see below at Def.
III.4.2, Prop. III.4.27) and we can express the free entropy as the CGF of the model.
In mathematical terms, it is understood via the equations:

F pβq ` HpE q “ βE KE pβq “ F “ βF. (III.2.29)

Remark III.2.30. For the interested reader mention three recent papers. The first
(Zupanovic and Kuic 2018) connects with Jaynes’ work in the modern context of
Boltzmann-Shannon Entropies, putting emphasis on their differences at finite size.
On a similar note, the authors in (Chakrabarti and De 2000) present different ax-
iomatic derivations of the two versions, in the spirit of (Csiszár 2008). Differently,
the interesting result of (Gao 2022) is that Boltzmann’s distribution can be derived
from more general concepts of ensembles. There are also concerns about the Maxi-
mum Entropy principle that are worth exploring (Cardoso Dias and Shimony 1981).

III.3 Free Energy, Energy, Variational Representa-
tions

We report here a collection of arguments that should strengthen further the con-
nections betweeen the various principles. To begin, we remind the reader that the
maximum entropy principle has showed us how the canonical ensemble can be re-
covered from maximizing entropy. In Thermodynamics, it entails the dimensionless
relation:

fpβq “ inf
e

tβu ` su. (III.3.1)

Therefore, for constant entropy systems, the (average) energy will be minimized,
while for constant average energy systems, the entropy will be maximized. Similarly,
one could derive different relations between the free energy, the internal energy, the
entropy and temperature. Rather than dealing with this topic, which is somewhat
dependent on thermodynamic arguments, we will comment on a different perspec-
tive on free energy, that might be useful for deriving a stronger connection with
Bayesian methods. Let us begin with a statement that relates Shannon’s Entropy
to the “log-sum-exp” function, which is again nothing but a free energy.

Proposition III.3.2. In this proposition, we are going to give an independent proof
that the log-sum-exp is the convex conjugate of the negative entropy. Namely, for
any γ ą 0 and p a probability distribution, considering the optimization problem:

max
qPr0,1sn;

ř

qi“1
xp, qy ` γHpqq “ γ ln

«

n
ÿ

i“1

e
pi
γ

ff

, (III.3.3)

where the maximum is attained at:

q‹ s.t. q‹
i “

e
pi
γ

řn
j“1 e

pj
γ

. (III.3.4)

We further remark that the optimal distribution is just a Boltzmann canonical dis-
tribution and the whole statement is very much linked with the maximum entropy
principle discussed earlier.

Proof. For a given index i P rns, the derivative of the objective Gpq;pq is:

B

Bqj
Gpq;pq “ pj ´ γplnrqjs ` 1q,

B2Gpq;pq

Bqj Bqi
“

#

´
γ
qi

i “ j

0 otherwise
. (III.3.5)
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It is easy to conclude then that the zeros of the gradient will be maximas, since the
Hessian is diagonal with negative entries. The solution is easily found to be:

rq‹
i “ e

pi
γ ´1

ùñ q‹
i “

e
pi
γ ´1

řn
j“1 e

pj
γ ´1

“
e

pi
γ

řn
j“1 e

pj
γ

@i P rns, (III.3.6)

where in the last step we have reparametrized q to be a probability distribution,
without losing anything since we scaled it by a constant (i.e. it is still a stationary
point). Such choice makes q‹ lie automatically in the space of discrete distributions
of n-sized sample space (the Rn simplex), making it a maximum of our objective.
A tedious calculation allows us to conclude:

Gpq‹;pq “

n
ÿ

i“1

q‹
i pi ´ γ

n
ÿ

i“1

»

—

—

—

—

—

—

—

–

e
pi
γ

řn
j“1 e

pj
γ

l jh n

”q‹
i

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ln

»

–

e
pi
γ

řn
j“1 e

pj
γ

fi

fl (III.3.7)

“

n
ÿ

i“1

e
pi
γ

řn
j“1 e

pj
γ

pi ´ γ
n
ÿ

i“1

e
pi
γ

řn
j“1 e

pj
γ

˜

pi
γ

´ ln

«

n
ÿ

j“1

e
pj
γ

ff¸

(III.3.8)

“ γ ln

«

n
ÿ

j“1

e
pj
γ

ff

. (III.3.9)

Remark III.3.10. In the above statement, γ ą 0 plays the role of a regulariza-
tion term, where the regularization function is Entropy. The result is the Cumulant
Generating Function of a Boltzmann canonical distribution where the inverse tem-
perature is played by β “ 1

γ . We are effectively dealing with a Thermodynamical
notion.

III.3.1 Mean Field Methods and Bayesian Learning

As a first result, we derive an important inequality by Gibbs.

Proposition III.3.11 (Gibbs’ Inequality). Let tpiu
n
i“1, tqiu

n
i“1 be probabilities of

two probability distributions. It holds that:

HptpiuiPrnsq ď HptpiuiPrns, tqiuiPrnsq ” ´

n
ÿ

i“1

pi log qi. (III.3.12)

Further, the expression are equal if and only if tpiu
n
i“1 ” tqiu

n
i“1. The RHS of the

inequality is often termed cross entropy.

Proof. By Jensen’s inequality applied to the log the first result is established:

HptpiuiPrnsq `

n
ÿ

i“1

pi log qi “

n
ÿ

i“1

pi log
qi
pi

ď log
n
ÿ

i“1

qi “ log 1 “ 0, (III.3.13)

where we have used
řn

i“1 qi “ 1.
Given that log is strictly concave, equality holds if and only if the fraction of weights
are all equal (maximum of the convex combination), which leads to the added
condition q1

p1
“ ¨ ¨ ¨

qn
pn

“ k. The two conditions hold when:

n
ÿ

i“1

qi “

n
ÿ

i“1

kpi “ k “ 1 ùñ
pi
qi

“ 1 @i P rns. (III.3.14)
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The proof technique extends well to countable spaces for the distributions, and
needs just some additional details for a measure theoretic statement, which is out
of the scope of these notes and will be briefly commented in Section III.5. A proof
can be found in the blogpost (Siegel 2019). Additionally, from the result of Gibbs’
inequality, it is possible to derive a second proof of the GBF inequality from a more
information Theoretic starting point. Before doing so, we take the opportunity for
a Definition.

Such composite view on entropy is suggestive of introducing a very important
object in Statistics, Machine Learning and Information Theory.

Definition III.3.15 (Kullback-Leibler Divergence). For distributions pp, qq on a
sample space X the Kullback-Leibler (KL) Divergence is:

dKLpp||qq :“ Hpp, qq ´ Hppq “
ÿ

xPX

ppxq log
ppxq

qpxq
, (III.3.16)

with the convention that 0 log 0 “ 0. By Gibbs’ inequality, it is always positive. It
is also known as relative entropy.

Remark III.3.17. By the Neyman-Pearson Lemma, the best test for distinguish-
ing probability distributions is the likelihood ratio test. The KL divergence is the
expected value of such ratio if the data were distributed according to the density of
p. Recently, there has been a burst in attempting to connect Statistical Inference,
Statistical Physics heuristics and computationally bounded Inference heuristics that
arose in Average Case Complexity literature. There, the likelihood ratio plays a piv-
otal role. For a starting reference, see (Kunisky, Wein, and Bandeira 2019). While
the topic is out of the scope of the current document, it might be treated sometime
in the future.

Remark III.3.18. As we will argue and see across the lines, KL divergence is
the most natural generalization of Entropy to continuous distributions that satisfies
the constraints to some extent. A more formal discussion can be found in (Hobson
1971).

A proof of GBF-type inequality is then just a rewriting of properties of the KL.
We place it in a statement here to reference it later.

Proposition III.3.19 (GBF inequality). For two systems with Hamiltonians H , ĂH
on the same randomness X it holds:

Zpβq ě rZpβq exp t´β x∆H pXqy„u . (III.3.20)

Proof. Let p be the canonical distribution of ĂH and q be the distribution of H . The
positivity of the KL divergence, which holds by Gibbs’ Inequality, is a restatement
of the claim. Indeed:

dKLpp||qq “
ÿ

xPX

1

rZpβq
e´β ĂH pxq log

e´β ĂH pxq

rZpβq

Zpβq

e´βH pxq
(III.3.21)

“ log
Zpβq

rZpβq
`

ÿ

xPX

Pr ĂH pxqsβpH pxq ´ ĂH pxqq. (III.3.22)

By positivity, we get:

log
Zpβq

rZpβq
ě ´β

A

H ´ ĂH
E

„
ðñ Zpβq ě rZpβq exp t´β x∆H pXqy„u .

(III.3.23)

Corollary III.3.24. Gibbs Inequality and the GBF inequality are the same state-
ment. One holds if and only if the other holds. In particular, we can establish that
the following equality is true:

Hpq,pq ´ Hppq “ log
Zpβq

rZpβq
` xβ∆H pXqy„ , (III.3.25)

where p is the set of probabilities of ĂH and q is the set of probabilities of H .
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Corollary III.3.26. As a by-product of the construction, one can realize that for
an approximating Hamiltonian ĂH , another relation holds. Letting Fapp be the ap-
proximating free energy, defined as

Fapppβq :“ rFpβq `

A

H pXq ´ ĂH pXq

E

„
, (III.3.27)

then the GBF inequality introduced in Sec. I.5 holds, i.e.:

Fapppβq ě Fpβq, (III.3.28)

and in particular, the displacement is:

Fapppβq ´ Fpβq “
kB
β
dKLpµ||rµq ě 0, (III.3.29)

as argued previously, now by positivity of the KL divergence.

Proof. Using the definitions of Chapter I, it is just a matter of computation.

The GBF procedure, and the use of the KL divergence, are very akin to the
concept of variational Bayes inference, briefly outlined below.
When performing Bayesian inference we suppose there exists a joint distribution of
some signal x and some vector of observations a. Furthermore, we place ourselves
in the situation in which we wish to infer unobserved xi for i P rns from a data
matrix A, that stores independent paiq

n
i“1, paired to the single signal, implicitly

allowing for the existence of a likelihood. Then, Bayes’ theorem gives an expression
for the posterior:

P rX|As “
P rA|XsP rXs

P rAs
“

P rA|XsP rXs
ř

xPX P rA|xsP rxsdx
. (III.3.30)

However, the partition function at the denominator is often hard to compute, and
one resorts to an approximation of the posterior by a more tractable distribution
QrXs « P rX|As. The approximation is in the simplest case evaluated by the KL
divergence:

dKLpQ||Pq “
ÿ

xPX

Qrxs

ˆ

logQrxs

logP rx|As

˙

(III.3.31)

“
ÿ

xPX

Qrxs

ˆ

logQrxs

logP rx,As
` logP rAs

˙

(III.3.32)

“
ÿ

xPX

Qrxs plogQrxs ´ logP rx,Asq ` logP rAs (III.3.33)

“ EX„Q rlogQrXs ´ logP rX,Ass ` logP rAs . (III.3.34)

After a careful inspection, defining the canonical mean energy as:

β´1U pQq :“ ´EX„Q rlogP rX,Ass , (III.3.35)

we have recovered a notion of free entropy-like4 object F pA,Qq, which is how-
ever dependent on the choice of Q. Such term F pA;Qq is often called variational
Gibbs free entropy (Krzakala and Zdeborová 2021, Thm. 4) in literature, and we
can express it in two ways, either via Bayesian objects, or via Information The-
ory/Thermodynamics objects. For completeness, we report both explicitly:

β´1F pA;Qq ” EX„Q rlogP rX,As ´ logQrXss (III.3.36)
“ logP rAs ´ dKLpQ||Pq Bayes (III.3.37)

“ HpQq ´ β´1U pQq IT/Thermo. (III.3.38)

Having recovered a closed form approximation of the true model, we wish it to
be as tight as possible. The formulations of the Gibbs Inequality/GBF inequality

4in the Machine Learning literature, it would be the Evidence Lower Bound (ELBO)
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state that an approximate model is at best a lower bound on the true free entropy,
so it holds that for the same temperature:

F pA;Qq ď F pAq, max
QPPpRnq

F pA;Qq “ F pAq. (III.3.39)

Obviously, we are only restating the problem up to now, and the computation is
just as hard. Indeed, the principled Bayesian approach is not just to establish this
relation, but also to choose an approximation over a space Q Ă PpRnq which is
easy to deal with, to obtain an achievable lower bound. The most trivial way to
make the distribution Q tractable is assuming that it factorizes over i P rns, so that:

Qrxs “

n
ź

i“1

qpxiq q P PpRq, (III.3.40)

which is equivalent to assuming that the approximate Hamiltonian in the canonical
ensemble is:

ĂH pxq “

n
ÿ

i“1

hipxiq, hip¨q “ log qp¨q @i P rns. (III.3.41)

A little thought shows that the analogy underlined in the computations of Mean-
Field Approach (Sec. I.5) is very well known in Statistics. The former is an approxi-
mation of the Hamiltonian, the latter is an approximation of the distribution leading
to an equivalent formulation in a different perspective. Moreover, it is important
to stress two facts.

1. On one side, the results we saw apply to general approximations of distribu-
tions or Hamiltonian.

2. On the other hand, the words mean-field are self-explanatory, and refer to the
precise approximation of assuming that there is a field5 that acts on particles
in place of their interactions. It allows for a nice interpretation, and makes
sense in many cases with the appropriate adjustments. One above all, it serves
the purpose of being an often-accurate first approximation of a phenomenon.

In addition to this, the equivalence provides a nice interpretation: assuming that
the distribution factorizes for each i P rns is like assuming that each i, despite being
interacting with all the other coordinates, is seen as a particle that is subject to the
mean-field of the neighbors, reducing the degrees of freedom from n ´ 1 to 1.

Further References

An interesting more Physics-oriented review of the story of mean-field meth-
ods is (Kadanoff 2009).

III.4 Legendre Transforms
Remark III.4.1. For some statements, we will work on the extended real numebrs
R. Their definition is intuitive and just requires adding some algebraic rules to have
nicer sets to work with, and be able to treat the real line as having endpoints.

Further References

A classic reference is (Zia, Redish, and McKay 2009), but also (Deserno
2012; Touchette 2014; Zanghì 2013). General discussions in (Krzakala and
Zdeborová 2021; Mezard and Montanari 2009) are worth consulting.

We take a slightly more mathematical route and aim to present results that
specialize to Physics and especially Thermodynamics with nice interpretations.

5a field is a proper mathematical object, it can be loosely seen as a constant force at each point
of the ambient space



III.4. LEGENDRE TRANSFORMS 59

Definition III.4.2 (Legendre-Fenchel Transform). For a function f : I Ñ R with
I Ă R its Legendre-Fenchel (LF) transform is given by

Lrf spwq “ fLFpwq :“ sup
xPI

twx ´ fpxqu fLF : ILF Ñ R, (III.4.3)

where the domain of the transform is ILF “ tw P R|fLFpwq ă 8u. Compact
notation is obvious in the sense that fLF “ pfqLF is the LF transform of f . The
double transform is:

LrpfLFqspxq “ sup
wPILF

twx ´ Lrf spwqu . (III.4.4)

We also extend the notion naturally to multivariate real-valued functions f : I Ñ R
such that I Ă Rd as

Lrf spwq “ sup
xPI

txx,wy ´ fpxqu w P ILF “ tw P Rd|Lrf spwq ă 8u, (III.4.5)

where x¨, ¨y is the inner product.

The definition can be extended further, but due to its easy form, we will stay in
the one-dimensional case.

Fact III.4.6. An equivalent definition of LF transform is

Lrf spwq “ inf
xPR

twx ´ fpxqu (III.4.7)

Proof. While the statement might be confusing, some changes of variable just give
the result. Indeed:

´fLFpwq “ ´ sup
xPI

twx ´ fpxqu “ inf
xPI

t´wx ` fpxqu, (III.4.8)

and for a choice gpxq “ ´fpxq and gLFpwq “ ´fLFp´wq one gets the identity.

We say that the Legendre-Fenchel transform is involutive when the double LF
transform of f is f . This is not guaranteed a priori; an interesting question is
exactly which functions present such property.
With such target in mind, we give some operational definitions. Throughout, f :
R Ñ R for simplicity and f ă 8 by assumption unless otherwise stated.

Definition III.4.9 (Graph and Epigraph). The graph of a function f : X Ñ R is
the collection of its tuples, i.e.

graphpfq :“ tpx, yq P X ˆ R | y “ fpxqu; (III.4.10)

the epigraph is the set of values above a certain graph, i.e.

epigraphpfq :“ tpx, yq P X ˆ y | y ě fpxqu. (III.4.11)

Fact III.4.12. A function f is convex if and only if its epigraph is convex.

Proof. The easiest proof is graphical. We give an equivalent mathematical state-
ment. Assign E :“ epigraphpfq.
( ùñ ) Let f be convex, and consider a collection tpxi, yiquni“1 P E. For arbitrary
tλiu

n
i“1 such that

řn
i“1 λi “ 1, inspect the point px, yq “ p

ř

i λixi,
ř

i λiyiq. It
holds:

y “

n
ÿ

i“1

λiyi ě

n
ÿ

i“1

λifpxiq ě f

˜

ÿ

i

λixi

¸

“ fpxq, (III.4.13)

where in the first passage we used the definition of epigraph and in the second the
assumed convexity. The set E is convex since the convex combination px, yq is in
E.
( ðù ) Let E be convex. Proceeding in a similar fashion, it is not hard to prove
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that for a convex combination of the points in E for which yi “ fpxiq (i.e. the
boundary points), one has the following chain of inequalities:

f

˜

n
ÿ

i“1

λixi

¸

“ fpxq ď y “

n
ÿ

i“1

λiyi “

n
ÿ

i“1

fpxiq, (III.4.14)

where in the first passage we assign some x, in the second we use the convexity of
E to say that fpxq ď y for some y and in the third we redirect it to the convexity
of E. The fourth passage is by construction and f is convex.

Definition III.4.15 (Supporting lines). A function f has a supporting line at x P R
if:

Dα P R|fpyq ě fpxq ` αpy ´ xq @y P R. (III.4.16)

The line is strictly supporting if the inequality is strict for all y ‰ x.

We report next a nice implication of the existance of supporting lines, which
connects them to convexity.

Fact III.4.17. If f admits a supporting line for all x P ra, bs then it is convex in
ra, bs.

Proof. Define a region:

R :“ tpz, vq P ra, bs ˆ R, @x P ra, bs, v ě fpxq ` αxpz ´ xqu (III.4.18)

Notice that by being an intersection of convex sets R is convex. Additionally, one
can see that R is the epigraph of f . Then f is convex by Fct. III.4.12.

A quick glance at the Figures in (Touchette 2014) provides a geometrical in-
tepretation of supporting lines. In words, for a point x, we have the affine function
gpy;αq “ fpxq ` αpy ´ xq, where x is fixed, for some α P R. Whether the function
is supporting or non supporting says many things about the shape of f . The line
is supporting if it is always below the function. If it is intersecting the function
at one single point x, then it is a strictly supporting line (y is any other point of
the function in Def. III.4.15), and the function is strictly convex at x. For another
point, we have that the supporting line is not beneath the function, and f is not
convex. Therefore, we can infer another statement for free.

Fact III.4.19. If f has a supporting line at x and the derivative f 1pxq exists, then
α “ f 1pxq, where α is that of Definition III.4.15.

III.4.1 A non-exhaustive collection of results for the Legendre-
Fenchel transform

The following statements provide a good understanding of what the LF transform
does. Their proofs can be found in (Rockafellar 1970). Eventually, we will showcase
how to recognize involutive functions.

Proposition III.4.20 (Convexity guarantees). It holds that:

1. fLFpwq is always convex;

2. pfLFqLFpxq is always convex.

Hence, both admit a supporting line for any point in their respective domains. As
a byproduct:

(bonus) if f is not convex then pfLFqLF ‰ f ,

which is trivial, and not all functions are involutive.

Proposition III.4.21 (Duality of supporting lines and strict supporting lines).
Let f admit a supporting line at x for a constant w P R, i.e. @y it holds fpyq ě

fpxq ` wpy ´ xq. Then;
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Figure III.2: Convex envelope in dashed blue of a function in red.

1. fLF admits a supporting line at point w for constant x;

2. if the assumption is changed to strict supporting, then the statement is that
fLF has derivative w at x, so the supporting line is the tangent as in Fct.
III.4.19. Namely, strict support in the original function implies differentiabil-
ity of the LF transform in a specific “dual” way.

Proposition III.4.22 (A partial version of the Fenchel-Moreau Theorem). A char-
acterization of transforms point-wise is:

pfLFqLFpxq “ fpxq ðñ f admits supporting line at x. (III.4.23)

If fLF is differentiable in a point w, then fpxq “ pfLFqLFpxq where x “ pfLFq1pwq.

Combining the two results, it is trivial to prove the Corollary below.

Corollary III.4.24. Let fLF be everywhere differentiable, then f “ pfLFqLF ev-
erywhere.

One of the most important properties of LF transforms is also reported below.

Theorem III.4.25 (Convex envelope). pfLFqLF is the largest convex function such
that pfLFqLFpxq ď fpxq for all x.

For this reason, the double transform is called the convex envelope of the function
itself. Namely it is convex whenever f is convex and approximates in the convex-
best possible way f for each non-convex point (i.e. points with no supporting line).
A depiction is Figure III.2. More discussion examples for many cases can be found
in (Touchette 2014). Briefly, we find a structure of transforms for a function f that
obeys:

f ÝÑ fLF ÐÑ pfLFqLF, (III.4.26)

where the symbol ÐÑ denotes a bijection. A little thought shows that the state-
ments are already self-explanatory. We report below a step-by-step list:

• the first arrow not coming back is because f is general;

• let fLF “ g, by Prop. III.4.20 applied to f , it is convex for any w;

• gLF is convex by the same proposition applied to g;

• by Thm. III.4.25, pgLFqLF is the convex envelope of a convex function, so it
is the function itself. Then fLF and pfLFqLF are in bijection by invoking the
triple transform.
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Instead, to establish the bijection f ÐÑ pfLFqLF one necessarily needs f to be
convex, for which the two are also equal. This is greatly used in the topics we
encountered via the special case Definition of the LF transform, which we report
below.

Proposition III.4.27 (Legendre Transform). Let f be convex and differentiable
at each point of its domain, and let f 1 be an invertible function, then the Legendre-
Fenchel transform is simplified to the Legendre Transform:

Lrf spwq “ wx̄ ´ fpx̄q s.t. x̄ “ f 1´1pwq, (III.4.28)

which for distinction we will call fLegpwq.

Proof. By convexity, and the definition of LF transform, the superemum is attained,
possibly at the boundary. Taking the derivative of wx ´ fpxq wrt x, and isolating
x̄, the optimal value, we find the condition claimed on x̄, which is well-defined by
assumption.

The special case of the transform is greatly used in Statistical Mechanics and
Statistical Physics, and works in conjunction with the saddle point/steepest de-
scent/Laplace method, seen in Section II.6. We see below an example where we
provide a different point of view on ensemble equivalence, overviewed in Subsection
I.3.4. Recall that micro-canonical entropy is extensive, i.e.

S pE q “ lnN pE ;nq “ nspeq ` o pnq , (III.4.29)

where we emphasized that the micro-canonical energy density depends on the per
particle energy, again by extensivity. This suggests that the entropy depends on the
energy density solely. Considering the partition function of the canonical ensemble,
we can equivalently write it as

Znpβq “

ż

N pe;nqe´nβe de, (III.4.30)

where the summation is now over the densities, and not the attained energies, but is
formally the same as long as we do not give a specification of what kind of integral
it is. Then by the method of steepest descent and some structural assumptions (see
Sec. II.6), we find that the free energy density admits the expression:

fpβq “ lim
nÑ8

´
1

n
Znpβq “ inf

e
tβe ´ spequ, (III.4.31)

which by Fct. III.4.6 is the Legendre Transform of the micro-canonical entropy
density. In other words, sLeg “ f.

Remark III.4.32. Important cases where the thermodynamic ensembles do not
give identical results include:

• microscopic systems (n small);

• large systems at a phase transition (free energy has a non-analytic point);

• large systems with long-range interactions (energy becomes non extensive).

III.4.2 Interpreting the Legendre Transform
The Legendre transform can be seen as a tool to display information from a different
point of view. In the interesting paper by (Zia, Redish, and McKay 2009), it is
made very clear. We will outline their argument below. Throughout, we refer to
the function f and the input x as dependent and independent variable, like in the
economics-based description of linear regression. The terminology choice is not by
chance, and underlines even more the power of the contribution of Legendre and
Fenchel.

The peculiarity of transformations in general is that of encoding the relation-
ship of two objects differently. Since for the moment we restrict to the Legendre
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transform, we will implicitly assume that the function is strictly convex and differ-
entiable. In particular, it implies the existence of a well defined Legendre transform
(see Prop. III.4.27, for which we assume slightly less).
An immediate implication is that the input and the derivative of the dependent
variable df

dx are also unambiguously linked. In fact, we will see that the Legendre
transform allows to express the information of fpxq through an encoding, with as
input the derivative of f . To begin, express the derivative as hpxq :“ df

dx . By strict
convexity, it will be strictly monotonic. Further, by trivial calculus, one can show
that hpxq is invertible, and that its inverse is a well-defined function xphq. Then,
an equivalent form of f is obtained as fpxphqq for each value h.

The idea, however, is slightly more convoluted, as one must enforce well defined-
ness via affine functions. In what follows, we reroute the reader to (Zia, Redish, and
McKay 2009, Fig. 3), and the discussion in text. Alternatively, one can reproduce
the drawing, since the most direct interpretation is established geometrically. In a
point x, with slope hpxq “ h, the rectangular triangle formed by:

• the tangent line;

• the projection to the x axis;

• the y “ fpxq axis;

has a peculiar property. One can graphically show that hx “ f ` g, where g is a
second term in the sum, that depends on how the tangent is oriented wrt the two
axes. Since such structure is always verified, the relationship px, fq is equivalent to
the relationship ph, gq.
With enough care, we claim a direct translation to the dimensionless6 information
equivalence in Thermodynamics between entropy S , and free entropy βF “ F . In-
deed, previous calculations showed that they are related via a Legendre Transform:

S pE q ` F pβq “ βE , (III.4.33)

where the identity is to be intended with only one of pβ,E q as independent variable,
since tS , βu are conjugates in the sense of Def. I.2.25. Then, the differential relation
is expressed as E pβq “

dFpβq

dβ or βpE q “
dS pE q

dE . We can therefore encode the
information either via tS ,E u or tF , βu, as the two are in bijection by the result
of Prop. III.4.22 and the reasoning just made.

To corroborate our reasoning, we again go backwards in the computation of the
microcanonical-canonical equivalence at n Ñ 8, discussed originally in Sec. I.3.4,
and in the subsection just above. Suppose that the expressions for N pE q and Zpβq,
defined in Chapter I, are available. Then, the inverse Laplace transform to retrieve
the former from the latter is a complex integral:

eS pE q “ N pE q “

ż

C
ZpβqeβE dβ “

ż

C
e´Fpβq`βE dβ, (III.4.34)

where we have explicitly placed known objects. Assuming further that the free
entropy is extensive7, and that the energy is extensive as well, we can use the
steepest descent method. The saddle point condition is:

dpF pβq ´ βE q

dβ

ˇ

ˇ

ˇ

ˇ

β“β‹

“ 0 ðñ
dF pβq

β

ˇ

ˇ

ˇ

ˇ

β“β‹

“ E , (III.4.35)

where β‹ is a function of E . Plugging it into the integral after the saddle point
result we find:

N pE q
nÑ8

« exp tF pβ‹q ´ β‹E u ðñ S pE q ` F pβ‹q “ β‹E β‹ ” β‹pE q,
(III.4.36)

where the identification of β‹ is in terms of Eqn. III.4.35.
To conclude, we slightly anticipate two very important names in the Theory of

Large Deviations, which is treated in part of the next Section.
6i.e. with kB “ 1
7this is true for the canonical ensemble
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Proposition III.4.37 (Donkser-Varadhan Duality Variational Formula). Consider
a measurable space pX ,Fq, endowed with two probability measures µ, ν : Ω Ñ R`.
Without loss of generality, let ν be absolutely continuous wrt µ, i.e. ν ! µ.8 Suppose
h : X Ñ R is integrable wir=th respect to pX ,F , µq. Then:

ln

ż

ehpxqdµpxq “ sup
ν!µ

"
ż

hpxqdνpxq ´ dKL pν||µq

*

. (III.4.38)

Moreover, the supremum becomes a maximum (i.e. there is an explicit ν attaining
it), if and only if:

dν

dµ
pxq

a.s.
“

ehpxq

ş

ehpxqdµpxq
in pX ,F , µq. (III.4.39)

In particular, we notice that:

• the first claim is a free energy (dual) “equal to” LF-transform of an energy
minus entropy term, where the role of entropy is differential, being that it is
the KL divergence;

• the RHS of the latter expression is a tilted measure, so a generalization of
Boltzmann distributions still maximizes entropy under the constraint of a fixed
energy, as pdr the classical arguments.

Furthermore, integrability of the exponentially weighted function ehp¨q allow for a
short proof.

Proof. We argue by direct plug in, and first principles of the KL divergence, which
we will show below. We aim to use the fact that the KL divergence is a valid
divergence, and satisfies non-negativity, with nullity if and only if the arguments
belogn to the same equivalence class, here identified by ν‹ a.s.

“ ν in pX ,F , µq. For
this purpose, we define the candidate optimal measure:

dν‹pxq
a.s.
:“

ehpxq

ş

ehpxqdµpxq
dµpxq. (III.4.40)

By construction, one has that ν‹ ! µ, and that for any other ν ! µ:

dKLpν||ν‹q ´ dKLpν||µq “ ´

ż

hpxqdν ` ln

ż

ehpxqdµ. (III.4.41)

Reordering the above expression, we can isolate the argument of the suprematization
on the RHS of the claim, to find:

ż

hpxqdν ´ dKLpν||µq “ ln

„
ż

ehpxqdµ

ȷ

´ dKLpν||ν‹q (III.4.42)

ď ln

„
ż

ehpxqdµ

ȷ

, (III.4.43)

where the inequality is a simple application of the non-negativity of divergences.
Such fact established the first claim, by the RHS being the supremum over any
absolutely continuous measure. To obtain the second claim, it suffices to observe
that equality holds if and only if ν a.s.

“ ν‹ in the space induced by µ, again by the
Kullback-Leibler divergence being a divergence.

Remark III.4.44. The careful reader will have noticed that in all the steps the
only steps used the property that divergences are non-negative. Consequently, the
Donsker-Varadhan formula extends to any of these, in the sense of a variational
link between:

• a free-energy type term;

• an entropic term;

• an energy term.
8Absolute continuity guarantees that the Radon-Nykodym derivative dν

dµ
is well-defined for each

x P X .
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III.5 Spot Topics Deserving More Space
We now turn to the final comments on the path we embarked into in this Chapter.
With the aim of justifying partially the results of Chapter I, and using the Theory of
Chapter II, we had to introduce many objects and partially formalizing properties
of earlier ones. However, there are still gaps between modern research in Statistical
Physics-inspired Machine Learning and all of the above. In this Section, we briefly
overview two very important fields. Each would require a book on its own, so we
will refer to appropriate sources. As far as this Section is concerned, we hope to
at least discuss the terminology, which appears often in publications, and the main
objectives. The box below will serve as a useful starting point for further details.

III.5.1 More about information Theory and some Statistics

Further References

A comprehensive book in preparation is (Polyanskiy and Wu 2023). There,
many of the claims to be presented here can be found. In this document,
some proofs are skipped, but hopefully only those that are easily found
online. A quick way to understand the connections between the objects we
will present, and many that we even avoid nominating, requires just glancing
at the map of information distances (Nielsen 2023). The perspective of
Information Geometry can be experienced from the eyes of two books (S.-i.
Amari 2016; S. Amari et al. 2007), which also contain material to gather
some omitted proofs.

The first quick remark is related to what we saw in Section III.2, i.e. that the
least biased choice of probability distribution is always Boltzmann-like, without
the need to discuss ensembles and their validity. One could indeed argue that the
construction of the entropy by the properties (Sh1)-(Sh3) could be ad-hoc, but it
turns out that the same conclusion can be derived starting from different axioms.
A very good survey in the matter is (Csiszár 2008).
Having established this, we proceed with other issues.

To expand further the applications of Information Theory, we would like to use
it for continuous random variables. Unfortunately, the straightforward expression
for entropy

´

ż 8

´8

ppxq lnpppxqqdx (III.5.1)

is not appropriate (see (Marsh 2013) for a discussion). Many properties are trans-
ferred instead if one considers the KL divergence (Def. III.3.15 here, or “relative
entropy” in (Marsh 2013)). We now present a set of objects and properties that
generalize the KL divergence greatly and provide some context to it.

Further References

The concurrent definition of Entropy by Kolmogorov is an interesting devel-
opment of Measure Theory, see (Walters 2000, Chap. 2) for a book exposition
and (Kong 2019) for a survey with applications. Another set of interesting
references and perspectives can be retrieved from the slides of (Guntuboyina
2012).

Divergences

We first put into perspective the notion of KL divergence from a Statistics stand-
point.

Definition III.5.2 (Divergence). For a differentiable manifold9 M with dimpM q “

n a divergence is a square differentiable function d : M ˆ M Ñ r0,8q such that:
9we avoid discussing Manifolds. It is sufficient to think of it as a space that is locally regular

enough to allow for classic calculus. For a reference, consider (S.-i. Amari 2016; S. Amari et al.
2007)
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1. (positivity) dpp||qq ě 0 for all p, q P M ;

2. (identification) dpp||qq “ 0 if and only if p ” q.

In Information Geometry a third requirement is present. Informally, the divergence
supports the construction of an inner product space on the tangent at a point. For
the sake of simplicity, we will avoid it.

Remark III.5.3. Divergences generalize distances, since they do not require sym-
metry. For the same reason, they lack a priori a triangular inequality.

The main idea between divergences is giving different perspectives on how a
dissimilarity notion between objects (in such case, probability distributions) can be
defined. Being that different works started from different constructions, the result is
that there is a plethora of divergences, each coming with its advantages and disad-
vantages. Introducing the main three groups is instrumental to understand quickly
their strengths. In particular, we report some notions to justify the introduction
of the KL divergence. As a matter of fact, it was constructed in Definition III.3.15
only as a rearrangement of Gibbs’ inequality (Prop. III.3.11), and some notions in
Mean-Field interpretations, but it can be derived on different grounds. Our starting
objects bear the names of two influential Hungarian Mathematicians.

Definition III.5.4 (Csizár divergence). Let pµ, νq on X be two measures such that
µ is absolutely continuous to ν, denoted as µ ! ν. Let f be a function f : r0,8q Ñ

p´8,8s such that:

• fpxq ă 8 for all x;

• fp1q “ 0;

• f is continuos at 0, or the convention fp0q ” limxÑ0`
fpxq is enforced.

We define the Csizár divergence as:

df pµ||νq :“

ż

X

f

ˆ

dµ

dν

˙

dν. (III.5.5)

In some references, it is termed f -divergence.
Without absolute continuity, for a suitable10 ρ such that µ ! ρ, ν ! ρ one defines
densities µpdxq “ ppxqρpdxq, νpdxq “ qpxqρpdxq. By the observation that f is con-
vex and fp0q “ 1, the function fpxq

x´1 is nondecreasing and the function limxÓ0 xf
`

1
x

˘

takes values in p´8,8s. Accordingly, we redefine the divergence as:

df pµ||νq “

ż

pą0

ppxqf

ˆ

ppxq

qpxq

˙

ρpdxq ` f 1p8qµpp “ 0q f 1p8q ” lim
xÓ0

xf

ˆ

1

x

˙

,

(III.5.6)
where it is agreed that µpp “ 0q “ 0 deletes the second term regardless and we use
the standards:

• 0f
`

0
0

˘

“ 0;

• af
`

a
0

˘

“ af 1p8q for all a ą 0.

The power of Csizár divergences is that for an appropriate choice of f , many
common divergences are recovered, as the next Definition shows.

Definition III.5.7 (Notable Csizár divergences). We recover the following well-
known objects:

• fpxq “ 1
2 |x ´ 1|, total variation distance dTV;

• fpxq “ x lnx, KL divergence;

• fpxq “ ´ lnx, reverse-KL divergence;

10it suffices to take ρ “ ν ` µ
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• fpxq “ p1 ´
?
xq2, Hellinger distance;

• fpxq “ p1 ´ tq2, chi2 divergence.

The fact that we recover many well-known objects in Mathematics is not by
chance. As we will see next, the Definition is general enough to include important
special cases, without losing their fundamental properties. As an intermezzo, we
take the occasion to define a very important object in measure theory, and especially
the measure-theoretic formulation of probability.

Definition III.5.8 (Transition Kernel). For a good introduction, refer to (Cinlar
2011, Chap. I, Sec. 6).
Let pE, Eq and pF,Fq be measurable spaces. Consider the mapping:

T : E ˆ F Ñ R`. (III.5.9)

We say T is a transition kernel from pE, Eq into pF,Fq if the following two condi-
tions hold:

• E-measurability: the mapping x Ñ T px,Bq for any fixed B P F is E-
measurable;

• F-measuring: the mapping B Ñ T px,Bq for any fixed x P E is a measure
on pF,Fq.

Let us pause a moment to digest such strangely complicated formulation. The
name is self-answering: we expect a transition kernel to explicit a change of mea-
sure/probability space. To better understand, we provide two progressively practi-
cal examples.
It is indeed possible to prove that for a function κ : E ˆ F Ñ R` that is E b F
measurable the mapping:

T px,Bq “

ż

B

κpx, yqdνpyq x P E,B P F , (III.5.10)

where ν is a finite measure on pF,Fq is a transition kernel (see (Cinlar 2011, Chap.
I, Sec. 6)). Essentially, the transition kernel is the integral of a weighted function
that interpolates between the two measurable spaces, and for each element of the
source sample space outputs a measure on the target space, and for each element
of the sigma-algebra of the target space outputs a measurable event in the source
space. As a matter of fact, it is nothing but a “Hilbert-space” generalization of the
Markov Transition matrices, which are taught in basic Probability courses. To see
this, let E,F be finite, respectively with m,n sizes. Then, a transition kernel as
above is completely specified by the pairs px, tyuq, where x P E, tyu Ă F , since we
want to have subsets in the second argument.11 Consequently, T px, tyuq “ Tx,y can
be interpreted as a matrixm with positive entries, weighted such that the columns
sum to one (recall that for a fixed x, the kernel has to be a measure).
Having provided basic intuition about transition kernels, we proceed with our dis-
cussion of divergences.

Fact III.5.11 (Properties of Csizár divergences). It holds that:

1. (validity) df is a proper divergence in the sense of Def. III.5.2. Hellinger
distance and total variation distance are additionally proper distances;

2. (niceness) df is linear and jointly convex in the two arguments;

3. (DPI) for a transition kernel T (Def. III.5.8) it holds df pT pµq||T pνqq ď

df pµ||νq;

4. (bonus) further properties are found across the main references of this Chap-
ter.

Where the acronym is Data Processing Inequality (DPI).
11For a finite sample space, singletons generate the sigma-algebra (Cinlar 2011).
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Further References

The direction we take is in some sense non-standard. For other notions of
Mutual Information quantities arising from Csizár’s construction, see (Sibson
1969) for an example and (verduAmutualInformation2015) for a review.

Definition III.5.12 (Csizár Mutual Information). Let pX,Y q be two discrete ran-
dom variables with joint measure pX,Y q „ ρ and individual measures pµ, νq. For a
Csizár divergence with associated function f define the Csizár-mutual information
of pX,Y q as:

If pX;Y q :“ df pρ||µ b νq. (III.5.13)

For continuous random variables, the definition is constructive (see Fct. III.5.17).
Whenever f “ x lnx and we have the KL divergence, we will just use the symbol I,
without subcript f .

It also turns out that Divergences and Entropy(es) are well related through
Mutual Information(s). To understand better, we construct one important object,
not to be confused with joint entropy.

Definition III.5.14 (Conditional Shannon Entropy). Let pX,Y q on spaces pX ,Y q

be random variables. If they are discrete:

HpY |Xq :“
ÿ

xPX

ppxqHpY |X “ xq “ ´
ÿ

xPX

ÿ

yPY

ppx, yq ln
ppy|xq

ppxq
. (III.5.15)

Conversely, if they have measures absolutely continuous wrt the Lebesgue measure
and joint density ppx, yq define:

HpY |Xq :“

ż

X

ż

Y

ppx, yq ln
ppy|xq

ppxq
dy dx. (III.5.16)

We remark that the latter could be negative. To avoid wordiness, it will be termed
conditional entropy.

Fact III.5.17 (Properties of conditional entropy). For the discrete version of con-
ditional entropy with generic discrete random variables pX,Y, Zq, the following are
true:

1. HppX,Y qq is symmetric;

2. HpY |Xq “ 0 ðñ Y “ fpXq where f is deterministic;

3. HpY |Xq “ HpY q ðñ X KK Y ;

4. (additive chain rule) HpY |Xq “ HppX,Y qq´HpXq and in general HppXiqiďnq “
řn

i“1 HpXi|X1, . . . , Xi“1q;

5. (Bayes’ rule) HpY |Xq ` HpXq “ HpX|Y q ` HpY q;

6. Y KK Z|X ùñ HpY |Z,Xq “ HpY |Xq;

7. HpY |Xq ď HpXq;

8. HppX,Y qq “ HpXq ` HpY q ´ IpX;Y q;

9. IpX;Y q ď HpXq;

10. while #7 holds, it does not necessarily hold for fixed y P Y . Namely, the
inequality is true once weighting with pppyqqyPY .

For continuous random variables, the facts hold whenever randomness is well be-
haved, meaning that the objects exist and are finite. When it is possible, we define
mutual information for continuous distributions using #8 as:

IpX;Y q “ HpY q ´ HpY |Xq “ HpXq ´ HpX|Y q. (III.5.18)
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Fact III.5.19 (Properties of Csizár Mutual Information). For random variables
pX,Y q

1. the Csizár mutual information satisfies a DPI;

2. the KL divergence satisfies a chain rule of the form:

dKLpµpx, yq||νpx, yqq “ dKLpµpxq||νpxqq ` dKLpµpy | xq||νpy | xqq, (III.5.20)

wher ν, µ are measures on X ˆ Y ;

3. the Mutual Information is always positive.

Proof. Claims #1, #2 follow by the properties of Csizár divergences, since the
Mutual Information is a particular divergence. The second property follows by
rearrangement.

As a rough conclusion, the triplet:

• entropy

• divergence

• mutual information,

requires only two elements to define the third unambiguously for non-pathological
cases. To give friendlier examples, we present other versions of entropy and diver-
gence next.

Definition III.5.21 (Rényi Entropy). For α P R`zt0, 1u and a discrete distribution
p of a random variable X, Rényi entropy is:

HαpXq :“
1

1 ´ α
ln

˜

n
ÿ

i“1

pαi

¸

, (III.5.22)

or when possible for absolutely continuous distributions wrt a dominating measure
µ:

HαpXq “
1

α ´ 1
ln

ˆ
ż

pαpxqµpdxq

˙

. (III.5.23)

In particular, the latter suffers from the same problems of Shannon’s continuous
entropy.

Definition III.5.24 (Rényi Divergence). A Rényi divergence of order α P R`zt0, 1u

is defined for discrete distributions pp, qq lying on the same common space as:

dαpp||qq :“
1

1 ´ α
ln

˜

n
ÿ

i“1

pαi
qα´1
i

¸

, (III.5.25)

or when possible for absolutely continuous distributions wrt a dominating measure
µ:

dαpp||qq :“
1

α ´ 1

ż

pαpxqq1´αpxqµpdxq. (III.5.26)

In some references, it is termed α-divergence.

For boundary values α P t0, 1,8u we extend the definitions applying the limits.
For example:

HαÑ1pXq :“ lim
αÑ1

HαpXq, dαÑ1pp||qq :“ lim
αÑ1

dαpp||qq, (III.5.27)

where the α notation is kept to distinguish it as a Rényi divergence.

Definition III.5.28 (Notable Rényi Entropies and divergences). Let X be a ran-
dom variable with probabilities p discrete and finite.

• HαÑ0pXq “ ln |X |, Hartley-entropy, also termed max-entropy;
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• H2pXq “ ´ lnPrX1 “ X2s with X1, X2
iid
„ p, the collision entropy;

• HαÑ8pXq — ´ lnmaxiPrns pi, the min-entropy;

• HαÑ1pXq “ HpXq, Shannon’s entropy, with associated divergence dαÑ1pp||qq “

dKLpp||qq, the KL divergence.

Fact III.5.29 (Properties Rényi entropy and divergence). The following statements
are true.

1. For fixed discrete finite random variable X with probabilities p, HαpXq is
non-increasing in α.

2. for independent random variables X KK Y with distributions pp, qq that are a
partition of the phase space:12

dαpppX,Aq||qpX,Aqq “ dαpppXq||qpXqq ` dαpppY q||qpY qq. (III.5.30)

3. Rényi divergences are proper divergences.

Accordingly, we find that the pHαqα, where the divergent terms have to be treated
carefully, are ordered non-increasingly.

Proof. (Claim #1) By simple differentiation:

dHαpXq

dα
“ ´

1

p1 ´ αq2

n
ÿ

i“1

αpα´1
i ď 0 @p. (III.5.31)

(Claims #2, #3) The claims can be verified with simple computations.

For further discussion on Rényi and Csizár divergences, we point the reader to
(Polyanskiy and Wu 2023).

Definition III.5.32 (Bregman Divergence). Let f : M Ñ R, where M is convex,
and f : M Ñ R is continuously differentiable and strictly convex. The Bregman
divergence of points p, q P M is:

dBrepp, q; fq :“ fppq ´ fpqq ´ x∇fpqq,p ´ qy . (III.5.33)

From the definition, we implicitly require a notion of inner product in the space M .

Remark III.5.34. We provide two brief comments on the above construction.

• The requirement of strict convexity is enforced to make f have a unique min-
imizer, therefore allowing to avoid discussing which statements hold in more
generality.

• Intuitively, a Bregman divergence is the difference of a function and its first
order approximation.

Definition III.5.35 (Notable Bregman divergences). For different choices of pf,M q

we recover:

• Squared euclidean distance when fppq “ ∥p∥2 ,M “ Rn;

• Squared Mahanobis distance for fppq “ 1
2p

JCp where C is positive definite
and M “ Rn;

• Generalized KL divergence:

dBrepp, q; fq “

n
ÿ

i“1

pi ln
pi
qi

´

n
ÿ

i“1

pi ´

n
ÿ

i“1

qi, (III.5.36)

for fppq “ ´Hppq and M “ Rn;
12i.e. there are well defined functions ppxq, qpxq, ppyq, qpyq



III.5. SPOT TOPICS DESERVING MORE SPACE 71

• KL divergence for fppq “ ´Hppq and M “ ∆n´1 the simplex.13

Definition III.5.38 (Bregman Projection). Consider a Bregman divergence for a
pair pf,M q. Let U Ă M . For a point q P M the Bregman projection onto U is the
closest point to p in the set. Mathematically:

PU
Breppq “ argmin

uPU
dBrepu,p; fq. (III.5.39)

Fact III.5.40 (Properties of Bregman divegence). The following results can be
established for generic dBrep¨, ¨; fq as in Definition III.5.32.

1. dBrep¨, ¨; fq is a proper divergence;

2. (identification) dBrep¨, ¨; fq “ dBrep¨, ¨; gq ðñ f ´ g is affine;14

3. (convexity) it is strictly convex in the first argument;

4. (positive linearity) dBrep¨, ¨; f ` ζgq “ dBrep¨, ¨; fq ` ζdBrep¨, ¨; gq for all
strictly convex differentiable f, g and ζ ě 0;

5. (duality A) for fLF the Legendre-Fenchel transform (Def. III.4.2) of f we
have dBreppLF, qLF; fLFq “ dBrepp, q; fq where pLF “ ∇fppq, qLF “ ∇fpqq

for arbitrary pp, qq.

6. (duality B) It holds:

dBrepp, q; fq “ fpqq ` fLFpqLFq ´
@

p, qLF
D

(III.5.41)

for arbitrary pp, qq.

7. (cosine law) for any pp, q, rq:

dBrepp, q; fq “ dBrepp, r; fq ` dBrepr, q; fq ´ pp ´ rqJp∇fpqq ´ ∇fprqq.
(III.5.42)

8. (projections) If U is convex, existence of a projection implies uniqueness.
In particular, if U is closed and convex and M has finite dimension we have
existance and uniqueness of the projection;

9. (generalized Pythagora’s Theorem) for p P M and u P U Ă M it holds:

dBrepp,u; fq ě dBrepu, PU
Breppq; fq ` dBrepPU

Breppq,p; fq. (III.5.43)

Further References

A nice generalization that reaches a functional formulation of Bregman diver-
gences is (Frigyik, Srivastava, and Gupta 2006). There, the authors provide
also an accessible appendix that reviews necessary material.

In order to introduce our last object, we move to parametric probability distri-
butions. These live on a statistical manifold M with dimension d (see (S.-i. Amari
2016; S. Amari et al. 2007) for context), and are represented as “points” ppX;θq

where θ P Rd.
13in a vector space V a k simplex is generated by some k ` 1 points. Precisely, if the points

form distinct segments wrt an origin point, i.e. the set of vectors tpu1 ´ u0q, . . . , puk ´ u0qu is an
independency, then we define:

Simplexptuiu
k
i“0q :“

#

k
ÿ

i“0

αiui | αi ě 0 @i,
k
ÿ

i“0

αi “ 1

+

. (III.5.37)

The condition is also termed “affine independence”, and the simplex is also found in literature as
convex hull of the set.

14as a refresher, a map between vector spaces h : V Ñ U is affine iff it can be represented as
a linear transformation plus a translation, i.e. for each x P V one has hpxq “ Ax ` b for some A
linear map from V to U and b P U .
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Definition III.5.44 (Score). For a parametric model pp¨; ¨q the score is the deriva-
tive of the logarithm of the model. It reads:

∇θ ln ppX;θq. (III.5.45)

Assumption III.5.46 (Regularity conditions for parametric estimation). The fol-
lowing are standard requirements.

(R1) the gradient wrt θ of pp¨; ¨q exists almost everywhere;

(R2) differentiation and integration can be exchanged;

(R3) the support supprfpX;θqs is independent of θ.

Remark III.5.47. Requirement (R2) can be verified by an application of Leibniz
rule, which is satisfied when the function inside the integral and its derivative are
continuous almost everywhere, but can also be assumed. Other sufficient conditions
are:

• (R3) and bounded support;

• or infinite support, (R1) and uniform convergence of the integral for all θ.

An alternative set of regularity conditions consists in requiring:

• identifiability: for each θ ‰ θ1 the pdfs fpX;θq and fpX;θ1q do not coin-
cide;

• common support, i.e. (R3) above;

• well-posedness: the true parameter θ‹ is in the interior of the paramteric
space Θ Ď Rd.

In what follows, we adapt standard proofs to our discussion.

Fact III.5.48. Let Ass. III.5.46 hold. If X „ pp¨;θq for some θ P Rd the expected
value of the score function is null at θ.

Proof. A simple computation gives:

EX r∇θ ln ppx;θqs “

ż

X

∇θppx;θq

ppx;θq
dµpxq (III.5.49)

“

ż

X

∇θppx;θq

ppx;θq
ppx;θqdx (III.5.50)

“

ż

X

∇θppx;θqdx (III.5.51)

“ ∇θ

ż

X

ppx;θqdx (III.5.52)

“ ∇θ ¨ 1 (III.5.53)
“ 0, (III.5.54)

where we were allowed to cancel the densities because we assumed X „ pp¨;θq and
could exchange integral and derivative by the regularity conditions.

Definition III.5.55 (Fisher information Matrix). Given a statistical manifold M
with dimension d made of parametrized distributions ppx;θq where θ P Rd and
x P Rd, define the Fisher Information Matrix (FIM) as the variance of the score
when the true parameter is θ. Mathematically:

FIMpθq “ ´EX

”

p∇θ ln ppX;θqq p∇θ ln ppX;θqq
J
ı

P Rdˆd, X „ pp¨;θq.

(III.5.56)
where the particular expression is a consequence of the fact that the mean of the
score is null.
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Fact III.5.57 (Fisher information additional form). Under the regularity conditions
of Ass. III.5.46, the FIM admits a nicer expression:

FIMpθq “ ´EX

“

∇2
θ ln ppX;θq

‰

P Rdˆd, (III.5.58)

Proof. As with the previous proof, it suffices to carefully compute the outer product
of gradients in the definition:

FIMpθq “

ż

X

p∇θ ln ppx;θqq p∇θ ln ppx;θqq
J
ppx;θqdx (III.5.59)

“

ż

X

"

p∇θ ln ppx;θqq p∇θ ln ppx;θqq
J

´
∇2

θppx;θq

ppx;θq

*

ppx;θqdx (III.5.60)

“

ż

X

#

ˆ

∇θppx;θq

ppx;θq

˙ˆ

∇θppx;θq

ppx;θq

˙J

´
∇2

θppx;θq

ppx;θq

+

ppx;θqdx (III.5.61)

“ ´

ż

X

∇2
θ ln ppx;θqppx;θqdx (III.5.62)

“ ´EX

“

∇2
θ ln ppX;θq

‰

X „ pp¨;θq, (III.5.63)

where all the passages are trivial, except the second equality, which holds since for
X „ pp¨;θq:

EX

„

∇2
θppX;θq

ppX;θq

ȷ

“

ż

X

∇2
θppx;θq

ppx;θq
ppx;θqdx (III.5.64)

“

ż

X

∇2
θppx;θqdx (III.5.65)

“ ∇2
θ

ż

X

ppx;θqdx (III.5.66)

“ ∇2
θ ¨ 1 (III.5.67)

“ 0. (III.5.68)

Fact III.5.69 (Properties of the FIM). Let Assumption III.5.46 hold. Denote the
p.s.d. order as ĺ,ľ. Then the following statements are verified.

1. (Cramér-Rao Lower bound) For any estimator pθ : Rnˆd Ñ Rd we have
the inequality

CoVX

”

pθ
ı

ľ EX

”

pθ
ı

FIMpθq´1EX

”

pθ
ıJ

; (III.5.70)

2. (baby Cramér-Rao) In particular, if the estimator is unbiased, then CoVX

”

pθ
ı

ľ

FIMpΘq´1 holds;

3. (chain rule) For random variables pX,Y q the FIM admits a decomposition
similar to mutual information (Def. III.5.12, Fct. III.5.19#1):

FIMpθ;X,Y q “ FIMpθ;Xq ` FIMpθ;Y |Xq, (III.5.71)

where the second term is evaluated as an integral

FIMpθ;Y |Xq “ EX rFIMpθ;Y |X “ xqs , (III.5.72)

which for fixed x can be computed;

4. further properties are found across the main references of this Chapter.
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Fluctuation-Dissipation, FIM and Free Energies

To conclude, we link the Fisher information Matrix to Statistical Mechanics, with
the aid of a very insightful technical paper (Crooks 2012). Imagining that the
distribution of the model depends smoothly enough on a parameter θ. Further,
assume that the properties just listed hold for the FIM. If the distribution of the
random variable X is a canonical ensemble, we have:

ppx;β,θq “
1

Zpβ,θq
e´βE px;β,θq (III.5.73)

“ exp t´ lnrZpβ;θqs ´ βE px;β,θqu (III.5.74)
“ exp tβFpβ;θq ´ βE px;β,θqu (III.5.75)

ùñ

#

∇2
θ pln ppx;β,θqq “ ∇2

θ pβFpβ;θq ´ βE px;β,θqq

∇θ pln ppx;β,θqq “ ∇θ pβFpβ;θq ´ βE px;β,θqq
. (III.5.76)

For simplicity, we choose the former, which after squaring (outer product) and
taking Expectations leads to the FIM in the sense of Definition III.5.55. Mathe-
matically:

FIMpθ;Xq “ EX

”

p∇θ ln ppX;θqq
2
ı

(III.5.77)

“ β2EX

”

r∇θ pFpβ;θq ´ E pX;β,θqqs r∇θ pFpβ;θq ´ E pX;β,θqqs
J
ı

.

(III.5.78)

“ β2EX

”

r∇θpF ´ E qs r∇θpF ´ E qs
J
ı

, (III.5.79)

where in the last step we have compactified notation. It is now customary to sum-
mon one of the main properties of Free energy we proposed in Chapter I. Precisely,
reminding Equation I.3.17, it is possible to conclude that:

∇θF “ EX r∇θE s ùñ FIMpθ;Xq “ β2CoVX r∇θE pX;β,θqs P Rdˆd. (III.5.80)

In words: the Fisher Information Matrix is the covariance of the gradient of the
Energy wrt the parameter of interest for Boltzmann Canonical distributions. Fur-
thermore, there is an apparent relation with the so-called Fluctuation-Dissipation
relations (see (Mezard and Montanari 2009, Chap. II)), which we briefly discuss
below. To begin, let us translate the computation of (Crooks 2012) in our notation.
In attempting to derive a connection between FIM and Free Energy, it turns out
that one needs to focus on the second derivative.15 In mathematical Equations,
some work gives as answer.

Fact III.5.81 (Connection Fisher-Free Energy). Consider the model discussed in
the current Subsubsection. Then:

FIMpθ;Xq “
1

β

`

EX

“

∇2
θE pX;β,θq

‰

´ ∇2
θFpβ;θq

˘

, (III.5.82)

which is a regularized Hessian of the energy at the local point.

Proof. For the sake of simplicity, let us use compact notation. Identify

F ” Fpβ;θq, E ” E px;β,θq, FIM ” FIMpθ;xq. (III.5.83)

Let us also precompute a quantity that will be useful in the calculation below. It

15Recall that the second derivative of the free energy is associated to a susceptibility term, and
to second order phase transitions.
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holds that:

∇θZ “

ż

X

e´βE p´β∇θE qdx (III.5.84)

“ ´βZEX r∇θE s ; (III.5.85)

∇θ

«

ˆ
ż

X

e´βE dx

˙´1

e´βE

ff

“ ∇θ

„

1

Z
e´βE

ȷ

(III.5.86)

“ ´
1

Z2
p∇θZqe´βE ´ βe´βE 1

Z
∇θE (III.5.87)

“
e´βE

Z
βEX r∇θE s ´ βe´βE 1

Z
∇θE . (III.5.88)

Then:

´β∇2
θF “ ∇2

θ

„

ln

"
ż

X

e´βE dx

*ȷ

(III.5.89)

“ ´β∇θ

«

ˆ
ż

X

e´βE drx

˙´1 ż

X

e´βE∇θE dx

ff

(III.5.90)

“ ´β

ż

X

∇θ

«

ˆ
ż

X

e´βE drx

˙´1

e´βE∇θE

ff

dx (III.5.91)

“ ´β

ż

X

∇θ

«

ˆ
ż

X

e´βE drx

˙´1

e´βE

ff

r∇θE s
J

`

«

ˆ
ż

X

e´βE drx

˙´1

e´βE

ff

“

∇2
θE

‰

dx

(III.5.92)

“ ´β

ż

X

∇θ

«

ˆ
ż

X

e´βE drx

˙´1

e´βE

ff

r∇θE s
J
dX ´ β

ż

X

1

Z
e´βE

“

∇2
θE

‰

dx

(III.5.93)

“ ´β

ż

X

„

e´βE

Z
βEX r∇θE s ´ βe´βE 1

Z
∇θE

ȷ

r∇θE s
J
dx ´ βEX

“

∇2
θE

‰

(III.5.94)

“ ´β2 rEX r∇θE ss rEX r∇θE ss
J

` β2EX

”

r∇θE s r∇θE s
J
ı

´ βEX

“

∇2
θE

‰

(III.5.95)

“ β2CoVX r∇θE s ´ βEX

“

∇2
θE

‰

(III.5.96)

“ β2FIM ´ βEX

“

∇2
θE

‰

. (III.5.97)

Reordering the last equality gives the claim.

Remark III.5.98. Curiously, the Fisher Information defines a Riemaniann met-
ric, which is the starting point of Information Geometry (S.-i. Amari 2016; Crooks
2012), and can be furthher used to relate Thermodynamical principles with the
Cramer-Rao Inequality (Fct. III.5.69#1), as pointed out in (Crooks 2012) and
the references therein.

Remark III.5.99. This last proposition is suggestive of an interpretation in terms
of Natural Gradient Descent. For more details, see (Martens 2020) and the blog
posts (Gibiansky 2014; Kristiadi 2024; Rosse 2013).

Fact III.5.100 (KL-Fisher Connection). Let Assumptions III.5.46 hold. Consider
two parametrizations pθ,θ‹q where X „ pp¨;θ‹q. Then:

∇2
θdKLpppX;θ‹q||ppX;θqq

ˇ

ˇ

ˇ

ˇ

θ“θ‹

“ FIMpθq. (III.5.101)

Therefore, the local curvature of the KL divergence is the FIM.

Corollary III.5.102. In the above setting, the KL divergence is locally/asymptotically
symmetric.
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Proof. The FIM depends only on one of the two parameters, is well behaved, and
such that θ « θ‹.

Remark III.5.103. More information about the connection between KL divergence
and FIM are found in the blogpost (Rosse 2013), and the references therein.

A meta discussion to justify the Kullback-Leibler Divergnce

The above constructions are amenable to highlighting how important the KL di-
vergence is, at least in terms of directly retrieving a large collection of results. In
the previous arguments, we reported the basic ones. On top of them, more results
are added; there are variational characterizations, inequalities between information
measures, and the whole line of research that Information Theory is. Obviously, no
summary gives enough credit to it.

As a final remark, we will summarize the results derived for the KL divergence,
and close some gaps between divergences.

Fact III.5.104 (KL’s uniqueness in terms of divergence types). The KL divergence
is such that:

1. if the space of probabilities is finite in size, it is the only divergence that is
both an Csizár divergence and a Bregman divergence (Jiao et al. 2014);

2. in the formalism of Rényi, the Shannon-KL pair is the only one for which:

(a) the entropy satisfies the additive chain rule of Fct. III.5.17#4, i.e.
HppX,Y qq “ HpXq ` HpY |Xq

(b) the divergence satisfies the additive chain rule of Fct. III.5.19#2.

Proof. For claim #1, we reroute the reader to (Jiao et al. 2014). For the other
two claims, it suffices to notice that the properties mentioned are tailored to the
singular case of α “ 1 in the sense of Rényi, and do not hold in general.

We are then ready to draw a long list of conclusions. Kullback-Leibler diver-
gences (Def. III.3.15):

• can be seen simultaneously into three classes of divergences (Def. III.5.2):
in the sense of Csizár, (limiting) Rényi and Bregman (Defs. III.5.4, III.5.24,
III.5.32), inheriting all their properties (Fcts. III.5.11, III.5.29, III.5.40);

• admit a notion of Csizár Mutual information (Def. III.5.12) with nice prop-
erties (Fct. III.5.19);

• admit a formulation of conditional entropy (Def. III.5.14) which is well be-
haved and has nice properties specific to the KL in terms of mutual informa-
tion (Fct. III.5.17);

• have as local representation of their curvature in the space of parametric
probability manifolds the FIM (Def. III.5.55), according to the result of Fct.
III.5.100), which highlights also some thermodynamic-like behaviors of the
FIM (e.g. Fct. III.5.81), as well as some Information-Theoretic results (Fct.
III.5.69). The last fact allows for some exchange of results between fields, such
as the local symmetry of the KL (Cor. III.5.102);

• present uniqueness results when some properties are enforced, and no other
member of a divergence family can have them (Fct. III.5.104);

• play a role in some Large Deviations Results (see e.g. in the next Section
Thm. III.5.128).

It is then natural to say that the KL divergence is, for a large class of approaches,
a proper object to take into consideration.



III.5. SPOT TOPICS DESERVING MORE SPACE 77

III.5.2 Large Deviations Theory

Further References

A comprehensive collection of topics is found in (Ellis 1999, 2006; Krzakala
and Zdeborová 2021; Mezard and Montanari 2009; Touchette 2009). For a
rigorous but more practical introduction, it is also worth checking out the
series of blogposts (Yeo 2013). A collection of examples in the span of a
dense course in Stochastic Processes is found in (Shalizi 2006).

Many of the results we have presented so far have been placed into rigorous
terms in the context of Large Deviations theory. Since the subject is very wide
and technical, we will gloss over it and just briefly explain its foundations. For
a detailed introduction, one can consider (Dembo and Zeitouni 2010; Ellis 2006;
Touchette 2009). As far as this Subsection is concerned, we only introduce the
main definitions and the main Theorems. To begin, let us refresh some fundamental
notions in analysis.

Definition III.5.105 (Limit superior and Limit inferior). Recall that given a par-
tially ordered set, denoted with the pair pA,ďq, the supremum and the infimum are,
respectively, the least upper bound, and the greatest lower bound. For a sequence of
sets pAnqnPN, we see them as:

sup
n

An “
ď

n

An inf
n

An “
č

n

An, (III.5.106)

which are respectively a non-decreasing and a non-increasing sequence. Analogously,
we define the limit supremum and limit infimum of a sequence pxnqnPN Ă F in
a partially ordered set as the infimum and supremum of the limit points of the
sequence. In mathematical terms, we mean:

lim inf
nÑ8

xn :“ lim
nÑ8

inf
měn

xm ” sup
nPN

inf
měn

xn lim sup
nÑ8

xn :“ lim
nÑ8

sup
měn

txmu ” inf
nPN

sup
měn

xm.

(III.5.107)
To adapt the definition to sequences of sets, it suffices to use the last equivalence
for both cases, to find:

lim inf
nÑ8

An “
ď

nPN

č

měn

Am lim sup
nÑ8

An “
č

nPN

ď

měn

An. (III.5.108)

In statistics, where the sets represent events in a sigma-algebra, it is also very
informative to talk about sequences that are true eventually (limit infimum) and
infinitely often (limit supremum), where the words are in accordance with the math-
ematical structure once one accepts that An signals an event, with an associated
probability. We reroute the reader to (Cinlar 2011, Chap. III, Sec. 2) for context.

Definition III.5.109 (Lower semi-continuity). A function f : X Ñ r´8,8s is
lower semi-continuous (l.s.c.) at a point x0 if for every y ă fpx0q there exists a
neighborhood Bpx0q such that fpxq ą y for all x P Bpx0q. A function is l.s.c. if it
is l.s.c. for each point in the domain.

Fact III.5.110 (Equivalent definitions of lower semicontinuity at a point). The
Following Are Equivalent (TFAE):

1. f is l.s.c. at x0

2. lim infxÑx0
fpxq ě fpx0q

Fact III.5.111 (Equivalent definitions of lower semicontinuity). TFAE:

1. f is l.s.c.

2. all y-sublevel sets where y P R are closed in the domain space. Namely for
each y P R the set tx P X : fpxq ą yu is closed in X

3. the epigraph (Def. III.4.9) is closed in X ˆ R
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Definition III.5.112 (Rate function). A function I : X Ñ r0,8s which is not
identically 8 and is lower semicontinuous.

Definition III.5.113 (Large Deviation Principle). A collection of measures pµρqρą0

satisfies a Large Deviation Principle (LDP) with rate function I and rate 1
ρ if for

closed set A and every open set B in X we have the following bounds:

lim sup
ρÓ0

ρ lnµρpAq ď ´ inf
xPA

Ipxq, lim inf
ρÓ0

ρ lnµρpBq ď ´ inf
xPB

Ipxq. (III.5.114)

In the context of our applications, we will use a rather simplistic view of the concept,
which states that for a given random variable pXnqnPN dependent on an index n and
a set A in its space of events the LDP is established when:

lim
nÑ8

´
1

n
lnPrXn P As “ IpAq, (III.5.115)

which means that at the event A the probability law has a leading exponential be-
havior, i.e. heuristically PrXn P rx,x ` dxss — e´nIpxq dx. In particular, we are
implicitly assuming that the lim sup and the lim inf above are equal.

To conclude, we provide a dry list of statements.

Fundamental Results in Large Deviations Theory

Theorem III.5.116 (Cramér’s Theorem). Let pXiqiě1 be a sequence of iid random
variables which admit a MGF (i.e. E

“

etXi
‰

ă 8 for every t P R). Then, for
Sn “

řn
i“1 Xi it holds

lim
nÑ8

1

n
lnP rSn ě ans “ ´Ipaq @a ą E rX1s , (III.5.117)

where Ipwq :“ suptwt ´ lnE
“

etX1
‰

u. We recognize that Ipwq “ LrKX1
ptqspwq.

In other words, the sum random variable satisfies a LDP with rate function being
the negation of the Legendre-Fenchel transform of the CGF.

Proof. A proof and a more general statement for Euclidean vectors in Rd is found
in (Dembo and Zeitouni 2010).

The independence and identical distribution assumption can be dropped, in
favour of a more general statement that highlights the connection between rate
functions and CGFs. Let zn :“ 1

nSn, where Sn now is a sum in a Euclidean space
X . Denote the sequence of laws of zn as pµnqně1.

Definition III.5.118 (Exposed pair). For a function f : Rd Ñ R, a vector y P Rd

is an exposed point if for some t P Rd it holds that:

xt,yy ´ fpyq ą xt,xy ´ fpxq @x P Rd. (III.5.119)

We then call t an exposed hyperplane, and the tuple py, tq is an exposed pair.

Remark III.5.120. Convex functions such as the LF transform have an exposed
point where they are strictly convex.

Definition III.5.121 (Domain, interior, closure, boundary). A function f : Rd Ñ

R has domain Df :“ tx P Rd : fpxq ă 8u. Its interior intpDf q is made of all those
points x0 for which an open ball centered at x0 is included in Df . The closure is
the set of all points of closure, such that every open ball contains at least one point
in Df . We write it as clpDf q.The boundary is made of points that are between the
closure and the interior. Namely

BpDf q “ clpDf qzintpDf q. (III.5.122)

Definition III.5.123 (Steep Function). A function f : Rd Ñ R is steep when for
x P BDf the boundary of the interior domain, it holds:

lim
yÑx

|∇fpyq| “ 8. (III.5.124)
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Remark III.5.125. Refer in particular to (Ellis 2006; Krzakala and Zdeborová
2021) and (Shalizi 2006, Lecture 34). Each gives a different perspective on the
result.

Theorem III.5.126 (Gärtner-Ellis Theorem). With the above setting, assume the
following:

• the limit of the CGF exists in the sense that:

Kzptq “ lim
nÑ8

1

n
Kznpntq P R @t P Rd (III.5.127)

• t “ 0 is in the finite values of the limiting CGF, i.e. Kzp0q ă 8.

Then for Ip¨q “ LrKzsp¨q the LF transform of the CMF it holds:

1. lim supnÑ8
1
n lnµnpAq ď ´ infwPA Ipwq for all closed A Ă X ;

2. lim supnÑ8
1
n lnµnpBq ě ´ infwPBXE Ipwq for all open B Ă X , where E is

the set of exposed points of Ipwq with associated exposed hyperplane in the
interior domain of Mz;

3. if Kzp¨q is l.s.c., differentiable on the interior domain and steep then the infi-
mum of #2 is only over open sets B;

4. if #3 holds, the measures pµnqně1 satisfy a LDP with rate function being the
LF transform of the CGF.

Lastly, we inspect empirical distributions, which provide a second degree of
deviation in the construction of (Ellis 2006, Chaps. I, II). This theory is important
since it allows to go beyond conclusions on the mean such as those of Cramér and
Gärtner-Ellis (Thms. III.5.116, III.5.126).

Theorem III.5.128 (Sanov’s Theorem). Let Ln :“ 1
n

řn
i“1 δXi

be the empirical
measure of X1, . . .Xn sampled iid from µ. Then, it satisfies a LDP on the space of
measures PpX q with rate function dKLp¨||µq.16

Corollary III.5.129 (Baby Sanov’s). Let tXiu
n
i“1 be iid from µ with finitely many

values. Lert the empirical distribution be Ln as before. Then for a set of measures
M Ă PpRq:

νnpLn P Mq ď pn ` 1q|X |2´ndKLpL‹
||µq, L‹ “ argmin

LPM
dKLpL||µq, (III.5.130)

where νn is a measure on measures.
Furthermore, if M is the closure of its interior, then we have a clean LDP which
reads:

lim
nÑ8

1

n
ln νnpLn P Mq “ ´dKLpL‹||µq. (III.5.131)

Remark III.5.132. The KL divergence with one fixed measure dKLp¨||µq can be
seen as a functional equivalent of the LF transform for the space of measures. For
more comments, see (Touchette 2009, Sec. IVB). From the baby result, we get
the more direct interpretation that any law on empirical measures is bounded from
above by a term that depends on:

• number of samples n;

• size of the sample space X ;

• being closest in KL divergence measure to the real distribution.

All together, the result is quite powerful.
16We trivially extend the KL divergence to two measures if they are absolutely continuous,

otherwise just set it to infinity. In this case, the empirical measure is absolutely continuous wrt
the real measure.
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We remark that the above collection is only partially justified. We would require
an independent treatment to make it sound better, and there are already very
useful resources. The main purpose was showing how some objects of the previous
theory can be mathematically recovered in a more rigorous manner all under the
same principles. Adding other tools, many concepts seen earlier are then derived on
formal grounds. In particular, we find these statements in (Ellis 2006, Chaps. III-V),
(Touchette 2009, Sec. V)), where also a formal treatment of ensemble equivalence
is developed.
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