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introduction In this short document we summarize the first part of a thesis about kernel methods in
random graphs (Araya Valdivia 2020a). Emphasis is on intuition, proofs are sketched, computations are
sometimes explicit, especially in tedious parts. References are to a minimum: for related work and context, we
reroute the reader to the original papers (Araya Valdivia 2020b; Araya Valdivia and Yohann 2019) and the
thesis (Araya Valdivia 2020a). Section 1 is an introduction to the tools needed. Section 2 presents the model
and the algorithm. From subsection 2.II onwards, we give partial details about the proofs.

notation Most of the symbols are standard. The only difference we make is between what is random and
what is not, what is scalar, what is vectorial and what is matricial. For example, a, b, c, x, y, z, α, β, γ is a variable,
while a, b, c, x, y, z,α,β,γ is a random variable. Similarly, a, b, c, x, y, z, α, β, γ is a vector; a, b, c, x, y, z,α,β,γ
is a random vector. Again, A, B, C, X, Y , Z, Λ, Ψ, Θ is a matrix; A, B, C, X, Y, Z,Λ,Ψ,Θ is a random matrix. An
operator is denoted as A,B,C. An expectation such as Ex rxyzs “

ş

xyz dP rxs is such that y is deterministic,
and we integrate out against x which is deterministic once it is expressed inside an integral, keeping z random
throughout.

1 tools

{sec:tools}
In this section we briefly summarize the tools needed for our presentation.
We consider a probability space pΩ, µq. A kernel is a symmetric measurable function K : Ω ˆ Ω Ñ R which

is in L2 for the underlying measure considered. Such measure is often just µ ˆ µ. Given a kernel, we write its
integral operator as:

TKp f qpxq : L2pΩ, µq Ñ L2pΩ, µq (1.1)

f ÞÑ

ż

Ω
Kp¨, yq f pyq dµpyq. (1.2)

*while at Université Paris-Saclay, Orsay institute
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Let us recall some important notions adapted to our setting.

Definition 1.3 (Hilbert-Schmidt operator). Let peiqiPI, p f jqjPJ are bases of a separable Hilbert space H with {def:hilbert schmidt operator}
associated norm }¨}. Suppose A is a linear bounded operator. If the equivalent sums:

ÿ

iPI

}Aei}
2

“
ÿ

jPJ

›

›A˚ f j
›

›

2
“

ÿ

pi,jqPIˆJ

|
@

Aei, f j
D

|2 (1.4)

are convergent, then A is a Hilbert-Schmidt operator.

Definition 1.5 (Compact operator). An operator T : X Ñ Y is compact if the image of the unit ball in X is
relatively compact in Y . Namely, the closure of the image of the unit ball is compact.

Proposition 1.6. Suppose K P L2pΩ, µq. The operator TK is compact, self-adjoint and Hilbert-Schmidt.

Proof. See (Hirsch and Lacombe 1999, pg. 216) or the comment in (Araya Valdivia 2020a, pg. 16).

Definition 1.7 (Operator norm). For a bounded linear operator A on a separable Hilbert space H we define the {def:operator norm}
operator norm as }A}op :“ suphPH :}h}“1 }Ah}.

Proposition 1.8 (Spectral theorem). Let A P KpH q be compact and self-adjoint in a separable Hilbert space. Then, {prop:spectral theorem}
there exists an at most countable basis of orthonormal pairs tei, λiuiPI P pH , RqˆI satisfying |λi|

iÑ8
Ñ 0 if I “ N and

such that:
A “

ÿ

iPI

λiei b e˚
i , when acting on any u P H . (1.9)

Said sum is convergent in operator norm. Moreover, the spectrum of A, denoted as λA :“ tλiuiPI Y t0u Ă R has the
properties that 0 is its only accumulation point, the eigenvalues can be ordered, and we may complete teiuiPI to a basis by
adding the needed functions with associated λℓ “ 0. From these, we may rewrite the equality above as:

A “
ÿ

λPλAzt0u

λPλ, (1.10)

where Pλ is the orthogonal projection onto the eigenspace associated to λ. Alternatively, we may use the decomposition:

Au “
ÿ

iPI

λi xu, eiy ei. (1.11)

Definition 1.12 (Finite-rank operator). A self-adjoint operator such that the spectral decomposition holds for I being
finite, so that there is a “finite-dimensional” representation of the kernel by truncating the eigenvalues.

Remark 1.13. The practical difference with the theory of symmetric matrices is that we add the zero eigenvalue to the
spectrum, and we have eigenfunctions instead of eigenvectors.

Remark 1.14. From now onwards, we take I “ N and possibly complete the eigenfunctions to a basis with eigenvalues
being zero, or know that the spectrum converges to zero when it is ordered. By convention, we order eigenvalues
increasingly, so for a sequence tλiuiPN we take the ordering:

tλiuiPN ù |λ0| ě |λ1| ě ¨ ¨ ¨ ě 0. (1.15)

Remark 1.16. We take eigenfunctions to be unit norm, so a compact self-adjoint operator on a separable Hilbert space
has the additional property that:

}K}
2
L2pΩˆΩ,µˆµq “

ż

ΩˆΩ
K2px, yq dµpxq dµpyq “

ÿ

iPN

λ2
i ă 8, (1.17)

where we used the assumption that K is in L2pΩ, µq and a simple Cauchy-Schwartz inequality. Then, by comparison
with convergent series, we have necessarily that |λi| ă C{

?
i for some constant C. In the following sections, we will

improve this suboptimal bound with additional assumptions on K.

Since we want to do learning, we will study samples from a distribution and their statistics. Given a

collection txiuiďn
i.i.d.
„ µbn we are interested in the kernel matrix:

Tpnq :“
1
n

Kpnq P Rnˆn, Kpnq

ij :“ Kpxi, xjq @i, j P rns. (1.18)
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If we embed the space of eigenvalue sequences with the distance:

d2pa, bq :“ inf
πPSympNq:|supppπq|ă8

d

ÿ

iě1

pai ´ bπpiqq2, (1.19) {{eqn:spectrum distance}}{{eqn:spectrum distance}}

then we have a law of large numbers-type result for L2 kernels in the sense that:

d2

´

λ
rTpnq

, λpTKq
¯

nÑ8
Ñ
a.s.

0, rTpnq :“ p1 ´ 1i“jqTpnq

ij . (1.20) {{eqn:LLN for spectrum}}{{eqn:LLN for spectrum}}

See (Koltchinskii and Giné 2000, thm. 3.1).
In particular, we know the asymptotic result and the right scalings to derive non-asymptotic inequalities.

1.i Regularity in Sobolev spaces

{subsec:sobolev spaces}
It turns out that to obtain sharp concentration result we need good notions of eigenvalue decay (Araya

Valdivia 2020a, sec. 2.4). In this subsection, we quickly present the main idea and the reduction to our special
case.

Consider a measurable metric space pX , µ, dq. We equip the space L2pX , µq with an orthonormal basis
tϕkukPK for a countable set K.

Definition 1.21 (Weighted Sobolev space, general). For a given set of special weights ω : K Ñ R` the weighted {def:weighted sobolev space}
Sobolev space is the space of functions that are L2 integrable with respect to a re-weighted notion of norm. Formally, we
use the orthonormal basis to decompose functions as pλk, ϕkqkPK and construct the following space:

SωpX q “

#

f | f L2
“

ÿ

kPK

λkϕk, } f }
2
ω :“

ÿ

kPK

|λk|2

ωpkq
ă 8

+

, paired with }¨}ω. (1.22)

To give a formal example, for a measurable metric space pΩ, µ, dq, if we set X “ Ω ˆ Ω and ν “ µ ˆ µ we
can build an orthonormal basis of the product space X by taking tensor products of the orthonormal basis
pekqkPK in L2pΩ, µq, namely ϕkℓ “ ek b eℓ for all k, ℓ P K. By comparison with the harmonic series, a sufficient
condition for convergence is that:

λ2
k

ωpkq
“

1
k1`η

, for some η ą 0. (1.23)

If we restrict to open subsets of the Euclidean space Ω Ă Rd, we can slightly simplify definition 1.21.

Definition 1.24 (Euclidean weighted Sobolev space). Let Ω Ă Rd and ϱ : Ω Ñ R` be a locally integrable {def:euclidean weighted sobolev space}
function.1 Then, the pp, ϱq weighted Sobolev space is the space of locally integrable functions that have a good L2 norm
with respect to dϱ and also weak derivatives have a good L2 norm with respect to ϱ.2 The p number chooses how large
weak derivatives must be in the sense that p “ |α| for α a multi-index denoting the number of times we derive in a given
direction. Mathematically:

Sp2,pqpΩ, ϱq :“
!

f | locally integrable, } f }pp,ϱq ă 8

)

, (1.25)

where for D the weak derivative operator we have:

} f }pp,ϱq
:“

d

ż

Ω
| f pxq|2 dϱpxq `

d

ÿ

|α|“p

|Dα f pxq|
2 dϱpxq. (1.26)

1.ii Dot product kernels on the sphere

Let Ω “ Sd´1 be the unit sphere with d ě 3, the function ρ : Sd´1 ˆ Sd´1 Ñ R` be the geodesic distance and {subsec:dot product kernels on the sphere}
σ be the uniform measure on the sphere. While seemingly complicated, we have quick ways to build intuition
on the last two objects. The geodesic distance depends only on the inner product, as ρpx, yq “ arccospxx, yyq.

1 In words, a function integrable on every compact that defines a Radon measure.
2 Weak derivatives are as always defined with integration by parts.
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The uniform measure is the measure of the random variables x “ z{}z}2 where z „ N p0d, Idq. Since a kernel
is a notion of alignment in functional space, i.e. some fancy inner product, we say that our kernel K is a dot
product kernel if Kpx, yq “ f pcos ρpx, yqq “ f pxx, yyq for some function f : r´1, 1s Ñ r0, 1s. There are some
immediate consequences of this construction.

Fact 1.27. The fact that K : Rd ˆ Rd Ñ R is represented as a scalar function f : R Ñ R means that we can check if it
satisfies the Euclidean Sobolev condition in definition 1.24 for a given weight ϱ and p in its scalar representation.
On the technical viewpoint Nicaise (2000) proves that weighted Sobolev spaces as in definitions 1.21 and 1.24 are
equivalent in the following sense.3 The equivalence is between metric spaces. Explicitly, we have that the Sobolev space:

SpωqpX q, X “ r´1, 1s, ωpkq “
1

1 ` kpk ` d ´ 1q
, (1.28)

and:
Sp2,pqpX , ϱq, X “ r´1, 1s, dϱpxq “ p1 ´ x2q

d´3{2 dx, (1.29) {{eqn:sobolev space with rho weight}}{{eqn:sobolev space with rho weight}}

are equivalent. Interestingly, the sequence lk “ kpk ` d ´ 1q coincides with the eigenvalues of the Laplace-Beltrami
operator of the d dimensional sphere,4 and dρ is the measure giving weights for the orthogonality relation between
Gegenbauer polynomials with parameter γ “ d´2{2, meaning that two different Gegenbauer polynomials are orthogonal
in L2pr´1, 1s, ϱq. In what follows, we refer to }¨}pp,ϱq as the norm in the Lp space with underlying measure ϱ, which in
our case depends implicitly on γ.5

Definition 1.30 (Order δ-Sobolev regularity). A function f : Ω Ñ r´1, 1s is δ-regular if it belongs to the weighted {def:order delta sobolev regularity}
Sobolev space S2,δpr´1, 1s, dϱq.

Remark 1.31 (Another δ Sobolev regularity). From (Castro, Lacour, and Ngoc 2020, eqn. 2). Following the previous {rem:another order delta sobolev regularity}
observation, we can give an explicit decomposition of f in the basis of L2pΩ, ϱq. We have f “

ř

ℓě0 x f , rℓyL2pr´1,1s,ϱq for
rℓ the orthonormal polynomials, we say f (or equivalently in this case the kernel) is δ ą 0 Sobolev regular if:

for all R ě 1
ÿ

ℓąR

x f , rℓy
2
L2pr´1,1s,ϱq ď Cp f ,δ,Sd´1qR´2δ, (1.32)

where Cp f ,δ,Sd´1q is a constant independent of the cutoff R. In words, it is merely a decay condition in the coefficients of
the decomposition of the kernel when seen as a map from the reals to the reals.

Remark 1.33. In (Castro, Lacour, and Ngoc 2020) it is mentioned that the regularity condition amounts to requiring
that the derivative of order δ in the Laplacian of the sphere Sd´1 is square integrable.

Fact 1.34. Let K be a dot product kernel on the sphere. Then it is rotationally invariant and TK is a convolution operator.
The basis of eigenvectors in Sd´1 for TK is independent of K and composed of the spherical harmonics.

Proof. See (Dai and Xu 2013, chap. 1).

If we decompose along the spherical harmonics, it is a matter of niceness to keep the eigen-spaces Fℓ

explicit. Each is of dimension dℓ and eigenvalue λ˚
ℓ without multiplicity. The dot-product kernel writes:

f pxx, yyq “
ÿ

ℓě0

λ˚
ℓ

dℓ
ÿ

j“0

fkℓpxq fkℓpyq. (1.35) {{eqn:dot product kernel}}{{eqn:dot product kernel}}

The order is of the spherical harmonics, not w.r.t absolute magnitude. For these we have many nice explicit
formulas.

Fact 1.36 (Summary of spherical harmonics). The eigen-spaces have dimension dℓ with d0 “ 1, d1 “ d and: {fct:summary of spherical harmonics}

dℓ “

ˆ

ℓ ` d ´ 1
ℓ

˙

´

ˆ

ℓ ` d ´ 3
ℓ ´ 2

˙

“ O
´

ℓd´2
¯

. (1.37)

For any orthonormal basis t fkℓu
dℓ
k“1 of the space Fℓ an addition theorem holds (Dai and Xu 2013, eqn. 1.2.8):

zℓpx, yq “

dℓ
ÿ

k“0

fkℓpxq fkℓpyq, (1.38) {{eqn:addition theorem}}{{eqn:addition theorem}}

3 The result is interesting for what we will see later, so we report the summary of (sec. 2.6)arayavaldiviaKernelSpectralLearning2020.
4 The Laplace-Beltrami operator is a generalization of the Laplacian to any type of curved space. It is always the divergence of the gradient,

this time the Gradient on the sphere.
5 The generic notion of Sobolev weight is p1 ´ x2qγ´1{2, but we will take γ fixed here, so we would rather stress this.
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where we term the LHS “zonal polynomial”. In particular, the expression does not depend on the basis t fkℓu
dℓ
k“1. If we

use the expression for f pxx, yyq in equation 1.35 and the zonal harmonics we have alternatively:

f pxx, yyq “
ÿ

ℓě0

λ˚
ℓ zℓpx, yq. (1.39) {{eqn:zonal representation}}{{eqn:zonal representation}}

Interestingly enough, we can estimate the growth rate of the eigenvalues above by reconnecting the
expression with rescaled Gegenbauer polynomials. Eventually, we know the growth of these and can conclude
that it is sufficient to apply the inequalities that follow. Let us build up on this intuition by unrolling the result
of (Dai and Xu 2013, thm. 1.2.6, cor. 1.2.7) and (Araya Valdivia 2020a, prop. 12, rem. 2). After this, we will be
able to write a concentration result for eigenvalues via a series of growth rates.

To reconnect zonal polynomials and Gegenbauer polynomials it is just a matter of rescaling. Given
x, y P Sd´1 points, ℓ P N a level of spherical polynomials and d ě 3, we set γ :“ d´2{2 and find that:

zℓpx, yq “ cℓgγ
ℓ pxx, yyq “ cℓ

a

dℓrgγ
ℓ pxx, yyq, cℓ :“

ℓ ` γ

γ
, rgγ

ℓ :“
gγ
ℓ

›

›gγ
ℓ

›

›

p2,ϱq

, (1.40) {{eqn:zonal gegenbauer connection}}{{eqn:zonal gegenbauer connection}}

where we remind that ϱ depends implicitly on γ. Such Gegenbauer polynomials are orthogonal in L2pr´1, 1s, ϱq.
The zonal polynomial encapsulates a notion of alignment and is naturally maximized at x “ y. Having
Orthogonal polynomials with respect to a reference measure ϱ we clearly have that:

ż

Sd´1
rgγ
ℓ pxqrgγ

r pxqϱpxq dx “ δℓ,r, (1.41)

and using the decomposition of f in equation 1.35 together with its “zonal” representation in equation 1.39

and the zonal-Gegenbauer connection of equation 1.40 we find that:

λ˚
ℓ “

Γpd{2qℓ!
?

πΓpd´1{2qp2d ´ 2qpℓq

ż 1

´1
f pxqgγ

ℓ pxqϱpxq dx, (1.42) {{eqn:growth rate of eigenvalues}}{{eqn:growth rate of eigenvalues}}

where paqpℓq is the rising factorial symbol. This is particularly interesting because equation 1.42 is amenable to
extracting a growth rate of eigenvalues, and at the same time eigen-vectors are fixed (they are on the sphere).
From such growth rate, we will derive concentration results.

1.iii Some useful inequalities

{subsec:some useful inequalities}
Our objective in this quick subsection is to summarize the structure of the statements needed for good

concentration of the kernel matrix eigenvalues and the kernel eigenvalues. Araya Valdivia (2020a) builds a
multi-step series of hypothesis that lead to such result, which is the basis for what follows. In a nutshell, we
are interested in attaining a parametric rate of closeness. Let us begin from the spectral decomposition in the
L2 sense of a given kernel:

K L2
“

ÿ

kPN

λkϕk b ϕk, (1.43)

which is yet another consequence of proposition 1.8. To establish good results, we need the following
well-behavedness assumption.

Assumption 1.44 (Main). The spectrum is summable in the sense that: {ass:main}
›

›

›

›

›

ÿ

kě1

|λk|ϕ2
k

›

›

›

›

›

8

ă 8. (1.45)

From it, we can basically reduce ourselves to matrix concentration type inequalities. For these, we define a
variance proxy:

Definition 1.46 (Variance proxy). Given a kernel K, its i-order variance proxy is: {def:variance proxy}

vpiq :“

›

›

›

›

›

i
ÿ

k“1

ϕ2
k

›

›

›

›

›

8

, (1.47)

namely the sup norm of the eigenfunctions associated to the largest i eigenvalues.
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From this notion, we seek concentration based on when we truncate the variance proxy. It will naturally
depend on the residual error and will be finer as we take i to be large. Moreover, it will be asympotic, in
the spirit of a quantified law of large numbers, with tunable probability. From this statement, we will derive
depending on all terms a concentration with high probability at a given optimal truncation.

Theorem 1.48 ((Araya Valdivia 2020a), thm. 3). Let K : Ω ˆ Ω Ñ r0, 1s satisfy assumption 1.44. For a cut level {thm:main concentration}
i P N define the residual:

rpiq :“ min

$

&

%

r P N | |λi| ą max

$

&

%

ÿ

kąr

|λk|,
d

r
ÿ

kąr

λ2
k

,

.

-

,

.

-

. (1.49)

Then, there exists a critical nc such that for all larger sample sizes and all α P p0, 1q probability levels we have that the
kernel matrix Tpnq satisfies:

ˇ

ˇ

ˇ

ˇ

λ
pTpnqq

i ´ λi

ˇ

ˇ

ˇ

ˇ

À |λi|

c

vpriq log pri{αq

n
, with probability larger than 1 ´ α. (1.50)

Remark 1.51. Notice how the statement is at fixed i P N, so it is eigenvalue by eigenvalue.

From this generic statement Araya Valdivia (2020a) finds finer results under additional assumptions. There
are three of them, and they all roughly do the following:

• set a growth rate on the eigenvalues |λi|;

• set a growth rate on the sup norm of the eigenfunctions }ϕi}8;

Assumption 1.52 (Assumptions H1, H2, H3 in (Araya Valdivia 2020a)). We have the following three settings. {ass:main improved}

(H1) Take a power law decay of eigenvalues |λi| “ i´δ for some δ ą 0 and a power law growth of eigenfunctions
}ϕi}8 “ is where to make assumption 1.44 hold we need δ ą 2s ` 1.

(H2q Take an exponential decay of eigenvalues |λi| “ e´iδ for some δ ą 0 and a power law growth of eigenfunctions
}ϕi}8 “ is where to make assumption 1.44 hold we need δ ą s.

(H3q Take an exponential decay of eigenvalues |λi| “ e´iδ for some δ ą 0 and an exponential growth of eigenfunctions
}ϕi}8 “ eis where to make assumption 1.44 hold we need δ ą 2s.

Decoupling the contributions into the condition of assumption 1.44, which involves eigenvalues and eigen-
functions, we warp theorem 1.48. We improve mainly because we remove the critical sample size requirement
and obtain a non-asymptotic result. In exchange, we need the i index to vary with the sample size n as follows.

Theorem 1.53 ((Araya Valdivia 2020a), thm. 4). Let K be a kernel satisfying either of the conditions in assump- {thm:main theorem improved}
tion 1.52. Then, with probability larger than 1 ´ α we have a bound of the form:

ˇ

ˇ

ˇ

ˇ

λ
pTpnqq

i ´ λi

ˇ

ˇ

ˇ

ˇ

À bpi, n, hypq log 1{α, (1.54)

where bpi, n, hypq depends on the index, the sample size and the hypothesis chosen (table in (Araya Valdivia 2020a, pg.
20)).

Remark 1.55. Again, this result is at fixed i P N eigenvalue.

In light of the two remarks below theorems 1.48-1.53, we report that the results adapt to a full spectrum
concentration in terms of the spectral distance defined in equation 1.19. By analogy with matrix results, it is
termed a Hoffman-Wielandt type inequality.

Corollary 1.56 (Hoffman-Wielandt type inequality). Let K satisfy H2 or H3, or H1 with the added condition that {cor:hoffman-wielandt}
δ ą 2s ` 2. Then, with probability larger than 1 ´ α:

d2pλTpnq

, λTK q Àα
1

?
n

, (1.57)

where the asymptotic inequality depends on the probability level α.
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In our application, we will show that dot product kernels enjoy this generic concentration nicely. This
means that they satisfy either of the assumptions. A key point is that for spherically symmetric (dot-product)
kernels like the ones we consider the eigenvalues have an analytic expression. Without this peculiar advantage,
one can resort to the Sobolev regularity approach.

How do we make assumption 1.44 true? Using equation 1.40 it suffices to have:
ÿ

ℓě0

|λ˚
ℓ |dℓ ă 8, (1.58)

and from the scaling of dℓ in fct. 1.36 a sufficient condition on the growth rate of the eigenvalues is:6

|λ˚
ℓ | P O

´

ℓ1´d´ϵ
¯

, for any ϵ ą 0. (1.59)

In order to satisfy the more expressive hypotheses, we use the addition theorem (i.e. eqn. 1.38) to bound the
variance proxy of definition 1.46. From the two, we find that vpiq P O piq (Araya Valdivia 2020a, lem. 13), and
so reconnecting with the triplet in assumption 1.52:

• since s “ 0 in the eigenvector growth rate, H1 is satisfied if λi P O
`

i´δ
˘

for some δ ą 1;

• for the same reason, s “ 0 and H2, H3 are satisfied if λi P O
`

e´δi˘ for some δ ą 0.

Thanks to the growth rate of the variance proxy, we can specify theorem 1.53 to become sharper.

Proposition 1.60 ((Araya Valdivia 2020a), lem. 14 and cor. 15). Consider a kernel K such that vpiq P O piq for all {prop: sharper result for dot product kernels}
i P N (e.g. a dot product kernel). Then, theorem 1.53 is true, with the added fact that the constant bpi, n, hypq, where
hyp depended on s and i where i depended on s are true with s “ 0. See the table in (Araya Valdivia 2020a, pg. 20) for
the statements.
Consequently, consider Kpx, yq “ f pxx, yyq a dot product kernel on the sphere where f P Sp2,pqpr´1, 1s, ϱq for ϱ as in
equation 1.29. For any α P p0, 1q, there exists ϵ ą 0 such that with probability larger than 1 ´ α for all i P rns indices we
have a good concentration of the kernel matrix eigenvalues:

ˇ

ˇ

ˇ
λKpnq

i ´ λi

ˇ

ˇ

ˇ
Àα i´η`1{2n´1{2, η :“

p ` ϵ

d ´ 1
`

1
2

. (1.61)

2 inferring distances from spherical data

{sec:algorithmic inference}
In this section we apply the tools to the problem of learning distances from a noisy sample of a graphon,

i.e. morally a continuous graph. Let us begin by introducing the main objects.
Throughout, we place ourselves in pSd´1, σq where σ is the uniform measure on the sphere. A classical

result is that Sd´1 is separable as Rd is.7 A graphon is a kernel function that takes two points and returns a
“continuous” edge, namely W : Sd´1 ˆ Sd´1 Ñ r0, 1s. To pose a learning task, we sample n vectors uniformly
at random, form the dataset D “ txiu

n
i“1 and construct the Gram matrix of distances:

G‹ P Rnˆn, Gij :“
@

xi, xj
D

. (2.1)

To build a model, let us consider the probability matrix:

Tpnq :“
1
n
Θ P Rnˆn, Θij “ Wnpxi, xjq “ ρnWpxi, xjq, (2.2)

where ρn is a scaling factor.

Assumption 2.3 (Relative sparsity regime). For technical reasons, we take ρn P Ω plog n{nq. {ass:relative sparse regime}

When the graphon function W depends only on the inner product, i.e. it is a dot product kernel, we say
it is a geometric graphon. Then, Θ is symmetric, and we may build an adjacency matrix by thresholding the
probabilities:

Apnq P Rnˆn, nApnq

ij „ BerpΘijq. (2.4)

We have three main objects:
6 Just compare with the harmonic series.
7 A metric space Rd is separable if and only if it is second countable (i.e. it has a countable basis), and second countability passes to

subspaces. A sphere is a subspace of Rd, which is second countable.
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• The random probability matrix Tpnq which normalizes the W-similarity, with eigenvalues λTpnq

ordered
non-increasingly in absolute value;

• the random observed adjacency matrix Apnq which thresholds Θ with eigenvalues λApnq

ordered non-
increasingly in absolute value;

• the deterministic integral operator TW which is Hilbert-Schmidt on the sphere having eigenvalues λ˚

indexed by the degree of spherical harmonics.

Our objective is to learn the latent distances in the graphon from an observation. The key argument will be
that we can establish various concentration results. We summarize them below.
If W has Sobolev regularity δ then (Araya Valdivia and Yohann 2019, thm. 2):

d2

´

λ
1{ρnTpnq

, λTW
¯

Àα

ˆ

log n
n

˙δ{2δ`d´1

, with probability larger than 1 ´ α. (2.5) {{eqn:de castro valdivia concentration}}{{eqn:de castro valdivia concentration}}

The observed adjancency matrix approaches the probability matrix in operator norm:8

E

„

›

›

›
Apnq ´ Tpnq

›

›

›

op

ȷ

À max

#

ρn
?

n
,

a

log n
n

+

, (2.6)

which translates into a bound found in (Araya Valdivia 2020a, eqn. 3.3, thm. 32):

1
ρn

›

›

›
Apnq ´ Tpnq

›

›

›

op
Àα{4 C max

#

1
?

ρnn
,

a

log n
ρnn

+

. (2.7)

Morally, we will want to connect our observed Apnq with TW using refinements of these two. The mere results
are concentration inequalities for the spectrum and the eigenvectors-functions.
In particular, using the fact that the eigenfunctions of TW are the Gegenbauer polynomials, if we only take the
first (linear) eigenfunction and apply the addition theorem we will find that:

gγ
1 p

@

xi, xj
D

q “
1
c1

d
ÿ

k“1

ϕkpxiqϕkpxjq, γ :“
d ´ 2

2
, c1 :“

d
d ´ 2

(2.8)

or better:

gpγq

1 p
@

xi, xj
D

q “
γ

d

d
ÿ

k“1

ϕkpxiqϕkpxjq “ 2γ
@

xi, xj
D

, γ :“
d ´ 2

2
, (2.9)

since the first Gegenbauer polynomial is linear ((Dai and Xu 2013, app. B2)). From this we can deduce the
following for the true Gram matrix:

G‹ “:“
1
n

“@

xi, xj
D‰

i,jPrns
“

1
d

V‹rV‹sJ, (2.10)

where we defined:

V‹ “
“

v‹;1 v‹;2, . . . , v‹;d
‰

, v‹;j :“

»

—

–

ϕjpx1q{
?

n
...

ϕjpxnq{
?

n.

fi

ffi

fl

(2.11)

Therefore, we want to understand well the first eigenvector in the spherical harmonics since its d1 “ d
associated eigenvectors make an exact expression of the Gram matrix.
Eventually, we will prove that for a sufficient number of observations we can take “good” eigenvectors of Apnq

to estimate well the population Gram matrix in Frobenius norm, min-max optimally!
Just like any statistical problem, we need to ensure identifiability. When speaking about matrices it is

common to assume this by some quantified separation of eigenvalues. In this line of work, there are no

8 One starts from the bound E

„

›

›

›
Apnq ´ Tpnq

›

›

›

op

ȷ

À
?

d0{n `

b

d˚
0 log n{n where d0 :“ maxiPrns

řn
j“1 Θijp1 ´ Θijq and d˚

0 :“

maxij

›

›

›
Tpnq

ij ´ Apnq

ij

›

›

›

8
. It first appeared in (Bandeira and Handel 2016, cor. 3.3). Our scaling gives a more explicit upper bound.
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surprises: we will need to ensure that the eigenvalue of the first Gegenbauer polynomial is well-separated
from the others. Let us then define the spectral gap as:

GappWq :“ min
j‰1

|λ˚
1 ´ λ˚

j |. (2.12)

Then, we remove annoying cases: the only accumulation point of the spectrum is zero, and the spherical
harmonics eigenvalues are counted with multiplicity. The only cases in which the gap is null is if λ˚

1 “ 0 or the
multiplicity is larger than one (see (Araya Valdivia 2020a, prop. 23)). In both cases, we would have issues with
identifiability (i.e. there are two eigen-spaces). Assuming this does not hold is for sanity, not for simplicity.
Having identifiability, we need to ensure that the observations are strong enough. To go “above” the noise,
we will define a “good event E” under which the signal of the observations is above (an expression of) the
spectral gap. While complicated at first sight, we just require the problem to be feasible. To be precise, the
event will be:

En :“

$

’

&

’

%

max

$

’

&

’

%

d2

´

λ
1{ρnTpnq

, λTW
¯

,
29{2

?
d

›

›

›
Apnq ´ Tpnq

›

›

›

op

ρnGappWq

,

/

.

/

-

ď
GappWq

4

,

/

.

/

-

(2.13)

Without regard to the details, we are just saying that our two main quantities are, upon correct rescaling,
both not too noisy with respect to the natural separation of the deterministic object we want to estimate. The
desired properties of these event are that:

(i) it has high probability, or at least a quantifiable tunable probability;

(ii) under it, we can estimate the population Gram matrix from the observed Gram matrix well and
algorithmically;

(iii) it has a good dependence on n to find a critical scaling of the dataset size to make inference;

For (i), we just need a lemma.

Lemma 2.14. If GappWq ą 0 there exists a critical nc ” ncpW, αq such that for all n ě nc and α P p0, 1q it holds that {lem:high probability lemma}
P rEns ě 1 ´ α{2.

For (ii) we will need more work, for (iii) we remark that it is evident from the proof technique. Unlike
other nice results, there is no closed-form formula for n in terms of the other parameters but rather a set of
inequalities identifying a region in the parameter space. It is less aesthetic, but it is still a plug-in information:
if we know the parameters, we can directly answer if inference is feasible or not. For the expression, see
(Araya Valdivia 2020a, rem. 6).

2.i The algorithm and its properties

{subsec:the algorithm and its properties}
We now focus on (ii). The main idea behind the algorithm is in the following statements.

Proposition 2.15 ((Araya Valdivia 2020a) proposition 25). {prop:isolated bulk}
On the event En, the spectrum of Apnq has:

(bulk) a unique set d eigenvalues with diameter smaller than ρnGappWq{2;

(rest) the others are at distance higher than ρnGappWq{2 from such bulk.

Theorem 2.16 ((Araya Valdivia 2020a), theorem 26). Let W be a graphon on the sphere Sd´1 that is δ-regular and {thm:algorithm theorem}
has positive gap GappWq ą 0. Then, there exists a set of d eigenvectors of Apnq that estimates well the true Gram matrix
in the following sense. Letting tvpjqud

j“1 be the columns of V̂, we construct the estimator:

pG :“ γV̂V̂J, (2.17)

and can quantify the error as:
›

›

›
G‹ ´ pG

›

›

›

F
“ O

˜

n´δ{p2δ`d´1q

GappWq

¸

. (2.18) {{eqn:error rate}}{{eqn:error rate}}
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Remark 2.19. The eigenvectors forming V̂ form the isolated bulk of proposition 2.15. So En is really the good event
where above identifiability we can actually work out this specific algorithm.

Remark 2.20. The rate of equation 2.18 is min-max optimal in the function space of δ-regular functions in d ´ 1
dimensions for non-parametric regression (Emery, Nemirovski, and Voiculescu 2000, chap. 2).

Thanks to these two results, we can write down a procedure to recover these eigenvectors. This is the
objective of algorithm 1. The idea is to reconstruct the eigen-space of λ˚

1 . It is done by finding a subset of

dimension d1 “ d of the eigenvalues of Apnq denoted as λApnq

P Rn where all of the eigenvalues are jointly
close to λ˚

1 . The fact that En holds with high probability allows us to be always in a “good case” for this task.
We will then have d candidates, and compare them via the following quantity:

GappApnq; Iq :“ min
iRI

max
jPI

|λApnq

i ´ λApnq

j |, where |I| “ d. (2.21)

By analogy with the graphon case, the spectral gap of the adjacency matrix will be the largest gap among any
possible candidate:

GappApnq; dq :“ max
IĂr1:n´1s |I|“d

GappApnq; Iq. (2.22) {{eqn:gap for adj mat}}{{eqn:gap for adj mat}}

Remark 2.23. By (Araya Valdivia 2020a, prop. 36), we may ignore the eigenvalue that gets close to zero, which is shown
to be close to λ˚

0 , hence far from λ˚
1 .

So far, we have to search over a large collection of subsets, namely all those that have dimension d, which
has cardinality

`n´2
d

˘

. Fortunately, we can simplify the search space, as it turns out that sets of consecutive sets
of indices dominate the optimization problem in equation 2.22.

Lemma 2.24 ((Araya Valdivia 2020a) lem. 27). The quantity GappApnq; dq is attained by a set I with |I| “ d by
construction and I “ ti1, . . . , idu corresponding to d consecutive eigenvalues of Apnq sorted in decreasing order.

Algorithm 1 Harmonic eigen-cluster (HEiC) algorithm (Araya Valdivia 2020a)
{alg:HEICDIM}

Require: pApnq, dq adjacency matrix and dimension;
Ensure: gap quantification, eigenvalues tλpjqud

j“1 and associated eigenvectors tvpjqud
j“1.

Λsort Ð tλA
1 , . . . , λA

n´1u sorted decreasingly;
Λsol Ð Λsortr1 : d ` 1s Ź biggest d eigenvalues;
i Ð 2;
gap Ð GappApnq; rdsq;
while i ď n ´ d do

if GappApnq; ri : i ` dsq ą gap then
Λsol Ð Λsortri : i ` ds;

end if
i Ð i ` 1;

end while

Putting it all together, we found that algorithm 1 attains the min-max optimal rate of non-parametric
inference in δ regular Sobolev spaces. We can recover latent distances in the best possible way with a rather
simple procedure. The key is understanding that the linear Gegenbauer polynomial (i.e. a rescaled version
of the latent distances in a dot product kernel), is represented by d (consecutive) eigenvalues of the kernel
operator. Under our good event, such d eigenvalues are well approximated by the eigenvalues of the observed
graph Apnq, via the chain Apnq ù Tpnq ù TW , crucially using concentration inequalities.
The thesis of Araya Valdivia (2020a) proceeds further with more general algorithms and settings; we reroute
the interested reader to the original work.

2.ii Proof sketch of main theorem

{subsec:proof of main theorem}
In this subsection, we aim to argue a proof for proposition 2.15 and theorem 2.16. Throughout, we use the

hat-none-star notation to denote:
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• V̂ the matrix of d eigenvectors from Apnq which is effectively an estimator;

• V the matrix of eigenvectors of Tpnq, which is non-observable;

• V‹ the “true” matrix of eigenvectors of TW , in this case associated to the first Gegenbauer polynomial.

In particular, we avoided placing a hat on Apnq because it is not at all an estimator. Araya Valdivia (2020a) uses
the notation T̂pnq for it.

Proof of high probability event, lemma 2.14. We use the result of Bandeira and Handel (2016), reported in (Araya
Valdivia 2020a, thm. 32) on the centered matrix M “ Apnq ´ Tpnq. With probability larger than 1 ´ α the
following inequality holds:

›

›

›
Apnq ´ Tpnq

›

›

›

op
Àα C max

#

c

ρn

n
,

a

log n
n

+

. (2.25)

In particular, we used that maxi
řn

j“1 Θijp1 ´ Θijq ď maxi
řn

j“1 Θij P O pnρnq as Θij “ ρnWpxi, xjq ě 0.
Reordering the ρn scaling, we find:

1
ρn

›

›

›
Apnq ´ Tpnq

›

›

›

op
Àα C max

#

1
?

ρnn
,

a

log n
ρnn

+

. (2.26)

Now we would like to upper bound further, but we do not know a priori if the second term in the max is big
or not. This is where assumption 2.3 is needed. We take the relative sparse regime, and the second term is just
an o p1q, so for n large enough, say larger than a critical nc:

1
ρn

›

›

›
Apnq ´ Tpnq

›

›

›

op
Àα

rGappWqs2

217{2
?

d
, (2.27)

where the RHS is just a convenient number for later. With an application of the Davis-Kahan theorem (use the
exact formulation of (Araya Valdivia 2020a, thm. 29)) and a perturbation result (Araya Valdivia 2020a, lem. 37)
we have:

›

›

›
V̂V̂J ´ VVJ

›

›

›

F
ď

25{2
?

d1{ρn

›

›

›
Apnq ´ Tpnq

›

›

›

op

1{ρn∆
Àα

ρn pGappWqq
2

∆
, ∆ :“ dptλTpnq

ij
ud

j“1, λTpnq

ztλTpnq

ij
ud

j“1q,

(2.28) {{eqn:ugly frobenius bound}}{{eqn:ugly frobenius bound}}
where we used the fact that we are under the event En and the inequality on the operator norm is up to α
factors controlling its tails. The graphon belongs to a δ regular Sobolev space, so applying (Araya Valdivia
2020a, thm. 33) which is a result of Castro, Lacour, and Ngoc (2020), we find back equation 2.5. Furthermore,
under the event En we have:

C
ˆ

log n
n

˙δ{2δ`d´1

ď
GappWq

8
. (2.29)

The two statements are a consequence of the fact that we are in En. Therefore, for a fixed couple pα, GappWqq,
i.e. a graphon and a confidence threshold, there exists a critical size nc such that once crossed, we have
P rEns ě α{2. It suffices to notice that upper bounds depend only on this tuple.

Proof of isolated bulk, proposition 2.15. When GappWq ą 0 we saw that there is identifiability with no ambiguity
of the eigenvalue λ˚

1 of TW , being it the only one with multiplicity d1 “ d. As a consequence, there is a unique
set of d eigenvalues of Tpnq, which we remind is normalized to 1{ρn separated by at least 3{4GappWq by the
inequality on the d2 distance we just found in the lemma (i.e. equation 2.5 combined with the further upper
bound under En by GappWq{8). By the triangular inequality, we have immediately that:

1
ρn

∆ ě
3
4

GappWq, (2.30)

where we defined ∆ in equation 2.28. Using exactly this equation, we can link with a bound on the
empirical eigenvalues, those from Apnq in V̂V̂J, rescaled by 1{ρn. There necessarily exist d eigenvalues
λApnq

special :“ pλApnq

ij
qd

j“1 such that:

›

›

›
V̂V̂J ´ VV

›

›

›

F
ď

GappWq

8
, V̂ associated to eigenvecs of λApnq

special, rescaled. (2.31)
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It suffices to apply the classical Hoffman-Wielandt inequality now (see for example (Bhatia 1997, thm. VI.4.1)).
It tells us that the squared distance between the spectrum is less than the Frobenius norm of the matrices, once
we sort the spectrums in order. These are still upper bounded by GappWq{8 then. With a further application of
the triangle inequality we conclude that:9

∆̂ :“ dpλApnq

special,λ
Apnq

zλApnq

specialq ě
ρnGappWq

2
, (2.32)

meaning that the special piece of the spectrum we chose is in its entirety separated from the rest by this
factor.

Proof sketch of algorithmic performance in theorem 2.16. Full details are in the original paper (Araya Valdivia and
Yohann 2019). In the statement, we relate G‹ the true Gram matrix of distances with Ĝ the distances estimated
from the adjacency matrix Apnq. As we said, we will connect them passing by the same Gram matrix, now for
Tpnq. Morally, the first step is the simple triangle inequality:

›

›Ĝ ´ G‹
›

›

F ď
›

›Ĝ ´ G
›

›

F ` }G ´ G‹}F. (2.33)

The former is easy to control. We just need to reconnect with the eigendecomposition (just a rescaling) and
use equation 2.28. Recall that γ “ d´2{d to find:

›

›Ĝ ´ G
›

›

F “
1
c1

›

›

›
V̂V̂J ´ VVJ

›

›

›

F
, c1 “

d ´ 2
2

(2.34)

and when n is large enough and the gap GappWq is positive:

γ
›

›

›
V̂V̂J ´ VVJ

›

›

›

F
Àα CW

d ´ 2
d

?
d

?
n

“ CW
d ´ 2
?

dn
. (2.35)

Next, we bound the other term. The starting point is a decomposition of it into three further terms, which
accounts for different contributions to the error. We do the following:

• build a projection matrix into the column span of V‹, i.e. Gproj :“ V‹prV‹sJV‹q´1rV‹sJ;

• build the approximation matrix at a radius R to choose later, i.e. GR the Gram matrix for the eigenvectors
of Tpnq

R :“ 1{npWRpxi, xjqqi,jPrns.

We then start from a triangle inequality to highlight terms:

}G ´ G‹}F ď }G ´ GR}F `
›

›GR ´ Gproj

›

›

F `
›

›Gproj ´ G‹
›

›

F. (2.36)

The first term is easy, we truncate at R “ O
´

pn{log nq
1{2δ`d´1

¯

and apply Davis Kahan in the form of (Araya
Valdivia 2020a, thm. 29). This gives:

}G ´ GR}F ď C

›

›

›
Tpnq ´ Tpnq

R

›

›

›

F

∆
Davis-Kahan (2.37)

ď
C
∆

ˆ

n
log n

˙´δ{2δ`d´1

. (2.38)

For the third term, we use a representation of the Frobenius distance of an outer product matrix and its column
rank projection (namely (Araya Valdivia 2020a, lem. 38)):

›

›Gproj ´ G‹
›

›

F “

›

›

›
Id ´ rV‹sJV‹

›

›

›

F
, (2.39)

and a concentration result for sub-gaussian outer products (Araya Valdivia 2020a, thm. 34) taken from
(Vershynin 2010, prop. 2.1), to find:

›

›

›
Id ´ rV‹sJV‹

›

›

›

F
Àα

d
?

n
. (2.40)

So for the third term we have:
›

›Gproj ´ G‹
›

›

F Àα
d

?
n

. (2.41)

The middle term is the most intricate. We do not get into the details, but it requires:
9 Here for simplicity we do not write that Apnq is rescaled by 1{ρn. One should take the normalized result and conclude with this last

equation.
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• a representation of Frobenius distance by Bhatia (1997, pg. 202);

• a perturbation result by Bhatia (1997, thm. VII.3.1) found in (Araya Valdivia 2020a, thm. 31);

• an application of Ostrowskii’s inequality (see (Araya Valdivia 2020a, cor. 18)) combined with a further
bound by Castro, Lacour, and Ngoc (2020, lem. 12).

The result is that:
›

›Gproj ´ GR
›

›

F Àα
1

GappWq

ˆ

n
log n

˙´δ{2δ`d´1

. (2.42)

Taking the four inequalities into account, the one most surviving asymptotically is the last one.

2.iii Ideas from proofs of the concentration results

{subsec:elements from proof of concentration results}
The concentration results we used in the random geometric graph model have a common thread. Below,

we will try to summarize it. The proofs of theorems 1.48 and 1.53 follow three steps:

1. approximation;

2. perturbation;

3. concentration.

approximation Fix a truncation R P N. We decompose the kernel W into its best-in-L2 rank R approxima-
tion and a residual. As for all nuclear norms, the Young-Eckart-Mirsky theorem tells us that the approximation
is the truncation to the largest R singular values. When looking at Tpnq, we will have then a residual matrix:

pEpnq

R qij :“
1
n

ÿ

kąR

λkϕkpxiqϕkpxjq. (2.43)

We want to decouple the expression for Tpnq into three objects:

• the rank R approximation;

• the projection of the first R eigenvectors of the residual;

• the projection of the other eigenvectors of the residual.

A good representation for this decomposition requires preliminary definitions. Let:

ΦR :“
1

?
n

»

—

–

ϕRpx1q

...
ϕRpxnq

fi

ffi

fl

P RnˆR (2.44)

ϕRpxiq :“ rϕ1pxiq, . . . , ϕRpxiqs @i P rns. (2.45)

ΛR :“ diagtλ1, . . . , λRu (2.46)

ΦK
R :“ torthonormal basis of orthogonal complement of ΦRu. (2.47)

Then we define projections onto the spaces spanned by vectors in ΦR and its orthogonal complement. These
are:

PR :“ ΦRpΦJ
RΦRq´1ΦK

R (2.48)

QR :“ ΦK
R prΦK

R sJΦRq´1rΦK
R sJ (2.49)

“ ΦK
R rΦK

R sJ, (2.50)

where we used that the perpendicular space is created with an orthonormal basis. A trivial decomposition of
the residual matrix is according to the various projections onto these spaces, which is:

Epnq

R “ QREpnq

R QR ` QREpnq

R PR ` PREpnq

R QR ` PREpnq

R PR. (2.51)
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From this, we may start from the decomposition into truncation and residual to obtain a matrix form:

Tpnq “ ΦRΛRΦ
J
R ` Epnq

R (2.52)

“ ΦRΛRΦ
J
R ` QREpnq

R QR ` QREpnq

R PR ` PREpnq

R QR ` PREpnq

R PR
loooooooooooooomoooooooooooooon

:“A

. (2.53)

“ ΦRΛRΦ
J
R ` ΦK

R rΦK
R sJEpnq

R ΦK
R rΦK

R sJ ` A (2.54)

“

”

ΦR ΦK
R

ı

»

—

–

ΛR 0
0 rΦK

R sJEpnq

R ΦK
R

loooooooomoooooooon

:“MąR

fi

ffi

fl

loooooooooooooomoooooooooooooon

:“M

«

ΦJ
R

rΦK
R sJ

ff

` A (2.55)

“

”

ΦR ΦK
R

ı

M
”

ΦR ΦK
R

ıJ

loooooooooooooooooomoooooooooooooooooon

MΦR

`A, (2.56)

which is just an algebraic manipulation.

perturbation and concentration We apply Weyl’s inequality seeing A as the perturbing matrix.
This allows us to connect the eigenvalues of MΦR and Tpnq with respect to the operator norm of A. Now,
we want to recover a result with M instead of MΦR , so we can apply a multiplicative inequality such as
Ostrowskii’s.10 In particular, we will bound the distance of eigenvalues of MΦR and M. Putting the two
together, we obtain:

|λTpnq

i ´ λM
i | ď |λipMq|

›

›

›
ΦJ

RΦR ´ Id

›

›

›

op
` }A}op, @i P rns (2.57) {{eqn:first concentration step}}{{eqn:first concentration step}}

Moreover, we know the “high modes” above R part of the spectrum of M obeys the following inequality
(operator norm is larger than eigenvalues):

λ
MąR
i ď }MąR}op “

›

›

›
rΦK

R sJEpnqΦK
R

›

›

›

op
, @i P rn ´ Rs. (2.58) {{eqn:second concentration step}}{{eqn:second concentration step}}

In the concentration step, Araya Valdivia (2020b) upper bounds further the terms in the RHS of equation 2.57

and extracts results for the high-modes spectrum in equation 2.58. While some terms are standard, others
require some non-classical concentration results and techniques (see the comments in (Araya Valdivia 2020b,
pg. 10)). We do not provide details for the sake of space.
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Koltchinskii, Vladimir and Evarist Giné (Feb. 2000). “Random Matrix Approximation of Spectra of Integral
Operators”. In: Bernoulli 6.1, pp. 113–167. issn: 1350-7265 (cit. on p. 3).

Nicaise, Serge (May 2000). “Jacobi Polynomials, Weighted Sobolev Spaces and Approximation Results of
Some Singularities”. In: Mathematische Nachrichten 213.1, pp. 117–140. issn: 0025-584X, 1522-2616. doi:
10.1002/(SICI)1522-2616(200005)213:1<117::AID-MANA117>3.0.CO;2-A (cit. on p. 4).

Vershynin, Roman (Dec. 2010). How Close Is the Sample Covariance Matrix to the Actual Covariance Matrix? doi:
10.48550/arXiv.1004.3484. arXiv: 1004.3484 [math] (cit. on p. 12).

15

https://doi.org/10.1007/BFb0106703
https://doi.org/10.1007/978-1-4612-1444-1
https://doi.org/10.1002/(SICI)1522-2616(200005)213:1<117::AID-MANA117>3.0.CO;2-A
https://doi.org/10.48550/arXiv.1004.3484
https://arxiv.org/abs/1004.3484

	Tools
	Regularity in Sobolev spaces
	Dot product kernels on the sphere
	Some useful inequalities

	Inferring distances from spherical data
	The algorithm and its properties
	Proof sketch of main theorem
	Ideas from proofs of the concentration results

	References

