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Chapter 1

Introduction

This document aims to provide an overview on Support Vector Machines, Value of Infor-

mation and a potential link between the two, together with some considerations on what

is needed to accomplish it.

Purpose

The first two chapters explore concepts orbiting around Support Vector Machines and

Value of Information. This is done mainly to provide a thorough understanding to anyone

accessing this thesis, and especially with regard to the mathematical procedures imple-

mented.

The last chapter is an explanation of what was obtained after a series of working sessions,

held between the contributors of this project.

Creating such a system would be beneficial to each analysis pipeline that implements the

algorithm at a corporate level, as the Value of Information is a key indicator of which

elements eventually drive a result. It turns out to be even more important when business

choices have to be made. In fact, differently from other methods1, it focuses on existing

dimensions and thus returns a more applicable result.

1Such as Principal Component Analysis, not included in this document
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Chapter 1. Introduction

Methods

For what concerns the first two chapters, a heavy theoretical approach is proposed. When

focusing on Support Vector Machines, many sources were exploited, ranging from pub-

lications to advanced lectures from accredited sources (when cited, a link to the pdf

is provided in the bibliography). The chapter about Value of Information is a detailed

overview made easier for beginners, authored by the two academic contributors and other

collaborators.

The attempt to merge the two topics arose from a joint work that relied on the experience

and collaboration of all the contributors, thus being more practical and experimental. It

is paired with a code repository available upon request.

This piece of work evolved during the study, resulting in a series of scripts that together

compute what is desired. Along with the programming elements, automatically saved

graphs of the results are stored. It is not necessary for the purpose of understanding the

topic, but rather to show how it is implemented at a coding level.

Sources

The usual format was followed, with numbers hyperlinking to the bibliography, auto-

matically generated by the Zotero platform2. In addition to the academic and citable

documents, it is worth mentioning that websites were exploited to grasp an introduc-

tory understanding of some topics. Wikipedia3 is a good source for basic mathematical

concepts or standard notation, and is well indexed in terms of web searching. Wolfram

MathWorld4 is another exceptional and more rigorous knowledge provider. The discus-

sion Platforms on the Stack Exchange Environment5, allow users to interact, and are the

missing piece in this mosaic of internet websites for studies. All of the above websites

were used consistently, thus I judged them worth mentioning.

In addition to the information obtained from external documents, it is evident that many

2www.Zotero.org
3www.Wikipedia.org
4www.WolphramMathWorld.com
5www.StackSites.com

2
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Chapter 1. Introduction

of the methodologies and notations used in this production were possible thanks to the

great input given by my Bachelor studies.
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Chapter 2

Support Vector Machines

Support Vector Machines (often referred to as SVMs) are powerful tools for both classi-

fication and regression. In the following chapter, the classification version will be briefly

introduced. This is an adaptation of a very insightful and advanced source of information

[2].

Basic Definitions

Definition 2.1 (Euclidean Space). A Euclidean Space is a Vector Space X ⊆ Rd : d <∞

equipped with an inner product denoted as 〈x, x′〉 ∀x, x′ ∈ X 1.

Definition 2.2 (Inner Product). An operation 〈x, x′〉 inside an Euclidean Space X is an

inner product if it is an operation 〈·, ·〉 : X × X → R such that ∀a ∈ R, ∀x, x′ ∈ X :

1. Linearity

a 〈x, x′〉 = 〈ax, x′〉 (2.1)

2. Symmetry

〈x, x′〉 = 〈x′, x〉 (2.2)

1One of the main papers cited for this chapter engages in a small digression on how the notions of
Hilbert and Euclidean are interchangeable up to some point. For the sake of this production, focused on
a dataset with a limited number of features d, we refer to Euclidean space as a finite space which can
take up any dot product, and not only the canonical one for Rd

5
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3. Positive Definiteness

〈x, x〉 ≥ 0 〈x, x〉 = 0⇐⇒x = 0 (2.3)

Intuitively, an inner product is a notion of similarity between two datapoints

Definition 2.3 (Norm in Euclidean Space). For every Euclidean Space equipped with an

inner product the latter induces the existance of the norm which is defined as:

||x|| =
√
〈x, x〉⇐⇒||x||2 = 〈x, x〉

Definition 2.4 (Linearly Separable Data). Two Euclidean spaces with the same inner

product X−1,X1 ⊆ Rn are linearly separable in Rn if

∃w ∈ Rn, b ∈ R : 〈w, x〉 < b ∀ x ∈ X−1 〈w, x〉 > b ∀ x ∈ X1

Or, in other words, there is a hyperplane f(x) = 〈w, x〉+b = 0 that perfectly distinguishes

the two spaces.

Problem Definition

In a real setting, given a dataset made of the tuples of data samples and labels:

D :=

{
{xi, yi} : i ∈ {1, . . . , n} xi ∈ Rd, yi ∈ {1,−1}

}

It is possible to identify two classes defined by the value of yi∀i. SVMs can be used to

generate a solver for the problem of classifying unseen elements of this type, once properly

set up. The result will be a function ŷ = g(f(x)) such that:

f(x) > 0 =⇒ ŷ = 1 (2.4)

f(x) < 0 =⇒ ŷ = −1 (2.5)

6



Chapter 2. Support Vector Machines

Linearly separable data

Given the existance of a hyperplane distinguishing the two classes, the most robust one

will be oriented such that the distance from both sets is maximized [6]. This statement

is simply proved by the fact that it identifies a separator which will hardly suffer from

perturbations and datapoints added.

The distance between a random point x∗ and the hyperplane f(x) = 〈w, x〉+ b such that

〈w, x〉 =
∑

iwixi is:

d(x∗) =
|f(x∗)|
||w||

=
| 〈w, x∗〉+ b|
||w||

(2.6)

Considering for simplicity the sets X−1,X1, identified by the value of yi∀i, to maximize the

margin the distances from the nearest datapoints of the two classes have to be maximized.

The two are denoted as d+ at x+ and d− at x− and the margin will eventually be:

M = d+ + d−

By the fact that ∀c ∈ R f(x) = cf(x) = 0, it is possible to choose a normalization such

that f(x+) = 1 and f(x−) = −1.

We will thus have that a good classifier has for all the training points:

〈w, xi〉+ b ≥ +1 ∀xi ∈ X1 (2.7)

〈w, xi〉+ b ≤ −1 ∀xi ∈ X−1 (2.8)

Which can be seen as follows:

yif(xi)− 1 = yi(〈w, xi〉+ b)− 1 ≥ 0 ∀i (2.9)

Using Definition 2.4 in the most comfortable way possible.

In terms of margin, it will be that:

M = d+ + d− =
|1|
||w||

+
| − 1|
||w||

=
2

||w||
(2.10)

7
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For these reasons, the solution is identified by the following constrained optimization

problem of a quadratic function2[2].

min
w∈Rd

||w||2 s.t. yi(f(xi))− 1 ≥ 0∀i (2.11)

Lagrangian Formulation, Dual, KKT Conditions

Being that the equations above correspond to a constrained optimization problem, we can

formulate a solution exploiting the Lagrangian equivalent of it. For sake of completeness,

the main theorems to extract this link are reported below. A rigorous approach is found

in Appendix A of [3]

Theorem 2.1 (Lagrangian Sufficiency). Given a function f : X ⊆ Rd → R, a minimiza-

tion problem minx f(x) subject to constraints h(xi) ≥ b and a Lagrangian function:

L(x, λ) = f(x) + 〈λ, (b− h(x))〉 (2.12)

Where x ∈ X ⊆ Rd, λ ∈ Rn, λi ≥ 0∀i, h : X → R.

If x∗ ∈ X and λ∗ ∈ Rd are such that:

x∗ = argmin
X
L(x, λ∗) h(x∗) ≥ b =⇒ x∗ = argmin

X
f(x) (2.13)

Proof

min
x∈X , h(x)≥b

f(x) = min
x∈X , h(x)≥b

f(x) + 〈λ∗, (b− h(x))〉 (2.14)

≥ min
x∈X

f(x) + 〈λ∗, (b− h(x))〉 (2.15)

= f(x∗) + 〈λ∗, (h(x∗)− b)〉 (2.16)

= f(x∗) (2.17)

2The shift from norm to squared norm is implemented to yield a unique and stable solution. The
trade-off is that it will be more robust.

8
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In order, 2.14 stems from the fact that we are adding 0 from the following implications

by arguments in [5]

• if h(xi) > bi the constraint is inactive and λ∗ can be set to 0

• if h(xi) = bi0 then the item is 0. Being that the solution is on the boundary, we will

also have that the gradients are in the same direction, otherwise we could decrease

f and see b− h(x) increasing above 0. This can be seen as ∇f = ∇((b− h(x)))

2.15 is verified since we take away a constraint and thus explore new possible values

which could be smaller. 2.16 Holds by what we assumed at the beginning of the theorem.

Eventually, 2.17 holds since h(x∗)− b = 0, and we claim that it is the minimum of f(x)

subject to the constraints since all the requirements hold.

In the SVM problem the Lagrangian is3:

L(w, b, λ) =
1

2
||w||2 + 〈λ, 1− y(f(w, x))〉 =

1

2
||w||2 +

∑
i

λi − 〈λ, y(f(w, x))〉 (2.18)

Minimizing with respect to w, b leads to the following conditions:

C1 =


∂L
wj

= wj −
∑

i λiyixij =⇒ wj =
∑

i λiyixij for j = 1, . . . , d

∂L
b

= −
∑

i λiyi = 0

(2.19)

3The coefficient of ||w|| is set to 1
2 to make the derivation simpler. Being a minimization the value

will not change as the function is just stretched.

9
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It is possible to replace those conditions in the formulation of L(w, b, λ) to get rid of w, b

and have a function dependent on λ only [2]. Going on in this direction:

L(w, b, λ) =
1

2
||w||2 −

∑
i

λiyi(〈w, xi〉+ b) +
∑
i

λi (2.20)

=
1

2
||w||2 −

∑
i

λiyi 〈w, xi〉 −
∑
i

λiyib+
∑
i

λi (2.21)

=
1

2
||w||2 − 〈

∑
i

λiyixi, w〉 − b
∑
i

λiyi +
∑
i

λi (2.22)

=
1

2
||w||2 − ||w||2 − 0 +

∑
i

λi = −1

2
||w||2 +

∑
i

λi (2.23)

=
∑
i

λi −
1

2

∑
i

∑
j

λiλjyiyj 〈xi, xj〉 = L′(λ) (2.24)

L′(λ) is said to be the dual4 of L(w, b, λ), with the former being a minimization and the

latter being maximized subject to the conditions λi ≥ 0∀i,
∑

i λiyi = 0. This last formu-

lation is useful since the training datapoints are expressed in terms of inner products only.

Indeed, if we set φ(w, b) := minw,b maxλi≥0 L(w, b, λ) and ψ(w, b) := maxλi≥0 minw,b L(w, b, λ),

it is easy to see that φ(w, b) is the setup used in the primal approach and ψ(w, b) in the

dual one. In a general setting it holds that max min(f) ≤ min max(f), but in this case

they will exactly coincide, since it is a convex problem, as claimed in [7].

A more general formulation is proposed in the following theorem.

Theorem 2.2 (Karush - Khun - Tucker (KTT) conditions). The minimization solution

to the above stated problem minx,λ L(x, λ) is obtained by solving:

∂L
∂xj

= 0 for j = 1, . . . , d (2.25)

∂L
∂b

= 0 (2.26)

λi ≥ 0 for i = 1, . . . , n (2.27)

h(xi)− b ≥ 0 for i = 1, . . . , n (2.28)

λi(b− h(xi)) = 0 for i = 1, . . . , n (2.29)

4Here equality is not exact, as explained later, the derivation is correct but some constraints were
enforced.

10
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Non Linearly Separable Data

Assuming that in the given dimensionality d of the dataset there is no linear separation of

the classes, it is possible to show that SVM can be slightly modified to return a meaningful

solution.

Slack Variables

If the datapoints are not efficiently distinguishable by a straight line that maximizes

the margin, it is possible to introduce values ξi ≥ 0 that allow for margin misclassifi-

cation. The literature refers to them as slack variables. Given that the classification

is implemented by sgn(f(x)), setting the new constraints as yi(f(xi)) − 1 + ξi ≥ 0 a

misclassification will hold whenever ξi > 1, or no contribution will be added5. A new cost

function is thus introduced in the Lagrangian which becomes:

L(w, b, ξ, λ) =
1

2
||w||2 + C

∑
i

ξi −
∑
i

λi

(
yi(f(xi))− 1 + ξi

)
−
∑
i

ηiξi (2.30)

Where the penalty is C
∑

i(ξi)
k, with a relative cost of C, and k = 1 which guarantees

that the problem is a quadratic programming problem [2]. The lagrangian variables ηi

are introduced to enforce the further constraint that ξi ≥ 0∀i. Previous derivatives are

the same, and to those we add:

∂L
∂ξi

= C − λi − ηi = 0⇐⇒ηi = C − λi =⇒ C − λi ≥ 0 by ηi ≥ 0 (2.31)

5By ξi ≥ 0 if ξi ≤ 1 the classification of the algorithm is still in line with yi. If ξi > 1 the classification
is incorrect and thus a mistake is made.

11
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Expanding the result with the previous tricks and what was added in this new primal

form:

L′(λ) =
∑
i

λi −
1

2

∑
i

∑
j

λiλjyiyj 〈xi, xj〉 −
∑
i

λiηi + C
∑
i

ξi −
∑
i

ηiξi (2.32)

=
∑
i

λi −
1

2

∑
i

∑
j

λiλjyiyj 〈xi, xj〉 −
∑
i

λiηi + C
∑
i

ξi −
∑
i

(C − λi)ξi (2.33)

=
∑
i

λi −
1

2

∑
i

∑
j

λiλjyiyj 〈xi, xj〉 (2.34)

To maximize with constraints: 0 ≤ λi ≤ C∑
i λiyi = 0

(2.35)

Where the first condition summarizes the constraint on λi and the last implication of

equation 2.31.

Feature Mapping through Kernels

In addition to margin misclassification, it could be beneficial to map the data-points to a

higher space. Ideally, there is always a dimension where, if the inputs are mapped, then

there is a hyperplane perfectly distinguishing the classes. This is proven by a theorem

from Cover[4].

However, mapping to a higher dimension is not always beneficial. As the number of

features increases, the time required to work out the calculations explodes. For these

reasons, it is necessary to exploit specific feature mapping functions that allow datapoints

in Rd to be mapped to a bigger space, together with kernel functions that simplify the

notion of inner product in that space for that particular case. The easiest example of

kernel is the quick formula a2 +2ab+b2 for the calculation of (a+b)2. A kernel is nothing

but a shortcut for calculations.

Definition 2.5 (Feature Mapping). A feature mapping is a function φ : X ⊆ Rd → RD

where usually D >> d

12
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Definition 2.6 (Kernel Function). A kernel function is a mapping such that the inner

product of a higher dimensional feature mapping φ is worked out efficiently. Namely:

K(xi, xj) = 〈φ(xi), φ(xj)〉 (2.36)

It is not needed to know what kind of operations the feature mapping actually computes

as the kernel returns an answer by implicitly using it.

Mapping to a higher dimensional space is beneficial. This is easy to infer thanks to the

following theorem. In a nutshell, it proves that, with high probability, if the dimension

is high enough, a set of datapoints is linearly separable.

The original statement was formulated in [4], while an easy proof is provided in [9] and

reported in an straightforward case to give an idea.

Theorem 2.3 (Cover’s Theorem). Given p + 1 points labelled with two classes in Rd

arbitrarily the number of partitions that are linearly separable by a d − 1 dimensional

plane in Rd are:

C(p, d) = 2
d−1∑
i=0

(
p− 1

i

)
(2.37)

And if p = d this means that all possible partitions can be split with a suitable hyperplane.

Proof (by induction)

The number of such partitions is denoted by C(p, d). Considering C(p, d) and an added

point there are two cases:

1. A separating plane passes through the new point. It suffices to infinitesimally shift it

away to make the classes separable. It could belong to either one of the two classes

depending on the shift.

2. No separating plane passes through the point, returning a single new feasible parti-

tion for this new set of points

Thus, when evaluating C(p+ 1, d) it will be that solution 1 is counted twice and solution

2 is counted once. This is achieved by considering C(p, d) for 2 since nothing will have

changed in terms of feasible splits, and C(p, d− 1) for 1 since there is a constraint on the

13
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plane passing through the introduced datapoint. This identifies the recursion:

C(p+ 1, d) = C(p, d) + C(p, d− 1) (2.38)

= C(p− 1, d) + 2C(p− 1, d− 1) + C(p− 1, d− 2) (2.39)

=

(
p

0

)
C(1, d) +

(
p

1

)
C(1, d− 1) + . . .

(
p

p

)
C(1, d− p) (2.40)

= 2
d−1∑
i=0

(
p

i

)
(2.41)

Where in 2.40 the recursion was carried out until all terms were exhausted, and in 2.41 the

properties C(1, k) = 0 if k < 1 and C(1, k) = 2 if k ≥ 1 allow for the final representation,

in which i increases until C(1, d− p) is meaningful.

This relation, by substituting p + 1 = p′ and considering the easy case in which p′ = d

states that the number of feasible partitions is:

C(p′, d) = 2
d−1∑
i=0

(
p′ − 1

i

)
p′=d
===⇒ 2

p′−1∑
i=0

(
p′ − 1

i

) ∑n
i=0 (n

i)=2n

========⇒ 2(2p′−1) = 2p′ (2.42)

And, given p′ points the exact number of binary partitions is 2p′, making all of them

linearly separable.

This theorem proves that every binary dataset is linearly separable at a dimension equal

to its size. This is rarely done for many reasons, including the following:

1. Computationally explosive as n→∞

2. φ is not known in advance

3. Most of all, d,D are known, but which specific kernel K to use to map d → D is

not.

A more efficient path, pursued due to its great flexibility, is to exploit a Radial Basis

Function (RBF) kernel.

Definition 2.7 (RBF kernel). Given a γ =
1

2σ2
spread parameter, an RBF kernel is a

function:

KRBF (x, x′) := e−γ||x−x
′||2 (2.43)

14
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The potential of such a kernel is harnessed by its peculiarity of mapping to a feature map

of infinite dimension.

Theorem 2.4 (RBF is an infinite dimensional kernel). KRBF is a kernel for a feature

mapping

φ : X ⊆ Rd → R∞

Proof

KRBF (x, x′) = e−γ||x−x
′||2 = exp

[
− γ
(
||x||2 + ||x′||2 − 2 〈x, x′〉

)]
(2.44)

= kost · exp
[
2γ 〈x, x′〉

]
with kost := exp(−γ(||x||2 − ||x′||2) (2.45)

= kost

i=2γ∏
i=1

exp

[
〈x, x′〉

]
and by ef(x) =

∞∑
n=0

f(x)n

n!
(2.46)

= kost

i=2γ∏
i=1

∞∑
n=0

〈x, x′〉n

n!
= kost

i=2γ∏
i=1

∞∑
n=0

KPOLY (n)(x, x
′)

n!
(2.47)

Where the last identity is a valid kernel since sums and products of kernels are indeed

kernels (see this lecture for a proof[8], not reported here). Thus RBF is a valid kernel

mapping to an infinite dimension the datapoints in a finite (& efficient) time.

The potential of such an infinite dimensional kernel is reached once a value of γ is validated

and an infinite dimensional mapping is made. As shown in Theorem 2.3, all the possible

partitions are separable for p points in p dimensions. As a consequence, increasing the

dimension to ∞, they will again be separable, as the amount of information that can be

stored along the dimensions is infinitely higher.

For high values of γ, the risk is over-fitting the training set, as there will always be a

separation, since we are in an ∞ feature space. Enforcing a high γ might not generalize

well on the test set. A trade-off must be established for the solution to be elastic enough.

The similarity measure induced by a kernel can be directly exploited in a SVM, especially

when data is not linearly separable, as explained in [2] and below.
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Chapter 2. Support Vector Machines

All methods together

By noticing that in the dual formulation the inner product between each pair of datapoints

is used, it could be useful to pre-compute and store these values inside a matrix.

Definition 2.8 (Gram Matrix in an SVM setting). Given {x1, . . . , xn} datapoints and

a notion of inner product K(xi, xj), a Gram Matrix G is the matrix defined by all the

possible combinations of inner products:

G =

{
K(xi, xj)

}i,j=n
i,j=1

= 〈φ(xi), φ(xj)〉 ∀i, j (2.48)

The properties of G are out of the scope of an SVM implementation such as the one of

this document.

After having chosen a Kernel K and precomputed G, the final dual formulation for an

SVM classification algorithm is of the form:

max
λ∈Rn

(∑
i

λi −
1

2

∑
i

∑
j

λiλjyiyjK(xi, xj)

)
(2.49)

s.t.


0 ≤ λi ≤ C∑

i λiyi = λTy = 0

K(xi, xj) = 〈φ(xi), φ(xj)〉 for φ : X → RD

(2.50)

Or the corresponding KKT conditions.

The methods to solve these kinds of constrained optimization problems are many, and

are out of the scope of this introductory explanation of the theory behind a Support

Vector Machine. Section 5 of [2] explores the topic and provides insights on some of the

approaches.

Further features, observations, and advancements to the technique have been explored

in [2] and the works cited therein, but are usually not part of an introductory lecture on

the topic like this one.
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Chapter 3

Value of Information

This chapter approaches Value of Information (often referred to as VoI ) with one of the

many frameworks implemented in literature. It is a brief introduction focused on [1],

detailing for a less experienced audience part of its results, and also aiming to provide

enough theoretical knowledge to understand the usage in a real setting. Other approaches

to tackle this topic are also outlined in the related literature section of [1]. To avoid

confusion, the same notation is used, though very detailed and not introductory as the

explanation.

Probabilistic Sensitivity Measures

Useful definitions to formalize the notions that follow is given below.

Definition 3.1 (σ algebra). Given a set X, a sigma algebra F is a collection of subsets

Xi ⊆ X such that:

• X ∈ F

• Xi ∈ F⇐⇒XC
i ∈ F

• if Xn is a sequence =⇒
⋃d
i=1Xi ∈ F

Definition 3.2 (Borel σ algebra). A Borel σ algebra is a sigma algebra generated by

Open sets, or equivalently by closed sets.

17



Chapter 3. Value of Information

These definitions are foundational elements about the notion of collection of events to

which probabilities can be assigned.

The framework takes into account a set of variables X1 . . . Xd, Y ∈ Rd+1 on a measure

space (Ω,F ,P), where:

• Ω is a probability space where the events represented by Xi∀i take place

• F is a Borel σ algebra

• P is the set of probability measures on (Ω,F), or also a reference probability mea-

sure.

In this environment, a piece of information of the form g(X1 . . . Xd) = X such that

g : Rd → Rk k ≤ d is given, and can be exploited to infer conclusions about the target

denoted by Y . The aim of Value of Information is to understand the usefulness of the

action consisting in gathering this knowledge, and conclude if the costs and benefit are

worth the time or investment. In more straightforward terms, the issue to tackle is:

If I spend c to gather X as information, will I end up knowing more than c

relative to Y , holding a positive knowledge profit in terms of approximating

my model of Y ?

In order to answer this question rigorously, objects such as the probability measure P,

the cumulative distribution function F and the density f are defined for both X & Y

and conditionals in the subscripts.

To formalize the notion of added value of knowledge, a separation measure between

probability measures, which corresponds to a distance, is introduced. The separation

measure ζ follows the definition of all distances, and is assumed to take place in the space

of P .

Definition 3.3 (Separation or Distance measure ζ). A function ζ : P × P → R such

that:

• ζ(P,Q) ≥ 0 ∀P,Q

• ζ(P,Q) = 0⇐⇒P = Q

Where the two items are required properties of any distance, namely being always positive,

and equal to zero when the two elements coincide.
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Chapter 3. Value of Information

Given a tool to evaluate the amount of difference between two distributions, the following

definition is directly implied.

Definition 3.4 (Probabilistic Sensitivity Measure ξ). Given X knowledge about Y with

a separation measure ζ the probabilistic sensitivity measure is:

ξYX = E[ζ(PY ,PY |X)] (3.1)

Which can be seen as exactly the average difference in knowing X rather than not having

X when assessing Y

Basic Probability Theory properties have useful applications in this setting, as shown

below with an example theorem.

Theorem 3.1 (Nullity implies Independence). A null Probabilistic Sensitivity Measure

implies that the two distributions are independent, namely:

ξYX = 0 =⇒ X ⊥ Y (3.2)

Proof

By definition ξYX is the expected value of a separation measure. By definition it is also

the case that ζ(PY ,PY |X) ≥ 0 since it has the properties of a distance. In addition to

that, the distance will be zero if and only if the distributions are equal. This means

that the conditionality on X does not influence Y , which is an equivalent definition of

independence. Mathematically:

ζ(PY ,PY |X) :=

≥ 0 ∀X, Y

= 0⇐⇒Y = Y |X =⇒ Y ∼ Y |X =⇒ Y ⊥ X

(3.3)

=⇒ξYX = E[ζ(PY ,PY |X)] :=

≥ 0 ∀X, Y

= 0⇐⇒ζ(PY ,PY |X) = 0 =⇒ Y ⊥ X

(3.4)

Useful examples to prove where these methods emerge in many sensitivity measures are

thoroughly discussed in [1].
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Chapter 3. Value of Information

Value of Information through a Probabilistic Sensitiv-

ity Measure

After having pointed out the basic tools, a more realistic setting needs further elements

to construe a complete landscape and eventually observe the appearance of Value of

Information.

Definition 3.5 (Report a). In a setting such that an analyst has to infer conclusions

from a dataset, a report is a quantity lying in a suitable space a ∈ A which is a thoughtful

guess of a characteristic θY of Y .

Definition 3.6 (Scoring Rule S). A scoring rule is a function that evaluates the fitness of

the report and the actual realization of the target. In other words there is S : R×A → R

which takes a value S(y, a) when a is reported and Y = y.

Being that there are conditional distributions Y |X and that the results have to be observ-

able the added requirements are:

• Existance of conditional expectations in terms of X

∀i, {Xi1, . . . Xik}∃E[S(Y, a)|X], max
a∈A

E[S(Y, a)|X] (3.5)

• Existance of Expectation in terms of Y ⊆ R and a ∈ A

∀Y ⊆ R∃E[S(Y, a)], max
a∈A

E[S(Y, a)] where one of the maximizers is a = θY (3.6)

In this case S is said to be proper and strictly proper in case of a unique maximizer.

Applying the notions outlined above, it is possible to introduce Information Value in the

standard way.

Definition 3.7 (Information Value ε). Given a target Y , knowledge X and a scoring rule

S the information value is:

εSX = E
[

max
a∈A

E[S(Y, a)|X]

]
−max

a∈A
E[S(Y, a)] (3.7)
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Which can be seen as the greatest score improvement achieved by learning X [1] in terms

of best reports.

Moreover, to ensure that the first term always exists, it has to be the case that the function

χ→ E[S(Y, a)|X = χ] is continuous in χ∀a ∈ A

Assuming that

Y ∼ P : S(P, a) := E[S(Y, a)] (3.8)

Y |X ∼ Q : S(Q, a) := E[S(Y, a)|X] (3.9)

It is then possible to evalute the score of a report in terms of a probability distribution

and not only a random variable, defining them as equal to the expectation of the variable

itself. Further, taking as example P, the set of reports a ∈ A that maximizes S(P, a) is

denoted as1 aSP .

The equivalence of Probabilistic Sensitivity Measures ξ and Information Values ε arises

exactly thanks to equations 3.8 and 3.9, when a proper Scoring rule S is chosen, as the

following theorem outlines.

Theorem 3.2 (Correspondence of Information Value and Probabilistic Sensitivity Mea-

sure). εSX with S proper is a Probabilistic Sensitivity Measure ξYX for Y with separation

measure:

ζS(P,Q) = S(Q, aSQ)− S(Q, aSQ) (3.10)

Proof

εSX = E
[

max
a∈A

E[S(Y, a)|X]

]
−max

a∈A
E[S(Y, a)] (3.11)

= E
[
E[S(Y, aSQ)|X]

]
− E[S(Y, aSP)] (3.12)

= E
[
E[S(Y, aSQ)|X]

]
− E

[
E[S(Y, aSP)|X]

]
(3.13)

= E
[
E[S(Y, aSQ)− S(Y, aSP)|X]

]
(3.14)

= E[S(Q, aSQ)− S(Q, aSP)] (3.15)

1The same reasoning leads to the notation for aSQ
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In order, at equation 3.12 the definition just introduced is used, and it can be so thanks

to the fact that S is proper. At equation 3.13 the Law of Iterated Expectation is ex-

ploited (i.e.∀X, Y E[E[X|Y ]] = E[X]), at equation 3.14 linearity of expectation (i.e.

∀X, Y E[X] +E[Y ] = E[X + Y ] implies the result, and eventually at equation 3.15 it is

the case that:

• Q appears in both terms in the Scoring function since it is Y |X

• The law of iterated expectation allows for the removal of the condition on X

This last result is nothing but the definition of Probabilistic Sensitivity Measure in accor-

dance with definition 3.4. A derivation is briefly reported below:

εSX = E[S(Q, aSQ)−S(Q, aSP)] = E[ζ(PY ,PY |X)] = ξYX : ζ(PY ,PY |X) = S(Q, aSQ)−S(Q, aSP)

(3.16)

Thanks to these derivations, further specifications reported in [1], and the literature

mentioned inside, it is thus possible to evaluate the actual value of a piece of information

when the purpose is understanding a target variable.

A proper analysis of an algorithm and its functioning should lead to the determination

and design of a structure that returns such a result.
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Chapter 4

Unifying the concepts: SVM and

VoI

This chapter deals with a baseline attempt to calculate the Value of Information stored

in a Support Vector Machine. While exploring the topic, many challenges arose, with

the effect of slowing down the process. For these reasons, the common framework and

some observations concerning how the classifier behaves are reported, aiming to establish

the basis for a further improvement in the future. Nevertheless, the topics introduced

in the previous two chapters are made coexistent, both theoretically and under a coding

perspective. What is missing is a fine tuning of the whole system, to adjust it in the best

way possible.

Given that it will be an analysis of the issues encountered, many aspects might not merge

together, and will resemble independent digressions.

Setting a Common Ground

Once trained, an SVM classifier can be seen as a system that is fed with a test dataset

and returns an answer, which is nothing but an estimated distribution of the result.

Analytically, if we have a function fSVM and data sets

{
Xtrain, Xtest, Ytrain, Ytest

}
, in

first place fSVM is oriented in terms of

{
Xtrain, Ytrain

}
. Secondly, the function will be
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Chapter 4. Unifying the concepts: SVM and VoI

able to estimate how Xtest determines a tentative target distribution of Ytest. Namely:

fSVM(Xtest) = Ŷtest =⇒ answer is ∼ Ŷtest, reality is ∼ Ytest (4.1)

In case of a multidimensional dataset (i.e. xi ∈ Rd), it could happen that some dimen-

sions are more important than others or, in other words, that some directions have more

weight in the classifier’s choice for a new sample. In the framework of a simple SVM, the

target variable yi for each sample xi is a binary number, either positive or negative. An

estimation of its value ŷ will be the realization of what was presented in chapter two as

the characteristic θY and merging all terms in a vector results in Ŷtest.

In order to save resources, it could be beneficial to understand beforehand which direc-

tions store more information, and thus find the most important influencers in the result.

This could be implemented by providing different SVM classifiers with different pieces

of information g(Xtrain) and h(Xtrain), so to evaluate how much they separate in the

estimated distribution with a suitable distance measure ζ(Yg, Yh). If the information pro-

vided obscured some dimensions, it would be possible to assess the impact of a direction

in determining the final result. When not presented in training, the result is likely to be

different, leading to a different classifier.

A Theoretical Simplified Attempt

In order to understand how the whole system could work together, it was assumed that

one classifier named fSVM was trained on the whole dataset, and that another one, named

fsvm knew about fewer dimensions. The determination of their difference is the key point.

The easiest case would be that of a two dimensional dataset (d = 2) with n samples, such

that one dimension is informative and the other one is not. From this moment onwards,

this will be referred to as Rectangular Dataset. An image for n = 10000 is shown below:
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Figure 4.1: Rectangular Dataset

The Diagonal Dataset and the Circular Dataset are two further invented cases:

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(a) Diagonal Dataset
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(b) Circular Dataset

Figure 4.2: Sample Datasets for the first experiments

In the first case, a well functioning Value of Information analysis would suggest that

only the dimension denoted as X1 is informative, as X2 is uniform in its shape, and the

decision boundary could be evaluted for any sample as:

∀xi = (x1, x2) dec(x1, x2) = dec(x1) ⊥ x2 & dec(x1) =


if x1 ≤

1

2
=⇒ yi = 0

else yi = 1

(4.2)

To stabilize the calculation, it is possible to consider pieces (or better, strips) of the

dataset for a single dimension (e.g. d = 1 and X1a = {xi : x1 ∈ [0, 0.1]} and so on).

With these, a subclassifier fsvm is trained. Performances of the whole classifier fSVM
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and fsvm on the strip are compared. Averaging on all partitions of a dimension returns

a result, which is a weighed comparison of all regions of data for an omniscient SVM,

and a set of SVMs that are aware of partitions only. To even strengthen the evaluation,

averages across every dimension will be observed for many different numbers of samples,

to see how the values behave as n → ∞. This said, an informal attempt would consist

in the following:

Algorithm 1 VoI evaluation with strips of data

1: initialize listdatasetsize
2: for Each datasetsize in listdatasetsize do:
3: recover Xtrain, Ytrain, Xtest, Ytest with size datasetsize in total
4: fSVM = train(SVMempty, Xtrain, Ytrain)
5: V oI = [] a matrix with len(datasetsize) columns and a row per dimension
6: for all dimensions do:
7: create set of non overlapping substrips for Train and Test Data identified by

the ”sub” prefix
8: n = nsubstrips
9: V oIith dimension = 0

10: for each substrip do
11: fsvm = train(SVMempty, Xsubtrain, Ysubtrain)
12: errors = fSVM(Xsubtest, Ysubtest)
13: suberrors = fsvm(Xsubtest, Ysubtest)
14: V oIith dimension+ = errors− suberrors
15: end for

16: append
V oIith dimension

n
to V oI

17: end for
18: end for
19: Compare trends for different dimensions as n increases (a (n, V oI) plot)
20: return V oI list for each value of n (a matrix)

While this method has some evident flaws and needs theoretical adjustment, it proved

to be a good starting point to evaluate imminent criticalities in the realization of the

project. Some of them will be explained in the following sections.

Concisely, for each sample size, firstly a classifier with complete knowledge is trained. In

second place, the information set is split into many non-overlapping subsets along one

of the dimensions, on which a different classifier is trained. This is done to compare the

performance on the inner portion. These scores are gathered and averaged across one

dimension, and appended to a list of information values for each direction that is the

result of the algorithm. Ideally, as the inside classifier has specific knowledge, one would
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expect that, as n→∞, the points will be enough to sufficiently train in both cases, and

that the subclassifiers will perform better on the partitioned test set. The reasons for

this claim can be summed up in the following points:

• Saturation

Especially for simple datasets such as the one considered, it is expected that there

will be a sufficient number of samples after which other points do not contribute

to improving the classifier’s training. If this number of points is reached in the

subtrain dataset, then both classifiers will have saturated information and perform

at their best. This ensures that fSVM has no advantage on fsvm when considering

the sample size used.

• Overhead information of fSVM

When a classifier knows about a specific strip, it is perfectly trained to respond to

queries similar to that specific region. On the contrary, an omniscient classifier has

wider and less specific knowledge, as it was trained on different information not

necessarily needed.

Substrips Existance Conditions and Exceptions

One of the core problems is the abscence of a sufficiently big subtrain and subtest portion

of data to achieve a meaningful result. Assuming that the information available is suffi-

ciently big (i.e. n→∞) may not be enough. For instance, if data is generated randomly,

even though the amount tends to infinity, there could be empty regions which are just

too small, or with a single label in the train set. This happens if the condition of the

split returns either zero datapoints or uniformly labeled datapoints. Thus, it becomes

problematic to decide how to make the split as to make it function in each possible case,

and simultaneously to avoid corner cases. This has been hypothetically achieved with

the following choices:

• The number of strips, also referred to as bins in the code, depends on the total size

but is limited
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• Given that the dataset is enclosed in a square with vertices [(0, 0), (1, 0), (0, 1), (1, 1)],

the dimensions will range from 0 to 1 and the bins will consider equally lengthed

rectangles that capture all the non-target dimensions and a
1

nsubstrips
length side of

the target one.

• In the event that the train set has only one label, meaning that the subclassifier

cannot train itself, the suberrors will be the number of errors that an hypothetical

classifier always answering the label would make in the test set. In other words:

if Ysubtrain = [1, . . . , 1] =⇒ Ŷsubtest = [1, . . . , 1] (4.3)

=⇒suberrors =
n′∑
i=1

(1− ysubtest i)(mod2) i.e. the number of different labels (4.4)

Thanks to these exception handlings, and a sufficiently large dataset, in most cases it is

possible to evaluate the sought quantity with uniformly sized substrips. This leads to

less granularity in the number of partitions, but prevents partitions from being so small

that no datapoints belong to them.

SVMs’ Instability with small Datasets

Providing the algorithm with a thoughtful partition of data satisfies the sufficiency con-

ditions of having information to work on. What comes after solving this issue can be

directly linked to algorithm features that are used to train the classifier, which is not

perfect and is subject to different weaknesses, and the way in which its parameters are

tuned. Without going too deep inside which parameters a Support Vector Machine can

have, Sklearn’s documentation [10] mainly focuses on the kernel, gamma γ and the cost

c. For the easy and explorative case, the cost was set to c = 1 and the kernel to RBF,

which was introduced in definition 2.7, making the last parameter set to the default value

of γ =
1

nfeaturesσ2
X

, where X is the train set.

In terms of the parameters’ effect, it was already proved that a RBF kernel projects the

datapoints in an infinitely dimensional space, where in particular the γ value determines

the inverse of the influence radius of a single training point on the others, or more easily
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how narrowly the distance bell of the infinite dimensional Gaussian curve is wrapped

around the single datapoint. In the same chapter, from equation 2.30 onwards, the cost

parameter (slack variable) is introduced in the perspective. Briefly, it is equivalent to

the utility loss in misclassifying one datapoint of the train set, which allows for greater

flexibility in the margin computation.

Although this is only one of the infinitely many available configurations, that ought to

be explored after this single starting experiment, the expectations were very distant from

the result obtained. More in detail, a strange instability in fsvm is found, in a rather easy

case such as the rectangular dataset.

Thanks to the way in which the rectangular dataset is generated, when strips are extracted

along the dimension denoted as X1, they are homogeneously labeled apart from the one

that includes the decision boundary ofX1 =
1

2
, while sampling partitions alongX2 returns

homogeneously shaped subdatasets. Graphs are shown below for datasetsize = 10000,

and have been proportionally adjusted to make them more user friendly, so the axis

domains need to be observed1.

0.490 0.495 0.500 0.505 0.510
0.0

0.2

0.4

0.6

0.8

1.0

(a) Xsubtrain at dimension X1
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(b) Xsubtrain at dimension X2

Figure 4.3: Training strips in both dimensions

The test set is obviously similar but less populated by points.

In a setting such as this one, given the potential of a powerful machine such as the SVM-

RBF kernel, our expectation was that at least the subclassifier would have been as good

as the complete classifier. On the contrary, what we found is that, when training is on a

1The other strips of X1 are corner cases with only one label, so the special treatment of the previous
section is used.
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strip, and the dimensions are stretched2, the subclassifier performs worse making a split

along X1, learning a decision boundary which is not at all straight, as it can be noticed

in the following images.
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(b) fsvm performance on test

Figure 4.4: Dimension X1
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Figure 4.5: Dimension X2

fSVM errors fsvm errors test size
X1 25 102 660
X2 2 0 639

Table 4.1: Dimensions/ Sizes matrix

The reasons for this strange behavior, with a classifier that is considered very powerful

and flexible, especially with an infinite dimensional kernel, are yet to be explored. This

confusion when domains are unbalanced could definitely be a factor to take into account,

2As in this case in which the subtraining dataset is no longer a square but a rectangle
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but at the same time normalizing the dimensions would lead to losing the meaning of

evaluating the strip as is, and adjust fsvm with a subdataset which has the same domain

of its parent.

In addition to that, the best practice in a Machine Learning setting consists in attempt-

ing any operation with many different parameter combinations, to validate the mix that

returns the best experimental result, and this is likely to be done as well in further explo-

rations. It was agreed to allocate more time to study further the criticalities encountered.
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Chapter 5

Conclusion

This last chapter gathers briefly and narratively what was reported in this document and

attempts to provide the reader with an overview of how the project can be improved.

Summary

After an introduction to the topic and its methodology, the two main portions are a

rigorous, publication-based first lecture about the topics of Support Vector Machines and

Value of Information.

The former, a very famous classification1 algorithm, is theoretically formulated, with di-

gressions on tangent mathematical theorems and methods that support its strength and

provide knowledge about its functioning. Being a very broad topic, many aspects are

missing for sake of simplicity, among which efficient solving methods that are worth a

dedicated document. Nevertheless, the advantage of programming languages is that this

is done automatically and thus it can be avoided during a first experience.

The latter is a famous concept in many fields, ranging from physics to economics, ap-

proached with many different methods. One of these frameworks is proposed and ex-

plained.

Eventually, a procedure to extract an information measure from a Support Vector Ma-

1And Regression, but not in the scope of this specific explanation
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chine is outlined, together with its challenges, and an interesting case in which such a

powerful algorithm fails unexpectedly.

Current Concerns, Limitations, and Further Enhance-

ments

Key points for a successful outcome will depend mostly on envisioning a meaningful

procedure. This will consist in many adjustment steps that will also depend on what

is found. First of all, a more rigorous workflow and design has to be attached to the

current method. This will ensure a formulation consistent with the Value of Information.

It is noticeable that a linear cost function of the errors might not be a correct distance

measure between the two estimated distributions, or might at least need a proof to satisfy

the sufficient conditions for that. It was chosen mainly to explore the problem in a directly

observable way.

Secondly, as underlined in the prior chapter, parameter validation is fundamental to

achieve a performance which is at least optimal in the range of parameters attempted.

Again, this was not done due to the initial phase of the study.

Lastly, the instability that the solver has in narrow environments is to be understood and

solved. Without a more precise subclassifier, which is to be expected given the specific

knowledge, it is very difficult to assess the information stored in a dimension. This

could imply that adjustments to parameters, transformations and further considerations

might occur, together with a stronger literature analysis to identify if this was dealt with

before.

This line of action is likely to require trial and error, formal study of the topics, and

eventually time. In the event that the expected results were achieved it would lead to the

creation of a tool that evaluates how SVM classifies from a different perspective, more

oriented towards the final performance on a real dataset. This is a pivotal aspect of any

application in the industry, as the final result is what drives the profit and ensures the

sought success.
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