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1 introduction

In this forty-five minutes lecture, we will review the paper in the title. After presenting the problem, we will
explain the main statement. Then, we will compare it with another perspective we saw in class (Massart 2024).
If time permits, we will discuss the proof and the key lemmas.
Emphasis is on intuition and quick understanding. References are to a minimum. Computations, when
performed, are explicit.

notation We use bold for vectors, and curly latex for random variables. For example θ is a random vector,
while θ is deterministic. Matrices are uppercase. The rest of the symbols are either standard or defined when
discussed first. The main takeaway is this explicit distinction between what is random and what is not.

1.i Motivation and Setting

Consider the following simple linear model:

y “ Xβ ` z, (1.1)

where X P Rnˆp and z „ N p0n, σ2 Inq is Gaussian noise. In modern settings where data is abundant, we are
interested in the case when p ą n. If the vector β is sparse, it would be nice to solve:

arg min
bPRp

1
2

}y ´ Xb}
2
2 ` λ0 σ2 }b}0 , (1.2)

error

hyperparameter

complexity penalty

*email: simonegiancola09@gmail.com
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for some λ0 ą 0, but we know this is NP-hard in general. A common fix is to study the lasso, which relaxes
the ℓ0 norm into the ℓ1 norm, obtaining:

β̂ – arg min
bPRp

1
2

}y ´ Xb}
2
2 ` λp}b}1, λp ą 0. (1.3)

The model is now convex and has an algorithmic solution. Intuitively, we still have a regularization that
penalizes “large” solutions.

Main finding

We will see that under appropriate conditions this relaxation is not harmful. Indeed, the lasso finds
vectors that attain an error approximately as good as an estimator obtained from sparse subsets of
explanatory variables. Furthermore, it is approximately as good as a lasso that does not “see” the noise.

Let us then introduce our main assumption, which bounds the redundancy of the data matrix.

Definition 1.4 (Coherence). Given a data matrix X, its coherence is the maximal alignment of columns, denoted as
µpXq :“ sup1ďiăjďp |

@

xi, xj
D

|.

Assumption 1.5. The data matrix X is such that its columns have unit ℓ2 norm and for some a0 its coherence is
bounded from above by a0{log p.

This assumption is minimal: we can always rescale the matrix as to have unit columns. Moreover, in
the classic modeling case where we take X to be random and Gaussian, after standardizing we have about
a

2 log p{n coherence, which is below our assumption for moderately large sample size n.

2 main result

What is the best benchmark to compare lasso with? If we had exponential time at disposal, we could check
each subset of explanatory variables and project over it. Mathematically, we would take each subset M Ă rps

and compare βM “ PMy, which on average attains an error:

E r}Xβ ´ XβM}s
2
2 “

›

›pIp ´ PMqXβ
›

›

2
2 ` |M|σ2. (2.1)

Then, we would search for the minimum over this 2p dimensional space:

min
MĂrps

›

›pIp ´ PMqXβ
›

›

2
2 ` σ2 |M| . (2.2)

error on model subspace

model size

If we could find the best b in equation equation 1.2, we would have a solution that is close to the best
subset, and attains the best bias variance trade-off. However, we want an algorithm.

To model this situation, we consider the best dimensional subset model. Let us assume that J is any set
attaining the value in equation 2.2, we say:

• it is uniformly distributed over rps;

• it has size |J| “ s;

• it is associated to a vector β0 defined via the optimal projection Xβ0 “ PJXβ.

Remark 2.3. Equivalently, we do not place any prior information on where it might lie.

Under this model, we can state the result of (Candès and Plan 2009, thm. 1.4):

Theorem 2.4. Let X satisfy assumption 1.5 and β0 be from the best s-dimensional subset model. Suppose there exist a
constant such that s ď c0 p{}X}

2
op log p. Then, if we choose λp “ 2

a

2 log p the lasso solution of equation 1.3 satisfies the
following inequality:
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›

›Xβ ´ Xβ̂
›

›

2
2 ď C

«

min
MĂrps

›

›pIp ´ PMqXβ
›

›

2
2 ` λ2

p σ2 C0|M|

ff

, (2.5)

deterministic error

implicit hyperparameter

corrected complexity penalty

with probability larger than 1 ´ 6p´2 log 2 ´ 1{p
?

2π log p, and C, C0 explicit constants.

Sharpness

The assumptions are nearly optimal. In (Candès and Plan 2009, sec. 2) the authors bring counterexam-
ples to low coherence or probability one settings. In simple words, there are always vectors that can
make the statement false if we have high redundancy or look at the whole sample space.

A different formulation of this result might be more enlightening. If we let s‹ be the maximal sparsity
allowed, and consider the signs As :“ tr P t˘1, 0up :

ř

|rj| “ su, we have that for some subset B Ă As with
probability larger than 1 ´ O p1{pq:

›

›Xβ ´ Xβ̂
›

›

2
2 ď min

sďs‹
min

b:sgnpbqPB
C

”

}Xβ ´ Xb} ` C0λ2
psσ2

ı

. (2.6)

In particular, the set B is almost As, with an explicit bound on their ratio: |B|{|As| ě 1 ´ O p1{pq. In simple
words, with large probability the predictive power of the lasso estimator is almost as good as the predictive
power of the best deterministic lasso estimator obtained among all sparse models, with a slightly larger
regularization, outside of a vanishing set of signs. The statement is just the same but this result is implicit in
the proof technique.

2.i Comparison with the literature

With no intention to be exhaustive, we compare theorem 2.4 with the results in (Massart and Meynet 2010)
which are also reported in (Massart 2024). In both, the setting is a lot more general, so we will adapt the
notation and the results. Consider a dictionary Dp of explanatory features that is finite and of dimension p, all
such that their ℓ2 norm is bounded above by one. We define the projected norm in its span as:

}h}L1pDpq :“ inf
θPRp :

řp
j“1 θjxj“h

}θ}1. (2.7)

If the underlying function is linear, we have the same model. The authors define the lasso estimator in the
general case as:

f̂ :“ Xβ̂ :“ arg min
hPL1pDpq

}y ´ h}
2
2 ` λp}h}L1pDpq. (2.8)

Then, a computation (see (Massart and Meynet 2010, sec 3.2)) shows that this estimator coincides with the lasso
of equation 1.3, in the sense that f̂ “ Xβ̂, so we have the same representation but on the space of observations.
The theorem we will report has no assumptions (apart from Gaussian noise), but does a different comparison.
We take it from (Massart and Meynet 2010, thm. 3.2), a slightly different formulation is in (Massart 2024, thm.
24).

Theorem 2.9. Suppose the explanatory features txju
p
j“1 are such that maxj

›

›xj
›

›

2 ď 1. Let λp ě 4σ{
?

np
a

log p ` 1q.
Then, for all ρ ą 0 with probability larger than 1 ´ 3.4e´ρ it holds that:

›

›y ´ Xβ̂
›

›

2
2 ` λp

›

›β̂
›

›

1 “

›

›

›
Xβ ´ f̂

›

›

›

2

2
` λp

›

›

›
f̂
›

›

›

L1pDpq
(2.10)

ď C

«

inf
hPL1pDpq

t}Xβ ´ h}u ` λp}h}L1pDpq

ff

`
λpσ
?

n
p1 ` ρq (2.11)

“ C

«

inf
β̃PRp

›

›Xβ ´ X β̃
›

›

2
2 ` λp

›

›β̃
›

›

1

ff

`
λpσ
?

n
p1 ` ρq. (2.12)
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Moreover, we can integrate the probability bound in ρ to obtain a version in expectation:

E

„

›

›

›
Xβ ´ f̂

›

›

›

2

2
` λp

›

›

›
f̂
›

›

›

L1pDpq

ȷ

ď C

«

inf
hPL1pDpq

!

}Xβ ´ h}
2
2 ` λp}h}L1pDpq

)

`
λσ
?

n

ff

. (2.13)

In words, without any coherence assumption, we get that up to constants the lasso estimator is almost as good as the
deterministic lasso estimator.

Sharpness

From (Massart and Meynet 2010, rem. 3.3 point 4) we get that this bound is optimal. In particular, there
exists a regime of parameters where we can upper bound the last result by a quantity of the same order
as the min-max lower bound over ℓ1 balls.

Remark 2.14. It is important to notice that differently from theorem 2.4 we can get a bound on the expectation by
integrating. In the former case, the dependence on p of the probability is implicit in the upper bound, while here z is a
generic scalar.

Theorems 2.4 and 2.9 are quite different in nature. In (Candès and Plan 2009) the bound sought is with
respect to the oracle, while the objective of Massart and Meynet (2010) is to compare with a non-noisy ideal
lasso estimator. We can see the two approaches as complementary results, telling us that under all the
assumptions the lasso estimator in the linear case with a matching linear model is approximately model
selection optimal and careless with respect to noise, with these statements getting asymptotically better as the
dimension increases. Alternatively, we know there are barriers to these results thanks to the counterexamples:
if either condition or scaling does not hold, then we are not guaranteed to claim that the lasso estimator
performs well according to either of the two notions.

3 proof of the main result

We now present the proof assuming the lemmas hold. These auxiliary results are discussed later in section 4.

proof of theorem 2.4. (Preliminary) Without loss of generality, we let σ “ 1. To restrict a matrix to a set of
columns M Ă rps we write XM. Throughout, λp “

a

2 log p. It is also useful to recall that the lasso functional

Kpy, bq :“
1
2

}y ´ Xb}
2
2 ` 2λp}b}1 (3.1)

has a nice sub-gradient with respect to b:

B2Kpy, bq “ X:pXb ´ yq ` 2λpϵ, ϵj “

#

sgnpbiq bi ‰ 0
p´1, 1q bi “ 0.

(3.2)

In particular, we denoted the sub-gradient at b with B2. Without regard to the specific coherence assumption,
we have some a priori bounds:

(B1) it holds that
›

›

›
X:py ´ Xβ̂q

›

›

›

8
ď 2λp;

(B2) when noise is Gaussian
›

›

›
X:z

›

›

›

8
ď

?
2λp with probability 1 ´ 1{p

?
2π log p.

In particular, combining (B1)-(B2) we have with high probability:
›

›

›
X:Xpβ ´ β̂q

›

›

›

8
ď p

?
2 ` 2qλp. (3.3)

Coherence combined with the scalings instead give us two other high probability results. Suppose the best
s-dimensional subset model has support J, then:

(R1) [invertibility]
›

›pXJXJq´1
›

›

8
ď 2;

(R2) [complementary size] seeing sgn as a function acting on vectors entry-wise:
›

›

›

›

X:

Jc XJ
”

X:

J
XJ

ı´1
X:

J
z

›

›

›

›

8

` 2λp

›

›

›

›

X:

Jc XJ
”

X:

J
XJ

ı´1
sgnpβ0,Jq

›

›

›

›

8

ď p2 ´
?

2qλp. (3.4)

4



In what follows, we assume all of these hold, and continue the proof. In section 4 we will estimate the
probability with which they hold jointly, which matches that in the statement of theorem 2.4.
(Main) Since β̂ is a minimizer of the lasso functional we have that Kpy, β̂q ď Kpy,β0q. From this, we can
deduce with by opening

›

›y ´ Xβ̂
›

›

2
2 and }y ´ Xβ0}

2
2 that:

1
2

›

›Xβ̂ ´ Xβ
›

›

2
2 ď

1
2

}Xβ0 ´ Xβ}
2
2 `

@

z, Xβ̂ ´ Xβ0
D

` 2λpp}β0}1 ´
›

›β̂
›

›

1q. (3.5)

The parts where β0 is active and not are crucial. Let us denote h :“ β̂ ´ β0 “ rhJ | hJcs. On the inner product,
we can observe that:

@

z, Xβ̂ ´ β0
D

“

A

X:z, h
E

“

A

X:z, hJ
E

`

A

X:z, hJc

E

. (3.6)

In particular, we bound the latter term using the (B2), i.e. that
›

›

›
X:z

›

›

›

8
ď 2λp. In the ℓ1 norms we seek a

cancellation. We can use the difference vector to write:
›

›β̂
›

›

1 “
›

›β0,J ` hJ
›

›

1 ` }hJc }1. (3.7)

Now notice that by the fact that the support is of β0 and the definition of h:

@j P J, |β̂j| “ |β0,j ` hj| ě |β0,j| ` sgnpβ0,jqhj, (3.8)

which is easily checked by just plugging the case β0,j positive or negative. Summing up this inequality across
j P J we can cancel the }β0}1 term above, obtaining in exhange an inner product xh, sgnpβ0qy. Recollecting all
esitmates in the main equation we have:

1
2

›

›Xβ̂ ´ Xβ
›

›

2
2 ď

1
2

}Xβ0 ´ Xβ}
2
2 ` xhJ, vy ´ p2 ´

?
2qλp}hJc}1, v :“ X:

J
z ´ 2λpsgnpβ0,Jq. (3.9)

The rest of the argument is aimed at upper bounding the inner product using the other results to cancel out
the annoying ℓ1 norm of the difference vector.
(Upper bound on inner product) We seek an upper bound in terms of infinity norms that make the com-
plementary size condition appear, as well as the lasso bound in equation 3.3. The rest is just a matter of
reordering terms. We will then reuse the distinction between J and its complement but in reverse. Implicitly,
the invertibility condition (R1) allows us to use the inverse of the matrix restricted to J. By this, we can inject
it in the inner product:

xhJ, vy “

B

X:

J
XJhJ,

”

X:

J
XJ

ı´1
v

F

(3.10)

“

B

X:

J
Xh,

”

X:

J
XJ

ı´1
v

F

loooooooooooooomoooooooooooooon

:“ahard

`

B

X:

J
XJc hMc

0
,
”

X:

J
XJ

ı´1
v

F

loooooooooooooooooomoooooooooooooooooon

:“aeasy

, (3.11)

where we just used the decomposition Xh “ XJhJ ` XJc hJc . By the definition of v the second term is easy
and gives us what we wanted:

aeasy ď }hJc}1

›

›

›

›

X:

J
XJc

”

X:

J
XJ

ı´1
v

›

›

›

›

8

v “ X:

J
z ´ 2λpsgnpβ0,Jq,

(3.12)

ď }hJc}1

"
›

›

›

›

X:

J
XJc

”

X:

J
XJ

ı´1
z

›

›

›

›

8

` 2λp

›

›

›

›

X:

J
XJc

”

X:

J
XJ

ı´1
sgnpβ0,Jq

›

›

›

›

8

*

(3.13)

ď }hJc}1p2 ´
?

2qλp, (3.14)

comparing with the intermediate estimate in equation 3.9 we have cancelled the last term. What is missing
is the hard term. To bound it, we decompose it again into the lasso vs true model contribution and best-
dimensional model vs true model contribution. Namely, we rewrite h “ β̂ ´ β0 “ β̂ ´ β ` β ´ β0 and split
again:

ahard “ aoldhard ` anewhard, (3.15)

aoldhard :“
B

X:

J
Xpβ̂ ´ βq,

”

X:

J
XJ

ı´1
v

F

(3.16)

anewhard :“
B

X:

J
Xpβ ´ β0q,

”

X:

J
XJ

ı´1
v

F

. (3.17)
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The notation old, new refers to the fact that the old term is part of the proof of an earlier theorem in (Candès
and Plan 2009). We bound the absolute value of the two terms. In both cases this reduces to applying a simple
inequality to v. For the old component:

aoldhard ď

›

›

›
X:

J
Xpβ̂ ´ βq

›

›

›

8

›

›

›

›

”

X:

J
XJ

ı´1
›

›

›

›

op
}v}8 (3.18)

ď 2p2 `
?

2qsλp}v}8 by equation 3.3 and (R1); (3.19)

ď 2p2 `
?

2qsλpp
?

2λp ` 2λpq by rough bound on v. (3.20)

For the new term, we make non-stochastic difference between to the true model and the best-dimensional
model appear:

anewhard ď
?

2}Xpβ ´ β0q}2}v}2 (3.21)

ď

?
2

2

”

}Xpβ ´ β0q}
2
2 ` }v}

2
2

ı

Young’s inequality; (3.22)

ď

?
2

2

”

}Xpβ ´ β0q}
2
2 ` p2 `

?
2q2s ` λ2

p

ı

by rough bound on v. (3.23)

(Finalization) Using the results in the step above, we simplify equation 3.9 with the following upper bound:

1
2

›

›Xβ̂ ´ Xβ
›

›

2
2 ď

1 `
?

2
2

}Xβ0 ´ Xβ}
2
2 ` p4 `

?
2qp1 `

?
2q2λ2

ps. (3.24)

Substituting the scaling of λp we have the bound for some explicit constants.

4 auxiliary statement

In this section we report the proof of (B1)-(B2)-equation 3.3-(R1)-(R2) in the premise of Candès and Plan
(2009, thm. 1.4).

The preliminary bounds follow by standard techniques.

Lemma 4.1. The following three facts are true.

1. The lasso solution satisfies:
›

›

›
X:py ´ Xβ̂q

›

›

›

8
ď 2λp. (4.2)

2. If noise is Gaussian, the following inequality is true with probability 1 ´ 1{p
?

2π log p. :
›

›

›
X:z

›

›

›

8
ď

?
2λp. (4.3)

3. The lasso satisfies a bound a priori:

›

›

›
X:Xpβ ´ β̂q

›

›

›

8
ď p

?
2 ` 2qλp, with probability 1 ´

1
p

a

2π log p
. (4.4)

The three results are a rewriting of (B1)-(B2) and equation 3.3.

Proof. (Claim #1) The claim follows by the form of the lasso subgradient in equation 3.2. In particular, it
suffices to notice that }ϵ}8 ď 1.
(Claim #2) We write a rough union bound on the random variables

@

xj, z
D

for j P rps, which are all standard
Gaussians. Indeed, we have:

P
”
›

›

›
X:z

›

›

›

8
ě t

ı

ď

p
ÿ

j“1

P
“

|
@

xj, z
D

| ě t
‰

ď 2p
e´t2{2

?
2πt

. (4.5)

Plugging t “
?

2λp allows us to conclude.
(Claim #3) Substituting Xβ “ y ´ z and using #1-#2 we obtain the desired inequality.
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4.i Invertibility and complementary size conditions

To prove (R1) and (R2) we use a result of Tropp (2008) and some lemmas. Let us introduce first some useful
notation. Let trju

p
j“1 „ Berp s

p qbp be a collection of independent Bernoulli random variables. Using their
realizations, we construct a set of predictors M “ tj : rj “ 1u, with the property that E r|M|s “ s. We also
construct a matrix:

R :“ diagpr1, . . . , rpq. (4.6)

For this subsection only we use the shorthand q :“ 2 log p. Adapting the notations, at the end of (Tropp
2008, sec. 4) we find a bound that holds for matrices A decomposed into their diagonal and off diagonal
part as A “ H ` D. For us, it is instrumental to apply it to Ip ´ X:X which has D “ 0pˆp, A “ H in this
decomposition. Reporting the result:

E
”

}RHR}
q
op

ı
1
q

ď 15qE rp}RHR}8qqs
1
q ` 12

a

δqE

«

max
cols jPrps

›

›pRHqj
›

›

2

ff

` 2δE
”

}H}op

ı

, δ :“
s
p

. (4.7)

Furthermore, Tropp (2008) justifies the following inequality:
˜

max
cols jPrps

›

›pRHqj
›

›

2

¸

ď }X}op. (4.8)

We combine these two arguments with the following observations:

• almost surely }RHR}op ď µpXq the coherence by simply unrolling the definitions and bounding the
Bernoullis by one;

• }H}op ď maxt}X}
2
op ´ 1, 1u ď }X}

2
op since }X}op ě 1 by the unit norm assumption.

Using these observations and supposing s}X}
2
op{p ď 1{4 gives us after some algebraic manipulations that:

E
”

}RHR}
q
op

ı
1
q

ď 30µpXq log p ` p12
?

2 log p ` 1q

d

s}X}
2
op

p
. (4.9)

Observing that R just selects the random set M it takes some moments to realize that we can rewrite the left
hand side and make a slightly worse bound as follows:

E

„

›

›

›
X:

M
XM ´ Ip

›

›

›

q

op

ȷ
1
q

ď 30µpXq log p ` 13

d

s
?

2 log p}X}
2
op

p
. (4.10)

Moreover, we also borrow (Tropp 2008, cor. 5.1), which states that:

E

„

max
jPMc

›

›

›
X:

M
xj

›

›

›

q

2

ȷ
1
q

ď 4µpXq
a

log p `

d

s}X}op2

p
(4.11)

Corollary 4.12. A Poissonization argument letting the set be random gives the same bounds of equations 4.10-4.11
with an added 21{q on the right hand side. To see the full proof strategy, we refer to (Candès and Plan 2009, lem. 3.6).

Proof. We only show the one result. The other is analogous. Let J be now a random set of dimension s taken
uniformly, and M be the Bernoulli model. It suffices to show that:

E

„

›

›

›
X:

J
XJ ´ Ip

›

›

›

q

op

ȷ

ď 2E

„

›

›

›
X:

M
XM ´ Ip

›

›

›

q

op

ȷ

. (4.13)

Then we can express the left-hand side as:

E

„

›

›

›
X:

M
XM ´ Ip

›

›

›

q

op

ȷ

“

p
ÿ

k“0

P r|M| “ ksE

„

›

›

›
X:

M
XM ´ Ip

›

›

›

q

op
| |M| “ k

ȷ

(4.14)

ě

p
ÿ

k“s

P r|M| “ ksE

„

›

›

›
X:

M
XM ´ Ip

›

›

›

q

op
| |M| “ k

ȷ

(4.15)

ě

p
ÿ

k“s

P r|M| “ ksE

„

›

›

›
X:

Mk
XMk

´ Ip

›

›

›

q

op

ȷ

(4.16)

where Mk is a uniform sample of a size k subset of rps. We may conclude by observing that:
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• the quantity
›

›

›
X:

Mk
XMk

´ Ip

›

›

›

q

op
is increasing in |Mk| “ k;

• by the symmetry of Bernoullis the median is E r|M|s “ s “ Medp|M|q;

Only the first claim needs further justification. We can see this simply by the Cauchy interlacing theorem. If
we start from the full matrix k “ p, at k ´ 1 we will have removed one row and one column corresponding to
the lost index j. By the Cauchy interlacing theorem the maximum eigenvalue of the original matrix upper
bounds the new matrix. Iterating, this property is maintained.

The invertibility condition is now an almost direct consequence. For the complementary size we will need
some more work.

Proposition 4.17 (Invertibility). If the coherence satisfies assumption 1.5 and s satisfies the bound in theorem 2.4 we
have that:

›

›

›

›

”

X:

J
XJ

ı´1
›

›

›

›

op
ď 2, with probability 1 ´ p´2 log 2. (4.18)

Namely, condition (R1) holds with high probability.

Proof. Under our conditions, the right-hand side of equation 4.10 is bounded above by 1{4. Let z :“
›

›

›
X:

J
XJ ´ Ip

›

›

›

op
. Since it is the operator norm of a Hermitian matrix it is its maximum eigenvalue, in

the form maxjPrps |λ
pX:

J
XJq

j ´ 1|. Then, if z ď 1{2 the eigenvalues of the original matrix are bounded inside
r1{2, 3{2s. By a simple Markov’s inequality, we have that:

P

„

z ě
1
2

ȷ

ď 2qE r|z|qs ď
1
2q , (4.19)

where we used the assumptions to bound the estimate of before. This concludes the proof choosing q “

2 log p.

Let us move to the irrepresentability condition (R2). We make use of the following result.

Lemma 4.20. Let pwjqjPT, pvjqjPT be collections of vectors with wj P ℓ2pMq and vj P Rn respectively. They
can also be random, the importance is that they are independent from the other random variables. Defining z0 :“
maxjPT |

@

wj, sgnpβMq
D

and z1 :“ maxjPT |
@

vj, z
D

| the following two bounds hold:

P rz0 ě ts ď 2|T|e´ t2

2κ2 @κ ě max
jPJ

›

›wj
›

›

2; (4.21)

P rz1 ě ts ď 2|T|e
´ t2

2η2
@η ě max

jPJ

›

›vj
›

›

2. (4.22)

Proof. The first bound is an application of Hoeffding’s inequality on each j, bounding the denominator by
the maximum, and applying a union bound. The second inequality follows since each variable is Gaussian,
bounding by the maximum, and applying a union bound again.

Proposition 4.23 (Irrepresentability). If the coherence satisfies assumption 1.5 and s satisfies the bound in theorem 2.4
we have that with probability larger than 1 ´ 6p´2 log 2:

›

›

›

›

X:

Jc XJ
”

X:

J
XJ

ı´1
X:

J
z

›

›

›

›

8

` 2λp

›

›

›

›

X:

Jc XJ
”

X:

J
XJ

ı´1
sgnpβ0,Jq

›

›

›

›

8

ď p2 ´
?

2qλp. (4.24)

Namely, condition (R2) holds with high probability.

Proof. (Defining objects) Let us define for j P Jc the random variables:

z0,j :“ x:

j XJ
”

X:

J
XJ

ı´1
sgnpβ0,Jq, z1,j :“ x:

j XJ
”

X:

J
XJ

ı´1
X:

J
z. (4.25)

Now, we just want to show that with the claimed probability:

2λpz0 ` z1 ď p2 ´
?

2qλp, z0 :“ max
jPJc

|z0,j|, z1 :“ max
jPJc

|z1,j|. (4.26)

8



To satisfy such inequality, we check that z0 ď 1{4 and z1 ď p3{2 ´
?

2qλp. Let us assign the following values to
the placeholder variables of lemma 4.20:

wj :“
”

X:

J
XJ

ı´1
X:

J
xj, vj :“ XJ

”

X:

J
XJ

ı´1
X:

J
xj, for all j P Jc. (4.27)

We will also need to recall the definition of z in the proof of proposition 4.17. Then, defining the event
E :“ tz ď 1{2u X

!

maxjPJc

›

›

›
X:

J
xj

›

›

›

2
ď γ

)

we know that by the first event considered all eigenvalues of XJ are

in the interval r1{
?

2,
a

3{2s and that the operator norm of the inverse is bounded above by 2.
(Conditioning on a large probability event) Combining these facts, we get that:

›

›

›

›

XJ
”

X:

J
XJ

ı´1
›

›

›

›

op
ď

?
2, (4.28)

and it implies by our definitions considering the second event that:
›

›wj
›

›

2 ď 2γ,
›

›vj
›

›

2 ď
?

2γ. (4.29)

We are now ready to apply the results of lemma 4.20. Let us inspect the following probability by the principle
of “conditioning on a large probability event”:

P rtz0 ě tu Y tz1 ě uus ď P rtz0 ě tu Y tz1 ě uu | Es ` P rEcs (4.30)

ď 2pe
´ t2

8γ2
` 2pe

´ t2

4γ2
` P rEcs union bound. (4.31)

The latter term can be further upper bounded by a union bound into the sum of the single probabilities:

P

„

z ą
1
2

ȷ

, P

„

max
jPJc

›

›

›
X:

J
xj

›

›

›

8
ą γ

ȷ

. (4.32)

The first term is bounded as in the proof of proposition 4.17 by p´2 log 2.
(Applying the result of Tropp (2008)) The latter term is our terminal step. We use the second result of Tropp
(2008) we mentioned, namely equation 4.11. Let:

t :“
1
4

, u :“
ˆ

3
2

´
?

2
˙

λp, γ :“ 2
1
q 4µpXq

a

log p ` 2
1
q

d

s}X}op2

p
, (4.33)

which is the right-hand side of equation 4.11 adjusted by the Poissonization of corollary 4.12. Under the
conditions of theorem 2.4 γ ď c0{

?
log p for some positive c0, and we can have the bounds:

max

#

2pe
´ t2

8γ2 , 2pe
´ u2

4γ2

+

ď 2p´2 log 2. (4.34)

Moreover, we can also upper bound the remaining term by Markov’s as:

P

„

max
jPJc

›

›

›
X:

J
xj

›

›

›

2
ą γ

ȷ

ď
1

γq E

„

max
jPJc

›

›XJxj
›

›

q
2

ȷ

ď

ˆ

γ0

γ

˙q
. (4.35)

By hypothesis γ0 ď γ{2, so the estimate is at most p´2 log 2.
(Finalization) Summarizing, we have shown that:

P

„"

z0 ě
1
4

*

Y

"

z1 ě

ˆ

3
2

´
?

2
˙*ȷ

ď 4p´2 log 2 ` p´2 log 2 ` p´2 log 2 (4.36)

So the opposite event holds with probability larger than 1 ´ 6p´2 log 2.

If we combine the probabilities obtained in lemma 4.1, proposition 4.17 and proposition 4.23 we obtain the
quantity in theorem 2.4.

Remark 4.37. One interesting aspect is that in the development we would see that it implies the irrepresentability
condition, which is mentioned in (Massart and Meynet 2010) as a standard hypothesis that is not used in their work. It
is also one of the aspects of the critique of the classic assumptions on the lasso in (Geer and Bühlmann 2009).
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