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1 introduction

In this short lecture, we will review the paper in the title. After presenting the framework, we will prove the
starting statement, and just briefly comment the other ones, which have very long proofs. To conclude, we will
overview the Richardson-Romberg extrapolation method, which is one direct application of the results, and
the ideas behind the deeper theorems.
Emphasis is on intuition and quick understanding. References are to a minimum. Computations, when
performed, are explicit. Throughout, we omit the full expressions of the theorems, but specify when these are
available in the original publication.

notation We use bold for vectors, and curly latex for random variables. For example θ is a random vector,
while θ‹ will be our deterministic optimum. The rest of the symbols are either standard or defined when
discussed first. The main takeaway is this explicit distinction between what is random and what is not.

1.i Motivation and Setting

Stochastic gradient descent (SGD) is a standard tool in machine learning (ML). However, the choice of the
step-size is classical only in the deterministic case, where the algorithm degrades to gradient descent (GD). If
we train over random samples, there is a gap between theory and practice:
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• a scaling O p1{kq is advisable, while still being non-robust to ill-conditioning;

• experiments suggest O p1{
?

kq and averaging.

We wish to tackle this issue by providing intuitions on a set of results that indeed bridges the gap. In the spirit
of isolating phenomena, let us choose constant step-size. The immediate justifications are that: (i) it is easier
theoretically; (ii) there are fewer parameters to optimize (one less); (iii) initial conditions are anyway forgotten
exponentially fast for the problems we consider; (iv) in practice, it gets close to the global optimum, and in ML
we do not care when we are already at machine precision.
Let us introduce the notation. In this report SGD is expressed via the recursion:

θ
pγq

k`1 “ θ
pγq

k ´ γ

„

∇ f pθ
pγq

k q ` ϵk`1pθ
pγq

k q

ȷ

, θ0 „ λ, (1.1)

learning rate in R`

new estimator

true gradient

noise

where λ is an initial distribution and f : Rd Ñ R is the function we wish to minimize (a loss function). It
will be nice and admit a global minimum θ‹.1

Main Observation

The sequence pθ
pγq

k qkPN is a homogeneous Markov chain.

To remedy these oscillations, we consider a running mean:

θ
pγq

k “
1

k ` 1

k
ÿ

j“0

θ
pγq

j . (1.2)

We will prove under appropriate conditions on the sequence of iterates that a CLT holds, so that the running
mean converges to the mean of the stationary distribution at a rate O p1{kq. The mean of the stationary
distribution is obviously:

θγ “

ż

Rd
ξdπγpξq. (1.3)

Therefore, we can split the deviation of this running mean from the real (global) optimum of the function into:

›

›

›
θ

pγq

k ´ θ‹
›

›

›

2

2
ď

›

›

›
θ

pγq

k ´ θγ

›

›

›

2

2
`

›

›θγ ´ θ‹
›

›

2
2 . (1.4)

stochastic error

deterministic error

1.ii Summary of results

We will briefly argue that for quadratic functions the second term is null, but in general the oscillations are of
order O pγq. Then, we will derive an explicit asymptotic expansion of these oscillations, i.e. an expansion
of θγ ´ θ‹ in the parameters of the algorithm. Like in classic ML, through a bias-variance decomposition, a

quantitative CLT to expand the stochastic part E

„

›

›

›
θ

pγq

k ´ θγ

›

›

›

2

2

ȷ

is derived. In particular the bias depends on

the initial conditions and the variance depends on the structure of the noise. Building further on that, we will
discuss a non-asymptotic expansion between the stationary distribution πγ and the Dirac at θ‹ in terms of the
step-size. This means in practice that for a nice class of functions g, the integral with respect to the stationary
measure is decomposed in Taylor-style centered at gpθ‹q. All together, these results will describe the invariant
distribution and how it is reached from any measure. In doing so, we will also justify a nice numerical trick,

1 The original paper is more general and can work with tensors, but we avoid this for the sake of simplicity.
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the Richardson-Romberg extrapolation, and find the excuse to discuss how to recover concentration from
implicit functions depending on the problem.

Advantages

(A1) Asymptotic expansions are explicit in the parameters! Full quantitative phenomenology.

(A2) We can build confidence intervals for θ‹ (Chen et al. 2020; Su and Zhu 2018).

(A3) More informed design of automatic restart schemes.

1.iii Related work

We keep references here to a minimum, and refer to the original publication for valuable comments.
The most direct relative of this work is (Aguech, Moulines, and Priouret 2000), which develops a theory that
matches the results for linear regression. For the perspective of SGD as a discretized gradient flow and its
connections to Markov chains theory there are many important works. In particular, Fort and Pagès (1999)
find tightness of the invariant distribution in a neighborhood of γ small and invariance with respect to the
gradient flow of the limit distribution. However, they assume the process is Feller, while this work rather puts
assumptions on the objective function (namely, strong convexity).
For convergence of SGD, there are many works studying the bias variance trade-off, with an emphasis on
the dependence on initial conditions. Concerning the perspective of comparing the discretized invariant
distribution and the continuous version and the Richardson-Romberg trick there are earlier works that
combined the two.
The first part of corollary 2.10 matches the result of Defossez and Bach 2015, while proposition 2.6 is in part
an extension of the work of Ljung, Pflug, and Walk (2012), in the sense that it quantifies their result that
?

γpπγ ´ δθ‹ qγą0
γÑ0
Ñ
d

N p0, 1q.

2 results

2.i Assumptions

We present here a quick overview of the assumptions, and postpone explicit writing to the appendix A.

(on f ) µ-strong convexity, in C5pRd,Rq with uniform bounds,2 with L-co-coercive derivative (see appendix D
for a refresher).

(on pϵkqkPN) The sequence of noise terms is adapted wrt to a filtration and is a Markov chain wrt to it, the pth norm of
the noise is controlled by τp and the covariance of the noise is C3pRd,Rq with operator norms bounded
by Mϵp1 ` }θ ´ θ‹}

kϵ
2 q when ϵ ” ϵpθq.

(misc) The initial iterate is measurable θ0 P F0, and we have access to unbiased estimates, but the noise may
depend on the current iterate, i.e. for all θ P Rd:

∇fk`1pθq “ ∇ f pθq ` ϵk`1, ,ϵk`1 ” ϵk`1pθq. (2.1)

Here ∇f is effectively the random gradient of f which is random and ∇ f is the true gradient at θ. In
particular, this implies that the noise may be not i.i.d. and this makes θk P Fk.

2.ii A baby example

Let us degrade the generality of the paper to a practical scenario, which is a special case discussed in
(Dieuleveut, Durmus, and Bach 2020, example 1). Consider a loss L : Rd ˆRˆRd Ñ R that maps the triplet
of feature vector, observed signal and proposed latent vector px, y, θq into a scalar. If we allow the features and
the labels to be random, as when they come from a dataset D of observations, then we are interested in the
generalization loss E pθ;Lq :“ Epx,yq rLpx, y, θqs. The classic way to propose an estimator iteratively is SGD,

2 note this implies L-smoothness
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for which it is well known that SGD is the discretized gradient flow (i.e. a “discrete derivative”) with respect
to the loss function. Since we train with random iterates, the sequence

´

θ
pγq

k

¯

kPN
will be random itself.

We provide more details in appendix C.

2.iii From general to specific and back

We are now ready to present the main statements. We will not prove all of them but give intuition. The
common observation is that all results attempt to take a clever asymptotic/limit. To begin, we show that the
object of interest is well-defined. Throughout, we will take the assumptions as granted (let all of them hold in
each statement for proper parameters). For further details, we refer to the original text.

Proposition 2.2 (Prop.2 in (Dieuleveut, Durmus, and Bach 2020)). Let γ P p0, 2{Lq. The iterations of SGD seen as
a Markov chain admit a unique stationary distribution πγ that has finite second moments, i.e. πγ P P2pRdq. We can
also quantify the rate of convergence in two ways: via the Wasserstein distance over probability measures (def. D.16)
and in terms of “nice” functions integrated out by the kernel over time. Mathematically for all θ P Rd and k P N:

W2
2p Rk

γpθ, ¨q , πγ q ď rhpL, µ, γqsk
ż

Rd
}θ ´ ξ}

2
2 dπγpξq , (2.3)

initial distribution

invariant measure

rate function; goes exp fast to zero

mean square distance in invariant measure (initial conditions)

and for all θ P Rd, k P N and ϕ : Rd Ñ R Lipschitz with constant Lϕ:

ˇ

ˇ

ˇ
Rk

γϕpθq ´ πγpϕq

ˇ

ˇ

ˇ
ď LϕrhpL, µ, γqs

k{2

d

ż

Rd
}θ ´ ξ}

2
2 dπγpξq. (2.4)

Naturally, the function h ” hpL, µ, γ, kq is a function that is less than one exactly because we have the stability condition
on the step-size.

Proof. See appendix B.

Since we have a stationary distribution, it makes sense to see how the statistics behave when we start
already at the stationary distribution, and when we reach it from another. This is the main lesson of the next
two statements.

Corollary 2.5 (Prop. 16 in (Dieuleveut, Durmus, and Bach 2020)). The running mean converges to the stationary
mean at rate O p1{kq.

Proposition 2.6 (Prop. 3 and Thm. 4 in (Dieuleveut, Durmus, and Bach 2020), for θ0 „ πγ already stationary).
Consider first our baby example. Let Σ “ E

“

xxJ
‰

be positive definite and γ P p0, 2{Lq. Then we have:

• θγ “ θ‹, so the mean of the stationary distribution is aligned with the optimum;

• the deviations are error dependent:
ż

Rd
rθ ´ θ‹s rθ ´ θ‹s

J dπγpθq “ γRpΣ, Pϵpθq, πγq, (2.7)

where R is explicit. Moreover, for this easy case we can find a nice expression in terms of the multiplicative noise,
see appendix B.

In general, we find that the distribution is not guessing the optimal point right, and we will have:

θγ ´ θ‹ “ γgp f , θ‹q ` O
´

γ2
¯

,
ż

Rd
rθ ´ θ‹srθ ´ θ‹sJ dπγpθq “ γPp f , θ‹q ` O

´

γ2
¯

. (2.8)

Again, g, P are explicit.
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Remark 2.9. The distance mean-optimum and the oscillations are of order γ,
?

γ respectively.

Theorem 2.10 (Cor. 6 and Thm. 5 in (Dieuleveut, Durmus, and Bach 2020), for generic θ0). For our baby
example, we have quantitative CLT when γ is small enough3 @θ0 P Rd:

E
”

θ
pγq

k

ı

´ θ‹ “
1

kγ
Σ´1pθ0 ´ θ‹q ` O

´

hk
¯

(2.11)

E
”

rθ
pγq

k ´ θγsrθ
pγq

k ´ θγsJ
ı

“
1
k

UpΣ, Pϵpθq, πγq `
1

k2γ2 Qpθ0, θ‹, Σ, πγ, Pxq `
1

k2γ2 Spθ‹, Σ, πγq ` O
´

k3
¯

.

(2.12)

The bold matrices are explicit. In the general case, the formulas are expressed implicitly in terms of Poisson solution of
functions, but exhibit the same decomposition.

Remark 2.13. If we start θ0 „ πγ, then the variance term is zero in the baby example!

Lastly, we make use of a nice interpretation of SGD as a discretized gradient flow. It will allow us to
eventually relate the actual chain to the optimal value.

Theorem 2.14 (Thm. 7 in (Dieuleveut, Durmus, and Bach 2020)). Under appropriate additional assumptions, a
nice class of functions g satisfies for any θ0 P Rd:

E

«

1
k

k
ÿ

i“1

g
´

θ
pγq

i

¯

´ gpθ‹q

ff

“
1

kγ
vpθ0, k ` 1, γq `

γ

2
bpθ‹, Pϵ, gq ´

γ

k
A1pθ0q ´ γ2 A2pθ0, kq, (2.15)

A1pθ0q ď C
´

1 ` }θ0 ´ θ‹}
p̃
2

¯

, A2pθ0, kq ď C

˜

1 `
}θ0 ´ θ‹}

p̃
2

k

¸

. (2.16)

Here C ą 0, p̃ are constants, the latter being explicit and v, b are implicit scalars.

Remark 2.17. In particular, there exists C1, C2pθ0q ě 0 such that:

E

«

1
k

k
ÿ

i“1

›

›

›
θ

pγq

i ´ θ‹
›

›

›

2q

2

ff

“ C1γ `
1
k

C2pθ0q ` O
´

γ2
¯

. (2.18)

Takeaway

Under appropriate assumptions:

(R1) initial conditions are forgotten exponentially fast and any chain converges to a unique distribution;

(R2) there is d such that for small enough step-size:

θγ “

ż

Rd
ξdπγpξq “ θ‹ ` γd ` rp1q

γ ,
›

›

›
rp1q

γ

›

›

›
ď Cγ2; (2.19)

(R3) the bias is expanded as:

E
”

θ
pγq

k ´ θ‹
ı

“
Apθ0, γq

k
` γd ` rp2q

γ ,
›

›

›
rp2q

γ

›

›

›

2
ď Cpγ2 ` e´kµγq; (2.20)

(R4) there is a quantitative CLT for the variance terms for fixed γ as k Ñ 8:

E

„

›

›

›
θ

pγq

k ´ θγ

›

›

›

2
ȷ

“ B1pγq
1
k

` B2pγq
1
k2 ` O

ˆ

1
k3

˙

. (2.21)

Combining variance and bias, we have characterized the trade-off in SGD.

Remark 2.22. Like the Euler-Maruyama scheme the weak error expansion of SGD in step-size γ between πγ and δθ‹ is
of order O pγq (Talay and Tubaro 1990).

3 Needs to satisfy a bound wrt to inflated empirically covariances and true covariances of Px, see (Dieuleveut, Durmus, and Bach 2020, eqn.
9)
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3 interesting objects

We provide an overview of two interesting and less traditional aspects of the work. One is numerically oriented
and quick to present, the other is rather deep.

richardson-romberg Result (R2) above suggests using Richardson-Romberg extrapolation to decrease
the bias of iterations. The idea is quick to understand. Recall that we have the weak error expansion between
the stationary integral and the Dirac indicator at the true minimum, that is:

ż

Rd
gpξq dπγpξq “ gpθ‹q ` γCg

1 ` rg
γ,

›

›

›
rg

γ

›

›

›

2
ď Cg

2 γ2, for all g “nice”. (3.1)

Therefore, if we run two chains at γ, 2γ step-size, we will have that θpγq

k Ñ θγ,θp2γq

k Ñ θ2γ with distance to
the optimal given by (choose g “ Id the identity map):

θγ “ θ‹ ` γdId
1 ` rId

γ , θγ “ θ‹ ` 2γdId
1 ` rId

2γ, max
!›

›

›
2rId

γ

›

›

›
,
›

›

›
rId

2γ

›

›

›

)

ď 2Cγ2. (3.2)

Taking the combined chain running means:
´

2θpγq

k ´ θ
p2γq

k

¯

kPN
will then cancel out the linear O pγq term and

improve the distance to θ‹ up to factors of O
`

γ2˘

.

Remark 3.3. The cost is an increase in the variance which stays of the same order.

what is a poisson solution? Lastly, we try to give some intuition on generators and Poisson solutions.
If we rescale time, we can see equation eq. (1.1) as a noisy gradient flow, which would be just 9θt “ ´∇ f pθtq.
We could look at a set of functions that may represent a meaningful derivative of the flow of points. Denoting
such flow as φtpθq, we define the infinitesimal generator A as:

Ahpθq :“ lim
tÓ0

1
t

phpφtpθqq ´ hpθqq , (3.4)

where we apply functions h : Rd Ñ R that are such that the limit exists. For simplicity, we will say that
A has domain DpAq with these nice functions. From the definition of Markov property, we have that
E rhpθk`1q | Fks “ Rγhpθkq, and by the construction proposed we will also have the approximate relation:

E rhpθt`sq | Fts « hpθtq ` tAhpθtq. (3.5)

With this in hand, one can show that d{dthpφtpθqq “ Aφtpθq and that we can make the interpretation of a
derivative in time to conclude that φtpθq “ upt, θq is a solution to the PDE:

B

Bt
upt, θq “ Aupt, θq. (3.6)

In a somewhat more interesting perspective, from these observations it can be shown that:

mh
t :“ hpθtq ´ hpθ0q ´

ż t

0
Ahpθsq ds, (3.7)

is a martingale, and thus obeys a central limit theorem. Let us see this through a quicker example that removes
many details. Under our assumptions certain Poisson equations are well-behaved and there is a more direct
link to at least an asymptotic form of the CLT. Given a kernel Kγ with a unique invariant distribution and a
function h P L1pπq, we reorder the random sum:

snphq :“
n´1
ÿ

k“0

hpθkq “ hpθkq ´ Rγhpθkq ` Rγhpθkq ` hpθk´1q ´ R2
γhpθkq ´ Rγhpθk´1q ` ¨ ¨ ¨ , (3.8)

stressing that we might decompose each iteration steps into martingales. In this spirit, we say ĥ is a solution to
the Poisson equation if (Douc et al. 2018, chaps. 22-23):

ĥ ´ Rγ ĥ “ h ´ πphq, π-a.e., h P L1pRγq. (3.9)
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The intuitive interpretation is as follows. The transition of the law of a Markov chain can be seen through the
lenses of the (functional) heat equation Bt ĥ “ pI ´ Kγqĥ “ ∆ĥ. If ∆ĥ “ 0, the function is said to be harmonic,
while if ∆ĥ “ 0 for all ĥ, the chain is trivially stationary. In this case, we give a “derivative” h and a kernel Kγ

and want to find which function we were actually working on. A trivial substitution of the identity shows us
that:

snphq “ ĥpθ0q ´ ĥpθnq `

n
ÿ

k“1

ĥpθkq ´ Rγ ĥpθk´1q

looooooooooooomooooooooooooon

mh
n

, (3.10)

where mh
n is a martingale.4 The normalization by 1{

?
n and the CLT for martingales comes into rescue (Douc

et al. 2018, chaps. 21-22). In appendix D we report a continuous time generalization. Now the problem is
quantifying this convergence.

4 discussion

While we have only scratched the surface, it is possible to see that under our rather restrictive assumption
the theory is basically closed, as we have a full characterization of the stochastic nature of the phenomenon
that is non-asymptotic. As common in the theory of optimization, going beyond the combination of L-smooth
and µ-strong convexity while retaining an explicit convergence rate is hard. One potential expansion in this
direction could be modelling the quadratic nature of the function locally, at the cost of largely complicating
the expressions. A potentially related theoretical principle is that of the resolvent method, which expands
the concept of Poisson equation to a larger class of functions (see Douc et al. (2018, chaps. 21-22)). The real
obstacle being the objective function, one could also slightly decrease the generality of the results and still
inspect SGD under different function classes (as was done over the years), but still apply the generic tools
present. In this regard, it is understandable that the result of uniqueness of the invariant distribution is striking
and useful, therefore it would be crucial to see if it can be kept, or it has to be given up.
Lastly, there is a renewed interest on one-pass SGD for high-dimensional problems and its interplay with
hardness of inference. There, the attempt is to classify functions based on the computational time needed to
minimize them. While the setting is very different, Collins-Woodfin et al. (2023) use a resolvent method to
transform a very implicit ODE into a solvable complex ODE, and express their solutions as a set of implicit
equations.
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a assumptions

In this section, we rewrite the assumptions for completeness.

Assumption A.1. The function f is µ-strongly convex, in the sense of definition D.1.

Assumption A.2. The functions f is five times differentiable with continuous and uniformly bounded derivatives.
In particular, it is L-smooth.

Assumption A.3. There is a probability space pΩ,F , Pq and a filtration pFkqkPN for which:

• ϵkpθq is adapted for all θ P Rd;

• E rϵk`1pθq | Fks “ 0 for all θ P Rd;

• pϵkqkPN are i.i.d. random Rd ÞÑ R
d functions (i.e. random fields);5

• θ0 P F0.

Assumption A.4. This condition depends on some p to be chosen. The function fk is almost surely C-co-coercive
(def. D.13) with C “ L the smoothness constant. For the error, the p norm at the optimum is controlled as:

´

E r}ϵkpθ‹q}s
p
2

¯
1
p

ď τp, for some τp.

Assumption A.5. The function Cpθq :“ E
“

rϵpθqϵpθqsJ
‰

is in C3pRd,Rdˆdq and such that:

max
iPt1,2,3u

›

›

›
Cpiqpθq

›

›

›
ď Mϵ

´

1 ` }θ ´ θ‹}
kϵ
2

¯

, for some kϵ, Mϵ, for all θ P Rd,

where Cpiq are the (tensor) derivatives of the matrix C.

Assumption A.6. This condition depends on the tuple pℓ, pq. Let g be polynomially locally Lipschitz, in the sense of
definition D.11. There are positive ag, bg such that g P CℓpRdq and:

›

›

›
gpiqpθq

›

›

›
ď ag

´

bg ` }θ ´ θ‹}
p
2

¯

, @θ P Rd, i P t1, . . . , ℓu, @x, y P Rd,

where gpiq are the ith derivatives of g, which become tensors for i ą 2.

Assumption A.7 (A.4 bis). Alternatively, suppose:

• for some τ̃p ě 0 it holds that
´

E
”

}ϵpθq}
p
2

ı¯1{p
ď τ̃p;

• the smoothness constant L is such that:

E
”

}∇f1pxq ´ ∇f1pyq}
q
2

ı

ď Lq´1}x ´ y}
q´2
2 xx ´ y,∇ f pxq ´ ∇ f pyqy , @x, y P Rd, @q P t2, . . . , pu.

where we write f1 for the random observed gradient at the 1st iteration (they are i.i.d. so it does not matter).

Assumption A.8 (A.4 tris). Alternatively, suppose there exists a global τ ě 0 for which supθPRd

´

E
”

}ϵpθq}
4
2

ı¯1{4
ď

τ.

a.i Remarks on assumptions

The assumption of random fields is weaker than assuming pϵkpθqqkPN is i.i.d. for all θ, since it is not at fixed θ
but globally.
Assumption A.6 is only needed for theorem 2.14.
The reason to introduce Assumptions A.7-A.8 it to make clear how to avoid the bounded assumption of A.4.
In particular, assumption A.7 is the weakest, and assumption A.8 is the strongest. Moreover, if we make
the assumption of i.i.d. errors as above, even just for the sequence pϵkpθk´1qqkPN is sufficient to imply
assumption A.8 alone. In most works, the noise is taken to be “completely independent” as in this example,
which is technically termed semi-stochastic. In such regard, this work is far more general than classical ML
analysis.
Let us now make clear which is needed for which.

5 This condition is global: we see ϵ as a random mapping Rd Q θ ÞÑ ϵpθq P Rd, so we do not state @θ P Rd merely because it is not fixed!
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• For proposition 2.2 we need A.1-A.2-A.3-A.4 with p “ 2;

• for proposition 2.6 we need A.1-A.2-A.3-A.4, with p “ 4 in the special case and p “ maxt6, 2pkϵ ` 1qu in
general;

• for theorem 2.10 we need A.1-A.2-A.3-A.4 with p “ 4;

• for theorem 2.14 we need A.1-A.2-A.4-A.5-A.6 with:

– an additional condition on the noise, such that for some q P N, C ě 0 for all θ P Rd one has:

E
”

}ϵ1pθq}
p`kϵ

2

ı

ď Cp1 ` }θ ´ θ‹}
q
2q; (A.9)

– A.6 holding with ℓ “ 5, p, i.e. the five times continuous differentiability and the p from the other
assumptions match;

– A.4 holding for a slightly tweaked p̃ “ maxtp ` 3 ` q, kϵu;

– the step size being changed to γ P p0, 1{ζLq for ζ ” ζpp̃q ą 0.

It is clear that the last result is more technical than the others.

b some proofs and other statements

Let us recall the full statement to have it ready.

Proposition 2.2 (Prop.2 in (Dieuleveut, Durmus, and Bach 2020)). Let γ P p0, 2{Lq. The iterations of SGD seen as
a Markov chain admit a unique stationary distribution πγ that has finite second moments, i.e. πγ P P2pRdq. We can
also quantify the rate of convergence in two ways: via the Wasserstein distance over probability measures (def. D.16)
and in terms of “nice” functions integrated out by the kernel over time. Mathematically for all θ P Rd and k P N:

W2
2p Rk

γpθ, ¨q , πγ q ď rhpL, µ, γqsk
ż

Rd
}θ ´ ξ}

2
2 dπγpξq , (2.2)

initial distribution

invariant measure

rate function; goes exp fast to zero

mean square distance in invariant measure (initial conditions)

and for all θ P Rd, k P N and ϕ : Rd Ñ R Lipschitz with constant Lϕ:

ˇ

ˇ

ˇ
Rk

γϕpθq ´ πγpϕq

ˇ

ˇ

ˇ
ď LϕrhpL, µ, γqs

k{2

d

ż

Rd
}θ ´ ξ}

2
2 dπγpξq. (2.3)

Naturally, the function h ” hpL, µ, γ, kq is a function that is less than one exactly because we have the stability condition
on the step-size.

Proof. The idea of the proof is very simple: we know that the Wasserstein distance is very nice: namely
it makes P2pRdq complete, therefore reducing the question of convergence to proving that the sequence is
Cauchy. In our case, we have a sequence of probability measures generated by multiple applications of the
same kernel Rγ, therefore reducing the question to possibly bounding a single kernel.6 Then, we have plenty
of assumptions on the function and the type of randomness we allow, which will hopefully bring us from
a rather abstract distance over probability measures to a friendlier Euclidean distance, that is also crucially
at one step before. As we will see, finding a direct bound of the Wasserstein distance in terms of Euclidean
distance is by a routine argument, but the assumptions on our problem are really what makes it possible to
come back by one-step while keeping the inequality. Once we forget one step, by the fact that again we apply
the same kernel, we will be able to iterate infinitely these steps. Hopefully, the multiplied discount at each
iteration will be fast enough to establish convergence. Once this fact is established, existence and uniqueness
of the invariant probability measure follow trivially by special choices of our more general master equation of

6 Notice that here it is crucial to have the same step-size to make the reasoning this simple.
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“fast convergence”.
We enforce the stability condition that γ P p0, 2{Lq, and consider two starting distributions λ1, λ2 P P2pRdq. A
standard result in optimal transport (see Villani (2009, thm. 4.1)) states that the Wasserstein distance can be
represented as a distance of random variables θ

p1q

0 ,θp2q

0 independent of the noise field pϵkqkPN. In other words,

we have W2
2pλ1, λ2q “ E

„

›

›

›
θ

p1q

0 ´ θ
p2q

0

›

›

›

2

2

ȷ

. Let us run these two chains with the same step size γ, omitted in

the notation for simplicity. Let us run the two chains with the same noise field, so that their gradients are
respectively:

∇fkpθ
p1q

k q “ ∇ f pθ
p1q

k q ` ϵk`1pθ
p1q

k q; (B.1)

∇fkpθ
p2q

k q “ ∇ f pθ
p2q

k q ` ϵk`1pθ
p2q

k q. (B.2)

Let us use the independence of chain and noise to show that noise is de-correlated across chains. As a
canonical example we have:

E
”A

θ
p1q

0 ,ϵpθ
p2q

0 q

Eı

“ E
”

E
”A

θ
p1q

0 ,ϵpθ
p2q

0 q

Eı

| F0

ı

A.3
“ E

”A

θ
p1q

0 , E
”

ϵpθ
p2q

0 q | F0

ıEı

A.3
“ 0. (B.3)

By symmetry, the result will hold if we swap the roles. A moment of thought also shows that the result
holds if we consider the chain and the noise of the same chain, or any measurable function obviously. By
construction, the combined chain distribution belongs to the set of couplings ΠpλRk

γ, λ2Rk
γq and since the

Wasserstein distance is an infimum, we can write a one-step inequality:

W2
2pλ1Rγ, λ2Rγq ď E

„

›

›

›
θ

p1q

1 ´ θ
p2q

1

›

›

›

2

2

ȷ

(B.4)

“ E

„

›

›

›
θ

p1q

0 ´ γ∇f1pθ
p1q

0 q ´ θ
p2q

0 ` γ∇f1pθ
p1q

0 q

›

›

›

2

2

ȷ

, (B.5)

“ E

„

›

›

›
θ

p1q

0 ´ γ∇ f pθ
p1q

0 q ´ γϵ1pθ
p1q

0 q ´ θ
p2q

0 ` γ∇ f pθ
p1q

0 q ` γϵ1pθ
p1q

0 q

›

›

›

2

2

ȷ

, (B.6)

where unrolled the step of the recursion. It is now natural to seek to exploit the orthogonality we just found.
Let us then square the difference of starting points minus the difference of stochastic gradients. We find:

E

„

›

›

›
θ

p1q

1 ´ θ
p2q

1

›

›

›

2

2

ȷ

“ E

„

›

›

›
θ

p1q

0 ´ θ
p2q

0

›

›

›

2

2

ȷ

` γ2E

„

›

›

›
∇f1pθ

p1q

0 q ´ ∇f2pθ
p2q

0 q

›

›

›

2

2

ȷ

(B.7)

´ 2γE

»

—

—

—

–

C

∇f1pθ
p1q

0 q ´ ∇f1pθ
p2q

0 q
looooooooooooomooooooooooooon

“∇ f pθ
p1q

0 q`ϵ1pθ
p1q

0 q´∇ f pθ
p2q

0 q´ϵ1pθ
p2q

0 q

,θp1q

0 ´ θ
p2q

0

G

fi

ffi

ffi

ffi

fl

. (B.8)

The second term is not really friendly, but we can use our result quite directly by cancelling the noise dependent
terms! We therefore find a more amenable expression:

E

„

›

›

›
θ

p1q

1 ´ θ
p2q

1

›

›

›

2

2

ȷ

“ E

„

›

›

›
θ

p1q

0 ´ θ
p2q

0

›

›

›

2

2

ȷ

` γ2E

„

›

›

›
∇f1pθ

p1q

0 q ´ ∇f2pθ
p2q

0 q

›

›

›

2

2

ȷ

(B.9)

´ 2γE
”A

∇ f pθ
p1q

0 q ´ ∇ f pθ
p2q

0 q,θp1q

0 ´ θ
p2q

0

Eı

. (B.10)

Let us stress that inside the norm we will have the noisy gradient while in the inner product we have the
unbiased gradient evaluated at the random iterates. At this moment we need to exploit the assumptions on the
function class we chose to get rid of the random gradients. By L-co-coercivity of f1 (def. D.13) assumed in A.4
we find that:

E

„

›

›

›
∇f1pθ

p1q

0 q ´ ∇f2pθ
p2q

0 q

›

›

›

2

2

ȷ

ď LE
”A

∇f1pθ
p1q

0 q ´ ∇f2pθ
p2q

0 q,θp1q

0 ´ θ
p2q

0

Eı

, (B.11)

and another application of independence allows us to say that the noise cancels with the vectors in the
expectation of the inner product. Thus,

E

„

›

›

›
θ

p1q

1 ´ θ
p2q

1

›

›

›

2

2

ȷ

ď E

„

›

›

›
θ

p1q

0 ´ θ
p2q

0

›

›

›

2

2

ȷ

´ 2γ

ˆ

1 ´ γ
L
2

˙

E
”A

∇ f pθ
p1q

0 q ´ ∇ f pθ
p2q

0 q,θp1q

0 ´ θ
p2q

0

Eı

. (B.12)
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Now that we have recovered an expression that depends only on f , we can use the strong convexity from
assumption A.1 to conclude:

E

„

›

›

›
θ

p1q

1 ´ θ
p2q

1

›

›

›

2

2

ȷ

ď

„

1 ´ 2µγ

ˆ

1 ´ γ
L
2

˙ȷ

E

„

›

›

›
θ

p1q

0 ´ θ
p2q

0

›

›

›

2

2

ȷ

. (B.13)

What we find is that a one-step application of the kernel on both distributions has a bound with respect to the
starting distance. Inducting over this, at the kth step we will have that:

W2
2pλ1Rk

γ, λ2Rk
γq ď E

„

›

›

›
θ

p1q

k ´ θ
p2q

k

›

›

›

2

2

ȷ

ď

»

—

—

—

–

1 ´ 2µγ

ˆ

1 ´ γ
L
2

˙

looooooooooomooooooooooon

:“h

fi

ffi

ffi

ffi

fl

k

W2
2pλ1, λ2q. (B.14)

In words, starting from any distribution, we will get exponentially close to the initial distance as steps go on, if
and only if γ P p0, 2{Lq, which we indeed assumed. Choosing specifically λ2 “ λ1Rγ to be one step later,7 we
obtain that:

N
ÿ

k“1

W2
2pλ1Rk

γ, λ2Rk
γq “

N
ÿ

k“1

W2
2pλ1Rk

γ, λ1Rk`1
γ q ď

N
ÿ

k“1

hkW2
2pλq (B.15)

Since we found that the elements are decaying geometrically, the sum on the left-hand side is finite, therefore
making the sequence pλ1Rk

γqkPN Cauchy. Obviously, our distance is nice and makes P2pRdq complete
(see Villani (2009, thm. 6.16)), so Cauchyness is characterized by having a limit in P2pRdq, which we call
πλ1

γ P P2pRdq.
We have more, since from any two starting distributions their distance decays quickly, so we can automatically
obtain uniqueness of the limit by contradiction. Indeed, assume there exists another limit πλ2

γ for λ2 ‰ λ1,
then:

W2pπλ1
γ , πλ2

γ q ď W2pπλ1
γ , λ1Rk

γq ` W2pλ1Rk
γ, πλ2

γ q tr. ineq.; (B.16)

ď W2pπλ1
γ , λ1Rk

γq ` W2pλ1Rk
γ, λ2Rk

γq ` W2pλ2Rk
γ, πλ2

γ q tr. ineq.; (B.17)
kÑ8
Ñ 0, (B.18)

since all the three terms go to zero: the outer by assumption, the middle one by the general decaying property
we found. By the fact that the Wasserstein is a distance, a fortiori we have πλ1

γ “ πλ2
γ contradicting the

hypothesis.
Let us now pass to the quantification of convergence. We aim to apply our master equation eq. (B.14) again, for
a particular choice. Taking λ1 “ δθ, λ2 “ πγ, we will have that λ2Rk

γ “ πγRk
γ “ πγ P P2pRdq by stationarity,

and thus will look at a distance from an arbitrary starting point and the final distribution. Specializing the
bound, the claim is proved by definition of Wasserstein distance (def. D.16). Also, the bound is non-trivial
since: ∫

Rd }θ ´ ξ}
2
2 dπγpξq ď 2}θ}

2
` 2 ∫

Rd }ξ}
2
2 dπγpξq ă 8.

For the Lipschitz criterion, a little more does the game. With the same particular measures, we evaluate
expectations of Lipschitz functions ϕ with Lϕ constant:

ˇ

ˇ

ˇ
Rk

γpϕpθqq ´ πγϕ
ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
E

”

ϕpθ
p1q

k,γq ´ ϕpθ
p2q

k,γq

ı
ˇ

ˇ

ˇ
(B.19)

ď LϕE
”
›

›

›
θ

p1q

k,γ ´ θ
p2q

k,γ

›

›

›

2

ı

(B.20)

ď Lϕ

d

E

„

›

›

›
θ

p1q

k,γ ´ θ
p2q

k,γ

›

›

›

2

2

ȷ

(B.21)

ď Lϕ

a

hk

d

ż

Rd
}θ ´ ξ} dπγpξq master equation B.14. (B.22)

7 We can do this since by A.2-A.3-A.4 it holds that λ1Rγ P P2pRdq, by an easy triangle inequality and the uniform bound on the gradients
basically.
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Proposition B.23 (Prop. 17 in (Dieuleveut, Durmus, and Bach 2020)). Recall the statement for the baby example
of proposition 2.6. There, we can further say that for all γ P p0, 1{r2q, where r2 is defined in appendix C that:

R´1
ż

Rd
rθ ´ θ‹srθ ´ θ‹sJ dπγpθq “ γE

”

ξ1ξ
J
1

ı

, (B.24)

where ξ is the multiplicative error of equation eq. (C.6).

c baby example details

In particular, if we take the square loss and a linear model y “ xx, θ‹y ` η, we find Lpx, y, θq “ pxx, θy ´ yq
2

which has an explicit generalization error:8

E pθ; Lq “ Epx,yq

”

pxx, θy ´ yq
2
ı

“ Epx,yq

”

pxx, θ ´ θ‹y ´ ηq
2
ı

“ }Σpθ ´ θ‹q}
2
2 ` σ2, Σ :“ E

”

xxJ
ı

. (C.1)

Instead, the iterations of SGD will see a gradient that is unbiased:

Epxk ,ykq

”

∇L
´

xk, yk,θpγq

k

¯ı

“ Epxk ,ηkq

”

2xk

´A

xk,θpγq

k ´ θ‹
E

` ηk

¯ı

“ 2Σpθ
pγq

k ´ θ‹q “ ∇E
´

θ
pγq

k ;L
¯

. (C.2)

Moreover, it is interesting to express the gradient in terms of the true gradient by making the right terms
appear:

1
2
∇L

´

xk, yk,θpγq

k

¯

“ xkxJ
k

´

θ
pγq

k ´ θ‹
¯

´ xkηk (C.3)

“ Σ
´

θ
pγq

k ´ θ‹
¯

`

”

xkxJ
k ´ Σ

ı ´

θ
pγq

k ´ θ‹
¯

´ xkηk (C.4)

“
1
2
∇E

´

θ
pγq

k ; L
¯

`

”

xkxJ
k ´ Σ

ı ´

θ
pγq

k ´ θ‹
¯

´ xkηk. (C.5)

We can further make sense of the error term by a decomposition into an additive and a multiplicative term as
ϵk ” ϵk

´

θ
pγq

k

¯

“ ρk

´

θ
pγq

k

¯

` ξk, where

ρk ” ρkpθq :“
”

xkxJ
k ´ Σ

ı ´

θ
pγq

k ´ θ‹
¯

, ξk :“ ´xkηk “

´

xJ
k θ‹ ´ yk

¯

xk. (C.6)

In particular, the multiplicative noise is independent of the current iterate. Both appear in the proof of
proposition 2.10.

about the assumptions It is not automatic that the baby example of section 2.II satisfies the assumptions.
In particular:

• for p ě 2, assumption A.4 will hold;

• assumption A.5 requires almost sure boundedness of observations;

• for A.4 to hold, we might require that there exists r ě 0 such that E
”

}xk}
2
2xkxJ

k

ı

ĺ r2Σ, which holds if
data is a.s. bounded or has bounded kurtosis, as mentioned in (Dieuleveut, Flammarion, and Bach 2017).

d useful definitions and theorems

We report here some classical definitions for completeness.

Definition D.1 (µ-strong convexity). A function f : Rd Ñ R is µ-strongly convex for µ ą 0 when:

f pαx ` p1 ´ αqx1q ď α f pxq ` p1 ´ αq f px1q ´ p1 ´ αqα
µ

2

›

›x ´ x1
›

›

2
2, @x, x1 P X , @α P r0, 1s. (D.2)

Definition D.3 (L-smoothness). A function f : Rd Ñ R is L-smooth if its gradient is L-Lipschitz.
8 Let η be square integrable and have variance σ2.
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Lemma D.4 (Descent lemma). If f is L-smooth then for all x P intpdomp f qq and y P domp f q it holds:

f pyq ď f pxq ` x∇ f pxq, y ´ xy `
L
2

}x ´ y}
2
2. (D.5)

Proof. Let t P r0, 1s. Define the interpolating scalar function:

φptq :“ f px ` thq ´ f pxq ´ x∇ f pxq, thy , h :“ y ´ x. (D.6)

In particular, φp0q “ 0 and we wish to prove φp1q ď L{2}x ´ y}
2
2. Clearly, φ is differentiable since f is. We can

bound the derivative as:

φ1ptq “ xh, f px ` thqy ´ xh,∇ f pxqy “ x∇ f px ` thq ´ ∇ f pxq, hy ď tL}h}
2
2. (D.7)

We can then apply the fundamental theorem of calculus:

f pyq ´ φp1q ´ φp0q “

ż 1

0
φ1ptq dt ď L}h}

2
2

ż 1

0
t dt “

L
2

}h}
2
2, (D.8)

which proves the claim.

Combining the first definition and the descent lemma, we find that assuming µ-strong convexity and
L-smoothness bounds the function in a variable way as:

f pxq ` x∇ f pxq, y ´ xy `
µ

2
}x ´ y}

2
2 ď f pyq ď f pxq ` x∇ f pxq, y ´ xy `

L
2

}x ´ y}
2
2, @x, y. (D.9)

In words, at each fixed point y, we need to bound the function value by any “parabola” parameterized by the
auxiliary x vectors. While seemingly irrelevant, this is quite stringent. If we take the special case where µ

“
L,

then we only have quadratic functions! If we allow for µ ă L strictly, we get a non-trivial class, that is however
still very stringent. On a side note, if we reorder terms we can see that our definition is essentially a bound on
the convexity gap, which must be quadratic:

µ

2
}x ´ y}

2
2 ď f pyq ´ f pxq ´ x∇ f pxq, y ´ xy

loooooooooooooooooomoooooooooooooooooon

:“DBrepy|x; f q

ď
L
2

}x ´ y}
2
2, (D.10)

where the middle term is also termed Bregman divergence (hence the notation in underbrace).

Definition D.11 (Locally-polynomially Lipschitz). A function f : Rd Ñ R
p is locally-polynomially Lipschitz

(locally Lipschitz for short) if there exists α ě 0 such that:

›

› f pxq ´ f px1q
›

›

2 ď

´

1 ` }x}
α
2 `

›

›x1
›

›

α
2

¯

›

›x ` x1
›

›

2, @x, x1 P Rd. (D.12)

Definition D.13 (C-co-coercivity). A function g : Rd Ñ R
p is C-co-coercive if for all x, x1 P Rd we have:

C
@

gpxq ´ gpx1q, x ´ x1
D

ě
›

›gpxq ´ gpx1q
›

›

2
2. (D.14)

In the main text we assume that the gradient is both L-co-coercive and Lipschitz, by a simple application of
the Cauchy-Schwartz inequality we will have that:

›

›∇ f pxq ´ ∇ f px1q
›

›

2
2 ď L

@

∇ f pxq ´ ∇ f px1q, x ´ x1
D

ď L2›

›x ´ x1
›

›

2
2, @x, x1 P Rd. (D.15)

Definition D.16 (Order 2-Wasserstein distance). Let λ, ν P Pp

2R
dq be two measures with finite second moment, and

Πpλ, νq be the set of couplings on Rd ˆRd that have marginals pλ, νq. We define their 2-Wasserstein distance as:

W2pλ, νq :“ inf
ξPΠpλ,νq

ˆ
ż

RdˆRd
}x ´ y}

2
2 ξp dx, dyq

˙
1
2

. (D.17)

Definition D.18 (Markov kernel). A Markov kernel R on pRd, BpRdqq is a map such that:

(K1) for all A P BpRdq the mapping θ ÞÑ Rpθ, Aq is Borel measurable;
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(K2) for all θ P Rd the mapping A ÞÑ Rpθ, Aq is a probability measure on pRd, BpRdqq.

In practice, we will use it to abstractly represent how the law of eq. (1.1) changes across iterations. That is,
we let Rγ depend on γ the step-size, and starting from an arbitrary θ0 P Rd (that can be sampled) consider the
recursion:

R1
γ :“ Rγ, Rk`1

γ pθ0, Aq “

ż

Rd
Rk

γpθ0, dθqRγpθ, Aq, @θ P Rd, A P BpRdq, k P N, (D.19)

where the base iterate acts such that almost surely Rγpθk, Aq “ P rθk`1 P A | θks for all k P N, @A P BpRdq. In
(informal!) words, the probability that we are in set A if we were at θk before. Such notational construction
allows us to define measures and measurable functions as follows. Since by (K1) at fixed A we have a
measurable function, we can integrate out for a given λ P PpRdq as:

λRk
γp¨q :“

ż

Rd
λp dθqRk

γpθ, ¨q : BpRdq Ñ PpRdq (D.20)

A ÞÑ λRk
γpAq “ P

”

θ
pγq

k P A | θ0 „ λ
ı

. (D.21)

Namely, if we chain from the left we obtain the probability of starting from λ and ending in A at the kth

step. If instead we chain from the right, we will obtain a measurable function representing the expectation at
the kth step with respect to the iterated distribution. Mathematically, for ϕ P F`pRd,Rq the space of positive
measurable functions we have that:

Rk
γϕp¨q :“

ż

Rd
ϕpθqRk

γp¨, dθq : Rd Ñ F`pRd,Rq (D.22)

θ0 ÞÑ Rk
γϕpθ0q “ E

”

ϕ
´

θ
pγq

k

¯

| θ0

ı

. (D.23)

We therefore obtain probabilities integrating from the left and expectations integrating from the right. Note
that by the notations it follows also that for all A P BpRdq:

λ
´

Rk
γh

¯

p¨q “

ż

Rd
λp dθqpRk

γhqpθ, ¨q (D.24)

“

ż

Rd
λp dθq

ż

Rd
hp dξqRk

γpθ, dξq (D.25)

“

ż

Rd

ż

Rd
λp dθqRk

γpθ, dξqhpξq (D.26)

“

ż

Rd
hpξq

ż

Rd
λp dθqRk

γpθ, dξq (D.27)

“

ż

Rd
hpθqpλRk

γqp¨, dθq (D.28)

“ pλRk
γqphqp¨q. (D.29)

Proposition D.30 (Theorem 6.14 in (Le Gall 2016)). Let h, g be continuous functions on a euclidean domain E Ă Rd

that tend to zero at infinity.9 The following are equivalent:

1. h P DpAq and Ah “ g;

2. for all x P E the process:

hpθ
θ0
t q ´

ż t

0
gpθ

θ0
s q ds, (D.31)

is a martingale with respect to the (canonical) filtration pFtqtPr0,8s. Here, by θ
θ0
t we mean the Markov chain

pθtqtPR`
that started almost surely at θ0.

9 This is a specific definition: for all ϵ ą 0 there exists a compact set K such that | f pθq| ă ϵ for all θ P EzK.
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