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Abstract

The Sherrington-Kirkpatrick model is the simplest example of a spin glass (Sherrington and Kirkpatrick
1975), where we just let the couplings of the Curie-Weiss model become Gaussian. The random interactions
form a non-trivial behavior which is fertile ground for random matrix theory techniques. In this document
we propose one classical computation of the critical temperature by Potters and Bouchaud (2020), with more
theoretical context and explicit computations. This is an excuse to present the Harish-Chandra-Itzkynson-
Zuber integral (Harish-Chandra 1957; Itzykson and Zuber 1980) in two forms taken from Potters and Bouchaud
(2020) and Tao (2013).
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1 introduction

In this short document we summarize the first computation of the critical temperature for a model of statistical
physics. In doing so, we will use some ideas from the lectures on random matrix theory to understand a trick
from physics that is as effective as it is non-rigorous. For the fun, it will touch on topics of courses from this
semester. It will also allow us to have a basic vocabulary of fields that were ignored instead, such as spin
glasses.
Computations, when performed, are explicit and pedagogical. References are non-exhaustive. We reroute the
reader to the cited works for more context.

notation Most of the symbols are standard. The only difference we make is between what is random and
what is not, what is scalar, what is vectorial and what is matricial. For example, a, b, c, x, y, z, α, β, γ is a variable,
while a, b, c, x, y, z,α,β,γ is a random variable. Similarly, a, b, c, x, y, z, α, β, γ is a vector; a, b, c, x, y, z,α,β,γ

*While at Université Paris-Saclay, Laboratoire de Mathématiques d’Orsay
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is a random vector. Again, A, B, C, X, Y , Z, Λ, Ψ, Θ is a matrix; A, B, C, X, Y, Z,Λ,Ψ,Θ is a random matrix. An
expectation Ex rxyzs “

ş

xyz dP rxs is such that y is deterministic, and we integrate out against x which is
deterministic once it is expressed inside an integral, keeping z random throughout.

1.i The simplest spin glass in a few lines

{sec:introduction}
Without much regard to the motivation, let us present the Sherrington-Kirkpatrick model as a generalization

of the fully-connected Ising model, also named Curie-Weiss model. We have an energy function:

E ps, Jq :“
1
2

sJ Js, s P t˘1uN . (1.1) {{eqn:hamiltonian}}{{eqn:hamiltonian}}

If we wanted to study the Ising model, we would take the Boltzmann measure proportional to eβE psq at given
J with each entry having the same sign. By construction, the Ising/Curie-Weiss model puts more weight on
configurations s that align. However, we might as well say that J is a random Gaussian matrix! For scaling
reasons, we will consider the GOE only. This (modulo higher order considerations) is an example of a spin
glass. In other words, a random quadratic function with random coefficients. What happens is that we have
two sources of randomness, in the spins and in their interactions. From now onwards, we will refer to the
randomness of J as disorder (randomness). Ultimately the objects we wish to know are the same, and the
free energy, now depending on disorder, is our favorite. It turns out that empirically and by concentration
arguments the free energy concentrates exponentially fast to its expectation (see the discussion in appendix A.I).
Without even introducing the former, we define the latter. We work with the probability density:

pps; J, N, βq “
1

ZpJ, N; βq
eβsJJs, ZpJ, N; βq “

ż

t˘1uN
eβsJJsds, β P p0, 8q, (1.2)

where β is just an inverse temperature parameter and J is a Wigner matrix with the correct scaling. Then, the
quenched free energy is the expectation of the log partition function (i.e. the cumulant generating function):

f pβq :“ lim
NÑ8

1
N
FpN, βq “ lim

NÑ8

1
βN

EJ rlnZpJ, N; βqs (1.3)

We say this is quenched because we have another version termed “annealed” which amounts to switching the
expectation and the logarithm. The names come from a physical interpretation. To see a phase transition, we
take the limit as N Ñ 8 and study the behavior as β varies. In terms of questions, we are basically asked to
compute the limit of a Gaussian integral of a log of a sum of exponentials.

Example 1.4 (Ubiquity of spin glasses). In many machine learning problems we take a square loss. If we optimize {exm:spin glassses are everywhere}
over a parameter β and the matrix of observations is modelled randomly then the loss is a spin-glass energy function with
magnetic field (the linear term). If we take any optimization problem and properly randomize it we will see some version
of a spin glass. The idea is that by studying a random problem one extracts insights on the deterministic problem, in
exchange for tractability. For many examples, see the literature mentioned in (Zdeborová and Krzakala 2016).

Our objective is to compute the quenched free energy quickly using random matrix theory techniques,
exactly because J is random!

1.ii Preliminary computation

{sec:computation}
For the sake of this document we compute an expression that is exact below a certain critical parameter βc.

The full description is more complicated and is actually one of the reasons of recent Abel and Nobel Prizes
(Parisi 2023; Sourav Chatterjee 2024). We highlight non-rigorous computations with a red equality for the sake
of clarity. As a matter of fact, we may say that what follows is the essence of the distance from physics and
mathematics: we use Taylor expansions, exchange limits and presume everything is well-behaved.

Remark 1.5 (Important remark). One non-rigorous step we do not highlight is the use of delta functions without
regard to details.
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The starting point is a seemingly innocent relation:

log a “ lim
nÑ0

an ´ 1
n

“ Bnan
ˇ

ˇ

ˇ

ˇ

n“0
. (1.6)

The second equality is trivial, the first equality is obtained by letting an “ en log a and expanding with the
Taylor expression of the exponential. The magic is that the expectation of a logarithm is annoying, while the
expectation of a derivative is nice, in the sense that:

E rlog as “ BnE rans

ˇ

ˇ

ˇ

ˇ

n“0
, (1.7)

where we exchanged derivative and expectation. In particular, the right-hand side is rather expressed for n P N

as an integral over n independent copies (replicas) of a. Eventually, we take n “ 0, but this is a non-rigorous
step we keep for later. Let us focus on the expectation of the product. If we replace a by the partition function
Z , we have n copies from the same Boltzmann measure dependent on the J disorder:

EJ rZns “ EJ

»

—

–

ÿ

tspαquαPrns, spαqPt˘1uN

n
ź

α“1

eβ{2rspαqs
J

Jspαq

fi

ffi

fl

. (1.8)

Now we just use the additivity of exponentials, matrix index summation, trace properties, and the decomposi-
tion of J “ OΛOJ to obtain:

EJ rZns “ EpO,Λq

”

EMpnq„UnifRep

”

exp
!

Nβ{2Tr
´

OΛOJMpnq
¯)ıı

, Mpnq

ij :“
n
ÿ

α“1

spαq

i spαq

j

N
, (1.9) {{eqn:final equation of first part. }}{{eqn:final equation of first part. }}

where by EMpnq„UnifRep r¨s we mean that we just sum with equal weights over all configurations spαq P t˘1uN

for all replicas α P rns. Alternatively, we have Mpnq “ 1{N
řn

α“1 spαq
”

spαq
ıJ

. From this last expression we get

automatically that Mpnq is at most of rank n, and we want to compute the limit as N Ñ 8 of this integral.
Now we make some informal observations:

• as N Ñ 8, the random matrix Λ converges to the semicircular law;

• as N Ñ 8, n Ñ 0 the matrix Mpnq is effectively low-rank compared to the others.

For said reasons, we might be interested in computing an integral of the type above for low-rank matrices. It
turns out that we have a general expression, termed HCIZ integral (for Harish-Chandra-Itzykson-Zuber), that
covers our special case. We present an asymptotic derivation for our low-rank case and a rigorous one for the
full-rank finite size case.

Remark 1.10 (Is this the unique instance for HCIZ-type integrals?). Differently from the “ubiquity of spin glasses”,
we cannot say so much. However, the HCIZ integral does appear in literature. There are some examples in mathematics
and theory of machine learning. In particular, we reroute the reader to the works on matrix denoising (Maillard et al.
2024; Pourkamali, Barbier, and Macris 2024), the comments in the blog of Tao (2013) which also contain a discussion on
the non-circularity of the next proof and the review work (McSwiggen 2021). For these reasons, it makes sense to know
about it.

2 the low-rank harish-chandra-itzykson-zuber asymptotic integral formula

{sec:HCIZ formula}
In this section we will present two derivations of the HCIZ integral formula. In particular, we will use the

former to continue our computation, since it is a plug-in result. It is the book of Potters and Bouchaud (2020,
chapter 10), and it should be an adaptation of a physics computation (Marinari, Parisi, and Ritort 1994).

The HCIZ formula has many complicated interpretations (see e.g. (McSwiggen 2021)), let us use a simpler
one from (Potters and Bouchaud 2020). A classical property of random variables is that the distribution of the
sum is easy to compute when Fourier transforms are available. In particular, the Fourier transform of a sum of
independent variables is the product of Fourier transforms. We seek an analogue for free random variables
taking values in a matrix space. A good candidate for the Fourier transform is a function that:
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(D1) is the exponential of a scalar term;

(D2) depends only on the spectrum of A;

(D3) its logarithm is additive for free random variables.

Let us propose the following formula:

ϕpT ; Aq :“ EO

”

exp
!

N{2Tr
´

TOAOJ
¯)ı

. (2.1)

Item (D1) is automatic. Item (D2) follows by applying a rotation to T or A inside the expectations, since the
trace is invariant to rotations, products of rotations remain rotations, and the Haar distribution is the unique
left-right invariant distribution. The third term is more subtle. If we take a further random rotation, we know
that the spectrum of C “ A ` O1BOJ

1 will not depend on O1. In other words, taking an average of the limiting
object with respect to O1 we will have any realization. Checking the expression for the law of A ` O1BOJ

1
integrated over O1 we find additivity of the logarithm since OO1 „ HaarpONq, and it is independent of O
(see lemma A.4). Basically, the integrals decouple.

Remark 2.2. Notice that unlike the scalar Fourier transform this expression is random! We will see later that it
concentrates, but for now it is a random variable.

The expression for general T is more advanced. Let us start from a rank-1 appetizer. We take T “ tvvJ.
Without loss of generality, A is diagonal. Like in large deviations, a statement of the form:

ϕptvvJ; Aq “ eN{2 2
N log ϕptvvJ;Aq NÑ8

„ eN{2hAptq, (2.3)

where

hAptq :“ lim
NÑ8

2
N

log EOexp
"

tN
2

Tr
´

vvJOAOJ
¯

*

, (2.4) {{eqn:ha t expression}}{{eqn:ha t expression}}

makes sense if hAptq has a well-defined limit. Then, we will look at the normalized log-exp in the argument of
the exponential, which we saw is additive. As a first observation, we use again cyclicity of the trace to interpret
OJtvvJO “ ppJ as a random projection with }p}

2
“ t and p{}p} „ UnifpSN´1q, which justifies ignoring the

dependence on v in the definition. To compute the inner expectation with respect to O, we may then integrate
against p. The expression is a Gaussian integral, since the trace is a quadratic form pJAp. We add convenient
factors and perform a change of variables from z “

?
Np to find:

EO

„

exp
"

tN
2

Tr
´

vvJOAO
¯

*ȷ

“
ItpAq

Itp0NˆNq
, ItpAq :“

ż

1
p2πq

N{2
δp}z}

2
´ Ntqe1{2zJAzdz. (2.5)

This passage is quite strange but just requires some calculus: the Dirac delta enforces the norm to be consistent
with the random projection, and the Itp0NˆNq term normalizes the expression. The convenient thing is that
now we can write down the Dirac delta via its integral expression and apply the saddle-point method. These
will return the asymptotic behavior of hAptq. Let us provide some details.

Recall that the Dirac delta admits the representation:

δpxq “

ż 8

´8

eizx

2π
dz “

ż i8

´i8

e´zx{2

4iπ
dz, (2.6)

where the second equality is just a change of variables, and i8 means that we take complex numbers with
large imaginary part. We combine this with the fact that since we force }z}

2
“ Nt we may represent unity as:

1 “ e´λp}z}2´Ntq{2, λ ą λA
max. (2.7)

Plugging these two clever equations into the integral we find:

ItpAq “

ż λ`i8

λ´i8

1
4π

ż

1
p2πq

N{2
exp

"

´
1
2

zJpzIN ´ Aqz `
Nzt

2

*

dz dz (2.8)

“

ż λ`i8

λ´i8

1
4π

det pzIN ´ Aq
´1{2 exp

Nzt
2

dz Gaussian integration (2.9)

“

ż λ`i8

λ´i8

1
4π

exp
"

N
2

ftpz, Aq

*

dz, (2.10)

4



where we defined the function by putting everything in the exponential. Explicitly:

ftpz, Aq :“ zt ´
1
N

ÿ

k

logpz ´ λA
k q. (2.11) {{eqn:definition of ft function}}{{eqn:definition of ft function}}

Now that we have a classical equation in the saddle-point sense, we perform the derivatives. By the stationary
phase approximation we know that dominating points are those that are constant in the imaginary variable z
at the saddle. Simple algebra (differentiating ftpz, Aq) gives us:

t ´
1
N

ÿ

k

1
z ´ λA

k
“ t ´ sA

Npzq “ 0. (2.12) {{eqn:optimality condition saddle-point}}{{eqn:optimality condition saddle-point}}

In particular, the optimal point in z depends on t implicitly. Assuming the Stieltjes-Cauchy transform sA
Npzq is

invertible, which is true since we took λ ą λA
max, we can take some time to deform the contour to pass through

ζptq the inverse and apply a nice saddle-point approximation.1 We find an initial implicit expression:

hAptq“ζptqt ´ 1 ´ log t ´
1
N

ÿ

k

logpζptq ´ λA
k q (2.13) {{eqn:implicit h a t}}{{eqn:implicit h a t}}

“ hpζptq, tq, (2.14)

where we are quite sloppy in keeping an N factor after taking the limit, but recognize that the sum is order
N so it should be fine. Alternatively, we see it as its limiting object, i.e. an integral over the limiting spectral
measure of A. In this sense, the following discussion will hold only in the limit N Ñ 8.
While seemingly complicated, we can still extract information from the approximation we made. We just said
that the result is stationary in z. This allows us to find a good expression for the derivative of hAptq. Indeed:

dhAptq
dt

“ Bzhpζptq, tq
looooomooooon

“0

dζptq
dt

` Bthpζptq, tq “ ζptq ´
1
t

“ RAptq, (2.15)

where in the last equality we recognized one of the definitions of the R-transform of a matrix (Potters and
Bouchaud 2020, eqn. 10.10). From the identity hAp0q “ 0 we may apply the fundamental theorem of calculus
to write:

hAptq “

ż t

0
RApxq dx, (2.16)

and by additivity of hAptq for free matrices (by construction), we obtain additivity of its derivative!2 Having
approximated the normalized log exp, we may say that:

ϕptvvJ; Aq
NÑ8

„ exp
"

N
2

hAptq
*

. (2.17)

More importantly, for any low-rank matrix T , the result is the same, with just more calculus, i.e. we find:

ϕpT ; Aq
NÑ8

« exp
"

N
2

Tr phApTqq

*

. (2.18)

Having made some non-rigorous reasonings, let us propose a theorem from the blog of Tao (2013).

2.i A theorem for the finite size HCIZ integral formula

This derivation is quite shallow in depth of meaning. It is not due to the original author, but rather that
the connections are very subtle. We will write the bilinear form of the heat flow on the space of Hermitian
matrices (i.e. imagine heat flow on the reals and you get Brownian motion), which is strongly connected with
the matrix-analogue of Brownian motion: Dyson Brownian motion. This short note is not suited to give a
complete account of what is going on, but the blog-posts (Tao 2010, 2013), the book chapters (Potters and
Bouchaud 2020, chap. 11-13) and surprisingly the comments by Zuber himself in the blog should be a good
starting point. Let us now move to the actual computation. We want to prove the following theorem.

1 See appendix A.II for details.
2 Notice how we made a quite informal step when taking the limit, but the fact that additivity of the R-transform holds only in the limit is

non-contradicting, so we are not taking nonsensical conclusions.
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Theorem 2.19. Let A, B be Hermitian matrices with simple eigenvalues ordered increasingly.3 For U „ HaarpUNq a
unitary matrix uniformly distributed, and t P Czt0u we have:

EU

”

exp
!

tTr
´

AUBU:
¯)ı

“ cN

det
´

exp
!

tλA
i λB

j

)¯

i,jPrNs

tN2´N{2∆pλAq∆pλBq
,

#

cN :“
śN´1

i“1 i!,
∆pλAq Vandermonde determinant.

(2.20)

Remark 2.21. From the assumption of a simple spectrum, we cannot conclude directly that the previous formula
generalizes to this one. Moreover, we take an asymptotic N Ñ 8 that is not evident from this formula. For these reasons,
this section is a mathematical vindication of the arguments we will use, rather than a justification.

We first set some notation and reminders from class. The space of N ˆ N Hermitian matrices is HCpNq,
where we avoid mentioning the complex plane field as it is superfluous. It is equipped with the Haar uniform
measure dµpMNq. Throughout, normalizations do not matter as they cancel out.4 We endow the measure
space with a functional calculus in the following sense. Functions act on matrices invariantly by rotations, so
that they only depend on their spectrum. Mathematically, we say:

f : HCpNq Ñ C, f pU AU:q “ f pAq, for all A P HCpNq, U P UN . (2.22)

In this setting, we may identify f pAq “ f pλA
q without loss of generality. By convention, we order eigenvalues

increasingly as λA
1 ď ¨ ¨ ¨ ď λA

N and will therefore see the function with a domain on the Weyl chamber:5

f : RN
ď Ñ C, RN

ď :“
!

λ P RN | λ1 ď ¨ ¨ ¨ ď λN

)

. (2.23)

We will also need two formulas we saw in class for the GUE ensemble. Namely, its density is:

pGUEpMNq “ CN exp

#

´
Tr

`

M2
N
˘

2

+

dµpMNq, (2.24)

where CN is a normalizing constant. Alternatively, we may express it via the density of the entries, which are
independent, obtaining a distribution absolutely continuous with respect to Lebesgue. From this expression,
we derived the density of the eigenvalues, which presents the classical repulsion phenomenon:

pGUE;eigenpλq “ pGUE;eigenpλ1, . . . , λNq “
1

p2πq
N{2cN

∆pλq2 exp

#

´
}λ}

2
2

2

+

dλ. (2.25)

Having these in hand, we can start the argument. All the derivations below hold for a “sufficiently nice”
function, which we can take to be smooth and exponentially decaying when the arguments are large. First, by
an application of Riesz’ representation theorem,6 there is a density function w : Rn

ď Ñ R` such that we can
move from integrating over matrices to integrating over eigenvalues, i.e. :

ż

HCpNq

f pMNq dµpMNq “

ż

RN
ď

f pλqwpλq dλ. (2.26)

If instead of a uniform measure we placed the GOE density, we would intuitively obtain the density of
eigenvalues of the GOE on the RHS. Thanks to this, we have the following expression:

ż

HCpNq

f pMNqCN exp

#

´
Tr pMNq

2

2

+

dµpMNq “

ż

RN
ď

f pλq
1

p2πq
N{2cN

∆pλq2 exp

#

´
}λ}

2
2

2

+

dλ. (2.27)

The exponential terms are the same, and we identify the weight function by regrouping:

wpλq “
1

CNcNp2πq
N{2

∆pλq2. (2.28)

3 A simple eigenvalue in this document is distinct from all the others. A simple spectrum then has all distinct eigenvalues.
4 This is evident at the end of the proof.
5 By abuse of notation.
6 See appendix A.I for hints.
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In words, up to constants depending on N, the integral of nice functions over the GUE ensemble has expression:

EMN„HaarpNq r f pMNqs 9

ż

RN
ď

f pλq∆pλq2 dλ. (2.29) {{eqn:GUE integration to eigenvalues}}{{eqn:GUE integration to eigenvalues}}

What we will do next is use this result to do a double integral. For this purpose, let f , g be “sufficiently nice”
and t ą 0 be a positive number. We wish to compute:7

I :“
ż

HCpNq

ż

HCpNq

f pANqgpBNq
CN

tN2{2
exp

#

´
Tr

`

pAN ´ BNq2˘

2t

+

dµpANq dµpBNq. (2.30) {{eqn:integral to compute}}{{eqn:integral to compute}}

We do so in two ways, and by equating them we will get our result.

2.i.1 Route one

We see from the trace that we have an interaction term when A, B multiply, so we may redefine the f , g
functions as:

f̃ pANq :“ f pANq exp

#

´
Tr

`

A2
N
˘

2t

+

; (2.31)

f̃ pBNq :“ f pBNq exp

#

´
Tr

`

B2
N
˘

2t

+

. (2.32)

Then, we make a decoupling trick: since the GUE is invariant to rotations the interaction term is equal to the
interaction term integrated over the Haar measure on the unitary group UN . In equations, we have that:

exp
"

Tr pAN BNq

t

*

“ EUN„HaarpUNq

»

–exp

$

&

%

Tr
´

ANUN BNU:
N

¯

t

,

.

-

fi

fl (2.33)

“

ż

UN

exp

$

&

%

Tr
´

ANUN BNU:
N

¯

t

,

.

-

dµpUNq (2.34)

“: KtpAN , BNq. (2.35)

Using cyclic invariance of the trace and lemma A.4, the integral KtpAN , BNq is invariant with respect to
rotations in both arguments. Therefore, we have a GUE integration of an invariant function in both variables.
Basically, we can use equation 2.29 twice: first in dµpANq, then in dµpBNq, keeping the constants in front.
Unrolling the steps:

I “
CN

tN2{2

ż

HCpNq

g̃pBNq

«

ż

HCpNq

f̃ pANqKtpAN , BNq dµpANq

ff

dµpBNq (2.36)

“
CN

tN2{2

1
p2πq

N{2CNcN

ż

HCpNq

g̃pBNq

«

ż

RN
ď

f̃ pλAN qKtpλAN , BNq∆pλAN q2 dλAN

ff

dµpBNq (2.37)

“
CN

tN2{2

1
p2πq

N{2CNcN

1
p2πq

N{2CNcN

ż

RN
ď

ż

RN
ď

g̃pλBN q f̃ pλAN qKtpλAN , λBN q∆pλAN q2∆pλBN q2 dλAN dλBN .

(2.38)

Noticing that the eigenvalues are integrated out, we could simplify the notation by writing λ, ν. We write
down the final result to use it later:

I “
1

p2πqNCNc2
NtN2{2

ż

RN
ď

ż

RN
ď

f̃ pλqg̃pνq∆pλq2∆pνq2Ktpλ, νq dλ dν. (2.39) {{eqn:integral one}}{{eqn:integral one}}

7 In particular, the equation is the bilinear form of the heat flow in HCpNq but we said we will gloss over this aspect.
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2.i.2 Route two

Let us come back to equation 2.30. We first integrate out in dµpANq a seemingly complicated expression:

EBN :“
CN

tN2{2

ż

HCpNq

f pANq exp

#

´
Tr

`

pAN ´ BNq2˘

2t

+

dµpANq. (2.40)

Notice how BN is fixed inside. We aim to express this as an expectation over an evaluation of f a function of
BN . It suffices to notice that setting GN “ 1{

?
tpAN ´ BNq for which AN “ BN `

?
tGN we have that:

• the change of variables is a dilation cancelling the tN2{2 term;

• the exponential becomes exp
␣

´TrpG2
Nq{2

(

since the t cancels out.

Thus, we have a representation of the integral as an expectation over the GUE ensemble for GN independent
of BN . Mathematically:

EBN “ EGN„GUEpNq

”

f pBN `
?

tGNq

ı

, where GN KK BN . (2.41)

What comes to the rescue is the Brezin-Hikami-Johansson formula (Brézin and Hikami 1996; Johansson 2001;
Tao 2010, 2013), which evaluates the density of the eigenvalues exactly. For our case, we will have that:

EBN “
1

p2πq
N{2

ż

RN
ď

f pλq
∆pλq

∆pλBN q
det

¨

˚

˝

$

&

%

exp

$

&

%

´
pλi ´ λBN

j q2

2t

,

.

-

,

.

-

i,jPrns

˛

‹

‚

dλ. (2.42)

Now that we flattened the integration in dµpANq, we want to flatten the integration in the other matrix. We
have:

I “

ż

HCpNq

gpBNqEBN dµpBNq. (2.43)

Again, this function is invariant to rotations, and we can use equation 2.29 to express it as an integral over the
eigenvalues. We have the weight function coming in and g will take an element of RN

ď as input. After some
rearranging, we find:

I “
1

CNcNp2πqNtN{2

ż

RN
ď

ż

RN
ď

f pλqgpνq∆pλq∆pνq det

¨

˚

˝

$

&

%

exp

$

&

%

´
pλi ´ λBN

j q2

2t

,

.

-

,

.

-

i,jPrns

˛

‹

‚

dλ dν. (2.44) {{eqn:integral 2}}{{eqn:integral 2}}

Notice that 1{CN cN appears when we apply equation 2.29 and indeed here we did so only once, but the CN term
at the numerator was included in the expectation to apply the Brezin-Hikami-Johansson formula. What do
we get from this? The two representations for the integral return a point-wise expression of the KtpAN , BNq

integral, since the rest is explicit! Reordering the terms in equations 2.39-2.44:

KtpAN , BNq “

ż

UN

exp

$

&

%

Tr
´

ANUN BNU:
N

¯

t

,

.

-

dµpUNq “ cNtpn2´nq{2
det

´

texp tλjνi{tuui,jPrns

¯

∆pλq∆pνq
. (2.45)

Notice how the formula differs from the theorem in the dependence with respect to t. This is by purpose.
Since t was positive and real, we just need to do analytic continuation to conclude that it holds for all t P Czt0u

as claimed in the theorem, using the fact that 1
t is holomorphic in the punctured disk, and it is composed with

entire functions.

3 partial phase diagram of the model

{sec:partial phase diagram}
Since we know the integral has a nice form, we return to our objective. Let us report equation 1.9, which is

the last one in section 1.II:

EJ rZns “ EpO,Λq

”

EMpnq„UnifRep

”

exp
!

Nβ{2Tr
´

OΛOJMpnq
¯)ıı

, Mpnq

ij :“
n
ÿ

α“1

spαq

i spαq

j

N
. (3.1)
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Switching the two integrals, we can apply the low-rank HCIZ formula to the inner expectation, finding:

EpO,Λq

”

exp tNβ{2u Tr
´

OΛOJMpnq
¯ı

« exp
!

N{2Tr
´

hΛpβMpnqq

¯)

. (3.2)

A word of caution is needed here, the hΛ function we write should not depend on Λ, and indeed it does not:
we first integrate with respect to O using the HCIZ formula at fixed8 Λ, and by the notation we mean that the
hΛ function is the antiderivative of the R-transform of Λ, which at large size is just the deterministic semi-
circular law. Moreover, by the rotational invariance of R-transforms in the limit, this is also the R-transform of
the original J when N Ñ 8.

To compute the trace inside this expectation, the main idea is that we only care about the eigenvalues of
Mpnq P RNˆN . Fortunately, these coincide with the eigenvalues of the overlap matrix, defined as:9

Qpnq :“ pQpnq

α,βqα,βPrns “
1
N

N
ÿ

i“1

”

spαq

i

ı

αPrns

ˆ

”

spαq

i

ı

αPrns

˙J

, Qpnq

α,β :“
1
N

N
ÿ

i“1

spαq

i spβq

i . (3.3)

To decouple the integral, we need to create a hierarchy of clever integrations (see appendix A.IV). The key
step is introducing a representation of unity that decouples sums over i P rns; essentially, it is a rewriting of
Dirac’s delta integrating over the space of all Q P Rnˆn overlap matrices and enforcing the observed value
Qpnq, which we expect to enjoy a law of large numbers. Mathematically:

1 “

ż

HCpnq

Np
n
2q

23n{2πn{2

»

–

ż

HRpnq

exp

$

&

%

´NTr pQYq `

n
ÿ

α,β“1

Yα,β

N
ÿ

i“1

spαq

i spβq

i

,

.

-

dQ

fi

fl dY . (3.4) {{eqn:representation of one}}{{eqn:representation of one}}

It requires some time to digest: the immediate observation is that the exponential is one if and only if Qpnq “ Q,
and for all the other cases, it will be zero. Plugging this inside our integrals, after some computations deferred
to appendix A.IV, we recover a nicer form:

EJ rZns “ CN,n

ż

HCpnq

«

ż

HRpnq

exp
"

N
2

Tr phΛpβQqq ´ NTr pQYq ` NHpYq

*

dQ

ff

dY , (3.5) {{eqn:integral to clarify}}{{eqn:integral to clarify}}

where CN,n depends only on pN, nq and:

HpYq :“ log ZY , ZY :“
ÿ

sPt˘1un

exp
!

sJYs
)

. (3.6)

As N " 1 diverges, we can again apply the saddle-point method, twice. Notice that this requires taking
N Ñ 8 before n Ñ 0 which means switching the integrals. The saddle-point in dQ gives a set of derivatives
in pα, βq P rns ˆ rns indices of Q of the form:10

Yα,β “
β

2
rRΛpβQqsα,β “

β

2
RΛpβQα,βq. (3.7) {{eqn:saddle-point one}}{{eqn:saddle-point one}}

Similarly, for BYα,β we derive the second and third terms in the exponential:

Qα,β “
1

ZY

ÿ

sPt˘1un

spαqspβqesJYs. (3.8) {{eqn:saddle-point two}}{{eqn:saddle-point two}}

The upshot is that the integral is dominated by configurations satisfying equations 3.7-3.8 jointly. We use this
to derive a self-consistent equation for Q, since we do not care about Y (it is an auxiliary matrix). For given
pα, βq, we have that:

Qα,β “ EBoltzpRΛpβQqq

”

spαqspβq
ı

, (3.9) {{eqn:self consistent equation}}{{eqn:self consistent equation}}

where by Boltzp¨q we mean the Boltzmann measure associated to the coupling given by the argument, which
in this case is the R-transform of a function of Q itself of the semi-circular law of Λ. This is so far still a system
in n replicas, i.e. the dimension of Q. Solving this self-consistent equation is not easy. Numerical experiments
suggest us the following:

“At β low enough, say below a critical βc the solutions of the self-consistent equation seem to
have a simple structure, with a common diagonal.”

9



1

1

1

1

q

q

Figure 1: Replica-symmetric ansatz
Here 1 is only in the diagonal: the block is large for aesthetic reasons. {fig: RS ansatz}

If we trust this observation, we might as well try to plug in this “replica symmetric” solution inside equa-
tion 3.9:11

QpRSq

α,β “ 1α“βp1 ´ qq ` q. (3.10) {{eqn:RS assumption}}{{eqn:RS assumption}}

Such matrix has two eigenvalues:

• one has multiplicity one and is equal to 1 ` pn ´ 1qq;

• another has multiplicity n ´ 1 and is 1 ´ q.

This translates directly into eigenvalues of RΛ (see appendix A.III). After some calculus on ZY (see (Potters
and Bouchaud 2020, eqns. 13.92-13.95)) the result is a new equation that relates only q and the off-diagonal
entries of the R-transform:

r :“
”

RΛpQpRSqq

ı

α,β
“

1
n

rRΛpβp1 ` pn ´ 1qqqq ´ RΛpβp1 ´ qqqs where α ‰ β; (3.11) {{eqn:r derivative}}{{eqn:r derivative}}

q “

ż 8

´8

1
?

2π
e´x2{2 tanh2

!

x
a

βr
)

dx. (3.12)

Now some informal steps need specification:

• to make the R-transform deterministic, we said it needs to be at N “ 8, so we have to exchange the n, N
order of the limits, and take first N Ñ 8;

• we believe that the R-transform in the definition of r has nice properties, so that as n Ñ 0 equation 3.11

is a derivative of the R-transform;

• we have to believe in the fact that replicas (i.i.d. copies of random variables), can be a non-integer number,
and can even tend to zero.

Let us just make a leap of faith. At N Ñ 8 and then n Ñ 0, we find a self-consistent equation in q:

q “

ż `8

´8

1
?

2π
e´x2{2 tanh2

"

x
b

β2qR1
scpβp1 ´ qqq

*

dx, (3.13) {{eqn:self consistent equation in q}}{{eqn:self consistent equation in q}}

where we stress again that Rsc is not random and is the limit of the R-transform of Λ.
While difficult at first sight, this equation is at least easy to simulate or analyze. We have the following

basic observation: q “ 0 is a solution, which should correspond to a high-temperature point in the phase
diagram. Taylor expanding around q “ 0, we can see that at least for the GOE case (and by simulation for
others), we find a parabola equation in q where the coefficients change curvature when:

1
βc

“ R1
sc pβcq . (3.14)

8 Recall that in the GOE these are independent.
9 A moment of thought shows that we are just transposing the Mpnq matrix seeing the n replicas as elements of RN or the N spins of the

replicas as elements of Rn. In particular, now it is a sample mean of interactions.
10In words: derive the first two terms in the exponential.
11Notice how it is also the easiest possible non-trivial matrix!
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The interpretation is that q ‰ 0 when we are above such βc, and in this case, for two randomly sampled
configurations spαq, spβq from the Boltzmann measure of the spin-glass there is a regime in which their overlap
is 1{N

A

spαq, spβq
E

“ q.
Unfortunately, further analysis tells us that this solution is unstable and that symmetry is broken (Sherrington

and Kirkpatrick 1975). The true solution is an advanced topic that we do not cover here, but is the natural
continuation of this line of reasoning. At least for the case in which J is a GOE matrix we have that βc “ 1 is
the correct value of the phase transition. In retrospect, we guessed it from first principles using random matrix
theory.
Another critique is that we did not really compute the free energy: it is true. As a matter of fact, before
finding the expression for the free energy, we identified a self-consistent equation in the order parameter q,
namely equation 3.13, that we claim is a full descriptor of the statistics of the model, i.e. in physics jargon an
order parameter. The main reason is that upon knowing the statistics of q, which depend on β, one can fully
recover the free energy as a function of β. We do not do it here for the sake of space, but it is just a matter of
crunching together the last equations. The interested reader can find the result in the work of Sherrington and
Kirkpatrick (1975), with the caveat that the free energy is wrong, as we just said. The true expression of the
free energy is derived and explained in a series of letters (Parisi 1979a,b, 1980a,b, 1983) and the works that
followed.
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a details on theory and computations

{app:details on theory and computations}
We provide context on theorems and secondary computations divided by topic.

a.i Useful lemmas

{subsec:useful lemmas}
In the main document, we avoided stating some results which are standard in the theory.

quenched free energy concentration To show concentration of the quenched free energy we just
need to show that the log-sum-exp function is Lipschitz, and apply concentration of Lipschitz functions of
Gaussian matrices as in (Anderson, Guionnet, and Zeitouni 2009, chap. 2, especially sec. 3). In particular, the
fully formal statement we sketch is in (Talagrand 2011, thm. 1.3.4, prop. 1.3.5) and the discussion just after.
Let us rewrite the partition function:

ZpJ, N; βq “

ż

t˘1uN
eβsJJs ds “

ÿ

sPt˘1uN

eβsJJs. (A.1)

Seen as a random variable in J P RNˆN it is such that for any matrix A P RNˆN the derivative with respect to
one entry is:

Bij
1
β

logZpA, N; βq “
1
β

BijZpA, N; βq

ZpA, N; βq
“

1
β

1
ZpA, N; βq

ÿ

sPt˘1uN β

sisjeβsJ As “ Es„BoltzpAq

“

sisj
‰

ď 1, (A.2)

where by BoltzpAq we mean the Boltzmann measure with couplings A and we simply bounded the product of
two spins by one, since they are in the hypercube. By the fact that the derivative is bounded, the function
is 1-Lipschitz in all entries of A, and we may apply the Gaussian concentration inequalities for Lipschitz
functions. The correction is 1{

?
N by the fact that in our scaling the GOE has 1{

?
N standard deviation at each

entry. Therefore, rearranging terms, we have „ N2 random variables but the Lipschitz order gives us 1{
?

N

exponential concentration.

riesz’ representation theorem To apply Riesz’ representation theorem on unitarily invariant func-
tions we use the fact that the functions we consider are also assumed to be fast decaying. The simple case
would be to add that they map to the positive real line, and by an approximation argument (e.g. Weierstrass),
restrict to polynomials over a compact interval. We sketch the fully general statement without these restrictions,
leaving some details as exercises. The space RN

ď is a locally compact Hausdorff space (exercise). Then, it
suffices to show that ψp f q :“

ş

HCpNq
f pMNq dMN is a linear (exercise) functional for f : RN

ď Ñ C by the

invariance with respect to unitary rotations. Moreover, such ψp¨q are continuous in the space C0pRN
ďq, the

space of continuous linear functionals on RN
ď that vanish at infinity (exercise). Then there is a unique real

valued regular Borel measure µ on RN
ď such that:

ψp f q “

ż

RN
ď

f pλq dµpλq, @ f P C0pRN
ďq, (A.3)

as a consequence of Riesz’ representation theorem. All the functions we are interested in fall under C0pRN
ďq,

as we just take them to be sufficiently nice. We leave to the reader the exercise to prove that the measure µ is
σ-finite, so that by the Radon-Nykodim theorem we may write it as wpλq dλ “ dµpλq for dλ the Lebesgue
measure on RN

ď, which exists again by an exercise.

Lemma A.4. Let O, R „ HaarpONq be independent. Then, P “ OR „ HaarpONq and O, R, P are independent. The {lem:rotation lemma}
same holds for unitary matrices.

Proof. Suppose O, R „ HaarpONq. Their product P “ OR is orthogonal. Moreover, the Haar (probability)
measure is the unique left-right invariant measure over ON . It follows that OR „ HaarpONq. For independence,
consider two continuous bounded function f , g : ON Ñ R we inspect the integral:

EpP,Rq r f pPqgpRqs “

ż

f pPqgpRqdµpP,Rq. (A.5)
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Let us disintegrate µ into its conditional:

EpP,Rq r f pPqgpRqs “

ż ż

f pPqdµP|RgpRqdµR. (A.6)

The conditional P | R is Haar distributed since P is Haar and for fixed R it is again Haar as R is itself a rotation.
This means that independently of R the inner integral is a Haar Integral over the unique (probability) measure.
Having this, we may compute the inner expectation, take it out, and compute the outer expectation left. The
product decouples, making the random variables independent.

a.ii Saddle-point method for low-rank HCIZ integrals

{subsec:saddle point method for low rank HCIZ integrals}
For the sake of completeness, we just report the reasoning (see (Potters and Bouchaud 2020, eqns. 10.36-

10.39)). Recall the definition of ftpz, Aq in equation 2.11 and the saddle-point condition in equation 2.12. We
compute ItpAq and Itp0NˆNq by deforming the contour. To begin, we notice that since Bz ftpz, Aq “ t ´ sA

Npzq,
then:

B2
z ftpz, Aq “ BzsA

Npzq. (A.7)

First we compute the easy one. By definition, the Stieltjes transform of the null matrix is g0NˆN pzq “ 1{z, so its
inverse is ζptq “ 1{t. The optimal point is explicit in this case, and satisfies:

ftpζptq, 0NˆNq “ ζptqt ´
1
N

ÿ

k

logpz ´ λA
k q (A.8)

“ 1 ´ logp1{tq (A.9)

“ 1 ` log t (A.10)

B2
z ftpζptq, 0NˆNq “ BzsA

Npzq (A.11)

“ Bz
1

ζptq
(A.12)

“ t2. (A.13)

The saddle-point approximation tells us that for a proper contour integral as in this case:

Itp0NˆNq “
1

4π

ż λ`i8

λ´i8
exp

"

N
2

ftpz, 0NˆNq

*

(A.14)

NÑ8
„

1
4π

?
4π

a

|N B2
z r f pζptq, 0NˆNqs |

exp
"

N
2

ftpζptq, 0NˆNq

*

(A.15)

“
1

2t
?

Nπ
exp

"

N
2

p1 ` log tq
*

. (A.16)

For the numerator term ItpAq, we need more work. The Stieltjes transform is invertible since above λA
max

it is monotonic, so the existance of ζptq the inverse of sA
n pzq is immediate from some analysis (Potters and

Bouchaud 2020, sec. 10.4). Moreover, we find in this regime of λ that for t ă sA
NpλA

maxq the inverse satisfies
ζptq ą λmax. Therefore, the integration in pλ ´ i8, λ ` i8q can deform to touch ζptq, since ftpz, Aq is analytic
above λA

max. The ζptq point will dominate the integral. The auxiliary terms ftpζptq, Aq and B2
z ftpζptq, Aq are now

implicit; we just use the fact that the second partial derivative gives the Stieltjes transform. The saddle-point
approximation tells us that the integral is dominated by the exponential evaluated at its maximum rescaled by
fluctuations. Reordering terms:

ItpAq
NÑ8

„
1

2
b

Nπ| BzsA
Npζptqq|

exp
"

N
2

ftpζptq, Aq

*

. (A.17)

Originally, we wanted to give an expression for equation 2.4, which is:

hAptq “ lim
NÑ8

2
N

log
ˆ

ItpAq

Itp0NˆNq

˙

(A.18)

“ lim
NÑ8

2
N

"

N
2

r ftpζptq, Aq ´ ftpζptq, 0NˆNqs ` o pNq

*

(A.19)

“ ftpζptq, Aq ´ 1 ´ log t., (A.20)
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where in the o pNq terms we put the denominators in front of the exponentials. Using equation 2.11 for
ftpζptq, Aq gives the claimed equation 2.13.

a.iii Rotating the R-transform

The R-transform of the matrix QpRSq is simple. Let us note that we used the notation rRΛpQqsα,β to mean the {subsec:rotating the Rtransform}
function RΛpQα,βq. Then, we have to compute only two values, namely RΛp1q and RΛpqq ı r in the notation
we used in equation 3.11 for reasons that will be clear at the end of the paragraph. From the structure imposed
in equation 3.10 we said that QpRSq has two eigenvalues: this is immediate and is generalized in the following
discussion.

The authors claim that the matrix RΛpQq has two eigenvalues, with a specific expression. Indeed, if we
shorthand R for the R-transform, we have:

RΛpQq “

»

—

—

—

—

—

–

Rp1q Rpqq Rpqq ¨ ¨ ¨ Rpqq

Rpqq Rp1q Rpqq ¨ ¨ ¨ Rpqq

Rpqq Rpqq Rp1q ¨ ¨ ¨ Rpqq

...
...

...
. . .

...
Rpqq Rpqq Rpqq ¨ ¨ ¨ Rp1q

fi

ffi

ffi

ffi

ffi

ffi

fl

, (A.21) {{eqn:proposed R representation}}{{eqn:proposed R representation}}

and imposing the characteristic equation RΛv “ ϱv we find the condition:

Rp1qvi ` Rpqq
ÿ

j‰i

vj “ ϱvi, @i P rns. (A.22)

Some attempts give us the two eigenvalues:

• there is a unique solution vi ” 1 associated to ϱ “ Rp1q ` pn ´ 1qRpqq;

• there is an n ´ 1 dimensional space spanned by
řn

i“1 vi “ 0 associated to ϱ “ Rp1q ´ Rpqq.

Now the main observation is that the R-transform is invariant to rotations (assuming we took N Ñ 8 before
n Ñ 0). Therefore, we might as well orient in the diagonalization of Q and obtain that the R-transform has
two eigenvalues:

• RΛp1 ` pn ´ 1qqq for the simple one;

• RΛp1 ´ qq for the degenerate one.

It is then a matter of taste (and cleverness), to choose a matrix of the form:

RΛpQq
rotation

ù “

#

1
n pRΛpβp1 ` pn ´ 1qqqq ´ RΛpβp1 ´ qqqq if α ‰ β

RΛpβp1 ´ qqq ` 1
n pRΛpβp1 ` pn ´ 1qqqq ´ RΛpβp1 ´ qqqq if α “ β

; (A.23)

where now we stress that we have recovered in the first line equation 3.11. A little calculus gives that this
candidate has the right eigenvalues, and is a rotation of the first one proposed in equation A.21. The importance
of this expression is that the r term is a finite difference equation that as n Ñ 0 becomes a derivative! Magically
everything aligns. Notice also that we will use this construction as a plug in for Y in our expression of ZY,
which is rotationally invariant, and for the computation of q which is again an overlap invariant to rotations.
Basically we are at a stage of the problem where we may take the best representation.

a.iv Clever integrations with delta functions to decouple replicas

{subsec:details about clever integrations}
We want to compute:

I :“ EMpnq„UnifRep

”

exp
!

N{2Tr
´

hΛpβMpnqq

¯)ı

“
ÿ

spαqPt˘1uN ,αPrns

exp
!

N{2Tr
´

hΛpβMpnqq

¯)

, (A.24)

where we will use the “flipped” Mpnq into Qpnq. The main issue is that the Mpnq matrix is a collection of replicas
tspαquαPrns where each spαq P RN . This is clearly highly mixed with many interactions between the random
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variables. The key point is that summing over tspαquαPrns and over tsiuiPrNs where spαq P t˘1uN , si P t˘1un is
the same: we just traverse spins or replicas. In the next equations, we will use them interchangeably. Following
(Potters and Bouchaud 2020, sec. 13.2.2), which takes inspiration from the classical treatment of this problem,
we let Qpnq be a variable to integrate out with a Dirac delta representation that forces it to be Qpnq for given
spins. This is the idea of equation 3.4, which we report here for convenience:

1 “

ż

HnpCq

Np
n
2q

23n{2πn{2

«

ż

HRpnq

exp

#

´NTr pQYq `

N
ÿ

i“1

sJ
i Ysi

+

dQ

ff

dY , @tsiu
N
i“1, si P Rn. (A.25)

In particular, differently from (Potters and Bouchaud 2020, eqn. 13.33) we lose the 1{2 factor because the models
are slightly different, and we see si “ psp1q

i , . . . , spnq

i q P Rn as a collection of the ith spin for each replica α P rns,
so logically Q P Rnˆn and Y P Cnˆn because it uses the integral representation of Dirac deltas. We take them
to be symmetric, so they have npn`1q{2 integrands hidden in the differentials of matrices. To give more details
let us fix a given collection of spins tsiuiPrNs, so that the matrix Qpnq P Rnˆn is fixed. We introduce for every
pα, βq P rns ˆ rns a constraint with the following flavour. If we had to constrain only one entry then we would:

• force the scalar with a Dirac delta measure

1 “

ż

R

δpQα,β ´ Qpnq

α,βq dQ; (A.26)

• use the complex representation of Dirac delta functions, to find:

1 “ C
ż

R

ż i8

´i8
exp

"

´
1
2

ypQα,β ´ Qpnq

α,βq

*

dy dQα,β, (A.27)

where C is a constant.

However, we do not have a single entry Qpnq

α,β to enforce, but rather the whole symmetric matrix Qpnq, which
has npn`1q{2 terms. Therefore, we will integrate over the space of real symmetric matrices enforcing a single
point measure:

1 “

ż

HRpnq

δpQpnq ´ Qq dQ, as an
npn ` 1q

2
fold integral, (A.28)

and then use the complex representation of the Dirac delta once again, to find that the dy auxiliary integration
is over complex Hermitian matrices, and we can write:

1 “ CN,n

ż

HCpnq

ż

HRpnq

n
ź

α,β“1

exp
!

Yα,βpQα,β ´ Qpnq

α,βq

)

. (A.29)

To find back equation 3.4, it suffices to collect the product of exponentials, express Qpnq

α,β “ 1
N

A

sα, spβq
E

since
we fixed the spins, and do some rescaling.

Using this trick, we carefully compute the integrals:

I “
ÿ

spαqPt˘1uN ,αPrns

exp
!

N{2Tr
´

hΛpβMpnqq

¯)

, (A.30)

“
ÿ

spαqPt˘1uN ,αPrns

exp
!

N{2Tr
´

hΛpβQpnqq

¯)

, (A.31)

“
ÿ

spαqPt˘1uN ,αPrns

exp
!

N{2Tr
´

hΛpβQpnqq

¯)

«

ż

HCpnq

Np
n
2q

23n{2πn{2

«

ż

HRpnq

exp

#

´NTr pQYq `

N
ÿ

i“1

sJ
i Ysi

+

dQ

ff

dY

ff

.

(A.32)

Now we take the scaling factors out into a constant CN,n and push the sum over all spins inside the integral.
It remains to realize that in the integration over Q we will eventually hit Qpnq only once at fixed tspαquαPrns,
justifying the idea that we may integrate over all of the Q also the exponential of hΛ, provided that we sum
the tsiuiPrns dependent term over all possible configurations. Let us do it for one single set of configurations to
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be clearer. We fix tsiuiPrNs where si P t˘1un and find that (the integral, the sum and constant factors are at the
left of this expression):

exp
!

N{2Tr
´

hΛpβQpnqq

¯)

«

ż

exp

#

´NTr pQYq `

N
ÿ

i“1

sJ
i Ysi

+

dQ

ff

(A.33)

“

„
ż

exp
!

N{2Tr
´

hΛpβQpnqq

¯)

exp t´NTr pQYqu dQ
ȷ

exp

#

N
ÿ

i“1

sJ
i Ysi

+

(A.34)

“

„
ż

exp tN{2Tr phΛpβQqqu exp t´NTr pQYqu dQ
ȷ

exp

#

N
ÿ

i“1

sJ
i Ysi

+

(A.35)

“:IY ,tsiuiPrNs
, (A.36)

where in the last step we used the fact that for given tsiuiPrNs the representation of one we introduced will

realize uniquely at Qpnq. In simple words, we integrate over all of dQ an indicator of Qpnq. We only need to
integrate over dY and the n hypercubes of spin replicas. We can exchange the integrals because the terms are
positive for each summand and integrand, so:

I “ CN,n
ÿ

spαqPt˘1uN ,αPrns

«

ż

HCpnq

IY ,tsiuiPrNs
dY

ff

“ CN,n

ż

HRpnq

»

—

–

ÿ

tspαquαPrns

IY ,tsiuiPrNs

fi

ffi

fl

dY . (A.37)

A closer look tells us that we are summing the same quantity, which is the integral in Q over given
exponential weights exp

␣

sJ
i Ys

(

, where Y is fixed. The magic is that the sum is now decoupled, in the sense
that the tsiuiPrNs ” tspαquαPrns, which were once highly interacting in the hΛ function, are now independent
(or decoupled in physics jargon). Indeed, regarding the integral term as a constant for given Y inside the dY
integral, we perform a three line manipulation, which we explicit to six for clarity:

ÿ

tspαquαPrns

exp

#

N
ÿ

i“1

sJ
i Ysi

+

“
ÿ

tsiuiPrNs

exp

#

N
ÿ

i“1

sJ
i Ysi

+

(A.38)

“
ÿ

tsiuiPrNs

N
ź

i“1

exp
!

sJ
i Ysi

)

(A.39)

“

N
ź

i“1

ÿ

sPt˘1un

exp
!

sJYs
)

(A.40)

“

¨

˝

ÿ

sPt˘1un

exp
!

sJYs
)

˛

‚ (A.41)

“ exp

$

&

%

N log
ÿ

sPt˘1un

exp
!

sJYs
)

,

.

-

(A.42)

“ exp tN log ZY u (A.43)

where we just used the fact that the exponential of a sum is a product of exponentials, and that these sums
depend on different terms. In the meantime, we changed si to s is just because the index i P rNs is a dummy
index, and we put an N-fold product. The rest is an exp-log rearrangement. Putting it all together, we found
that:

I “ CN,n

ż

HCpnq

«

ż

HRpnq

exp tN{2Tr phΛpβQqq ´ NTr pQYq ` N logpZY qu dQ

ff

dY , (A.44)

which coincides with equation 3.5, upon computing the right constant.
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