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Introduction

Content

Mostly an exploration of the results of [JGH20]

additional helpful resources:

lectures of ML theory courses [Soh20; Ten22a; Ten22b]
researcher’s blogs [Vad19; Hus20; Wal21; Wen22]
comments to the calculations by Yilan Chen and Mateusz Mroczka and
Benedikt Petko

Ideally, a sufficient explanation for a beginner

The doc at this link has the proofs, a wide Appendix section and lots
of references (70 pages)
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Introduction

Boxes I

This is a definition

Here I define something

This is a theorem

Something is gnihtemoS backwards

This is an assumption

assumptions are purple boxes

A remark an observation or an example

for example, I observe or remark that this is an observation
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Introduction

Partial Notation

D = {(xi , yi )}Ni=1 dataset

Neural Network layers ℓ ∈ {0, . . . , L}
xi ∈ X ⊆ Rn0 , yi ∈ Y ⊆ RnL

∂t derivative with respect to t

⟨·, ·⟩pin , ∥·∥pin inner product and norm wrt empirical distribution

pin = 1
N

∑N
i=1 δxi

θ =
{
W (ℓ), b(ℓ)

}L−1

ℓ=0
parameters, θ ∈ RP

F = {f : Rn0 → RnL} space of realization functions fθ(x)

σ non-linearity

α̃(ℓ)(x ; θ), α(ℓ)(x ; θ) = σ
(
α̃(ℓ)(x ; θ)

)
preactivation and activation at

layer ℓ

L dataset loss, L element-wise loss

Simone Maria Giancola (UniBocconi) Neural Tangent Kernel Machine Learning II, Feb 2023 6 / 45



Introduction

Symbols and colors instead of proofs

Some parts are advanced, and time is short. For the sake of the
presentation, technnical aspects are left aside, instead we use:

means good for what we want to do

means bad for what we want to do

means difficult, overlooked, taken as granted
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Introduction

The Artificial Neural Network model

We aim to estimate a function of the form:

fθ(x) = W (L−1)
(
σ
(
W (L−2)

(
σ
(
· · ·σ

(
W (0)x + b(0)

)))
+ b(L−2)

))
+b(L−1)

Arising from a fully connected ANN.
The objective is to efficiently approximate y⃗ according to a parametric loss
L : RP → R+.

Optimization problem

Solve

θ∗ = arg min
θ∈RP

L (θ; y⃗,X) = arg min
θ∈RP

N∑
i=1

L(θ, yi , xi )
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Introduction

ANN Graphically
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Figure: L = 3, bias omitted, α(ℓ) activations

.
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Introduction

Neural Network Model, functional view

Realization Function

F (L) : RP → F θ → fθ(x)

the network function is fθ(x) ∈ F .

Functional Cost

C : F → R

which can be regression or cross entropy.

Updated Optimization problem

θ∗ = argmin
RP

{
(C ◦ F (L))(θ)

}
L = C ◦ F (L) : RP → R

same as old one but at a function level.
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Introduction

ANN, functional rescaled view

For activations and preactivations which for ℓ ∈ 0, . . . , L are of the form:

α̃(ℓ) : X → Rnℓ α(ℓ) : X → Rnℓ X ⊆ Rn0

state the recursion:

α(0)(x ; θ) = x , θp ∼ N (0, 1) ∀p

α̃(ℓ+1)(x ; θ) =
1

√
nℓ
W (ℓ)α(ℓ)(x ; θ) + βb(ℓ) β > 0

α(ℓ)(x ; θ) = σ
(
α(ℓ)(x ; θ)

)
We set fθ(x) = α̃(L)(x ; θ), notice that we specifically use the preactivation
to have a final linear combination.
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Introduction

Rescaled vs Classic + LeCun initialization [LeC+12]

Remarks

initializations of the parameters are different

β > 0 is added

a 1√
nℓ

factor is added for each ℓ ∈ {0, . . . , L− 1}

Scaling is instrumental to observe the asymptotic regime and:

same representable space F (L)(RP)

derivatives ∂W ℓ
ij
F (L), ∂bℓj

F (L) are scaled by a factor of 1√
nℓ
, β

respectively

β added to balance [JGH20](Remark 1)
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Introduction

Toy ANN

We provide a simpler example for the sake of understanding. Consider an
L = 2 layer ANN with nL = 1 (i.e. one hidden layer, scalar output).

in the first layer, the parameters are {a⃗j}n1j=1 for each neuron, with a⃗0
being the added bias. All normalized.

in the second layer parameters are {bj}n1j=1 for each neuron, with b0
the added bias

The output can be written as:

ŷi = fθ(xi ) =
1

√
n1

n1∑
j=1

bjσ(a⃗T
j xi )
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Introduction

Toy ANN, graphically
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Figure: Activations α
(1)
i are α

(1)
i (x) = σ(α̃

(1)
i ). With the architecture considered,

, a⃗0 = β1⃗, β0 = β and α̃(1), α̃(2) have the scaling factors 1√
nℓ

inside.
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Introduction

Why and what in one slide

Using the result that ANNs are Gaussian processes if all hidden layers
diverge [Nea96; DFS17; Mat17; Lee+18; Mat+18], we will:

build a description of them via kernel methods

show that the network function obeys a Neural Tangent Kernel
Gradient flow with respect to the functional cost (evolves according
to a kernel)

such Kernel is random at initialization and varies, but at the limit and
under precise assumptions it is static
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Introduction

Recap

We consider the classical fully-connected ANN architecture, rescaled, from
a different point of view.

need to understand how kernels enter the discussion in [JGH20]

will show an interesting application of this to justify a heuristic
method
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Derivation

A partial empirical motivation [Soh20]

Lazy training: as the number of
hidden neurons increases, weights are
almost static.

Remark

This does not mean that we do not
learn or that we do not optimize, but
just that optimality is close.

Figure: Small size weight matrix. Source
[Vad19]
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Derivation

Many neurons weight matrix dynamics

Figure: Medium size. Source [Vad19] Figure: Big size. Source [Vad19]
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Derivation

Taylor expansion

Based on this intuition, we could Taylor approximate the update.

fθ(x) ≈ fθ(0)(x) + ∂θfθ(0)(x)
T (θ − θ(0)) + h.o.t.

where the function is affine in θ or in ∆(θ) = θ − θ(0).

Remark

Is this model linear in θ? Yes
Is this model linear in x? No, the dependence comes from ∂θ, and it is
potentially non-linear by the non-linear activations.

Null intercept

Assume fθ(0)(x) = 0. There is a justification for this in [Ten22a].
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Derivation

Linearization

Linearized Model gθ

gθ(x) :=
〈
∂θfθ(0)(x), θ − θ(0)

〉
We can then interpret the expression ŷ =

〈
∂θfθ(0)(x),∆θ

〉
as a feature

map with kernel:

K(x , x ′) =
〈
φ(x), φ(x ′)

〉
=

〈
∂θfθ(0)(x), ∂θfθ(0)(x

′)
〉

Interpretation

If ∂θfθ(0)(x) = φ(x) then:

the expansion looks like gradient descent

of a linear model

on a functional space with convex cost
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Derivation

Recap

We started from an empirical observation and found an object.

Validity

How reliable is this approximation?

When is it reliable?

What is it? (i.e. is there a theoretical approach to put in
perspective?)

We will answer all of these.
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Results Theoretical contribution

The general formulation from Theory

Neural Tangent Kernel, NTK

When the dynamics are ∂t fθ(t) = −∇Θ(L)C

∣∣∣∣
fθ(t)

we say that the NTK is:

RnL×nL ∋ Θ(L)(θ) =
P∑

p=1

∂θpF
(L)(θ)⊗ ∂θpF

(L)(θ)

For elements x , x ′ ∈ X an entry has form

Θ
(L)
ij (θ)(x , x ′) =

∑P
p=1

[
∂θpF

(L)(θ, x)
]
i

[
∂θpF

(L)(θ, y)
]
j

Remark

Actual NTK is random at initialization and varies during training! Not
the constant at ∂θfθ(0) as before.

Simone Maria Giancola (UniBocconi) Neural Tangent Kernel Machine Learning II, Feb 2023 25 / 45



Results Theoretical contribution

The general formulation from Theory

Neural Tangent Kernel, NTK

When the dynamics are ∂t fθ(t) = −∇Θ(L)C

∣∣∣∣
fθ(t)

we say that the NTK is:

RnL×nL ∋ Θ(L)(θ) =
P∑

p=1

∂θpF
(L)(θ)⊗ ∂θpF

(L)(θ)

For elements x , x ′ ∈ X an entry has form

Θ
(L)
ij (θ)(x , x ′) =

∑P
p=1

[
∂θpF

(L)(θ, x)
]
i

[
∂θpF

(L)(θ, y)
]
j

Remark

Actual NTK is random at initialization and varies during training! Not
the constant at ∂θfθ(0) as before.

Simone Maria Giancola (UniBocconi) Neural Tangent Kernel Machine Learning II, Feb 2023 25 / 45



Results Theoretical contribution

Hypotheses and techniques

Meta-Assumptions

Sequential layer divergence:

lim
nL−1→∞

· · · lim
n1→∞

empirical distribution inner
product space

non-linearities are twice
differentiable, Lipschitz and with
bounded second derivative

Proof Strategy.

the main strategy is induction
on the number of Layers L

ultimately finding bounds and
analysis of the network functions
which are Gaussian Processes

fθ network functions behavior is
the objective

we avoid lots of details

3
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Results Theoretical contribution

Results I

Network functions are Gaussian Processes

The limit:
lim

nL−1→∞
· · · lim

n1→∞
fθ,k k ∈ {1, . . . , nL}

is convergent in law to a collection of independent and identically
distributed Gaussian processes with null mean and covariance defined
recursively in L by the equations:

Σ(1)(x , x ′) =
1

n0
xT x ′ + β2

Σ(L+1)(x , x ′) = Ef∼N (0,Λ(L))

[
σ(f (x))σ(f (x ′))

]
+ β2

Simone Maria Giancola (UniBocconi) Neural Tangent Kernel Machine Learning II, Feb 2023 27 / 45



Results Theoretical contribution

Results II

Kernel Convergence at Initialization

lim
nL−1→∞

· · · lim
n1→∞

Θ(L) = Θ
(L)
∞ ⊗ IdnL

where the limiting kernel is defined on a single output neuron as:

Θ
(L)
∞ : Rn0 × Rn0 → R

The form of Θ
(L)
∞ is described recursively as:

Θ
(1)
∞ (x , x ′) = Σ(1)(x , x ′)

Θ
(L+1)
∞ (x , x ′) = Θ

(L)
∞ (x , x ′)Σ̇(L+1)(x , x ′) + Σ(L+1)(x , x ′)

Σ̇(L+1) := Ef∼N (0,Σ(L))

[
σ̇(f (x))σ̇(f (x ′))

]
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Results Theoretical contribution

Results III

Kernel Convergence across dynamics

it holds that for any T satisfying
∫ T
0 ∥dt∥pin dt < ∞ stochastically:

Θ(L)(t)
{nℓ}→∞

⇒
t∈[0,T ]

Θ
(L)
∞ ⊗ IdnL

where the symbol
{nℓ}→∞

⇒
t∈[0,T ]

means in the sequential limit of the hidden

neurons uniformly in t ∈ [0,T ].
Then, the network function follows the Kernel Gradient [JGH20](Sec. 3)
differential equation:

∂t fθ(t) = −Φ
Θ

(L)
∞⊗IdnL

(
⟨dt , ·⟩pin

)
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Results Theoretical contribution

Interpretation

Independence at infinite-width limit

Neurons separately converge (⊗). Training an ANN for nL outputs is equal
to training nL scalar ANNs

Limiting Kernel form

Described by the non-linearity σ, the depth L and the variance of the
initialization

During training

The evolution across time of the kernel at the diverging limit is described
by a single constant kernel. The precision of this convergence is
independent of t.
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Results Theoretical contribution

Dynamics Convergence

Remark

The NTK governs the dynamics at infinite-width. Even if it is
well-behaved, convergence is not guaranteed, as it might not be positive
definite (i.e. null at some point, stuck dynamics before optimality).

Spherical Data NTK

Assume further that σ is nonpolynomial. Then, for L ≥ 2 the restriction

to the sphere Sn0−1 of the limiting NTK Θ
(L)
∞ derived before is positive

definite, and the dynamics never stop until convergence.

Remark

Data supported on a sphere is a good approximation of high-dimensional
data [JGH20](App. A.4).
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Results Phenomenology

Idea

Assume we can use all the theorems, we have:

a static deterministic kernel which depends only on:

L
σ
the starting variance Σ(1)

also positive definite, guaranteeing convergence to the optimal point

Then, we can split the dynamics into eigendirections.

Remark

We will see a simplified version on the L = 2 network, not the general case.
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Results Phenomenology

NTK quadratic regression cost, toy model

Toy NN update equations

Consider a quadratic loss in the simple setting of L = 2, nL = 1.
Mathematically:

L (θ) =
1

2

∥∥∥̂⃗y − y⃗
∥∥∥2

∂θL (θ) =
(
∂θ ̂⃗y)T (̂⃗y − y⃗

)
∂tθ(t) = −

(
∂θ(t)

̂⃗y)T (̂⃗y − y⃗
)

In the parameter space at the infinite-width limit the output evolves as:

∂t ̂⃗y = −
∥∥∥∂θ(t)̂⃗y∥∥∥2 (̂⃗y − y⃗

)
≈ −K(θ(0))(̂⃗y − y⃗)

where K(θ(0)) is the NTK, a good approximation.
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Results Phenomenology

Infinite-width onvergence

Exponential eigendirection dynamics

Now define u⃗ = ̂⃗y − y⃗ and see that:

∂t u⃗ = ∂t ̂⃗y ≈ K(θ(0)) · u⃗ ODE
=⇒ u⃗(t) = u⃗(0)e−K(θ(0))t

If the NTK matrix becomes positive definite, the minimum eigenvalue is
nonzero, and all of them are positive. Assuming that there are no null
eigenvectors, no multiple eigenvalues:

K(θ(0)) =
N∑
i=1

λi v⃗i v⃗T
i =⇒ u⃗(t) = u⃗(0)

N∏
i=1

e−tλi v⃗i v⃗T
i

Exponential convergence has rate min{λi} = λ1.
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Results Phenomenology

Early stopping Heuristics

Briefly:

dynamics separated along the eigenspaces

the speed of convergence is different and governed by λi

the bigger the variation inside the eigenspace, the faster the
convergence

to a low variation (eigenvalue) we associate noise

Early Stopping justification

Let the learning flow until not all of the directions have saturated. By
stopping early, low variation directions have not converged.
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Results Phenomenology

Empirical Results on General Model

Figure: Norm dynamics over time,
parallel direction

gθ plot, n are the sizes of hidden
neurons. As n increases, approaches

exponential hypothesis.

Figure: Norm dynamics over time,
orthogonal direction

hθ plot. n are the sizes of hidden
neurons. As n increases, approaches

null hypothesis

Simone Maria Giancola (UniBocconi) Neural Tangent Kernel Machine Learning II, Feb 2023 36 / 45



Takeaways

Lecture Path

1 Introduction

2 Derivation

3 Results
Theoretical contribution
Phenomenology

4 Takeaways
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Takeaways

Recap

Results in [JGH20] make use of:

Kernel Methods

Dual vector spaces

thougthful general problem
construction

to show:

that ANNs at the infinite-width
limit behave like Kernels

good experimental results

that the framework has other
intepretations (see [JGH20])

Pros

gradient descent/flow

theoretical results

reasonable assumptions
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Takeaways

Recap

Weaknesses

ANNs

does not match SOTA

only a partial description of
DL architectures

Additional/important refs:

No sequential limit result
and NTK for CNNs
[Aro+19]

Kernel methods theory
[SC04]

Code implementations
[Aro+22], or Papers with
Code NTK page

further details about NTKs
[COB20]
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Takeaways

Concluding

Any question/discussion, let
me know!

Thank you!
simonegiancola09@gmail.com

personal webpage

Figure: NTK reconstructed fox. Source [CPW21]
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