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Abstract

Statistical Physics can be seen as a set of theoretical results and methods to describe and tackle the
computational hurdles of large inference problems. Building on the great contributions from the ther-
modynamics and statistical mechanics worlds, one can show that the same limiting properties apply for
models spurring out of the two fields into computer science, physics, and machine learning. Such a for-
malism allows to draw similarities of solutions across different questions.
The document is a redaction of lecture notes from the homonymous PhD course offered at École Poly-
technique Fédérale de Lausanne by Professors Krzakala Florent and Zdeborová Lenka [KZ21a]. While it
mostly follows the videos and the lecture notes [KZ21b], it gives a different (less experienced, but self
developed) structure, which is the result of autonomous understanding of the concepts explained.

Disclaimer 1 The document is subject to major updates. There are 50 TODO sections with potential
expansions or missing proofs!

Disclaimer 2 Chapters are in the order of teaching. Images are entirely taken from the lectures, and
come from different sources, please refer to the main source [KZ21a], to find the exact origins. Hopefully,
it will be fixed in future versions.
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Chapter 1

Introduction

The best theory is inspired by practice. The
best practice is inspired by theory.

Donald Knuth, 1974 Turing Award

The following lecture notes are a learning path through the course "Statistical Physics
for Optimization and Learning" offered at EPFL. As a disclaimer, they will not cover:

• practical guides to machine learning or optimization
• applications of machine learning in a scientific landscape
• deep learning

Instead, the focus will be on:

• learning a threotical statistical physics-inspired approach to machine learning and
optimization problems.

• probabilistic arguments and derivations to support claims
• exercises

References: most of the content follows the Lecture Notes for the course [KZ21b],
but also the book by M. Mezard & A. Montanari [MM09] and the manuscript by the
instructors [ZK16] are worth exploring.

In this chapter, the three main topics will be presented. Given the nature of the intro-
ductory lecture, it will be mostly informal, and built through instructive examples.

1.1 Graph Coloring

Consider the problem of building a map, where each country is assigned a color. Obvi-
ously, it is beneficial to color adjacent regions differently. We can be treat it with a well
established mathematical framework.

Definition 1.1 (Planar Graph). A planar graph is a graph that can be embedded in R2

without crossing edges.

Definition 1.2 (Graph Coloring Problem). Consider a graph with N nodes indexed by
i = 1, . . . , N . If i is connected to j then we write i ↔ j. In the Adjacency matrix
A ∈ RN × RN trivially set Aij = Aji = 1 ⇐⇒ i↔ j ∀i, j. On this graph, the aim is to
assign a color for each vertex denoted as si ∈ {1, . . . , q}, where q is the number of colors.

1



CHAPTER 1. INTRODUCTION

Figure 1.1: Map coloring

Given an adjacency matrix representing the graph, the latter is colorable if and only if:

∃s∗ : HA(s
∗) = 0 where HA(s) =

∑
i<j

Aijδsi,sj s = {si}ni=1 (1.1)

δsi,sj =

{
1 si = sj

0 otherwise
(1.2)

A very famous result, conjectured by Sir Francis Guthrie in 1852 and eventually proved
by [AH76], is informally stated below.

Theorem 1.3 (Graph Coloring Theorem). For a planar map, 4 colors are sufficient to
make all regions distinguishable.
Equivalently, 4 colors are sufficient to solve the graph coloring problem for a planar graph.
Figures 1.1 and 1.2 graphically show the equivalence of the two statements.

In this context, instead of considering planar graphs, which are well understood, we will
discuss random graphs, which come with interesting properties in the large size limit as
N → ∞.

Definition 1.4 (Random Graph). Given a set of vertices, build a random adjacency
matrix, inducing a random set of connections as:

∀i < j Aij =

1 w.p.
c

N
0 otherwise

(1.3)

In such a setting, a Statistical Physics perspective can be implemented observing that:

• N → ∞ is a thermodynamic limit
• {si}Ni=1 are Potts Spins
• HA(s) is the energy configuration of the system for an assignment (the Hamilto-

nian)
• It is possible to build a Boltzmann measure to the various assignments as:

P(s|A) = 1

ZA(β)
e−βHA(s) (1.4)

2



1.2. Recommendation Systems

Figure 1.2: Graph coloring

Figure 1.3: Recommendation matrix X

Where β =
1

T
is the inverse temperature.

1.2 Recommendation Systems

As a motivating example, there is a list of n users and m books that combined form a
matrix X of ratings. Since it is not necessarily true that everyone reads all the books it
can have empty entries (see Figure 1.3 for an example).

In such a setting, consider a function that takes a matrix U ∈ Rn × Rk, a matrix
V ∈ Rk ×Rm where k is small, and a vector ξ that introduces a randomness component
in their multiplication. Assume that the rating matrix can be estimated through f as:

Xai = f

( k∑
r=1

u∗akν
∗
ki + ξai

)
(1.5)

A low rank matrix estimation task aims to find candidates of u∗ and ν∗ to resemble X
as closely as possible, where the rank of the UV matrix is k.

3



CHAPTER 1. INTRODUCTION

Under certain randomness assumptions, the limiting setup such that: m,n → ∞, mn ∈
O(1) with k small has a best achievable error bound.

The methodology analyzed will be approximate message passing (AMP), which is optimal
for polynomial time computations. Also cases where it does not achieve the optimal error
will be considered.

In substance, all of the above will be encapsulated in a physics framework, considering
the importance and interpretation of phase transitions between states of matter adapted
to the problem.

1.3 Generalized Linear Regression

In an image classification task of cats and dogs, a computer reads an image Fµ as a
set of bits representing pixels’ colors across the image. Thus, a learning process can be
interpreted as finding a function fw such that:

fw(Fµ) = yµ yµ = ±1 (1.6)

A regression task can come with many layers of complexity. Among the most explicative
ones we find:

fw(Fµ) = w · Fµ easy linear regression

fw(Fµ) = φ(w · Fµ) generalized linear regression

fw(Fµ) = φ(L)

(
W (L)φ(L−1)(W (L−1) . . . (W (2)φ(1)(W (1)Fµ))

)
L layer neural net

Where φ are in general activation functions.
[HSW89; Cyb89; Bar93; Bar94], but the second case is useful to ligthen up the analysis.

Under randomness, two networks interacting will be analyzed:

• Teacher Network: generates a dataset F from i.i.d input vectors, and a weights
w∗. With these two, a set of labels y is generated.

• Student Network: only observes F ∈ Rn × Rp, y, without knowing w∗.

The aim of the analysis will be determining a closed formula for the best achievable gen-
eralization error in the high dimensional limit as p, n→ ∞, np ∈ O(1). Also a comparison
against empirical risk minimization will be carried out.

4



Chapter 2

A primer on Statistical Mechanics

The purpose of this chapter is to present a quick and effective overview of the statistical
mechanics concepts needed to face the course content.

2.1 The Problems

Two types of problems will be discussed:

• Sampling problems
• Minimization Problems

A minimization problem can be interpreted as the task of finding an optimal con-
figuration for a given function. Depending on the context, this could be a cost C , a
loss L , or a Hamiltonian H . In the end, they are all the same. The approach is that
of assigning a Boltzmann measure that comes with nice probabilistic properties, with a
Physical fashion. For this reason, the Hamiltonian H is preferred. To state a reference
system, some jargon needs to be introduced.

Definition 2.1 (Boltzmann Distribution notation). Given a space of configurations of
the system {s}, where s = s⃗ in some sources, and a Hamiltonian function H : {s} → R,
we denote as Boltzmann distribution:

P(s) =
1

ZN (β)
e−βH (s) (2.1)

Where ZN (β) is a normalization factor, often named Partition sum

ZN (β) =
∑
{s}

e−βH (s) (2.2)

And β = 1
T is the inverse temperature.

When computing averages with respect to this measure, they will be denoted as:

⟨·⟩β =
1

ZN (β)

∑
{s}

(·)e−βH (s) (2.3)

With these simple objects in hand, it is already possible to notice that this custom
measure has a peculiar property at the limit.

Proposition 2.2 (Low temperature minimum energy configuration convergence). As
β → ∞ ⇐⇒ T → 0 it holds that:

lim
β→∞

(
− ∂log(Zn(β))

∂β

)
= lim

β→∞

(
⟨H (s)⟩β

)
= min

{s}

{
H (s)

}
(2.4)

5



CHAPTER 2. A PRIMER ON STATISTICAL MECHANICS

Proof. First of all, it is easy to notice that:

−∂log(Zn(β))

∂β
=

1

Zn(β)

∂Zn(β)

∂β
basic derivation

= − 1

Zn(β)

∂(
∑
{s}
e−βH (s))

∂β
by Definition

= − 1

Zn(β)

∑
{s}

− H (s)e−βH (s) basic derivation

= −⟨−H (s)⟩β By Equation 2.3

= ⟨H (s)⟩β

Thus, taking the limits they are the same, and we can say that:

lim
β→∞

(
⟨H (s)⟩β

)
= lim

β→∞

(
1

Zn(β)

∑
{s}

H (s)e−βH (s)
)

A tedious derivation shows that the Boltzmann probability distribution concentrates
around the minimum for β → ∞:

lim
β→∞

1

Zn(β)
e−βH (s) = lim

β→∞

e−βH (s)∑
{q}
e−βH (q)

= lim
β→∞

e−βH (s)∑
{q,q ̸=s∗}

e−βH (q) + e−βH (s∗) where s∗ = min
{s}

H (s)

= lim
β→∞

e−βH (s)

e−βH (s∗)

e−βH (s∗)

e−βH (s∗) +

∑
{q,q̸=s∗}

e−βH (q)

e−βH (s∗)

= lim
β→∞

e−β(H (s)−H (s∗))

1 +
∑

{q,q ̸=s∗}
e−β(H (q)−H (s∗))

=

{
1 if s = s∗

0 otherwise

Where all of the above steps are just algebra tricks.
Thus, the expected value with respect to the Boltzmann distribution of the Hamiltonian
concentrates at its minimum value in the β → ∞ limit.

lim
β→∞

(
⟨H (s)⟩β

)
= min

{s}

{
H (s)

}
(2.5)

For this reason, taking low temperature limits concentrates the distribution of energy
configurations at the minimum possible. Clearly this is of pivotal importance for an op-
timization problem, but the concentration properties have not been completely uncovered
yet. In later sections, more will be added.

A Sampling problem appears whenever a generative model P(X) is to be inferred. The
easiest setting is simple bayes estimation. Assume that an unknown variable X generates
a variable Y . Having access to Y , it is possible to estimate the posterior of X as:

P(X | Y ) =
P(Y | X)P(X)

Z
=
elog(P(Y |X)P(X))

Z
(2.6)

6



2.2. Curie-Weiss Model

Where it is possible to set H (Y = y) = log(P(Y | X)P(X)) and apply the statistical
mechanics framework with a Boltzmann measure. Having a posterior, estimating a good
candidate X̂ for X is feasible. A practical example is proposed below.

Example 2.3 (Gaussian Bayesian Posterior). Let X ∼ N (0, 1), Yi = X + Zi where
Zi ∼ N (0, 1). A well known result is that for a sequence of observations {y}ni=1:

P(x | {y}) = P({y} | x)P(x)
Z

∝ P({y} | x)P(x) as Z ⊥⊥ x (2.7)

∝
n∏

i=1

e
−(yi−x)2

2 e
−x2

2 ignoring constants and by yi | x i.i.d

(2.8)

∝ e−
1
2
(x2+

∑
i(yi−x)2) reordering (2.9)

∝ e−
1
2
(x2+

∑
i y

2−2x
∑

i yi+nx2) (2.10)

∝ e−
1
2
[(n+1)x2−2x

∑
i yi] ignoring constants (2.11)

Which is the kernel of a normal distribution with mean and variance:

N (µ, σ2) : µ =

∑
i yi

n+ 1
σ2 =

1

n+ 1
(2.12)

2.2 Curie-Weiss Model

In this section a rather easy ferromagnetic model will be analyzed. Though very re-
stricted, it is enough to give an overview of thermodynamic macroscopic functions, with
exact computations.

We consider a set of binary spins that can be aligned or antialigned, where each micro-
scopic particle interacts with all the others. Since the target is magnetization (align-
ment), the cost of antialignment is included in the energy formula (the Hamiltonian).
For simplicity1, it is preferrable to have an external magnetic field h ∈ R. As before, the
Boltzmann distribution is embedded in the space. The framework naturally suggests the
following mathematical objects:

S = {S1, . . . , SN} ∈ {−1, 1}N (2.13)

HN (s) = − 1

2N

∑
ij

SiSj − h
∑
i

Si (2.14)

PN,β,h(S = s) =
e−βHN (s)

ZN (β, h)
(2.15)

ZN (β, h) =
∑

S∈{−1,1}N
e−βHN (s) =

∑
S∈{−1,1}N

e
β
2N

∑
ij SiSj+βh

∑
i Si (2.16)

Where often the sum over S ∈ {−1, 1}N will be shortcut to {S}.

Since the aim is alignment, a self explained indicator follows.

Definition 2.4 (Magnetization per spin S). Consider S, then:

S =
1

N

∑
i

Si (2.17)

1Actually, to avoid having the zero solution

7



CHAPTER 2. A PRIMER ON STATISTICAL MECHANICS

Which can substitute the spins in the hamiltonian as:

HN (s) = − 1

2N

∑
ij

SiSj − h
∑
i

Si

= −1

2

∑
i

Si
∑
j

Sj
N

− h
∑
i

Si

= −1

2

∑
i

SiS − hN

∑
i Si
N

= −1

2
SN

∑
i Si
N

− hNS

= −N
(
1

2
S2

+ hS
)

= HN (S)

Making the energy function determined by the magnetization per spin only.

By the fact that it is a random variable directly linked to the Hamiltonian, the Probability
in Equation 2.15 is reexpressed as the probability that the average spin is a value m ∈
SN = {−1, 1, skip = 2

N }, where2 SN ⊂ {S}:

P(S = m) =
#configs : m

ZN (β)
eH (S) =

Ω(m,N)

ZN (β)
eβN( 1

2
m2+hm) (2.18)

Where Ω(m,N) counts the number of configurations granting magnetization m for an
N -particle system. Though apparently difficult to evaluate, some considerations that
will prove to be useful in the thermodynamic limit are made below:

Definition 2.5 (Binary Entropy H(·)). The binary entropy is a function of the magne-
tization:

H(m) = −1 +m

2
log

(
1 +m

2

)
− 1−m

2
log

(
1−m

2

)
(2.19)

Contrary to the information theoretic notation, the logarithm is natural and not in base
2. Nevertheless, they are equal up to a multiplicative constant.

Theorem 2.6 (Ω Closed form and Properties). For all m,N valid it holds that:

1.
Ω(m,N) =

N !(
N 1−m

2

)
!
(
N 1+m

2

)
!

(2.20)

2.
eNH(m)

N + 1
≤ Ω(m,N) ≤ eNH(m) (2.21)

Proof. (Claim 1) Observe that:

Si ∈ {−1, 1}∀i =⇒ m =
1

N

∑
i

Si ∈ [−1, 1] ⇐⇒ Nm =
∑
i

Si ∈ [−N,N ]

Thanks to this formulation, it is rather easy to claim by induction on N that:

N +Nm = N +
∑
i

Si even ∀m,N

More importantly, starting from either of the two extreme configurations, it can be argued
that the attainable values of m are at a 1

N distance, since to change m from the all ups
2These are not all the possible values the average magnetization can take!
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2.2. Curie-Weiss Model

+1 or all downs −1 (and from all of the intermediate ones), we need to change an odd
number of spins summing to either −1 or 1, which impacts the overall magnetization by
a factor of 1

N . Thus:

m ∈
{
− 1, 1, skip =

1

N

}
⇐⇒ Nm ∈

{
−N,N, skip = 1

}
Using a parallel argument, instead of considering a symmetric view of the problem,
observe that for 2N particles where N are fixed to be Si = +1 in an arbitrary position:

N +Nm ∈
{
0, 2N, skip = 1

}
∀N,m

For a given value of magnetization, if m > 0 then it will become the problem of choosing
how many zeros and how many up spins to set, while for a negative magnetization, how
many zeros and how many −1s we set. This is an equivalent formulation, as the zeros in
this case mean an even number of ±1 pairs in the original problem. We recognize that
such a view suggests that we are evaluating the number of ways of setting N elements
into N +Nm boxes of 1s where the first are the fixed ones to make the problem positive,
while the second ones are the all up spin particles required to attain Nm =

∑
i Si. To

redirect the problem to the original formulation, it is necessary to divide the number of
boxes by 2, as to make the index go from 0 to N with skip 1

2 . These two facts support
our proof that for a given N,m = 1

N

∑
i Si we have:

Ω(m,N) =

(
N

N+Nm
2

)
=

N !(
N − N+Nm

2

)
!

(
N+Nm

2

)
!

=
N !(

N 1−m
2

)
!
(
N 1+m

2

)
!

(Claim 2) Bounds on the binomial, Exercise 1.1 Chapter 1 [KZ21b].

Lemma 2.7 (Ω bounds implication on Boltzmann measure). Consider ϕ(m,β, h) =

H(m) + 1
2βm

2 + βhm, shortwritten as ϕ(m), then by Equation 2.21:

1

N + 1

eNϕ(m)

ZN (β, h)
≤ P(S = m) ≤ eNϕ(m)

ZN (β, h)
(2.22)

Where we have just substituted the bounds on Ω(m,N)

Lemma 2.8 (Ω bounds implication on Partition Sum). Consider the same ϕ(m), then:

1 ≤
∑
m

eNϕ(m)

ZN (β, h)
≤ (N + 1)

eNϕ(m∗)

ZN (β, h)
(2.23)

where m∗ = argmax
m∈[−1,1]

{ϕ(m,β, h)} is the maximum possible value of ϕ

Proof. We sum over m the probability and the RHS of Equation 2.22 and get that by
the previous Lemma:∑

m

P(S = m) = 1 ≤
∑
m

eNϕ(m)

ZN (β, h)
=

1

ZN (β, h)

∑
m

eNϕ(m) (2.24)

Where the possible values of m are {1, 1− 2
N , 1−

4
N , . . . ,−1}. There are N elements in

SN indicating that:

1 ≤ 1

ZN (β, h)

∑
m

eNϕ(m) ≤ (N + 1)
eNϕ(m∗)

ZN (β, h)
(2.25)

9



CHAPTER 2. A PRIMER ON STATISTICAL MECHANICS

The result of Lemma 2.8 highlights important aspects from a thermodynamic perspective.

Definition 2.9 (Gibbs Free Entropy and Free Entropy density ΦN (β, h)). For a system
with N particles we define as free entropy logZN (β, h) with density:

ΦN (β, h) =
logZN (β, h)

N
(2.26)

Which in the limit as N → ∞ loses the N pedix.

This quantity is important and presents nice properties in the thermodynamic limit.
Taking the logarithm on the last inequality of Lemma 2.8 one gets:

log 1 = 0 ≤ log

[
(N + 1)

eNϕ(m∗)

ZN (β, h)

]
(2.27)

=⇒ log(N + 1) +Nϕ(m∗)− log(ZN (β, h)) ≥ 0 (2.28)

=⇒ log(ZN (β, h))

N
= ΦN (β, h) ≤ ϕ(m∗) +

log(N + 1)

N
(2.29)

Which is an upper bound on the free entropy density. To get a lower bound, the LHS
and central element of Lemma 2.7 are considered, and applying the logarithm:

1

N + 1

eNϕ(m)

ZN (β, h)
≤ P(S = m) ≤ 1 (2.30)

=⇒ log

[
1

N + 1

eNϕ(m)

ZN (β, h)

]
≤ log(1) = 0 (2.31)

=⇒ − log(N + 1) +Nϕ(m)− log(ZN (β, h)) ≤ 0 (2.32)

=⇒ logZN (β, h)

N
= ΦN (β, h) ≥ − log(N + 1)

N
+ ϕ(m) (2.33)

This result is true subject to m ∈ SN . It is then true for mmax = argmax
m∈SN

{ϕ(m)}. A

complete maximization over the set of possible values [−1, 1]. The next Lemma helps
understanding why this can be ignored, especially in Thermodynamics. Moreover, it
allows to formulate the lower bound in terms of ϕ(m∗)

Lemma 2.10 (SN is enough in the limit). As N → ∞ it holds that:

ϕ(mmax) → ϕ(m∗) (2.34)

ϕ(m∗)− log(N(N + 1))

N
≤ ΦN (β, h) (2.35)

Proof. Apply the mean value theorem for m∗,mmax. Then:

∃c ∈ [m∗,mmax] | ϕ(m∗) = ϕ(mmax) + ϕ′(c)(m∗ −mmax) (2.36)

Where |m∗ −mmax| ≤ 2

N
as the skips are of width

2

N
.

Informal: therefore, we can argue that:

ϕ(mmax) > ϕ(m∗)− log(N)

N
(2.37)

Which gets closer and closer to ϕ(m∗) as N → ∞. Morevoer, substituting into the result
of Lemma 2.8 one gets:

− log(N + 1)

N
+ ϕ(m∗)− log(N)

N
< ϕ(mmax)− log(N + 1)

N
≤ ΦN (β, h)

=⇒ ϕ(m∗)− log(N(N + 1))

N
< ΦN (β, h)

10



2.2. Curie-Weiss Model

All of the above results suggest the following conclusion, outlined as a Theorem.

Theorem 2.11 (Free Entropy Density thermodynamic limit). Let N → ∞, then:

lim
N→∞

ΦN (β, h) = Φ(β, h) = ϕ(m∗) (2.38)

Proof. From Lemmas 2.7, 2.8 and 2.10 it is possible to conclude that the free entropy
density is bounded in the interval3:

ϕ(m∗)− log(N(N + 1))

N
< ΦN (β, h) ≤ ϕ(m∗) +

log(N + 1)

N
(2.39)

Taking the limits on all inequalities:

lim
N→∞

[
ϕ(m∗)− log(N(N + 1))

N

]
< lim

N→∞
ΦN (β, h) ≤ lim

N→∞

[
ϕ(m∗) +

log(N + 1)

N

]
(2.40)

ϕ(m∗)− < Φ(β, h) ≤ ϕ(m∗)+ (2.41)

Then, it is the case that:

Φ(β, h) = ϕ(m∗) = max
m∈[−1,1]

{ϕ(m)} (2.42)

Mathematicians call this a large deviation behavior. For the purpose of this book, the
starting result will be outlined as a theorem and exploited throughout. The idea is
that in the thermodynamic limit the probability is determined by a large deviation rate
dependent on the argument that makes it exponentially small as it goes away from it.

Theorem 2.12 (Large Deviation Behavior of the Boltzmann Measure). Given a system
of N particles:

lim
N→∞

log(P(S = m))

N
= ϕ(m)− ϕ(m∗) (2.43)

Where ϕ(m)− ϕ(m∗) is the rate of the large deviation behavior.

Proof. It is sufficient to notice that:

as N → ∞ P(S = m) ∝ eNϕ(m)

ZN (β, h)
=

eNϕ(m)

eNΦN (β,h)
≍

N→∞
eN(ϕ(m)−ϕ(m∗)) (2.44)

=⇒ lim
N→∞

log(P(S = m))

N
= lim

N→∞

N(ϕ(m)− ϕ(m∗))

N
(2.45)

= ϕ(m)− ϕ(m∗) (2.46)

Where the ≍
N→∞

reads "asymptotically equal in the limit N → ∞".

This result is of pivotal importance. From a combinatorially exploding sum the problem
is reduced to a one dimensional function to optimize ϕ. We see that the probability
decays depending on the realized value of ϕ. This is a concentration phenomena, which
guarantees that physical quantities are deterministic! For clarity of notation, we define
the object of interest below.

3Notice that the lower bound is strict!
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CHAPTER 2. A PRIMER ON STATISTICAL MECHANICS

Figure 2.1: Left: Equation 2.50, h ̸= 0 for different β values. Right: relation in terms of
ϕ(m), with solutions corresponding to its global maximum.

Figure 2.2: For h = 0, left plot is m∗ as a function of β, right plot shows ϕ(m) as a
function of β.

Definition 2.13 (Large Deviation Rate I(m)). For a realized magnetization value define
the large deviation rate as:

I(m) = ϕ(m∗)− ϕ(m) where lim
N→∞

log(P(S = m))

N
= −I(m) (2.47)

To find the attained value at thermodynamic limit, we seek a magnetization m∗ :

ϕ′(m∗) = 0. The equation is of the form ϕ(m) = H(m) + 1
2βm

2 + βhm. Then:

ϕ′(m) = H ′(m) + βm+ βh = 0 (2.48)

After some elementary calculations on the derivative of H(m) it becomes:

1

2
log

(
1 +m

1−m

)
= β(m+ h) (2.49)

=⇒ m = tanhβ(h+m) by tanh−1(x) =
1

2
log

(
1 + x

1− x

)
where x = m (2.50)

We refer to this as a mean field equation or saddle point equation for the Curie
Weiss model.

Depending on the values β, h, there can be up to three solutions. In particular, for
β > 1 ∧ h = 0, there will be two coexistent maxima. This implies that with probability
1
2 either of the two will be take place in the thermodynamic limit. This phenomena in
Physics is called phase coexistance. Concerning this, more details will come later. If
instead β > 1 but h ̸= 0, either of the two will be chosen, depending on the sign of h
itself. Some plots from the original lecture notes [KZ21b] can be found below.
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Figure 2.3: Same setting of Figure 2.1 but with h = 0. For β < 1 we have one degenerate
maximum of ϕ(m) at m∗ = 0, while for β > 1 there are two symmetric coexistent
maximums.

2.3 On the enoughness of Φ

As it will turn out, by just having access to the free entropy density, many conclusions
can be carried out about a model. For historical notational reasons, different reasearchers
tend to use different (equivalent) objects. Here, free energy density Φ will be used.

For N finite, we can evaluate:

1

β

∂ΦN (β, h)

∂h
=

1

β

∂

∂h

logZN (β, h)

N
(2.51)

=
1

βN

1

ZN (β, h)

∂ZN (β, h)

∂h
(2.52)

=
1

βN

1

ZN (β, h)

∂

∂h

(∑
{S}

e−βH (S)
)

where H (S) = −N
(
1

2
S2

+ hS
)
(2.53)

=
1

βN

1

ZN (β, h)

∑
{S}

βNSe−βH (S) exchanging derivative and sum

(2.54)

=

∑
{S} Se−βH (S)

ZN (β, h)
which is a Boltzmann weighted expected value of S

(2.55)

= ⟨S⟩N,β,h (2.56)

Observation 2.14 (About Equation 2.56). In a large deviation setting, the most probable
is also the most likely (as it must concentrate on it). Unfortunately, the passage of
Equation 2.54 is not directly doable in the limit. Below, the required tools will be outlined.

Laplace method, Exercise 1.2, Chapter 1 [KZ21b].

The Laplace method on Z We recognize that in presence of a magnetic field h ∈ R
one can write:

HN (S) = −N
2

S − hSN = H 0
N (S) − hSN (2.57)

Where H 0
N (S) is the Hamiltonian in absence of a magnetic field. Going further, one

could approximate the sum over magnetizations by an integral, which can be determined
with the Laplace method if there is a single maximum m∗, and we are away from phase

13
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transitions. Indeed, denoting as I∗0 (m,β) = ϕ(m,β, 0) − ϕ(m∗, β, 0) the true deviation
rate when h = 0. If we assume it exists, then:

ZN (β, h) =
∑
m

(∑
{S}

e−βH 0
N (S)1(S = m)

)
eNβhm ≍

∫ 1

−1
dm eN(ϕ(β,0)−I∗0 (m,β)+βhm)

(2.58)

=
∑
m

Ω(m,N)e−N(H(m)+βH 0
N (m)+βhm) ≍

∫ 1

−1
dm e−N(H(m)+βH 0

N (m)+βhm)

(2.59)

Where the Laplace integral at the limit gives a concentration on the maximum of the
argument function:

ZN (β, h)
Laplace
≈

N→∞
eNΦ(β,h) lookup Equation 2.44 for the idea

(2.60)
Laplace
≈

N→∞
emaxm{N(ϕ(β,0)−I∗0 (m,β)+βhm)} (2.61)

=⇒ Φ(β, h) = max
m

{βhm− I∗0 (m) + ϕ(β, 0)} (2.62)

= max
m

{βhm− I∗0 (m)}+Φ(β, 0) Eqn. 2.42 (2.63)

=⇒ Φ(β, h)− Φ(β, 0) = max
m

{βhm− I∗0 (m)} (2.64)

Or similarly, using Equation 2.59:

Φ(β, h) = max
m

{
H(m)− βH 0

N (m) + βhm

}
(2.65)

= H(m∗)− βH 0
N (m∗) + βhm∗ (2.66)

= −I∗(m) + βhm∗ = ϕ(m∗) (2.67)

Deriving this with respect to h as before in the finite size case:

∂Φ

∂h

∣∣∣∣
h=0+

= βm∗ − ∂I∗

∂m

∂m

∂h

∣∣∣∣
h=0+

(2.68)

= βm∗ As
∂I∗

∂m

∣∣∣∣
h=0+

= 0 when maximum w.r.t. m (2.69)

By the large deviation principle, we can obtain the most likely m∗ by just computing the
derivative of the free entropy density. In this case, we checked m∗(h = 0+), we could do
for a different h ̸= 0. For h = 0 solutions are multiple and the Laplace method is more
convoluted.

Legendre Transform Written in either of the two ways, we are doing a Legendre
transform of the variable as:

Φ(β, h)− Φ(β, 0) = max
m

{βhm− I∗0 (m)} (2.70)

Φ(β, h) = max
m

{βhm− I∗(m)} (2.71)

Further in this direction, by applying the inverse Legendre transform of Φ(β, h) we can
define:

I0(m) = max
h

{βhm− Φ(β, h)}+Φ(β, 0) (2.72)

14
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Figure 2.4: Two convex envelopes (orange) of large deviation rates (blue)

Where I0(m) is the convex envelope of I∗0 (m). Thus, if we have a way to compute the
free energy Φ(β, h), we can recover the large deviation rate with a Legendre transform.
In the event that the deviation rate is not convex, we would only recover exposed points,
and have an upper bound for unexposed points. An example is shown in Figure 2.4.

To summarize, we found that:

• asN → ∞ we can recover the large deviation rate of concentration for an observable
such asm, the average magnetization, except in very special cases 4 with probability
1.

• m∗ is found via the derivative of the free entropy density ΦN =
logZN

N
• the Legendre transform of the free entropy density gives a convex envelope of the

large deviation rate.

2.4 Computation Toolbox

A question worth asking is how to compute the free energy. In this section, we will
analyze some of the most important techniques in Machine Learning: the cavity and
replica method. To familiarize with the process of putting them in practice, they will be
applied to the Curie Weiss Model.

Without long theoretical derivations, they show up as heuristics to compute ΦN when
N → ∞.

2.4.1 Intro to the Cavity Method

The key observation is that we attempt to compare two systems: one with N particles,
and another with N + 1, aiming to see what changes.

4e.g. β > 1, h = 0
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Writing the Hamiltonian of the increased size system, we denote the added spin as S0.
It is possible to write such an object as a function of HN :

−βHN+1(S) = β
1

2
(N + 1)

(∑N
i=1 Si + S0
N + 1

)2

+ βh(S0 +
N∑
i=1

Si) (2.73)

= β
1

2
(N + 1)

S2
0

(N + 1)2
+ β

1

2
(N + 1)

( ∑
i Si

(N + 1)

)2N2

N2
(2.74)

+ β
1

2
(N + 1)2

(
S0

∑
i Si

(N + 1)2

)
N

N
+ βhS0 + βh

∑
i

Si expanding the square

(2.75)

= β
1

2(N + 1)
+ β

1

2

(∑
i Si
N

)2 N2

(N + 1)
(2.76)

+ β
N

(N + 1)

∑
i Si
N

S0 + βhS0 + βh
∑
i

Si by S2
0 = 1 and reordering

(2.77)

With a change of variables β′ = β
N

N + 1
and h′ = h

N

N + 1
:

−β′HN+1(S, h′) = β
1

2(N + 1)
+ β

1

2
N

(∑
i Si
N

)2

(2.78)

+ βS0

(∑
i Si
N

)
+ βh

∑
i

Si + βhS0 where the first term is constant

(2.79)

= o(1)− βHN (S) + βS0

(∑
i Si
N

)
+ βhS0 (2.80)

And the new system is equal to the old one plus a small perturbation. Thanks to this
relation, it is possible to write the expectation over N + 1 particles as:

⟨S0⟩N+1,β′,h′ =

∑
S,S0

S0e
−β′HN+1∑

S,S0
e−β′HN+1

where S0 = ±1 (2.81)

=

∑
S
∑

S0
S0e

−βHN eβS0
∑ Si

N
+βhS0∑

S
∑

S0
e−βHN eβS0

∑ Si
N

+βhS0

up to o(1) approx (2.82)

=

∑
S
∑

S0

e−βHN

ZN
S0e

βS0S+βhS0∑
S
∑

S0

e−βHN

ZN
eβS0S+βhS0

adjusting (2.83)

=

∑
S
∑

S0

e−βHN

ZN
S0e

βS0(Sh)∑
S
∑

S0

e−βHN

ZN
eβS0(S+h)

reordering (2.84)

=

∑
S

e−βHN

ZN
eβ(S+h) − e−β(S+h)∑

S
e−βHN

ZN
eβ(S+h) + e−β(S+h)

expanding
∑
S0

(2.85)

=

∑
S

e−βHN

ZN

1
2(e

β(S+h) − e−β(Sh))∑
S

e−βHN

ZN

1
2(e

β(S+h) + e−β(S+h))
add

1

2
(2.86)

=

∑
S

e−βHN

ZN
sinhβ(S + h)∑

S
e−βHN

ZN
coshβ(S + h)

hyperbolic identities (2.87)

=
⟨sinhβ(S + h)⟩N,β,h

⟨coshβ(S + h)⟩N,β,h

(2.88)
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Further assuming that, out of the double maxima (phase coexistence) case, S is concen-
trated around m∗ by large deviation we would have that:

S = m∗ = ⟨S⟩ (2.89)

And we can state that:

⟨S0⟩N+1,β′,h′ =
⟨sinhβ(S + h)⟩N,β,h

⟨coshβ(S + h)⟩N,β,h

≈ sinhβ(m∗ + h)

coshβ(m∗ + h)
= tanhβ(m∗ + h) (2.90)

Moreover, as N → ∞ we have that β′ → β and then:

m∗ = tanhβ(m∗ + h) (2.91)

For a proof of such claim, we reroute the reader to the original lecture notes [KZ21b].

2.4.2 Intro to the Replica Method

To conclude the lecture we will overview a widely used trick in the specific context of the
Curie Weiss Model. In particular, we will exploit the Dirac-Fourier method, which is the
starting point of replica computations. In order to do this, we first introduce some basic
notions.

Definition 2.15 (Delta Dirac distribution δ(x)). The dirac δ function is such that:

δ(x) =

{
+∞ x = 0

0 x ̸= 0
s.t.

∫
R
dxδ(x) = 1 (2.92)

Constrained to being a distribution.

Theorem 2.16 (Dirac Delta Property).∫
dmf(m)δ(m− x) = f(x) (2.93)

≡
∫
dmf(m)δ(Nm− x) =

1

N
f(x) (2.94)

Proof. The Dirac delta is concentrated at 0 in its Definition. For the case δ(m − x) we
instead have that it is concentrated at:

m− x− 0 =⇒ m = x (2.95)

Integrating over R the expected value is that of a degenerate distribution concentrated
at x and: ∫

dmf(m)δ(m− x) = f(x) (2.96)

The equivalence with the second claim is carried out as follows. We recognize that N is
fixed and thus dNm = Ndm and that δ(Nm− x) = δ(m− x

N ) as they both concentrate
at x = Nm. Thus:∫

dmf(m)δ(Nm− x) =
1

N

∫
dNmf(m)δ(Nm− x) (2.97)

=
1

N

∫
dNmf(m)δ(Nm− x) =

1

N
f(x) (2.98)
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CHAPTER 2. A PRIMER ON STATISTICAL MECHANICS

The second result of Theorem 2.16 is the most used version by Physicists. Notice that if
we take the logarithm of such identity we find that:

lim
N→∞

log f(x)
N

N
= lim

N→∞

log f(x)

N
− logN

N
→ log f(x)

N
(2.99)

So that the N in front can be ignored.

Lemma 2.17 (A useful to expand hyperbolic identity). For a set of N sized Potts spins
{S} = {−1, 1}N notice that:∑

{S}

e−κ
∑

i Si = (eκ + e−κ)N = (2 coshκ)N ∀κ ∈ C, ∀N ∈ N+ (2.100)

Which is trivial but difficult to explain in one line steps for proofs.

Proof. We prove the claim by induction on N . For N = 0 it is trivial, so starting from 1

(Base case N = 1) Observe that:

{S} = {−1, 1} =⇒
∑
{S}

e−κ
∑

i Si =
∑

{−1,1}

e−κ
∑

i Si = e−κ+eκ = (e−κ+eκ)1 = (2 coshκ)

(Induction Hypothesis) Assume it is true ∀N ∈ N+

(Inductive Case N + 1) We aim to evaluate:∑
{S}

e−κ
∑

i Si =
∑

{−1,1}N+1

e−κ
∑N+1

i=1 Si with N + 1 pedix in the sums

=
∑

{−1,1}N×{−1,1}

e−κ(
∑N

i=1 Si+SN+1) sums split with SN+1 ∈ {−1, 1}

=
∑

{−1,1}N

∑
{−1,1}

e−κSN+1e−κ
∑N

i=1 Si

=
∑

{−1,1}N
(e−κ + eκ)e−κ

∑N
i=1 Si

= (e−κ + eκ)
∑

{−1,1}N
e−κ

∑N
i=1 Si

= (e−κ + eκ)(e−κ + eκ)N inductive hypothesis

= (e−κ + eκ)N+1

= (2 coshκ)N+1 trigonometric identities

We consider again the Hamiltonian with N particles and the partition sum.

Assume we wish to compute probabilities but do not have access to Ω(m) for a magneti-
zationm. Expressing the partition sum with the help of Theorem 2.16 we can concentrate
the evaluation around the magnetization m using δ(Nm−

∑
i Si) where

∑
i Si

N = m:

ZN =
∑
{S}

e
Nβ
2

(
∑

i Si
N

)2+Nβh
∑

i
Si
N (2.101)

= N
∑
{S}

∫
dmδ(Nm−

∑
i

Si)e
Nβ
2

m2+Nβhm (2.102)

= N

∫
dme

Nβ
2

m2+Nβhm
∑
{S}

δ(Nm−
∑
i

Si) (2.103)
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2.4. Computation Toolbox

Where in the last passage we exchange sum and integral since we recognize that the
delta function selects configurations that attain a magnetization m and zeroes out the
others, so that the integral is done for each correct configuration that attains a specific m
magnetization. Further assuming we cannot compute the exact integral as it is impossible
to evaluate the entropy at fixed m, we implement a Fourier Transform of the delta
function and write:

ZN = N

∫
dm

∫
dλ e

Nβ
2

m2+Nβhm
∑
{S}

ei2πλN(m−
∑

i
Si
N

) substitute m̂ = i2πλ : dλ =
dm̂

2iπ

(2.104)

=
N

2iπ

∫ 1

−1
dm

∫ i2π∞

−i2π∞
dm̂ e

Nβ
2

m2+Nβhm+Nmm̂
∑
{S}

e−m̂
∑

i Si where integrals are over R and C

(2.105)

=
N

2iπ

∫ 1

−1
dm

∫ i2π∞

−i2π∞
dm̂ e

Nβ
2

m2+Nβhm+Nmm̂(2 cosh m̂)N Lem 2.17 (2.106)

And taking the density of the log at the limit N → ∞ to obtain Φ(β, h):

lim
N→∞

logZN

N
= lim

N→∞

log

[
N

2iπ

∫ 1
−1 dm

∫ i2π∞
−i2π∞ dm̂ e

Nβ
2

m2+Nβhm+Nmm̂(2 cosh m̂)N
]

N

(2.107)

→ 1

N
log

[ ∫ 1

−1
dm

∫ i2π∞

−i2π∞
dm̂ e

Nβ
2

m2+Nβhm+Nmm̂(2 cosh m̂)N
]

(2.108)

Where letting (2 cosh m̂)N = eN log 2+N log cosh m̂ we get that:

Φ(β, h) =
1

N
log

[ ∫ 1

−1
dm

∫ i2π∞

−i2π∞
dm̂ e

Nβ
2

m2+Nβhm+Nmm̂+N log 2+N log cosh m̂

]
(2.109)

While this might look difficult to evaluate, there is a simple way. Laplace theorem cannot
be directly used as the integral for m̂ is over the complex plane. We will instead use the
saddle point method, which generalizes Laplace, exploiting results by Cauchy and was
developed by Debye and Riemann [Deb09; RWD13]. Essentially, the concentration will
take place at a saddle point of the (m, m̂) space:

Φ(β, h) = Ext
m,m̂

{g(m, m̂)} : g(m, m̂) =
β

2
m2 + βhm+ m̂m+ log 2 + log cosh m̂ (2.110)

Taking the extremum of g w.r.t. m̂ we get:
∂g

∂m̂
= m+

1

cosh m̂
sinh m̂ = m+ tanh m̂ = 0 ⇐⇒ m = − tanh m̂ (2.111)

Inverting the relation as m̂ = − tanh−1m and substituting into g:

g(m, m̂) = g(m) =
Nβ

2
m2 + βhm−m(tanh−1m) + log(2 cosh tanh−1m) (2.112)

Where using the identity:

log(2 cosh tanh−1m)−m(tanh−1m) = −
(
1 + x

2
log(

1 + x

2
)+

1− x

2
log(

1− x

2
)

)
= H(x)

(2.113)
We get that:

g(m) =
βN

2
+ βhm+H(m) = ϕ(β, h,m) (2.114)

And as previously found Φ(β, h) = Extr
m

{ϕ(β, h,m)} with a simpler version that avoided
the combinatoric evaluation of Ω(m), directly obtaining the maximization of ϕ(β, h,m).
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Chapter 3

The Random Field Ising Model

This is the first solution to the Replica Model we will see. In Chapter 2 we introduced
basic concepts such as understanding how to compute Z by means of field theory and
the cavity trick. Now, we will discuss the concept of disorder and the replica method.
All of the discussion will be based on a simple but more convoluted model.

Definition 3.1 (Random Field Ising Model (RFIM)). Consider the following Hamilto-
nian:

HRFIM (s,h) = −N
2

(∑N
i si
2

)2

−
N∑
i

hisi hi
iid∼ N (0,∆) (3.1)

Where we notice that unlike before hi is inside the sum, and follows a normal distribution.
On one hand, alignment is desired: the first term is minimized for si = 1∀i ∧ −1∀i.
On the other hand, we wish that the si align to the respective hi, with a probabilistic
misalignment.

Assumption 3.2 (Averaging Notation). Whenever we average over the Boltzmann dis-
tribution we use the symbol ⟨·⟩, otherwise, we use E.

The question of determining the minimum energy configuration clearly depends on h.
Following the discussion made in the definition, if ∆ = 0 we get a Curie Weiss Model as
in Equation 2.14, while if ∆ → ∞ the first term is dominated by the second.

In a thermodynamic fashion, we will inspect the behavior ∀∆ as N → ∞. By the
discussion of Section 2.3, it is sufficient to compute Φ. Recalling Definition 2.9:

log

[
Z(β,∆,h)

]
= log

[∑
{s}

e−βH

]
(3.2)

=⇒ ∂

∂β
log(Z) =

1

Z

∂Z

∂β
(3.3)

=

∑
{s} H (s)e−βH (s)

Z
(3.4)

= −⟨H (s)⟩ (3.5)

We have that by Proposition 2.2 the Boltzmann distribution will concentrate on the
minimum energy configuration as β → ∞. What about log(Z)? The sum involves 2N

terms and is inherently hard to compute. Moreover, the hi are random, and if we sampled
once, the validity would not extend to different samples.

For this reason, we instead inspect Eh[Hmin(s)] or equivalently:

Φavg(β,∆) := lim
N→∞

{
Eh

[
ΦN (β,∆,h)

]}
= lim

N→∞

{
Eh

[
log(Z(β,∆,h))

N

]}
(3.6)
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CHAPTER 3. THE RANDOM FIELD ISING MODEL

claiming that, as N → ∞ it will not be much different than the minimum energy con-
figuration. In physics, this is referred to as self-averaging. The next theorem formally
proves our claim.

Lemma 3.3 (Gaussian Poincaré Inequalities). Let f : Rn → R be smooth and X ∼
N (0,Γ). Then:

V [f(X)] ≤ E[⟨Γ∇f(X) · ∇f(X)⟩] (3.7)

Theorem 3.4 (Self-Averaging).

V

[
ΦN (∆, β,h)

]
≤ ∆β2

N
(3.8)

Proof. Using Lemma 3.3 we observe that:

∂ΦN (h, β)
∂hi

=
1

N

∂ log[Z(h, β)]
∂hi

=
1

N

1

Z

∂Z(h, β)
∂hi

=
1

N

e−βH (s

Z
(βsi)

=
β

N
⟨Si⟩

Thus, developing the LHS:

∇ΦN (β,h) · ∇ΦN (β,h) =


β

N
⟨S1⟩
. . .

β

N
⟨SN ⟩

 ·


β

N
⟨S1⟩
. . .

β

N
⟨SN ⟩

 =
β2

N

∑
i

⟨Si⟩2

N
≤ β2

N

As
∑

i

⟨Si⟩2

N
≤ 1. Then:

V [ΦN (∆, β,h)] ≤ Eh[⟨∆∇ΦN (β,h) · ∇ΦN (β,h)⟩] = ∆β2

N

By Theorem 3.4 we conclude that:

lim
N→∞

V [ΦN (∆, β,h)] = 0 =⇒ Φavg(β,∆) = lim
N→∞

EhΦN (β,h,∆) → Φ(β,∆,h) (3.9)

And it is sufficient to compute the expectation of the logarithm:

Eh

[
log(Z(β,h)

N

]
(3.10)

3.1 The Replica Heuristic

This method was proposed by Edwards and Kac, and later served as the basis for the
research contributions of Parisi and Mezard [MPV86].

Using a Taylor approximation:

n small =⇒ Zn = en log(Z) ∼= 1 + n log(Z) +O(n2) =⇒ log(Z) =
Zn − 1

n
for n→ 0

(3.11)
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3.1. The Replica Heuristic

Thus, we could argue that by deliberately exhanging limit and expectation:

Eh[log(Z)] = lim
n→0

Eh[Z
n]− 1

n
(3.12)

And we aim to calculate Zn for n ∈ N+, generalizing it for n ∈ R. Obviously, the
generalization and the limit/expectation switch are seemingly not rigorous, but it turns
out that the solution is always equivalent to exact computations, whenever they are
available. This trick lays the basis for the replica method.

Definition 3.5 (Replica Method Steps). To compute Eh

[
log(ZN (β,h,∆)

N

]
= ΦN (β,∆):

1. compute Eh[Z
n] for n ∈ N+

2. Assume it is valid for n ∈ R
3. let n→ 0 in the limit and apply Equation 3.12

Computing the powers of Z we index them by α = 1, . . . , n, and follow the steps for the
Curie-Weiss model of Chapter 2

Zn =

(∑
{s}

e−βH (s)
)n

(3.13)

=

n∏
α=1

( ∑
{s(α)}

e−βH (s(α))

)
(3.14)

=

n∏
α=1

( ∑
{s(α)}

∫
dm(α)δ

(
Nm(α) −

∑
i

s
(α)
i

)
eβ

N
2
(m(α))2+β

∑
i his

(α)
i

)
fixing magnetization

(3.15)

=
∑

{s(α)}nα=1

∫ n∏
α=1

[
dm(α)δ

(
Nm(α) −

∑
i

s
(α)
i

)]
eβ

N
2

∑
α(m

(α))2+β
∑

α

∑
i his

(α)
i

)
(3.16)

=
∑

{s(α)}nα=1

∫ n∏
α=1

[
dm(α)dm̂(α)

]
e
∑

α m̂(α)[
∑

i s
(α)
i −Nm(α)]eβ

N
2

∑
α(m

(α))2+β
∑

α

∑
i his

(α)
i Fourier

(3.17)

Were it is useful recalling that m̂(α) = 2πiλ(α). The expectation with respect to the h
variables can be moved by linearity of E, as the other terms are not dependent on h:

Eh[Z
n] =

∫ n∏
α=1

[
dm(α)dm̂(α)

]
eβ

N
2

∑
α(m

(α))2−N
∑

α m̂(α)m(α)
Eh

[ ∑
{s(α)}nα=1

e
∑

α m̂(α)
∑

i s
(α)
i +β

∑
α

∑
i his

(α)
i

]
(3.18)
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CHAPTER 3. THE RANDOM FIELD ISING MODEL

Where for the term inside the expectation it can be argued that:

∑
{s(α)}nα=1

e
∑

α m̂(α)
∑

i s
(α)
i +β

∑
α

∑
i his

(α)
i =

∑
{s(α)}nα=1

n∏
α=1

N∏
i=1

em̂
(α)s

(α)
i +βhis

(α)
i (3.19)

=
N∏
i=1

n∏
α=1

∑
s
(α)
i =±1

em̂
(α)s

(α)
i +βhis

(α)
i (3.20)

=

N∏
i=1

n∏
α=1

∑
s
(α)
i =±1

es
(α)
i (m̂(α)+βhi) (3.21)

=

N∏
i=1

n∏
α=1

2 cosh(m̂(α) + βhi) (3.22)

Where in the second line the sum of products is expressed as a product of sums, which
is a direct consequence of:

• commutative products
• an adaptation of Lemma 2.17 in its middle steps

And we eventually recover a hyperbolic form as in the result of Lemma 2.17. Going back
to the expectation:

Eh[Z
n] =

∫ n∏
α=1

[
dm(α)dm̂(α)

]
eβ

N
2

∑
α(m

(α))2−N
∑

α m̂(α)m(α)

{
Eh

[ n∏
α=1

2 cosh(m̂(α) + βh)

]}N

hi
i.i.d.∼ N (0,∆)

(3.23)

=

∫ n∏
α=1

[
dm(α)dm̂(α)

]
eN

{
β 1

2

∑
α(m

(α))2−
∑

α m̂(α)m(α)+log[Eh(
∏n

α=1 2 cosh(m̂
(α)+βh))]

}
(3.24)

Note that in the first passage the expectation is turned to being over scalars h, and not
the whole vector h, as we can factorize it intoN equal expectations by the iid assumption.
The last version is somewhat more comfortable as we bring the expectation inside the
exponential with N log factor in front, and collect the N factor across all terms.

Note that the integral is over m(α) ∈ RN , m̂(α) ∈ CN . It is also clear that we will
implement a saddle point by the form of Equation 3.24. A reasonable1 assumption is
used to simplify the job.

Assumption 3.6 (Replica Symmetry Ansatz). For an estimation problem as that of
Equation 3.24, let:

m(α) = m m̂(α) = m̂ ∀α ∈ {1, . . . , n} (3.25)

Assumption 3.6 leads us to the following integral:

Eh[Z
n] =

∫
dmdm̂ e

N

[
β
2
nm2−nm̂m+log(Eh[2

n coshn(βh+m̂)])

]
(3.26)

1Looks like it is not, but it works!
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3.1. The Replica Heuristic

And the formula for the average free energy becomes:

Φ(β,∆) = lim
N→∞

{
1

N
log[Z(β,h)]

}
(3.27)

= lim
N→∞

{
1

N
lim
n→0

[
EhZ(β,h)n − 1

n

]}
replica trick

(3.28)

= lim
n→0

1

n
lim

N→∞

EhZ(β,h)n − 1

N
exchange limits

(3.29)

= lim
n→0

{
1

n
Ext
m,m̂

[
N

(
β

2
nm2 − nm̂m+ log(Eh[2

n coshn(βh+ m̂)])

)]}
saddle point method

(3.30)

Where the red comment is a non rigorous step.

It is now possible to apply a second time the replica trick to get rid of the n powers inside
the logarithm. Indeed:

E[Xn] = E[elog(X
n)] (3.31)

Taylor
≈ E[1 + log(Xn)] (3.32)

= 1 + nE[log(X)] (3.33)
inverse Taylor

≈ enE[log(X)] (3.34)

Where by inverse Taylor we just mean the Taylor contraction from linearization to func-
tion.

=⇒ log(E[Xn]) ≈ log(1 + nE[log(X)]) ≈ nE[log(X)] (3.35)

=⇒ log

(
Eh[(2 cosh(βh+ m̂))n]

)
≈ nEh

[
log(2 cosh(βh+ m̂))

]
(3.36)

Using it inside the extremum as claimed before we will get that:

Φ(β,∆) = Ext
m,m̂

[
β

2
nm2 − nm̂m+ nEh[log(2 cosh(βh+ m̂))]

]
(3.37)

= Ext
m,m̂

[
β

2
m2 − m̂m+ Eh[log(2 cosh(βh+ m̂))]

]
delete n ⊥⊥ m, m̂ (3.38)

= Ext
m,m̂

[
M(m, m̂)

]
just notation (3.39)

Taking the derivative with respect to m:

∂M(m, m̂)

∂m
= βm− m̂ = 0 =⇒ m̂ = βm (3.40)

Which plugged into Equation 3.38 becomes:

Φ(β,∆) = Ext
m,m̂

[
β

2
m2 − βm2 + Eh[log(2 cosh(βh+ βm))]

]
(3.41)

= Ext
m

[
− βm2

2
+ Eh[log(2 cosh(β(h+m)))]

]
(3.42)

= Ext
m

[
ΦRS(m)

]
= ΦRS(m

∗) just notation (3.43)
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CHAPTER 3. THE RANDOM FIELD ISING MODEL

Where we can further impose the second extremality condition:

∂M(m)

∂m
= −βm+ Eh

[
1

2 cosh(β(h+m))
2 sinh(β(h+m))(β)

]
(3.44)

= −m+ Eh[tanh(β(h+m))] β ̸= 0 (3.45)

= 0 =⇒ m = Eh[tanh(β(h+m))] (3.46)

If we could come back to the Ext
m,m̂

point, since m̂ is a special function where m̂ = 2iπλ

we could get by first imposing the saddle point condition on m̂ that:

m = Eh[tanh(βh+ m̂)] (3.47)

And it is possible to derive that the replica symmetry approach has a large deviation
behavior:

P(S = m) ≍ eNΦ(m,β,∆) = eN [ϕ(m)−maxm(ϕ(m))] (3.48)

Ψ(m,β,∆) =
βm2

2
−mm̂∗ + Eh[log(2 cosh(βh+ m̂∗))] (3.49)

m = Eh

[
tanh(βh+ m̂∗

]
(3.50)

3.2 Rigorous RFIM solution by the Interpolation Method

As previously argued, many steps are questionable. We do one limit exchange, Assump-
tion 3.6, the Replica method approximation, and the n ∈ N+ → R generalization with
no apparent justification.

This section is devoted to proving that for the RFIM of Definition 3.1 the solution
proposed is exact. To do so, we will use the Interpolation Method developed by Francesco
Guerra [Gue03].

Instead of solving the hard version of this problem, we consider a simpler formulation:

H0(s,h,m) = −
∑
i

si(hi +m) (3.51)

Z0(β,h,m) =
∑
{s}

e−βH0 =

N∏
i=1

∑
si=±1

eβsi(hi+m) =

N∏
i=1

2 cosh[β(hi +m)] (3.52)

Φ0(β,∆,m) = lim
N→∞

{
Eh

[
log(Z0)

N

]}
= Eh

[∑
i 2 cosh[β(hi +m)]

N

]
i.i.d.
= Eh

[
2 cosh[β(h+m)]

]
(3.53)

Where the partition sum naturally arises from the hamiltonian and the free energy form2

is a consequence of the h vector being independent and identically distributed (i.e. the
N at the denominator cancels out).

We opt to solve a slighltly more complicated problem at fixed magnetization, to explore
the large deviation behavior:

Z0(β,h,S = m) =
∑
{s}

1(s = m)e−βH0 (3.54)

2Again, notice that the last expectation is over h and not h!
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3.2. Rigorous RFIM solution by the Interpolation Method

Equation 3.54 is not entirely trivial but the Legendre Transform is of help. We first
define the new partition Hamiltonian (like in Equation 2.57), which modifies the partition
function:

Z̃0(β,h,m, k) =
∑
{s}

eβ
∑

i si(hi+m)+k
∑

i si (3.55)

=⇒ Φ̃0(β,m,∆, k) → Eh

[
2 cosh[β(m+ h) + k]

]
(3.56)

And doing a Legendre transform with s = m:

Φ0(β,m,∆) = lim
N→∞

[
log[Z0(β,h,m,S = m)]

N

]
= Eh

[
log[2 cosh(β(h+m) + k∗)]

]
− k∗m

(3.57)

= Φ̃0(β,m,∆, k
∗)− k∗m (3.58)

= Extk

[
Φ̃0(β,m,∆, k)− km

]
(3.59)

=⇒ m = Eh

[
tanh(β(h+m) + k∗)

]
(3.60)

Where, if we change variables k∗ = m̂− βm:

Φ0(β,m,∆) = Extm̂

{
Eh

[
log[2 cosh(βh+ m̂)]

]
−mm̂+ βm2

}
(3.61)

Which is close to the desired result!

In this context, Guerra’s Interpolation Method provides a solution. First of all, an
abstractly time dependent3 Hamiltonian is considered:

Ht(s,h,m) = −
∑
i

si[hi +m(1− t)]− t
N

2

(∑
i

si
N

)2

(3.62)

Zt(β,h,m) =
∑
{s}

1(S = m)e−βHt(s,h,m) t ∈ [0, 1] (3.63)

Where:

• For t = 0 we get the simplified model of Equations 3.51, 3.52 & further
• For t = 1 we get the RFIM of Definition 3.1

We can then recover the free entropy density at t = 1 as:

Φ(β,m,∆) = lim
N→∞

Eh

[
log[Z1(β,h,m)]

N

]
RFIM Φ

(3.64)

= lim
N→∞

Eh

[
log[Z0(β,h,m)]

N
+

∫ 1

0
dτ

∂

∂t

log[Zt(β,h,m)]

N

]
fund Th. of calculus

(3.65)

= lim
N→∞

Eh

[
log[Z0(β,h,m)]

N

]
+ lim

N→∞
Eh

[ ∫ 1

0
dτ

∂

∂t

log[Zt(β,h,m)]

N

]
linearity

(3.66)

= Φ0(β,m,∆) + lim
N→∞

Eh

[ ∫ 1

0
dτ

∂

∂t

log[Zt(β,h,m)]

N

]
Eq. 3.53

(3.67)

3Basically: parametrized
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Where we only need to compute the derivative and its integral:

∂

∂t

log[Zt(β,h,m)]

N
=

1

N

1

Zt(β,h,m)

∂

∂t

(
Zt(β,h,m)

)
(3.68)

=
1

N

1

Zt(β,h,m)

∂

∂t

(∑
{s}

1(S = m)e−βHt(s,h,m)

)
Eq 3.63

(3.69)

=
1

N

1

Zt(β,h,m)

∑
{s}

1(S = m)e−βHt(s,h,m)(−β) ∂
∂t

(
Ht(s,h,m)

)
(3.70)

=
1

N

1

Zt(β,h,m)

∑
{s}

1(S = m)e−βHt(s,h,m)(−β) (3.71)

× ∂

∂t

(
−
∑
i

si[hi +m(1− t)]− t
N

2
(
∑
i

si
N

)2
)

Eq. 3.62

=
1

N

1

Zt(β,h,m)

∑
{s}

1(S = m)e−βHt(s,h,m)(β)

[
−m

∑
i

si +
N

2

(∑
i

si
N

)2]
(3.72)

=
1

N

∑
{s}

1(S = m)e−βHt(s,h,m)

Zt(β,h,m)︸ ︷︷ ︸
=Pβ,t,h,m(s)

(β)

[
−m

∑
i

si +
N

2

(∑
i

si
N

)2]

(3.73)

=
β

N

∑
{s}

Pβ,t,h,m(s)
[
−m

∑
i

si +
N

2

(∑
i

si
N

)2]
β out

(3.74)

= β
∑
{s}

Pβ,t,h,m(s)
[
1

N
(−m)

∑
i

si +
1

N

N

2

(∑
i

si
N

)2]
N in

(3.75)

= −βm
∑
{s}

Pβ,t,h,m(s)
[∑

i

si
N

]
+
β

2

∑
{s}

Pβ,t,h,m(s)
[(∑

i

si
N

)2]
split sum

(3.76)

= β

{
−m

〈∑
i

si
N

〉
β,t,h,m

+
1

2

〈(∑
i

si
N

)2〉
β,t,h,m

}
(3.77)

= β

{
1

2

〈(
m−

∑
i si
N

)2〉
β,t,h,m

− 1

2
m2

}
(3.78)

Where in the last passage we complete the square of the binomial as:

1

2
(x− y)2 − 1

2
y2 = −1

2
2xy +

1

2
x2
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3.2. Rigorous RFIM solution by the Interpolation Method

Integrating over τ ∈ [0, 1], with limit and expectation:

lim
N→∞

Eh

[ ∫ 1

0
dτ

∂

∂t

log[Zt(β,h,m)]

N

]
= lim

N→∞
Eh

[ ∫ 1

0
dτβ

{
1

2

〈(
m−

∑
i si
N

)2〉
β,t,h,m

− 1

2
m2

}]

(3.79)

= −βm
2

2
+

1

2
lim

N→∞
Eh

[ ∫ 1

0
dτ

〈(
m−

∑
i si
N

)2〉
β,t,h,m︸ ︷︷ ︸

m=
∑

i
si
N

]

(3.80)

= −βm
2

2
+

1

2
lim

N→∞
Eh

[ ∫ 1

0
dτ

〈
0

〉
β,t,h

]
(3.81)

= −βm
2

2
(3.82)

Where we exploited the indicator function 1(S = m), which restricts magnetizations of
the spins to the fixed m. Then:

Φ(β,m,∆) = Φ0(β,m,∆) + lim
N→∞

Eh

[ ∫ 1

0
dτ

∂

∂t

log[Zt(β,h,m)]

N

]
Eq. 3.67

(3.83)

= Φ0(β,m,∆)− β
m2

2
Eq. 3.82

(3.84)

= Extm̂

{
Eh

[
log[2 cosh(βh+ m̂)]

]
−mm̂+ βm2

}
− β

m2

2
Eq. 3.61

(3.85)

= Extm̂

{
Eh

[
log[2 cosh(βh+ m̂)]

]
−mm̂+ β

m2

2

}
(3.86)

Which is the same as the results of Section 3.1 after imposing the condition ∂M(m,m̂)
∂m =

βm − m̂ = 0 =⇒ m̂ = βm. Using the notation of Equation 3.43, we can eventually
state that:

Φ(β,m,∆) = Extm̂

{
ΦRS(m)

}
= ΦRS(m

∗) (3.87)

And the solutions coincide!

To summarize, we conclude that:

• there is a way to compute the free energies with a heuristic, the Replica Method
• despite the questionable steps, it coincides with the exact solution
• not all replica solutions are guaranteed as some models have no known exact form
• notice that there is no overlap, and disorder is not in the couplings. If this were

the case, there would be no way to obtain the replica symmetric solution. This
problem will be dealt with in later discussions, when considering Replica Symmetry
Breaking approaches.

To read about an extensive application of the Replica Method, see Appendix B.
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Chapter 4

Graphical Models & Belief
Propagation

The purpose of this chapter is introducing a well known heuristic technique known as
Belief Propagation (BP, from now on) to work on the problems we discussed in Chap-
ter 1. For this purpose, it is worth discussing graphical models first, as the working
framework of reference.

4.1 Graphical Models

Graphs are well known objects in multiple fields. The next statement quickly summarizes
the notation used:

Definition 4.1 (Graphs Notation). A graph G(V,E) is an object with:

• i ∈ V vertices (nodes), where |V | = N

• (ij) ∈ E edges (connections), where |E| =M

It is represented through an adjacency matrix A ∈ {0, 1}N×N where:

Aij =

{
1 (ij) ∈ E

0 otherwise
(4.1)

A very common operator associated to a graph is its neighborhood function ∂ : V → 2V

where:
∂(i) = ∂i = {j | (ij) ∈ E} (4.2)

Another widely used function is the degree function d : V → N+ where:

d(i) = di = #

(
j ∈ V | (ij) ∈ E

)
=

N∑
j=1

Aij (4.3)

Where obviously di = |∂i|.

Having introduced graphs in general, it is now easier to reason about Factor Graphs.

Definition 4.2 (Factor Graphs). Factor graphs are bipartite graphs (with disjoint vertex
sets, i.e. no edges within, only "across"). One set is that of variable nodes i, j, k (circles),
another is composed of factor nodes a, b, c (squares). We further have that:

• variable nodes represent variables si ∈ Λ, a feature space, where i ∈ {1, . . . , N}

31



CHAPTER 4. GRAPHICAL MODELS & BELIEF PROPAGATION

Figure 4.1: Factor graph in Bipartite view

Figure 4.2: Graph, Example 4.4

• factor nodes represent non negative functions fa({si}i∈∂a), where a ∈ {1, . . . ,M}

Observation 4.3 (On the bipartiteness of factor graphs). A requirement for factor
graphs is being bipartite. This ensures that the domain of the factor nodes fa is well
specified, since ∂a will be made of only variable nodes (neighbors of the factor).
Similarly ∂i is only made of factor nodes!
Up to orientation, each of the instances of this model can be seen as per the usual bipartite
graph visualization (Figure 4.1)

The main purpose of factor graphs is representing probability distributions. For a set of
samples {si}Ni=1 where si ∈ Λ∀i we could have a distribution of the form:

P(S = {si}Ni=1) =
1

ZN

M∏
a=1

fa({sj}j∈∂a) (4.4)

ZN =
N∑
i=1

M∏
a=1

fa({Sj}j∈∂a) (4.5)

In order to better understand how the factors arise, some intuitive examples are added
below.

Example 4.4 (Spin Glass). A spin glass model generalizes the Curie Weiss model of
Equation 2.14, Chapter 2. Its Hamiltonian is of the form:

H ({si}Ni=1) = −
∑

(ij)∈E

Jijsisj −
∑
i

hisi Jij interactions hi ∈ R magnetic field

(4.6)
The target of the analysis is finding a minimum energy configuration. We then assign a
Boltzmann measure:

P({si}Ni=1) =
1

ZN
e−βH ({si}Ni=1) (4.7)

=
1

ZN

N∏
i=1

eβhisi
∏

(ij)∈E

eβJijsisj (4.8)

Where the split highlights two different types of factor (square) nodes. The former is
only related to the magnetic field hi ∈ R, the latter is joint between two nodes and is a
function of the interaction Jij . A visualization is found in Figures 4.2, 4.3. We have in

total N variables nodes and N +
N(N + 1)

2
factor nodes (N from hi, and all possible

pairs N(N+1)
2 from Jij).
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4.1. Graphical Models

Figure 4.3: Factor graph, Example 4.4

ijk

abc

i’j’k’

Figure 4.4: Factor graph, Example 4.5

Example 4.5 (Graph Coloring). Discussed in Chapter 1, it is slightly different, as si ∈
{1, . . . , q} is not restricted to being a binary choice. The problem of finding the number
of proper colorings of a graph can be formalized as:

ZN =
∑

{si}Ni=1

∏
(ij)∈E

(1− δsi,sj ) (4.9)

δ(si, sj) =

{
1 si = sj

0 otherwise
(4.10)

Where clearly connected nodes with the same color cancel out the contribution of the
{si} configuration. We can then impose a uniform distribution over colorings as:

P({si}Ni=1) =
1

ZN

∏
(ij)∈E

1− δsi,sj (4.11)

Which is relaxed with a β factor to avoid the case in which ZN = 0:

P({si}Ni=1) =
1

ZN (β)

∏
(ij)∈E

e−βδsi,sj
β→∞≡T→0→ 1

ZN

∏
(ij)∈E

1− δsi,sj (4.12)

Its factor graph is like that of Example 4.4 without node factors, and with edge factors
representing the function e−βδsi,sj . A minimal example is proposed in Figure 4.4.

Other such examples can be found in the original Lecture Notes [KZ21b].
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Figure 4.5: Rj→a
sj , V a→i

si Partition Functions

4.2 Belief Propagation

The main topic of this Chapter can now be introduced. As experienced in Example 4.4,
we will restrict our analysis to factor graphs representing probability laws of the form:

P({si}Ni=1) =
1

Z

N∏
i=1

gi(si)

M∏
a=1

fa({si}i∈∂a) (4.13)

Z =
∑

{si}Ni=1

N∏
i=1

gi(si)
M∏
a=1

fa({si}i∈∂a) (4.14)

The restriction is reasonable. Such graphical models represent all probabilistic phenome-
nas that can be described by element/element and element/system interactions. As seen
in Section 2.3, having access to the free entropy Φ = log(Z)

N is sufficient.
Another interesting probabilistic function is that of the marginals of a specific node:

µi(si) =
∑

{sj}Nj=1 j ̸=i

P({sj}Nj=1) (4.15)

The problem with computing Equations 4.14, 4.15 is that both sums are exponentially1

large in N . While this result holds in general cases, this Chapter is devoted to deriving
a method which is exact for trees (no loops enforced) and becomes a good heuristic for
graphs, in linear time O(N).

A first step towards this direction is laying the grounds for a more understandable version
of the partition function of Equation 4.14.

Definition 4.6 (Auxiliary Partition Functions Rj→a
sj , V a→i

si ). For a factor Tree G , con-
sider the following equations:

Rj→a
sj

:= gj(sj)
∑

{sk}k above j

∏
k above j

gk(sk)
∏

b above j

fb({sl}l∈∂b) (4.16)

V a→i
si

:=
∑

{sj}j above a

fa({sk}k∈∂a)
∏

j above a

gj(sj)
∏

b above a

fb({sk}k∈∂b) (4.17)

Where Rj→a
sj is the partition function of the tree above a variable/factor connection, with

variable sj fixed, while V a→i
si is the partition function of the tree above a factor/variable

connection with fixed si value in the neighbors k ∈ ∂a of fa.

1The former has qN terms, the latter has qN−1 since one is fixed
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4.2. Belief Propagation

Looking at Figure 4.5, Rj→a
sj is the partition function of the system above the red dotted

line, with node j having value sj . Similarly, V a→i
si is the partition function of the system

above the blue dotted line, with variable i fixed to si.

The two custom created objects are easily related in tree models.

Lemma 4.7 (Linking Rj→a
sj , V a→i

si in a Tree). Consider a factor tree G, then:

=⇒ Rj→a
sj = gj(sj)

∏
b∈∂j\a

V b→j
sj (4.18)

=⇒ V a→i
si =

∑
{sj}j∈∂a\i

fa({sj}j∈∂a)
∏

j∈∂a\i

Rj→a
sj (4.19)

For both equations, we restrict to immediate neighbors of the node j/factor a but the
one in which the edge is directed (i.e. not a/not i).

Proof. (Equation 4.18) Node j is restricted to taking value sj . By the graph being a
tree, there are no loops above or below j. Moreover, the restriction to a precise value
makes all the branches above independent. Again, for a tree, the only branch below
contains a, all the others are above. Considering all the branches denoted by b the first
factor node encountered (the immediate neighbor) we obtain:

Rj→a
sj = gj(sj)

indep branches︷ ︸︸ ︷∏
b∈∂j\a

[ ∑
{sk}k above b

fb({sk}k∈∂b)
∏

k above b

gk(sk)
∏

c above b

fc({sl}l∈∂c)︸ ︷︷ ︸
=V b→j

sj

]

(4.20)

= gj(sj)
∏

b∈∂j\a

V b→j
sj (4.21)

Where we used Equation 4.17 from Definition 4.6.
(Equation 4.19) Using the same reasoning of the first Claim, we split the branches
above a, which are all but i, to obtain:

V a→i
si =

∑
{sj}j∈∂a\i

fa({sj}j∈∂a) (4.22)

×

indep branches︷ ︸︸ ︷∏
j∈∂a\i

[ ∑
{sk}k above j

gj(sj)
∏

k above j

gk(sk)
∏

b above j

fb({sl}l∈∂b
]

j fixed in outer sum

=
∑

{sj}j∈∂a\i

fa({sj}j∈∂a) (4.23)

×
∏

j∈∂a\i

[
gj(sj)

∑
{sk}k above j

∏
k above j

gk(sk)
∏

b above j

fb({sl}l∈∂b︸ ︷︷ ︸
=Rj→a

sj

]
taking out j

=
∑

{sj}j∈∂a\i

fa({sj}j∈∂a)
∏

j∈∂a\i

Rj→a
sj (4.24)

Where we used Equation 4.16 from Definition 4.6.

These relations suggest an interesting result for the partition function.
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Theorem 4.8 (Partition Function for Tree Models). For a factor tree G, consider its
leaves indexed by j. Then:

Z =
∑
sj

gj(sj)
∏
b∈∂j

V b→j
sj (4.25)

Proof. For a given reference, a factor tree G has a set of leaves with features {sj} and a
root. For nodes j, it holds that:

Rj→a
sj = gj(sj)∀j

Since there are no factor nodes outgoing from j, and only one father factor node b feeds
them. Recursing the relation to higher levels, it is possible to alternately recover all the
layers of factor and variable nodes. Using Lemma 4.7, we will have that Equation 4.14
is simplified to:

Z =
∑
sj

gj(sj)
∏
b∈∂j

V b→j
sj (4.26)

Where the V b→j
sj can be expanded further using again Lemma 4.7.

Notice that in the proof we choose a reference for leaves and root, but this does not
influence the specification of Z, since all factors are accounted anyway.

Theorem 4.8 provides a method for trees to compute their partition function in linear
time, namely T (N) ∈ O(|V |). Yet, the size of V is tipically exponentially exploding, with
a exp(cN) rate2. To overcome the hardness of summing over an exponentially exploding
number of terms we define messages (i.e. probabilities).

Definition 4.9 (Messages χj→a
sj , ψa→i

si ). Drawing from Definition 4.6, interpret χj→a
sj as

the probability that variable j takes value sj in the restricted system of predecessors.
Work out a similar reasoning for ψa→i

si .

χj→a
sj =

Rj→a
sj∑

sR
j→a
s

∑
s

χj→a
s = 1 ∀(ja) ∈ E (4.27)

ψa→i
si =

V a→i
si∑
s V

a→i
s

∑
s

ψa→i
s ∀(ia) ∈ E (4.28)

This reworking of variables comes with the need to express previous results in terms of
Rj→a

sj , V a→i
si , finding self consistent equations. First, we their connection as in Lemma

2At each split the number of nodes in the lower layer is at least doubled
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4.2. Belief Propagation

4.7:

χj→a
sj =

Rj→a
sj∑

sR
j→a
s

Def. 4.9 (4.29)

=
gj(sj)

∏
b∈∂j\a V

b→j
sj∑

s gj(s)
∏

b∈∂j\a V
b→j
s

Lem. 4.7 (4.30)

=
gj(sj)

∏
b∈∂j\a V

b→j
sj∑

s gj(s)
∏

b∈∂j\a V
b→j
s

∏
b∈∂j\a

∑
s′ V

b→j
s′∏

b∈∂j\a
∑

s′′ V
b→j
s′′︸ ︷︷ ︸

=1

(4.31)

=

gj(sj)
∏

b∈∂j\a
V b→j
sj∑

s′′ V
b→j
s′′∑

s gj(s)
∏

b∈∂j\a
V b→j
s∑

s′ V
b→j
s′

pushed in prod (4.32)

=
gj(sj)

∏
b∈∂j\a ψ

b→j
sj∑

s gj(s)
∏

b∈∂j\a ψ
b→j
s

Def 4.9 (4.33)

=
1

Zj→a
gj(sj)

∏
b∈∂j\a

ψb→j
sj (4.34)

where Zj→a =
∑
s

gj(s)
∏

b∈∂j\a

ψb→j
sj (4.35)
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Similarly but slightly more convoluted:

ψa→i
si =

V a→i
si∑
s V

a→i
s

Def 4.9

(4.36)

=

∑
{sj}j∈∂a\i

fa({sj}j∈∂a)
∏

j∈∂a\iR
j→a
sj∑

si

∑
{sj}j∈∂a\i

fa({sj}j∈∂a)
∏

j∈∂a\iR
j→a
sj

Lem 4.7

(4.37)

=

∑
{sj}j∈∂a\i

fa({sj}j∈∂a)
∏

j∈∂a\iR
j→a
sj∑

si

∑
{sj}j∈∂a\i

fa({sj}j∈∂a)
∏

j∈∂a\iR
j→a
sj

∏
j∈∂a\i

∑
s′j
Rj→a

s′j∏
j∈∂a\i

∑
s′′j
Rj→a

s′′j︸ ︷︷ ︸
=1

(4.38)

=

∑
{sj}j∈∂a\i

fa({sj}j∈∂a)
∏

j∈∂a\i
Rj→a

sj∑
s′′j
Rj→a

s′′j∑
si

∑
{sj}j∈∂a\i

fa({sj}j∈∂a)
∏

j∈∂a\i
Rj→a

sj∑
s′j
Rj→a

s′j

pushed in prod

(4.39)

=

∑
{sj}j∈∂a\i

fa({sj}j∈∂a)
∏

j∈∂a\i χ
j→a
sj∑

si

∑
{sj}j∈∂a\i

fa({sj}j∈∂a)
∏

j∈∂a\i χ
j→a
sj

Def. 4.9

(4.40)

=
1

Za→i

∑
{sj}j∈∂a\i

fa({sj}j∈∂a)
∏

j∈∂a\i

χj→a
sj (4.41)

where Za→i =
∑
si

∑
{sj}j∈∂a\i

fa({sj}j∈∂a)
∏

j∈∂a\i

χj→a
sj =

∑
{sj}j∈∂a

fa({sj}j∈∂a)
∏

j∈∂a\i

χj→a
sj

(4.42)

Where in the last line we just notice that inner and outer sum cover all neighbors of the
factor node a for any choice of j.
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The marginals are now easier to compute. Consider a tree model where the variable node
i has incoming factor nodes indexed by a, then:

µi(si) =
1

Z
gi(si)

∏
a∈∂i

V a→i
si (4.43)

=
gi(si)

∏
a∈∂i V

a→i
si∑

s gi(s)
∏

a∈∂i V
a→i
s

(4.44)

=
gi(si)

∏
a∈∂i V

a→i
si∑

s gi(s)
∏

a∈∂i V
a→i
s

∏
a∈∂i

∑
s′ V

a→i
s′∏

a∈∂i
∑

s′′ V
a→i
s′′︸ ︷︷ ︸

=1

(4.45)

=

gi(si)
∏

a∈∂i
V a→i
si∑

s′′ V
a→i
s′′∑

s gi(s)
∏

a∈∂i
V a→i
s∑

s′ V
a→i
s′

(4.46)

=
gi(si)

∏
a∈∂i ψ

a→i
si∑

s gi(s)
∏

a∈∂i ψ
a→i
s

Def 4.9 (4.47)

=
1

Z(i)
gi(si)

∏
a∈∂i

ψa→i
si (4.48)

where Z(i) =
∑
s

gi(s)
∏
a∈∂i

ψa→i
s (4.49)

Lastly, the result for Z is presented as a Theorem.

Theorem 4.10 (Partition Function for tree models, messages version). Consider a factor
tree G. Define:

Z(i) =
∑
s

gi(s)
∏
a∈∂i

ψa→i
s (4.50)

Z(a) =
∑

{si}i∈∂a

fa({si}i∈∂a)
∏
i∈∂a

χi→a
si (4.51)

Z(ia) =
∑
s

χi→a
s ψa→i

s (4.52)

Then:

=⇒ Z =

∏
i Z

(i)
∏

a Z
(a)∏

(ia) Z
(ia)

(4.53)
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Proof. Starting from the claim we slowly derive a known version of Z:∏
i Z

(i)
∏

a Z
(a)∏

(ia) Z
(ia)

=

∏N
i=1

∑
s gi(s)

∏
a∈∂i ψ

a→i
s

∏M
a=1

∑
{si}i∈∂a

fa({si}i∈∂a)
∏

i∈∂a χ
i→a
si∏

(ai)∈E
∑

s χ
i→a
s ψa→i

s

(4.54)

=

∏N
i=1

∑
s gi(s)

∏
a∈∂i

V a→i
si∑
s V

a→i
s

∏M
a=1

∑
{si}i∈∂a

fa({si}i∈∂a)
∏

i∈∂a
Ri→a

si∑
sR

i→a
s∏

(ai)∈E
∑

s

V a→i
s∑

s′ V
a→i
s′

Ri→a
s∑

s′′ R
i→a
s′′

(4.55)

=

∏N
i=1

∑
s gi(s)

∏
a∈∂i V

a→i
si∏

(ia)∈E
∑

s V
a→i
s

∏M
a=1

∑
{si}i∈∂a

fa({si}i∈∂a)
∏

i∈∂aR
i→a
si∏

(ia)∈E
∑

sR
i→a
s∑

(ia)∈E
∑

s V
a→i
s Ri→a

s∏
(ia)∈E

∑
s′ V

a→i
s′

∏
(ia)∈E

∑
s′′ R

i→a
s′′

(4.56)

=

∏N
i=1

∑
s gi(s)

∏
a∈∂i V

a→i
si

∏M
a=1

∑
{si}i∈∂a

fa({si}i∈∂a)
∏

i∈∂aR
i→a
si∑

(ia)∈E
∑

s V
a→i
s Ri→a

s

(4.57)

=

[∑
s

gj(s)
∏
a∈∂j

V a→j
s

][ N∏
i ̸=j,i=1

∑
s

gi(s)V
b→i
s

∏
a∈∂i\b

V a→i
s

]
(4.58)

×
[ M∏
a=1

∑
si

∑
{sk}k∈∂a\i

fa({si}i∈∂a)Ri→a
si

∏
k∈∂a\i

Rk→a
sk

]

×
[ ∏
(ia)∈E

∑
s

V a→i
s Ri→a

s

]−1

=

[ Z︷ ︸︸ ︷∑
s

gj(s)
∏
a∈∂j

V a→j
s

][ N∏
i ̸=j,i=1

∑
s

V b→i
s

Ri→b
s︷ ︸︸ ︷

gi(s)
∏
a∈∂i

V a→i
s

]
(4.59)

×
[ M∏
a=1

∑
si

Ri→a
si

V a→i
s︷ ︸︸ ︷∑

{sk}k∈∂a\i

fa({si}i∈∂a)
∏

k∈∂a\i

Rk→a
sk

]

×
[ ∏
(ia)∈E

∑
s

V a→i
s Ri→a

s

]−1

= Z

∏N
i=1,i ̸=j

∑
sR

i→b
s V b→i

s

∏M
a=1

∑
s V

a→i
s Ri→a

s∏
(ia)∈E

∑
s V

a→i
s Ri→a

s

(4.60)

= Z (4.61)

Where:

• in the first passage we apply the definition of χj→a
sj , ψa→i

si with appropriate indices
• in the second we collect together the products over all i and neighbors (i.e. all

edges) and over all a and neighbors (i.e. all edges)
• in the third passage we cancel the highlighted elements as they are equal
• in the fourth step we split the products and sums into three, and further inside

make explicit some products and sum indices j, i, where j is set as a root of the
tree, and i are the non nodes at all the ther layers.
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4.2. Belief Propagation

Figure 4.6: Z(i) graphically

Figure 4.7: Z(a) graphically

• which serve us in the fifth equality to identify definitions of already known objects
by Lemma 4.7, Theorem 4.8

• eventually, we realize that the denominator and the numerator of the factor at the
left of Z just cancel. Indeed, covering all variable nodes i but the root and all
factors amounts to covering all the edges of the tree, and so we are summing over
s inside, and doing the same product outside.

We stress the interpretation of the just introduced decomposition factors of the partition
function for a factor graph:

• Z(i) is the change of Z when gi(si) is added (Figure 4.6)
• Z(a) is the change of Z when fa is added (Figure 4.7)
• Z(ia) is the change of Z when gi(si), fa are connected (Figure 4.8)

Observation 4.11 (Link between partition functions). We recognize that:

• Zj→a ∼ Zi except we did not connect to a
• Za→i ∼ Za except i is not present

The result of Theorem 4.10 is in simple terms a decomposition of the energy configuration
of a system into:

• the sum of factors and variables
• minus the edge connections (ia) which are counted twice in the sum

A summary of all the results is found in the box below.

Summary of Belief Propagation Equations Consider a graphical model with dis-
tribution:

P({si}Ni=1) =
1

Z

N∏
i=1

gi(si)
M∏
a=1

fa({si}i∈∂a) (4.62)

Figure 4.8: Z(ia) graphically
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The BP messages are:

χj→a
sj =

1

Zj→a
gj(sj)

∏
b∈∂j\a

ψb→j
sj

∑
s

χj→a
s = 1 (4.63)

ψa→i
si =

1

Za→i

∑
{sj}j∈∂a\i

fa({sj}j∈∂a)
∏

j∈∂a\i

χj→a
sj

∑
s

ψa→i
s = 1 (4.64)

The free entropy density Φ is recovered using the identity:

Φ =
log(Z)

N
=

1

N

[∑
i

log(Z(i)) +
∑
a

log(Z(a))−
∑
(ia)

log(Z(ia))

]
(4.65)

Where:

Z(i) =
∑
s

gi(s)
∏
a∈∂i

ψa→i
s , Z(a) =

∑
{si}i∈∂a

fa({si}i∈∂a)
∏
i∈∂a

χi→a
si , (4.66)

Z(ia) =
∑
s

χi→a
s ψa→i

s (4.67)

And marginals are recovered using:

µi(si) =
1

Z
gi(si)

∏
a∈∂i

ψa→i
si (4.68)

We can now exploit another example where this formalization arises naturally to build
our heuristic algorithm.

Example 4.12 (Generalized Linear Model). Consider n samples indexed by µ of the
form:

Xµ ∈ Rn×d yµ ∈ {−1, 1}n

Generalized Linear Regression aims at minimizing a parametrized loss of the form:

L(w) =
n∑

µ=1

ℓ(yµ, Xµ · w) +
d∑

i=1

r(wi)

Where the second term is a regularization term. To represent this as a factor graph we
endow the parameters with a Boltzmann measure and let β → ∞, which by Proposition
2.2, means that the distribution will concentrate at the minimum value of L(·). Thus,
we let:

P(w) =
1

ZN (X,y, β)
e−βL(w)

=
1

ZN (X,y, β)
exp

{
− β

[ n∑
µ=1

ℓ(yµ, Xµ · w) +

d∑
i=1

r(wi)

]}

=
1

ZN (X,y, β)

d∏
i=1

e−βr(wi)
n∏

µ=1

e−βℓ(yµ,Xµ·w)

Where for clarity:
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Figure 4.9: GLM factor graph

• N is the number of configurations of the possible values L can take
• d is again the dimension of the samples, indexed b i
• n is the number of samples, indexed by µ

And moreover:

• We recognize for wi that gi(wi) = e−βr(wi)

• factors are indexed by µ and fa = fµ. Where each of the factors connects with all
wi

We can then build the factor graph for the GLM as in Figure 4.9.

The result of Example 4.12, though interesting, proves that not all factor graphs are
trees, and that the reasoning made so far is not exact for any kind of problem. After
presenting the procedure for an exact tree, we will show a result that avoids this issue.

4.3 BP on trees and sparse graphs

For a tree, the BP algorithm needs only one iteration, and will exploit the equations
summary, with initialization at the leaves:

χj→a
sj = gj(sj) (4.69)

Which follows by Equation 4.63 on leaves. In case of non tree like models, the indepen-
dence of branches up to node conditioning generally fails to hold. Yet, it is possible to
heuristically iterate until convergence the equations parametrized by a time index t as:

χj→a
sj (t+ 1) =

1

Zj→a(t)
gj(sj)

∏
b∈∂j\a

ψb→i
sj (t) (4.70)

ψa→i
si (t) =

1

Za→i(t)

∑
{sj}j∈∂a\i

fa

(
{sj}j∈∂a

) ∏
j∈∂a\i

χj→a
sj (t) (4.71)

Where it is required to initialize χj→a
sj at some points which are not leaves, leading to

inexact choices such as:

• the prior approach

χj→a
sj (t = 0) =

gj(sj)∑
s gj(s)

(4.72)

• a perturbed prior, yet to normalize

χj→a
sj (t = 0) = gj(sj) + εj→a

sj (4.73)

• random, yet to normalize
χj→a
sj (t = 0) = εj→a

sj (4.74)
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• planted initialization
χj→a
sj (t = 0) = δsj ,s∗j (4.75)

Pros and cons of these approaches will be discussed in the next Chapters.

Similarly, we will concentrate on cases in which the independence between incoming
messages ψb→j

sj for b ∈ ∂j \ a and messages χj→a
sj for j ∈ ∂a \ i holds approximately and

leads to exact results to leading order in N . One such case is that of sparse graphs.

Getting back to the graph coloring problem of Section 1.1, we could construct and adja-
cency matrix for a graph with N nodes of the form:

i < j

Aij = 1 w.p.
c

N
Aij = 0 otherwise

(4.76)

Where clearly as N → ∞ we have that the average number of neighbors
c

N − 1
∼ c

N
the

probability of having a single connection. We could then let the degree of any node be
equal to the factor c = di ∈ O(1)∀i. Informally, sparsity refers to the fact that while the
degree is kept constant at c, the size of the graph diverges. Again informally, we say that
a graph will be locally tree like if for almost all nodes, where N → ∞, the neighborhood
at a diverging distance d→ ∞ is a tree.

Theorem 4.13 (Sparse random graphs are locally tree like). For a sparse random graph
of size N , consider its neighborhood. As N → ∞ it is tree like up to distance d→ ∞.

Proof. For a sparse graph, we aim to check that the distance for a loop (i.e. not a tree)
diverges. To do so, we consider a node i, then in d steps a loop has probability:

P(loop i) = 1− P(no return to i)

= 1−
(
1− P(i neighbor∀steps)

)
≈ 1−

(
1− 1

N

)cd

where cd ≈ di
d
= E[#nodes in d steps]

Letting N → ∞, c ∈ O(1) we have that:

• for d small, the probability is exponentially close to zero
• for d large, it is exponentially close to one

We further look for a distance d such that the probability becomes P(loop i) ∈ O(1),
which marks the order of length of the shortest loop. Thus, we inspect the logarithm of
the second term for better clarity3 and we have that:

log

[(
1− 1

N

)cd]
= cd log

(
1− 1

N

)
≈ cd

(
− 1

N
− 1

2N2
+ · · ·

)
∈ O(1) Taylor

⇐⇒ cd ≈ O(N)

⇐⇒ d ≈ log(N)

log(c)
= log(N) by log(c) ∈ O(1)

3Indeed, enforcing a constant w.r.t. size O(1) means the same on the linear or logarithmic scale. In
other terms, a constant has a constant logarithm and viceversa.
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4.3. BP on trees and sparse graphs

And for a distance lower than log(N) the neighborhood is with high probability a tree.
Notice that as N → ∞ =⇒ d→ ∞ and we have a divergence property of the neighbor-
hood ensuring that sparse graphs are locally tree like.

In later Chapters these concepts will be expanded further for greater understanding.
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Chapter 5

Solving Graph Coloring: Belief
Propagation

In this Chapter, we will focus on giving a fresh start to the graph coloring problem
introduced in Chapter 1. We will just see the tip of the iceberg of using a graphical
model for graph coloring, and reroute the reader to later Chapters for its conclusion.

Recalling the discussion of Section 1.1, given a graph G(V,E) where |V | = N and
|E| = M . For each vertex i ∈ V , we aim to assign a color, represented as an integer
si ∈ {1, . . . , q}. In Physics, this formalization is commonly referred to as Potts spins.
In this setting, the Boltzmann measure takes the form:

P
(
{si}Ni=1

)
=

1

ZG(β)

∏
(ij)∈E

e−βδsisj (5.1)

Just to recall key concepts, below are some noteworthy quick observations:

• interactions are determined by colors, encoded in si, sj variables for an edge (ij) ∈
E

• the β factor governs the strength in probability of such interaction and is artificially
introduced

Going further into their effects in the probabilistic context, we can see that for two
connected nodes i, j ∈ V :{

si = sj ⇐⇒ δsisj = 1

}
=⇒ P

(
{si}Ni=1

)
β→∞→ 0 (5.2)

β = 0 =⇒ P
(
{si}Ni=1

)
∼ U(qN colorings) (5.3){

si = sj ⇐⇒ δsisj = 1

}
∀(ij) ∈ E =⇒ P

(
{si}Ni=1

)
β→−∞→ 1 (5.4)

These three conditions read as follows:

• In case of equal colors and β ≫ 1, the probability drowns to zero. It is very
unlikely that two connected spins will be equally colored. This type of interaction
is antiferromagnetic

• In any case, β = 0 causes the probability measure to become uniform across all the
possible configurations

• A very low inverse temperature β ≪ 1 induces alignment in all1 the connected spins
with a probability that tends to unity. This type of interaction is ferromagnetic

1note that in Equation 5.4 there is a for all edges term before the implication. Namely, all clusters
of connected nodes must agree on a color
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In this Chapter, we will focus on the latter case, which will be analyzed without much
algorithmic flavour. A naturally arising question could be:

Why is the Boltzmann measure introduced in the first place?

Hopefully, the next arguments will provide evidence for why this is useful.

5.1 Energy, Entropy and Counting

Given a graph instance G and a cost/energy counting the average number of monochro-
matic edges of the form:

e =
1

N

∑
(ij)∈E

δsisj (5.5)

Consider a function N (·) : R+ → N+ which given an energy value returns the number
of configurations attaining it. Since N (e) is tipycally exponentially large, we will work
with a defined value.

Definition 5.1 (Entropy s(·)). For a given energy level e a system has entropy:

N (e) = eNs(e) ⇐⇒ s(e) =
1

N
log

[
N (e)

]
(5.6)

The importance of such quantity lies in the fact that for any problem we wish to examine
feasible solutions at a given energy level. In other words, for graph coloring, we might be
interested in the existance of satisfactory configurations at a given energy level, i.e. is it
feasible to have a valid graph coloring with necessarily zero energy? If not, then graph
coloring for the considered instance is not solvable. Again, with access to s(·), one could
examine almost exact results with low energy levels as well.

Observation 5.2 (Entropy and free entropy). The previously introduced free entropy
deonted as Φ is not equal to the entropy s. Just to recall Definition 2.9 tells us that:

Φ(β) = log[ZN (β)] (5.7)

Nevertheless, it is used to make easier calculations to determine s.

Using the just reminded fact, we observe that the partition function can be expressed as:

eNΦN (β) = eN
1
N

log[ZG(β)] Definition 2.9 (5.8)

= ZG(β) (5.9)

=
∑

{si}Ni=1

e−β
∑

(ij)∈E δsisj recall Example 4.5 (5.10)

=
∑

e values

∑
{si}Ni=1|e energy

e−βNe splitting the sum (5.11)

=
∑

e values

N (e)e−βNe fixing energy (the value is the same) (5.12)

=
∑

e values

eNs(e)−βNe Definition 5.1 (5.13)

ZG(β) =

∫
de eNs(e)−βNe as N → ∞ (5.14)
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5.1. Energy, Entropy and Counting

Where in particular we substitute with an integral since we are interested in the large
size behavior and only look for leading order trends in the quantities Φ, e, s of interest.

Equation 5.14 can be solved using the saddle point method introduced in Chapter 2,
which reads:


∂[Ns(e)−Nβe]

∂e
= 0

eNΦN (β) = eNs(e)−βNe
⇐⇒


∂s(e)

∂e

∣∣∣
e=e∗

= β

ΦN (β) = s(e∗)− βe∗
(5.15)

While this last result might seem useless, connecting some dots from previous arguments,
it will delineate a clear method to derive the entropy of a system and thus the number
of configurations at a given energy.

Now, we recall that for a Boltzmann measure, we have that :

dΦN (β)

dβ
=

1

N

d

dβ
log[ZG(β)] (5.16)

=
1

N

d

dβ
log

[ ∑
{si}Ni=1

e−β
∑

(ij)∈E δsisj

]
(5.17)

=
1

N

1∑
{si}Ni=1

e−β
∑

(ij)∈E δsisj

︸ ︷︷ ︸
=ZG(β)

∑
{si}Ni=1

(−1)
∑

(ij)∈E

δsisje
−β

∑
(ij)∈E δsisj (5.18)

= (−1)
∑

{si}Ni=1

1

N

∑
(ij)∈E

δsisj︸ ︷︷ ︸
=e

e−β
∑

(ij)∈E δsisj∑
{si}Ni=1

e−β
∑

(ij)∈E δsisj︸ ︷︷ ︸
=P({si}Ni=1

reordering & bringining inside the sum ZG(β)

(5.19)

= −⟨e⟩Boltzmann (5.20)

At the large limit, the average energy will also be the final energy as discussed in Theorem
3.4. Thus, if we compute ΦN (β) we can explicitly derive e and solve for s(e) in Equation
5.15:

s(e∗) = ΦN (β) + βe∗ (5.21)

Doing these calculations exactly is in most cases unfeasible. In Chapter 4 we saw how
this is independent of Belief Propagation, where we were computing the approximate
Bethe free entropy and messages χi→j until convergence (a fixed point) satisfying (Bethe
free Entropy, exercise 4.2 [KZ21b]):

dΦbethe(β)

dβ
=
∂Φbethe

∂χ︸ ︷︷ ︸
=0

∂χ

∂β
+
∂Φbethe

∂β
at a fixed point (5.22)

=
∂Φbethe

∂β
(5.23)

Making it possible to derive the energy directly from the BP equations through Φbethe

to solve for s(e∗) in Equation 5.21
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5.2 Adapting BP equations to graph coloring

For a graphical model as that of a graph coloring problem, we recognize that the node
functions and edge functions take the form:{

gi(si) = 1 ∀i
f(ij)(si, sj) = e−βδsisj ∀a = (ij) ∈ E

(5.24)

Where we stress that every edge is a factor, i.e. (ij) = a. Plugging these notions into
the Equations of Chapter 4 we get:

χj→(ij)
sj =

1

Zj→(ij)

∏
(kj)∈∂j\(ij)

ψ(kj)→j
sj (5.25)

ψ(ij)→i
si =

1

Z(ij)→i

∑
{sj}j∈∂(ij)\i

f(ij)({sj}j∈∂(ij))
∏

j∈∂(ij)\i

χj→(ij)
sj (5.26)

=
1

Z(ij)→i

∑
sj

f(ij)(si, sj)χ
j→(ij)
sj since {sj}j∈∂(ij)\i = sj

(5.27)

=
1

Z(ij)→i

∑
sj

e−βδsisjχj→(ij)
sj Eqn. 5.24 (5.28)

=
1

Z(ij)→i

[
e−βχi→j

si︸ ︷︷ ︸
case si=sj

+
∑
sj ̸=si

e−β·0χi→j
sj

]
splitting (5.29)

=
1

Z(ij)→i

[
e−βχi→j

si︸ ︷︷ ︸
case si=sj

+1− χj→(ij)
si︸ ︷︷ ︸

1−case si=sj

]
(5.30)

=
1

Z(ij)→i

[
1−

(
1− e−β

)
χj→(ij)
si

]
reordering (5.31)

Now, substituting back the value of ψ into χ we get that:

χj→(ij)
sj =

1

Zj→(ij)

∏
(kj)∈∂j\(ij)

1

Z(kj)→i

[
1−

(
1− e−β

)
χk→(kj)
sj

]
Eqns 5.25, 5.31

(5.32)

=
1

Zj→(ij)

∏
(kj)∈∂j\(ij) 1−

(
1− e−β

)
χ
k→(kj)
sj∏

(kj)∈∂j\(ij) Z
(kj)→i

reordering

(5.33)

=
1

Zj→(ij)
∏

(kj)∈∂j\(ij) Z
(kj)→i︸ ︷︷ ︸

=Zj→i new normalization

∏
(kj)∈∂j\(ij)

1−
(
1− e−β

)
χk→(kj)
sj (5.34)

χj→i
sj =

1

Zj→i

∏
k∈∂j\i

1−
(
1− e−β

)
χk→j
sj︸ ︷︷ ︸

(kj)∈∂j\(ij)≡k∈∂j\i

(5.35)

Where in the last passage we exploit the fact that the factor graph has a neighbor
structure such that variable nodes are connected to each other only through factors. Due
to this, we can resort to using a graph notation instead of a factor graph notation for
neighbors and write:

(kj) ∈ ∂j \ (ij) ≡ k ∈ ∂j \ i
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5.3. Free energy for graph coloring

Indeed, they are the same as messages between nodes with the newly defined χ are
necessarily one to one with messages between nodes in the factor graph, which connects
variable nodes only through the edge (ij).
For the same reasons, since all factors have two neighbors, we can ignore ψ(ij)→i

si .

To further understand, following the interpretations proposed in Chapter 4, we recall
that χj→i

sj is the probability that j takes value sj if the connection (ij) was removed.
Then:

•

1−(1−e−β)χk→j
sj = 1−χk→j

sj +e−βχk→j
sj =

∑
sk ̸=sj

χk→i
sk

+e−βχk→i
sj = P(k allows j taking sj)

(5.36)
Noticing that e−βδsisj = e−β·0 = e0 = 1 in the sum making it disappear, while out
of the sum we get eδsisj = e−β . Then, inside the product we have the probability
of a neighbor k allowing node j to take the value sj

• the product
∏

k∈∂j\i spreads across all neighbors of j but the connection to i, thus
returning the probability that all neighbors allow j to take value sj

• the product makes sense since upon conditioning on sj there neighbors are assumed
to be independent

In an algorithmic setting, Belief Propagation is used to extract solutions to computational
problems. In this case, the messages are to be interpreted as probabilities. To return a
solution (i.e. a graph coloring), one needs to decimate BP, resorting to an iteration of
the algorithm and a choice of colors depending on the final marginal probabilities. We
will get back to this procedure in later Chapters.
For the time being, we will focus on using BP as a tool for analysis. The missing piece
is computing Φbethe, which will be the objective of the next section.

5.3 Free energy for graph coloring

It is possible to show with similar arguments that for graph coloring it holds that2:

NΦN,bethe(β) = Φbethe(β) =
∑
i

log[Zi]−
∑

(ij)∈E

log[Z(ij)] (5.37)

Zi =
∑
s

∏
k∈∂i

[
1−

(
1− e−β

)
χk→i
s

]
(5.38)

Z(ij) =
∑
si,sj

e−βδsisjχi→j
si χj→i

sj = 1− (1− e−β)
∑
s

χi→j
s χj→i

s (5.39)

We will evaluate this expression at a fixed point of the BP equations as argued before,
and stress that such a quantity might be seen in terms of the messages χ or other
parametrizations.

Observation 5.3 (Exactness of Φbethe). While on a tree we showed in Section 4.3 that
Φbethe = Φ, this is not always the case. In the next Chapters, the main differences in
general cases will be dealt with in a clear manner.

Observation 5.4 (Disorder and BP). All of the above discussion is based on a graph
instance G(V,E), and no average over the probabilistic disorder was taken yet. In the
replica method this was the first step.

2Bethe free Entropy, exercise 5.1 [KZ21b]
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5.3.1 Paramagnetic Interaction

Searching for a closed form of fixed points of the BP equations it is rather easy to check
that there is always one.

Theorem 5.5 (Easy BP fixed point for graph coloring). For graph coloring, it holds
that:

χj→i
sj =

1

q
=

1

q

[
1− (1− e−β)1q

]di−1

[
1− (1− e−β)1q

]di−1
∀(ij) ∈ E,∀sj ∈ {1, . . . , q} (5.40)

Where di is the degree of node i, and q is the number of colors, is a fixed point for
Equation 5.35

Proof. We check that the claim is correct by substituting into Equation 5.35:

χj→i
sj =

1

Zj→i

∏
k∈∂j\i

1−
(
1− e−β

)
χk→j
sj (5.41)

1

q
=

1

Zj→i

[
1− (1− e−β)

1

q

]di−1

|k ∈ ∂j \ i| = di − 1 all neighbors of i but itself

(5.42)

=
1

q

[
1− (1− e−β)1q

]di−1

︸ ︷︷ ︸
=Z

[
1− (1− e−β)

1

q

]di−1

Z is uniform probability normalization

(5.43)

=
1

q
(5.44)

Using the result of Theorem 5.5, and letting c =
∑

i
di
N = 2M

N be the average degree of
the graph we recover for the Bethe free entropy of Equation 5.37:

NΦN,bethe(β) =
∑
i

log[Zi] +
∑

(ij)∈E

log[Z(ij)] (5.45)

=
∑
i

log

{ ∑
s︸︷︷︸

q values

∏
k∈∂i︸︷︷︸

di times

[
1− (1− e−β)

1

q

]}
(5.46)

−
∑

(ij)∈E

log

{
1− (1− e−β)

∑
s︸︷︷︸

q values

1

q

1

q

}

=
∑
i

log

{
q

[
1− (1− e−β)

1

q

]di}
(5.47)

−
∑

(ij)∈E

log

{
1− (1− e−β)

1

q

}
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5.3. Free energy for graph coloring

Now, we move N to the LHS and use some logarithm properties to simplify the equation,
along with the previouslt defined c =

∑
i
di
N = 2M

N :

ΦN,bethe(β) =
1

N

∑
i

log(q) + di log[1− (1− e−β)q−1]− 1

N

∑
(ij)∈E

log

[
1− (1− e−β)

1

q

]

(5.48)

=
1

N
N log(q) + log[1− (1− e−β)q−1]

1

N

∑
i

di︸ ︷︷ ︸
=c

− 1

N
M︸ ︷︷ ︸

= c
2

log

[
1− (1− e−β)

1

q

]

(5.49)

= log(q) + c log[1− (1− e−β)q−1]− c

2
log[1− (1− e−β)q−1] (5.50)

= log(q) +
c

2
log

[
1− (1− e−β)

1

q

]
(5.51)

With this value in hand, we can go on inspecting the energy and the entropy using
Equations 5.15, 5.20, 5.23:

−dΦbethe

dβ
= −∂Φbethe

∂β
Eqn. 5.23 (5.52)

= ⟨e⟩Boltzmann Eqn. 5.20 (5.53)

= e∗ Thm. 3.4 (5.54)

=
c

2

1

1− (1− e−β)1q
(−1)(−1)e−β 1

q
expand ∂ derivative (5.55)

Which, working further the final fraction becomes:

=⇒ e∗ =
c

2

e−β 1
q

1− 1
q + e−β 1

q

(5.56)

=
c

2

1
q
1
q

e−β 1
q

1− 1
q + e−β 1

q

(5.57)

=
c

2

e−β

(q − 1) + e−β︸ ︷︷ ︸
=P(edge monochromatic)

(5.58)

Where by P(edge monochromatic) we mean the probability that two nodes have the
same color, i.e. the inverse of the probability that they have any pair of non equal colors.

Similarly, inspecting the entropy:

s(e∗) = Φbethe(β) + βe∗ Eqn. 5.15 (5.59)

= log(q) +
c

2
log

[
1− (1− e−β)

1

q

]
+ β

c

2

e−β

(q − 1) + e−β
(5.60)

We recall the parameters into play are:

• β the inverse temperature
• q the number of available colors

• c =
2M

N
the average degree of the graph

• the fixed point is χi→j
sj =

1

q

53



CHAPTER 5. SOLVING GRAPH COLORING: BELIEF PROPAGATION

Figure 5.1: Entropy vs energy at different c values

And choose to plot the entropy on the y-axis against the energy parametrized by β, for
a fixed number of colors q = 4. Different average degrees (i.e. values of c) are plotted in
different colors. The result is that of Figure 5.1.

The plot can be explained observing the following facts:

• the energy e ∈ [0, c2 ] = [0, MN ] = [all different, allsame]

• the entropy is maximum at the tipycal case for the energy, which is e = c
2q =

M

Nq
and s(e) =

1

N
log(N (e)) =

1

N
log(qN ) = log(q) by a simple maximization

argument. Intuitively, a uniform distribution is the most chaotic.

• the slope of the curve s(e) is
∂s(e)

∂e
= β by the Legendre transform

Observation 5.6 (Entropy and its possible values). Observing the plot of Figure 5.1
and the entropy from Definition 5.1 the two are not in accordance. Indeed, s(e) is defined
only on the positive section of the plane, being the logarithm of positive numbers, i.e.
N (e). Thus, the section of the curve where s(e) < 0 make no sense, and either does not
exist, or highlights a mistake in the just made reasoning.

Observation 5.7 (Achievable but non sense energy levels). Consider a graph, set all

the colors to the same index, then e =
c

2
=
M

N
. Yet, for c = 12, as Figure 5.1 suggests,

this is not feasible, as it has negative entropy (see Observation 5.6).
Additionally notice that the assumption on the fixed point roughly means that all of the
colors will be covered by the same amount of nodes. Clearly, this does not coincide with
an assignment of only one color to all nodes, achieving e =

c

2
. The paramagnetic i.e.

χi→j
sj fixed point assumption is not valid and one must inspect a ferromagnetic setting

where there is a probabilistic preference on a color.

5.3.2 Ferromagnetic Interaction

Assumption 5.8 (Only random graphs). To simplify the analysis, only focus on random
sparse graphs.

Enforcing a preference on a specific color, which for simplicity is indexed by 1:

χi→j
1 = a χi→j

s = b =
1− a

q − 1
∀s ̸= 1 (5.61)

And adjusting the BP equations we get that the new form of Equation 5.41 is:
a =

1

Zj→i
Adj−1 :=

1

Zi→j

[
1− (1− e−β)a

]dj−1

b =
1

Zj→i
Bdj−1 :=

1

Zj→i

[
1− (1− e−β)b

]dj−1

Zj→i = (q − 1)Bdj−1 +Adj−1

(5.62)
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5.3. Free energy for graph coloring

Figure 5.2: Fixed points and Φ in the imbalanced fixed point Equation

Readjusting the fixed point requirements as before we can work out the expressions:
a =

Adj−1

(q − 1)Bdj−1 +Adj−1

b =
Bdj−1

(q − 1)Bdj−1 +Adj−1

(5.63)

Which are satisfied ∀(ij) ∈ E ⇐⇒ dj ≡ d ∀j. This condition coincides with the
definition of random regular graphs, an instance of the family of graphs which have
always d connections for each node.

Observation 5.9 (On the fixed point solution). It is worth noticing that this is only an
option. Another possibility is specifying further the granularity of a as a function of its
(ij) connections for each node. This is a simpler treatment.

Expressing the a quantity as a function of dj ≡ d ∀j, β, q we get the ferromagnetic fixed
point condition:

a = RHS(a;β, d, q) :=

[
1− (1− e−β)a

]dj−1

(q − 1)Bdj−1 +Adj−1
(5.64)

=
[1− (1− e−β)a]d−1

(q − 1)[1− (1− e−β)b]d−1 + [1− (1− e−β)a]d−1
(5.65)

=
[1− (1− e−β)a]d−1

(q − 1)[1− (1− e−β)1−a
q−1 ]

d−1 + [1− (1− e−β)a]d−1
(5.66)

Which plugged into the Bethe free entropy results in:

ΦN,bethe(β) =
1

N

∑
i

log[Zi]− 1

N

∑
(ij)∈E

log[Z(ij)] (5.67)

= log

{
(q − 1)[1− (1− e−β)

1− a

q − 1
]d + [1− (1− e−β)a]d

}
(5.68)

− d

2
log

{
1− (1− e−β)

[
(1− a)2

q − 1
+ a2

]}
We choose to plot the behavior of the fixed point equation a = RHS(a, β, d, q) and the
a,ΦN,bethe(a) relationship. These two are the left and right side plot of Figure 5.2. Both
are proposed for different values of β, which correspond to different colors. The former
highlights the fact that as β → −1 the stable fixed points get far away, while for a bigger
β = 0/4 such fixed point is paramagnetic (i.e. 1

q ), previosly discussed. The latter is
even more interesting: we notice that as β → −1 clearly the paramagnetic fixed point
becomes unstable (a minima) and two new (maximal) fixed points appear.

It is interesting to explore at what precise β value such a behavior starts showing up.
The upward trend of the slope of the RHS(a, β, d, q) curve suggests inspecting when
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Figure 5.3: The βstab switch

such slope becomes unity at the paramagnetic fixed point to see the boundary point
from straight line to curve. We call this value βstab and formalize it as:

∂RHS(a)

∂a

∣∣∣∣
a= 1

q

= 1 =
(d− 1)(1− e−β)

e−β + q − 1
βstab condition (5.69)

=⇒ βstab = − log

[
1 +

q

d− 2

]
(5.70)

Equation 5.70 is useful for examinining other cases in which q = 2 but d ≥ 3. All of
those present the same transition from one to two fixed points3, equivalent to the second
order phase transition of the Curie Weiss model of Section 2.2.

Observation 5.10 (Curie Weiss model vs Graph coloring). We can interpret the Curie
Weiss model as the limiting form of the graph coloring problem for d → ∞. Recall that
the Curie Weiss model explains the solution on a fully connected graph, while in the case
of d regular graphs the number of connections is d for each node.

To visualize the switch that happens at βstab refer to the example for q = 2, d = 5 of
Figure 5.3, where the horizontal straight line is 1

q . Remember that in section 2.2 the
probability a was a magnetization: the plots are equivalent!

Coming back to Observation 5.10, more things can be said. Sticking to q = 2, d ≥ 3 we
have that in another interpretation the colors can be encoded differently as q = ±1 and
δsisj ∈ {0, 1}, with a factor 2 floating around. This is exactly the Bethe approximation
of the Ising model on sparse graphs with d neighbors on a lattice of dimension D where
the following trivial identity holds:

d = 2D (5.71)

Describing the properties of such models is usually very difficult. The Bethe approxima-
tion is a quick approach to propose a solution assuming that the lattice is tree like4 d

regular sparse graphs are locally tree like from the discussion carried out in Section 4.3,
and we can inspect the degree of correctness of the approximation5.

• for d = 2 =⇒ βstab = −∞ which makes sense as in a one dimensional Ising model
there is no phase transition. Observe also that in this case the approximation is
exact as a one dimensional grid is a tree

• for d = 4 =⇒ βstab = −0.693 which is rather close to the exact solution by
Onsager [Ons44] βOnsager = − log[1 +

√
2] = −0.881

3From no preference on colors to color preference, from uniform probability to spike probability & so
on...

4To be tree like, it must have no loops, this is a very strong adjustment! A grid has many loops.
5The sign of the critical temperature is opposite to the usual literature in this case since the β

temperature was oriented as an antiferromagnet. Also the Hamiltonian misses the usual 2 factor in the
Ising model. All of these formalizations do not influence the equivalence between the two approaches.
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Figure 5.4: Phase transition, q = 10, d = 5

• for d = 6 =⇒ βstab = −0.4433 and while there are no exact solutions, numerical
simulation suggests that βd=6 ≈ −0.4055, which is very close.

• It can be proved (Fully connected limit from BP, exercise 5.2 [KZ21b]) that as
d→ ∞ the Bethe approximation becomes exact, up to a rescaling in the interaction
strength6.

5.3.3 More colors: the Potts ferromagnetic interaction

Consider the cases in which q ≥ 3. In Figure 5.4, we show an example of theRHS(a, β, q, d) =
f(a) plot and ΦN,bethe(a) plot as before for q = 6, d = 5. The situation is different. The
1
q fixed point is present, but there is no symmetry of the appearing fixed points when
β → −1. We recognize regions of β:

• for β > βstab inverse temperatures, the 1
q fixed point is a stable unique maximizer

• up to a certain point, as β → −1, β < βstab another local maxima of the free entropy
comes into play, but is globally lower than the level attained at the 1

q option. This
region is the interval [βc, βstab] where βc denotes a the critical temperature, which
was not present before

• at another critical value, denoted as βs, the spinodal inverse temperature, a
discontinuous second order phase transition induces the change of maximizer
from 1

q to an imbalanced setting.
• Remember that with more than one fixed point, the highest in entropy is the

dominant one when applying the saddle point method.

Observation 5.11 (More colors enhance the difference). Figure 5.4 is an example for
q = 10, d = 5 of the magnetization level a∗ (the fixed point) as β changes. The legend is
shared across the two plots, and the change is clearly discontinuous.

We can now solve the problem outlined in Observation 5.6, justifying a change of the fixed
point from paramagnetic to ferromagnetic, attaining positive entropy at larger energy
values. The newly adjusted plot is proposed in Figure 5.5. Above a certain energy level,
the balanced color fixed point is no longer valid and a preference must be introduced,
leading to the orange line.

At this point, a noteworthy question might be:

How do we ensure there is no other solution for β < 0?

Fortunately, two important theoretical results guarantee the uniqueness claim in the
limit.

6The previously mentioned 2 factor
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Figure 5.5: Adjusted Entropy vs energy plot

Theorem 5.12 (Exactness of BP on random graphs). Let β < 0, then the results obtained
with BP on random graphs are exact. Namely:

∀ϵ > 0 P
[
|Φ(β)− Φbethe(β)| < ϵ

]
N→∞→ 1 w.h.p (5.72)

In the cases:

• q = 2, sparse random graphs (not necessarily regular) [DM09]
• q = 3 d-regular graphs [Dem+12]

What we are missing is a (more convolved) treatment of the β > 0 case, which is devel-
oped in the next section.

5.4 Anti-ferromagnetic interaction

So far, with β < 0 we enforced attraction between nodes, and argued that nodes have a
tendency to align. Now we let β > 0, where β → ∞ is the original coloring problem. In
particular, the focus is on finding a condition for sparse graphs that ensures existance of
colorings with high probability, and the magnitude of such colorings, the entropy at zero
energy7 s(e =0).

Recall the general form of the probability distribution we are considering:

P
(
{si}Ni=1

)
=

1

ZG

N∏
i=1

gi(si)

M∏
a=1

fa

(
{si}i∈∂a

)
(5.73)

In this setting the free entropy is explicitly dependent on the graph considered and we
expect that it will self average:

ΦN =
1

N
log[ZG] | P

(
|ΦN − E[ΦN ]| > ϵ

)
N→∞→ 0∀ϵ > 0 (5.74)

In the limit, the expectation and the actual value of the free entropy are assumed to have
the same value. For the purpose of further understanding the differences into play, we
introduce two useful probabilistic quantities:

Definition 5.13 (Quenched and Annealed free entropy). Define two types of evaluating
the expectation, either on the disorder of possible graphs as in the replica method, or on
the given graph as in BP. We hvae that:

Φquench := EG

[
1

N
log[ZG]

]
(5.75)

Φanneal :=
1

N
log

[
EG[ZG]

]
(5.76)

7In other words, the number of valid (e =0 =⇒ no errors) colorings if they exist at all.
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Proposition 5.14 (Properties of annealed and quenched free entropy). It holds that:

• Φanneal ≥ Φquench by applying Jensen’s Inequality
• ∃G | Φanneal > Φquench as N → ∞ so the two do not necessarily coincide in

the limit. Indeed, the exponential size order of magnitude of the partition function
breaks the concentration that holds for 1

N log[Z], and the annealed free entropy is
dominated by rare instances of the graph, and not by the average!

Example 5.15 (Easy rare dominance case). Consider the simple artificial partition
function:

ZG =

{
eN w.p. 1− e−N

e3N w.p. e−N
(5.77)

Then with straigthforward calculations one gets:

Φquench = E
[
1

N
log[ZG]

]
= 1 + e−N2

N→∞→ 1 (5.78)

Φanneal =
1

N
log

[
E[ZG]

]
= 2 +

1

N
log[1 + e−N − e−2N ]

N→∞→ 2 (5.79)

And the two averages are different! The quenched entropy is representative of typical
values, while the annealed version is highly influenced by exponentially rare events.

Other than being an upper bound to the quenched entropy (first claim of Proposition
5.14), the annealed entropy is usually easier to compute, and can still be inspected to
understand the problem further. Moreover, a nice result pops up for graph coloring:

Theorem 5.16 (Graph coloring Bethe and annealed entropy). For the graph coloring
model, the Bethe free entropy at the fixed point is equivalent to the value of the annealed
entropy:

Φanneal = Φbethe

∣∣∣∣
χ= 1

q

(5.80)

Proof. Let G(N,M) denote a random graph with N nodes and M edges chosen at
random. Then:

Φanneal =
1

N
log

[
EG(N,M)[ZG(β)]

]
(5.81)

=⇒ EG(N,M)

[
ZG(β)

]
= EG(N,M)

[ ∑
{si}Ni=1

e−β
∑

(ij)∈E δsisj

]
Eqn. 5.10 (5.82)

= qN E{si}Ni=1︸ ︷︷ ︸
over nodes

[
EM︸︷︷︸

over edges

[e−β
∑

(ij)∈E δsisj ]

]
expanding expectation across edges and nodes

(5.83)

= qN
[
e−β 1

q
+ (1− 1

q
)

]M
︸ ︷︷ ︸

single edge entropy

(5.84)

Where we exploited the fact that edges are independently sampled, and contributions
are dominated by equally represented colors.
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Then:

Φanneal =
1

N
log

[
qN

[
e−β 1

q
+ (1− 1

q
)

]M]
(5.85)

= log(q) +
M

N
log

[
e−β 1

q
+

(
1− 1

q

)]
(5.86)

= log(q) +
c

2
log

[
e−β 1

q
+

(
1− 1

q

)]
c =

2M

N
(5.87)

Where Equation 5.87 is equal to Equation 5.51, proving the claim.

At this point one could ask:

Is the paramagnetic fixed point Bethe approximation correct ∀β > 0,∀c?

First of all notice that:

Φanneal(β) = 0 ⇐⇒ canneal(β) =
2 log[q]

log[1− (1− e−β)1q ]
(5.88)

Additionally, for β → 0+ research shows that proper colorings disappear with high prob-
ability if c < canneal(β → ∞) | Φ(β → ∞) < 0 [CV14]. Then, it is not possible that
Φanneal = Φquenched at all average degree values. The problem lies in the fact that we
basically postulated the 1

q fixed point, which in some cases for β < 0 was not even the
maximizer. Running BP on a simple graph as a thought experiment, or with a formalized
analysis as in the lecture notes[KZ21b], it is possible to identify an average degree level
such that iterations of BP starting below eventually converge to 1

q . Average degress c
above the threshold will not converge to the paramagnetic fixed point obtained by BP.
This value denoted as c̃KS is in the limit [KS66; AT78]:

c̃KS
β→∞→ (q − 1)2 (5.89)

And for Erdös-Rényi graphs where q = 3, β → ∞ the excess degree c̃ is equal to the
average degree c so that:

c < c̃KS =⇒ BP conv to
1

q
(5.90)

c > c̃KS =⇒ BP not convergent (5.91)

Where when BP does not converge, finer methods such as replica symmetry breaking
will be explained in later Chapters.

On the contrary, for q ≥ 4, β → ∞ we have that c̃KS > canneal and no information can be
extracted from the colorability investigation. It is known by probabilistic lower bounds
[CV14] that the colorability threshold scales like canneal ∈ O(2q log[q]), yet c̃KS ∈ O(q2)

and the two will be apart as q → ∞. Additionally, algorithms finding proper colorings
only support levels up to half of the colorable region, i.e. c ≤ q log[q]. Thus, as shown in
Figure 5.6, depending on c, there is:

• an easy region where problems can be algorithmically solved
• a hard region where there is a solution but not polynomial8

• An impossible region where being above the threshold c̃KS there is no proper
coloring since there are too many connections.

In the following Chapters, we will present more details about the hard region, exploring
the reasons why it is difficult and how this links to BP.

8This is an open problem, part of the NP-Hard family
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5.4. Anti-ferromagnetic interaction

Figure 5.6: Colorability map for c average degree values
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Chapter 6

Bayesian Inference

This Chapter is devoted to applying Belief Propagation (Chapter 4), the replica method
(subsection 2.4.2) and cavity method (subsection 2.4.1) to solve a statistical inference1

problem in the optimal Bayesian setting.

Assumption 6.1 (Notation setting). Throughout the Chapter, for easier understanding
of when to distinguish vectors and scalars, vectors are denoted in bold.

To give the reader a taste, a toy example is reported.

Example 6.2 (Vector denoising). Consider a vector v∗ ∈ R200 where all the entries but
one are null:

v∗ ∈ R200 | ∃!i : vi ̸= 0

It is a sparse signal that can be visualized in a plot as in Figure 6.1. Add gaussian noise
to each entry of v∗:

v = v∗ + z
√
∆ : z ∼ N 200(0, I200)

An example is Figure 6.2, with the sparse signal perturbed by gaussian noise. The
objective is finding the true non zero entry.
The task becomes harder when the variance ∆ or the size of the vector N increase.

Thanks to the rich analytical theory Statistical Physics brings to the table, it is actually
possible to recover a confidence level for ∆ to make the problem easily solvable. Above
it, random guessing will be no worse than any possible approach. In the flavour we saw
previously, this will coincide with a phase transition.

1Also Known As inverse or denoising problem

Figure 6.1: Original vector v∗ ∈ Rd
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CHAPTER 6. BAYESIAN INFERENCE

Figure 6.2: Vector with added Gaussian Noise

Assumption 6.3 (Always Gauss). For simplicity, whenever noise is added to a vector,
it will be gaussian, zero centered, with parameter ∆, the variance.

6.1 Bayesian Probability 101

Consider the slightly simpler problem of denoising a scalar x ∈ R coming from a prior
distribution:

x ∼ PX(x) (6.1)

Example 6.4 (The 3 toy priors). To see in practice how Bayesian calculations work,
consider the three prior distributions:

1. Rademacher X =

{
1 w.p. 1

2

−1 w.p. 1
2

2. Gaussian X ∼ N (0, 1)

3. Gauss Bernoulli process X =

{
0 w.p.12
∼ N (0, 1) w.p.12

When considering the true value of an observation, a ∗ apex will be added. Denoising
can be rephrased as:

Definition 6.5 (Denoising in Optimal Bayesian inference). Knowing the truth distri-
bution of x∗ ∼ PX (our Example 6.4), and the gaussian noise structure generating a
sequence of observations:

{yi}Ni=1 : yi = x∗ + zi
√
∆ z ∼ N (0, 1),∆ ∈ R (6.2)

Find the realized value of x∗.
With this breadth of knowledge the setting is often named Optimal Bayesian inference,
and it presents:

• a prior PX

• a likelihood PY |X given by Equation 6.2, known in our case to be a product of
gaussians centered at the measurement x∗ of the form:

PY |X(y|x) =
N∏
i=1

e−
(yi−x)2

2∆

√
2π∆

(6.3)
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These two measures allow us to apply the simple Bayes Theorem to recover the posterior
as:

PX|Y (x|y) =
PX(x)PY |X(y|x)

P(y)︸︷︷︸
=N normalization

(6.4)

Or in other words:
posterior =

prior × likelihood

evidence

For the three distributions of Example 6.4 it is possible to recover a closed form of the
posterior with some work.
A Rademacher prior returns a distribution of the kind:

PRad
X|Y (x|y) =

1

1 + e−x
∑

i
yi
∆

= σ

(
x
∑
i

yi
∆

)
(6.5)

Where σ(·) is the sigmoid function.
For the Gaussian prior we have that the posterior is gaussian as well:

x ∼ N (0, 1),y ∼ NN (x,∆) =⇒ x|y ∼ N
(
µ =

∑
i yi

n+∆
, σ2 =

∆

n+∆

)
(6.6)

Lastly, the Gauss-Bernoulli process is slightly more convoluted, with a posterior density
of the form:

PGaussBern
X|Y (x|y) = δ(x)

1 +
√

∆
N+∆e

(
∑

i yi)
2

2∆(N+∆)

+

N
(
x;

∑
i yi

N+∆ ,
∆

N+∆

)
1 +

√
N+∆
∆ e

−(
∑

i yi)
2

2∆(N+∆)

(6.7)

Essentially, not much more can be said about these cases. Having access to the prior
and the likelihood, the posterior is computed. In cases in which either of the two are not
available, there are methods to recover bounds on the result.

The posterior PX|Y is a distribution over values. In some cases pointwise estimation
is preferred.

Definition 6.6 (Estimator x̂(y)). Given a set of observations {yi}Ni=1 ∈ Y = RN an
estimator is a function:

x̂ : Y → X (6.8)

Definition 6.7 (Maximum a Posteriori, MAP). The most intuitive estimator is the
MAP:

MAP := argmax
x

{
PX|Y (x,y)

}
(6.9)

It is very useful tool, especially when the density is concave and gradient descent can be
run.

A naturally arising question could be:

Is MAP the best possible estimator? If so, in which sense?

To answer this, we need to define a measure of correctness for estimators and a systematic
way to evaluate comparisons. For this reason, the next definitions are reported.
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Definition 6.8 (Error Function L(·, ·)). The Error2 is a function:

L : X × X → R+ (x̂(y), x∗) → L(x̂(y), x∗) (6.10)

Example 6.9 (Common Error functions). Among the most famous costs we list:

• L2 or squared error L(x̂(y), x∗) = (x̂(y)− x∗)2

• the mean average error L(x̂(y), x∗) = |x̂(y)− x∗|
• the discrete error counter (a Kroenecker delta), well versed for discrete spaces
L(x̂(y), x∗) = δx̂x∗

While the estimator is for a single instance (x∗,y) of the problem, we are interested in the
probabilistic stability of our estimator across all the possible scenarios. This motivates
the introduction of an averaged object.

Definition 6.10 (Averaged risk/error Rav(·), Bayes risk Rbayes(x̂)). Given an estimator
as in Definition 6.6 and an error function as in Definition 6.8, the averaged risk is over
many experiments and signals, eventually taking the form of of a functional:

Rav(x̂) = Ex∗,y

[
L(x̂(y), x∗)

]
(6.11)

=

∫
dx∗dyPX,Y (x

∗,y)L(x̂(y), x∗) (6.12)

=

∫
dyPY (y)

∫
dx∗PX|Y (x

∗|y)L(x̂(y), x∗) (6.13)

= EY

[
Rposterior(x̂,y)

]
(6.14)

Where the objective is minimizing the averaged error, at a value denoted as Bayes risk:

RBayes(x̂) = min
x̂

{
Rav(x̂)

}
(6.15)

And the optimal estimator attaining it.

Clearly, the risks of Definition 6.10 depend heavily on the choice of L(·, ·). Some easy
results provide further information for the analysis.

Proposition 6.11 (Best estimators for different error functions). Go back to Example
6.9, then:

1. L(x̂(y), x∗) = (x̂− x∗)2 =⇒ x̂MMSE(y) = argminx̂

{
Rav(x̂)

}
= EX|Y [x|y]

2. L(x̂(y), x∗) = |x̂− x∗| =⇒ x̂MMAE(y) = argminx̂

{
Rav(x̂)

}
= medianX|Y (x|y)

3. L(x̂(y), x∗) = δx̂x∗ =⇒ x̂OBD(y) = argminx̂

{
Rav(x̂)

}
=MAP

Where OBD is short for Optimal Bayesian Decision.

Proof. (Claim 1) Consider Equation 6.14, then:

=⇒ argmin
x̂

{
Rav(x̂)

}
= argmin

x̂

{
Rposterior(x̂)

}
(6.16)

2Also Known As Loss, Cost, Energy, depending on the context
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To minimize the expression, we look for a zero derivative point and find that:

∂Rposterior(x̂)

∂x̂
= 0 (6.17)

=
∂

∂x̂

(∫
dx∗PX|Y (x

∗|y)(x̂− x∗)2
)

(6.18)

=

∫
dx∗PX|Y (x

∗|y)2(x̂− x∗) (6.19)

⇐⇒
∫
dx∗PX|Y (x

∗|y)x̂ =

∫
dx∗PX|Y (x

∗|y)x∗ (6.20)

⇐⇒ x̂

∫
dxPX|Y (x|y)︸ ︷︷ ︸

=1

=

∫
dxPX|Y (x|y)x take out x̂, change dummy x∗

(6.21)

⇐⇒ x̂(y) = EX|Y [x|y] (6.22)

Another proof is proposed in the original lecture notes [KZ21b].
(Claim 2) Following the same fashion we first express the posterior risk

Rposterior(x̂) =

∫
dx∗PX|Y (x

∗|y)|x̂− x∗| (6.23)

=

∫ x̂

−∞
dx∗PX|Y (x

∗|y)(−x̂+ x∗) +

∫ ∞

x̂
dx∗PX|Y (x

∗|y)(x̂− x∗) split integral

(6.24)

and then derive it:
∂Rposterior(x̂)

∂x̂
= 0 (6.25)

=
∂

∂x̂

(∫ x̂

−∞
dx∗PX|Y (x

∗|y)(−x̂+ x∗) +

∫ ∞

x̂
dx∗PX|Y (x

∗|y)(x̂− x∗)

)
(6.26)

= −
∫ x̂

−∞
dx∗PX|Y (x

∗|y) +
∫ ∞

x̂
dx∗PX|Y (x

∗|y) (6.27)

⇐⇒
∫ x̂

−∞
dx∗PX|Y (x

∗|y) =
∫ ∞

x̂
dx∗PX|Y (x

∗|y) (6.28)

⇐⇒ PX|Y (x ≤ x̂) = PX|Y (x > x̂) (6.29)

⇐⇒ x̂(y) = medianX|Y (x|y) (6.30)

(Claim 3) For x∗ discrete we have:

Rposterior(x̂) =

∫
dx∗PX|Y (x

∗|y)δx̂x∗

=
∑
x∗

PX|Y (x
∗|y)δx̂x∗

=
∑
x∗

PX|Y (x
∗|y)I(x∗ ̸= x̂) discrete error counter

=
∑
x∗

PX|Y (x
∗|y)︸ ︷︷ ︸

=1

−
∑
x∗

PX|Y (x
∗|y)I(x∗ = x̂) errors = 1- correct

= 1− PX|Y (x̂|y)

Minimizing such function is equivalent to finding the maximizer of the posterior, which
is the MAP (Definition 6.7).
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6.2 The Statistical Physics Perspective and two Tools

It might be tempting to observe that Bayes’ rule takes the form:

PX|Y (x|y) =
PX(x)PY |X(y|x)

PY (y)
(6.31)

=
1

PY (y)︸ ︷︷ ︸
=Z(y)

exp

{
log[PX(x)PY |X(y|x)]︸ ︷︷ ︸

=−βH

}
(6.32)

= PGibbs,y(x) (6.33)

Yet, we will use a slightly different convention that turns up being easier for computations.

Definition 6.12 (Bridge from Bayesian Theory to Statistical Physics). Using the fact
that noise is Gaussian (Assumption 6.3), aim to completely isolate x and obtain:

PX|Y (x|y) =
1

PY (y)
PX(x)

∏
i e

− (yi−x)2

2∆

√
2π∆

(6.34)

=
e−

∑
i yi
2∆

(
√
2π∆)NPY (y)︸ ︷︷ ︸

:=Z(y)

PX(x)e
∑

i −
x2

2∆
+

xyi
∆ isolate x (6.35)

:=
PX(x)e

∑
i −

x2

2∆
+

xyi
∆

Z(y)
(6.36)

Where we recognize a normalization term which takes the form:

Z(y) =
e−

∑
i yi
2∆

(
√
2π∆)NPY (y)

=

∫
dx

e−
∑

i yi
2∆

(
√
2π∆)NPY (y)

PX(x) =

∫
dxe

∑
i −x2

2∆
+

∑
i yix

∆ PX(x)

(6.37)

β = 1 (6.38)

H (x) =
∑

i−x2

2∆
+

∑
i yix

∆
(6.39)

And can be read as the sum over possible configurations x of the numerator.

Observation 6.13 (Z(·) as a Likelihood Ratio). It is remarkable that such a formalism
is equivalent to asserting that:

Z(y) =
Prandom
Y (y)

PY (y)
(6.40)

Where random means a purely random noise y ∼ N (0,∆) and on the denominator we
find the probability of y coming from the true data generation process.

Remark (Notation for Averages). An average of a quantity over the posterior is of the
form:

EX|Y [. . . |y] =
∫
dxPX|Y (x|y)

[
. . .

]
=

1

Z(y)

∫
dxPX(x)

[
. . .

]
Def 6.12

= ⟨. . .⟩Boltzmann

And will be denoted by brackets as in Chapter 3 and the whole document.
Similarly, an average over the disorder3 (X∗,Y) will be denoted by the EY script.

3i.e. true value, configurations attaining it.
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We are ultimately interested in using the setting of Definition 6.12 to recover the free
entropy:

ΦN = EY

[
log[Z(y)]

]
(6.41)

Other quantities are equivalent to Equation 6.41.

Definition 6.14 (Statistical Entropy H(·)). For a random variable Y ∈ Y the statistical
entropy is:

H(Y ) := −EY [log(Y )] (6.42)

Definition 6.15 (Kullback-Leibler Divergence DKL(·||·)). For two distributions f, g the
KL divergence is:

DKL(f ||g) :=
∫
dxf(x) log

[
f(x)

g(x)

]
(6.43)

Definition 6.16 (Mutual Information I(·, ·)). For two random variables X ∈ X , Y ∈ Y
the mutual information is:

I(X,Y ) := DKL

(
PXY ||PXPY

)
(6.44)

Proposition 6.17 (Equivalence of free entropy, statistical entropy, mutual information).
It holds that ∀X ∈ X , Y ∈ Y:

1. H(Y ) = N
EY [y

2]

2∆
+
N

2
log[2π∆]− ΦN

2. I(X,Y ) = H(Y )−H(Y |X) = −ΦN +N
EX [x2]

2∆

The path to obtaining a ΦN formula passes through the knowledge of two important
mathematical facts, which are presented below.

First of all recall that by A.4:

∫
dx(x− µ)e−

(x−µ)2

2σ2 = −σ2e−
(x−µ)2

2σ2 (6.45)

Which will be used in the next result.

Lemma 6.18 (Stein’s Lemma). Let X ∼ N (µ, σ2). Let g be differentiable and such that
∃E[(X − µ)g(X)] and ∃E[|g′(X)]|. Then:

E[g(X)(X − µ)] = σ2E[g′(X)] (6.46)

Which in the particular case of a gaussian standard distribution means:

X ∼ N (0, 1) =⇒ E[Xg(X)] = E[g′(X)] (6.47)
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Proof. Expressing the LHS of Equation 6.46 we get applying integration by parts4:

E[g(X)(X − µ)] =

∫
dxPX(x)[g(x)(x− µ)] (6.48)

=

∫
dx

1√
2πσ2

e−
(x−µ)2

2σ2 (x− µ)︸ ︷︷ ︸
f ′

g(x)︸︷︷︸
h

(6.49)

=

[
g(x)

∫
dx

1√
2πσ2

e−
(x−µ)2

2σ2 (x− µ)

]∣∣∣∣∞
−∞

−
∫
dxg′(x)

(∫
dχ

1√
2πσ2

e−
(χ−µ)2

2σ2 (χ− µ)

)
(6.50)

=

[
g(x)(−σ2)e

−(x−µ)2

2σ2

]∣∣∣∣∞
−∞

−
∫
dxg′(x)(−σ2)e

−(x−µ)2

2σ2 (6.51)

=

[
g(x)(−σ2)e

−(x−µ)2

2σ2

]∣∣∣∣∞
−∞

+ σ2E[g′(X)] (6.52)

Where in Equation 6.51 we applied Lemma A.4 on both the dχ integral and the integral
in the first term. What is missing is proving that the first term is null, this can be
realized through some additional arguments.
First of all, we denote a normal distribution as s(·) and inspect the product of s(·)g(·) at
the extremes x → ±∞ where we need to evaluate it. Recall that for finite µ (the mean
of h(·)) we will have that:

lim
x→±∞

h(x) = 0

It is also useful to express g(·) differently as:

g(x) = g(z) + +

∫ x

z
dyg′(y)

Now, let z > µ ensuring that ∀x > z:

g(x)s(x) = g(z)h(x) + s(x)

∫ x

z
dyg′(y)

≤ g(z)s(x) +

∫ x

z
dys(y)g′(y) basic integral properties

=⇒ lim
x→∞

{
sup g(x)h(x)

}
≤

∫ ∞

z
dys(y)g′(y)

When x → ∞ we have that s(x) → 0. Moreover, to evaluate the term at +∞ we need
also z → ∞. In this setting, the derivation above ensures that:

lim
x→∞

{
sup g(x)h(x)

}
= 0

The same reasoning can be made for x→ −∞, and the claim is proved since:

E[g(X)(X − µ)] =

[
g(x)(−σ2)e

−(x−µ)2

2σ2

]∣∣∣∣∞
−∞︸ ︷︷ ︸

=0

+σ2E[g′(X)]

= σ2E[g′(X)]

Another famous result by the Japanese Statistical Physics pioneer Nishimori is of pivotal
importance.

4∫ f ′h = [fh]−
∫
fh′
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Theorem 6.19 (Nishimori Identity). Given k samples from the posterior distribution:{
X(i)

}k

i=1

: X(i) ∼ PX|Y ∀i (6.53)

Then for all f continuous and bounded we can "switch" one copy of X(i) with the true
variable X∗:

E
[〈
f

(
Y,X(1), . . . , X(k)

)〉
k

]
= E

[〈
f

(
Y,X(1), . . . , X(k−1), X∗

)〉
k−1

]
(6.54)

Proof. We have that:

EX∗,Y [⟨f(Y,X(1), . . . , X(k−1), X∗)⟩k−1] =

∫
dx∗dyPX∗,Y ⟨f(Y,X(1), . . . , X(k−1), X∗)⟩k−1 expand E

(6.55)

=

∫
dyPY

∫
dx∗PX∗|Y ⟨f(Y,X(1), . . . , X(k−1), X∗)⟩k−1

(6.56)

=

∫
dyPY

∫
dx(k)PX(k)|Y ⟨f(Y,X

(1), . . . , X(k−1), X(k))⟩k−1

(6.57)

=

∫
dyPY ⟨f(Y,X(1), . . . , X(k−1), X(k))⟩k

(6.58)

= E[⟨f(Y,X(1), . . . , X(k))⟩k] (6.59)

Where the change from X∗ to X(k) can be done since it is just a dummy index in the
integral.

Theorem 6.19 has interesting consequences!

Observation 6.20 (Magnetization with Nishimori). In the context of overlaps for Op-
timal Bayesian inference we can see that a magnetization reduces to:

m = E[⟨x⟩x∗] = E[⟨x⟩⟨x′⟩] = E[⟨x⟩2] = q (6.60)

Since X∗ is equivalent in expectation to a copy X ′ which is itself identitic to the X

considered.

Lemma 6.21 (Optimal Bayesian inference MMSE). In Optimal Bayesian inference it
holds that:

MMSE = EX∗,Y

[
(x∗ − ⟨x⟩)2

]
= ρ−m : ρ = EX∗,Y

[
(x∗)2

]
(6.61)

Where ρ can be seen as the self overlap.

Proof. We just need to expand the product inside the expectation to find that:

EX∗,Y

[
(x∗ − ⟨x⟩)2

]
= EX∗,Y

[
(x∗)2

]
+ EX∗,Y [⟨x⟩2]− 2EX∗,Y [⟨x⟩x∗]

= ρ+ q − 2m

= ρ+m− 2m Obs 6.20 by Theorem 6.19

= ρ−m
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Lemma 6.21 guarantees that we only need to compute m (the overlaps), since ρ is rather
easy to get. We are only missing one piece in the puzzle, presented as a Theorem below.

Theorem 6.22 (I-MMSE Theorem). For a single disturbed measurement:

Y = X∗ +
√
∆Z Z ∼ N (0, 1) (6.62)

It holds that:

∂ΦN (∆)

∂∆−1
=

1

2
m (6.63)

∂I(∆)

∂∆−1
=

1

2
(ρ−m) the MMSE (6.64)

Proof. Firstly, we express the free entropy as a function of the noise to take its expecta-
tion:

ΦN = EY

[
log[Z(y)]

]
(6.65)

= EY

[
log

∫
dxPX(x)e−

x2

2∆
+xy

∆

]
Eqn. 6.37 (6.66)

= EX∗,Z

[
log

∫
dxPX(x)e

− x2

2∆
+xx∗

∆
+ xz√

∆

]
Eqn. 6.62 (6.67)

Then, the partial derivative becomes5:

∂ΦN (∆)

∂∆−1
= EX∗,Z

{
1

Z(y)

∫
dxPX(x)e

− x2

2∆
+xx∗

∆
+ xz√

∆︸ ︷︷ ︸
Boltzmann weight

[
− x2

2
+ xx∗ +

xz

2

√
∆

]}
(6.68)

= EX∗,Z

[〈
− x2

2
+ xx∗ +

xz

2

√
∆

〉]
(6.69)

= −1

2
EX∗,Z

[
⟨x2⟩

]
+ EX∗,Z

[
x∗⟨x⟩

]
+

1

2
EX∗,Z

[
z︸︷︷︸

Z∼N (0,1)

√
∆⟨x⟩︸ ︷︷ ︸
=g(z)

]
(6.70)

= −1

2
EX∗,Z

[
⟨x2⟩

]
+ EX∗,Z

[
x∗⟨x⟩

]
︸ ︷︷ ︸

Nishimori Thm 6.19

+
1

2
EX∗,Z

[
⟨x2⟩ − ⟨x⟩2︸ ︷︷ ︸

=g′(z)

]
(6.71)

= −1

2
EX∗,Z

[
⟨x2⟩

]
+ EX∗,Z

[
⟨x⟩2

]
+

1

2
EX∗,Z

[
⟨x2⟩

]
− 1

2
EX∗,Z

[
⟨x⟩2

]
(6.72)

=
1

2
m (6.73)

Where, expanding the passage from Equation 6.70 to 6.71 Stein’s Lemma 6.18 is used
where we have6:

⟨x⟩ = 1

Z(y)

∫
dxPX(x)e

− x2

2∆
+xx∗

∆
+ xz√

∆x =

[ ∫
dxPX(x)e

− x2

2∆
+xx∗

∆
+ xz√

∆x

]
∫
dxPX(x)e

− x2

2∆
+xx∗

∆
+ xz√

∆

(6.74)

5Ignoring some regularity conditions which we enforce
6x is used to distinguish the weights from the function in the expectation
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So that using the classic differentiation rule for fractions:

∂

∂z

(
num(z)

den(z)

)
=

[∂znum(z)]den(z)− [∂zden(z)]num(z)

[den(z)]2

num(z) =

∫
dxPX(x)e

− x2

2∆
+xx∗

∆
+ xz√

∆x

den(z) = Z(y) | y = x∗ +
√
∆z

∂znum(z) =

∫
dxPX(x)e

− x2

2∆
+xx∗

∆
+ xz√

∆x
∂

∂z

(
− x2

2∆
+
xx∗

∆
+

xz√
∆

)
︸ ︷︷ ︸

= x√
∆

∂zden(z) =

∫
dxPX(x)e

− x2

2∆
+xx∗

∆
+ xz√

∆
∂

∂z

(
− x2

2∆
+
xx∗

∆
+

xz√
∆

)
︸ ︷︷ ︸

= x√
∆

We can easily compute:

∂
√
∆⟨x⟩
∂z

=

√
∆

[Z(y)]2︸ ︷︷ ︸
=[den(z)]2

{∫
dxPX(x)e

− x2

2∆
+xx∗

∆
+ xz√

∆x
x√
∆︸ ︷︷ ︸

=∂znum(z)

Z(y)︸︷︷︸
=den(z)

(6.75)

−
[ ∫

dxPX(x)e
− x2

2∆
+xx∗

∆
+ xz√

∆
x√
∆︸ ︷︷ ︸

=∂zden(z)

] ∫
dxPX(x)e

− x2

2∆
+xx∗

∆
+ xz√

∆x︸ ︷︷ ︸
=num(z)

}

=

√
∆

[Z(y)]2
Z(y)√

∆

∫
dxPX(x)e

− x2

2∆
+xx∗

∆
+ xz√

∆x2 (6.76)

−
√
∆

1√
∆

∫
dxPX(x)e

− x2

2∆
+xx∗

∆
+ xz√

∆x

Z(y)

∫
dxPX(x)e

− x2

2∆
+xx∗

∆
+ xz√

∆x

Z(y)

=
1

Z(y)

∫
dxPX(x)e

− x2

2∆
+xx∗

∆
+ xz√

∆x2 −
[∫

dxPX(x)e
− x2

2∆
+xx∗

∆
+ xz√

∆x

Z(y)

]2
(6.77)

= ⟨x2⟩ − ⟨x⟩2 (6.78)

Which plugged into the expectation returns what was written in Equation 6.71.
The result of Equation 6.64 can be obtained using Proposition 6.17 and the just proved
Equation 6.63.

6.3 Denoising Sparse Vectors

Thanks to Theorem 6.22, upon having knowledge of ΦN ∀∆, it is rather straightforward
to find the magnetization m.

Having discussed all the necessary theory, we now move from x∗ ∈ R to x∗ ∈ Rd where
the original vector is sparse as before meaning:

x∗ ∈ Rd | ∃!i : xi ̸= 0 (6.79)

Assumption 6.23 (Power of two size). To simplify calculations, assume that d =

2N , N ∈ N.
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Considering the rescaled noisy variable7:

Y = X∗ +

√
∆

N
Z Z ∼ N (0, 1) (6.80)

We are asked to compute the MMSE and find a critical ∆c, above which the problem
becomes impossible (i.e. where the phase transition takes place).

Using the result of Theorem 6.22 we start from the free energy for a set of observations
y,x:

Φ(∆) = lim
N→∞

1

N
EX|Y

[
log(Z(y)

]
PX|Y (x|y) =

1

Z(y)
PX(x)exp

{
− ⟨x,x⟩

2∆
N

+
⟨x,y⟩

∆
N

}
(6.81)

Where the prior is such that:

PX(x) =
1

d

d∑
i=1

δx,ei =
1

2N

∑
i

δx,ei (6.82)

For elementary vectors indexed by i of the form ei. This prior goes over all the valid
choices8 for x∗, and ignores any other vector of dimension d.
Such a prior influences the partition function deeply. First of all, for elementary vectors
we intuitively have that:

⟨ei, ei⟩ = 1 ∀i (6.83)

⟨ei,y⟩ = yi ∀i,∀y ∈ Rd (6.84)

Additionally notice that the observed signals, originating from a vector with the form of
Equation are:

yi = x∗i +
√
∆zi =

{√
∆zi i ̸= i∗

1 +
√
∆zi∗ i∗

(6.85)

Where i∗ is the index at which the vector x∗ is non zero.
So that:

=⇒ Z(y) =
∫
dxPX(x)exp

{
− ⟨x,x⟩

2∆
N

+
⟨x,y⟩

∆
N

}
(6.86)

=

∫
dx

1

2N

∑
i

δxeiexp

{
− ⟨x,x⟩

2∆
N

+
⟨x,y⟩

∆
N

}
Eqn. 6.82 (6.87)

=
1

2N

d∑
i=1

e−
N
2∆

+
Nyi
∆ Eqns. 6.83, 6.84 (6.88)

=
1

2N

∑
i ̸=i∗

e−
N
2∆

+
N

√
∆zi
∆ + e−

N
2∆

+N
∆
(1+

√
∆zi) Eqn. 6.85 (6.89)

=
1

2N

d∑
i=1

e
− N

2∆
+

Nδii∗
∆

+
√

N
∆
zi short form (6.90)

A closed form of Z allows us to apply Theorem 6.22 to extract the MMSE at a given
variance ∆. Specifically the best overlap:

q = 2
∂

∂∆−1
Φ(∆) (6.91)

7The 1
N

constant factor is added to obtain a sharp phase transition
8Vectors with only one non zero unit entry.
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Will promise us that:

MMSE = ρ−m = ρ− q = EX∗|Y

[
⟨x∗,x∗⟩︸ ︷︷ ︸

=1 Eqn.6.83

]
− q = 1− q (6.92)

Is the best achievable error under square loss. The next Theorem closes the circle,
proposing a function that perfectly describes q as a function of ∆.

To clear out some passages of the proof, recall that a quite immediate identity in Gaussian
integrals from Lemma A.3 is the following:

X ∼ N (0, 1) =⇒ EX

[
eκx

]
= e

1
2
κ2

(6.93)

Theorem 6.24 (Denoising MMSE function). The function:

f(∆) =


1

2∆
− log 2 ∆ ≤ 1

2 log 2

0 ∆ >
1

2 log 2

(6.94)

Is such that:

Φ(∆) = lim
N→∞

ΦN (∆) = lim
N→∞

{
E[log(Z)]

N

}
= f(∆) (6.95)

Proof. (Claim ΦN (∆) ≥ f(∆) + o(1)∀∆)
It holds that:

ΦN (∆) =
1

N
EX∗,Y

{
log

[
1

2N

d∑
i=1

e
− N

2∆
+

Nδii∗
∆

+
√

N
∆
zi

]}
Eqn. 6.90

=
1

N
EX∗,Y

{
−N log(2) + log

[∑
i ̸=i∗

e
− N

2∆
+
√

N
∆
zi + e

− N
2∆

+N
∆
+
√

N
∆
zi∗

]}

≥ 1

N
EX∗,Y

{
−N log(2) + log

[
e
− N

2∆
+N

∆
+
√

N
∆
zi∗

]}
≥ − log(2) +

1

N
EX∗,Y

{
− N

2∆
+
N

∆
+

√
N

∆
zi∗

}
≥ − log(2)− 1

2∆
+

1

∆
+

1

N

√
N

∆
EX∗,Y [zi∗ ]︸ ︷︷ ︸

=0

≥ − log(2) +
1

2∆
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(Claim ΦN (∆) ≤ f(∆)∀∆)
The second inequality is a slightly convoluted application of Jensen’s Inequality9:

ΦN (∆) =
1

N
EX∗,Y

{
log

[
1

2N

d∑
i=1

e
− N

2∆
+

Nδii∗
∆

+
√

N
∆
zi

]}
Eqn. 6.90

(6.96)

=
1

N
Ezi,zi∗

{
log

[
1

2N

d∑
i=1

e
− N

2∆
+

Nδii∗
∆

+
√

N
∆
zi

]}
(6.97)

=
1

N
Ezi,zi∗

{
log

[
1

2N

∑
i ̸=i∗

e
− N

2∆
+
√

N
∆
zi + e

− N
2∆

+N
∆
+
√

N
∆
zi∗

]}
(6.98)

=
1

N
Ezi,zi∗

{
log

[
1

2N

∑
i ̸=i∗

e
− N

2∆
+
√

N
∆
zi + e

N
2∆

+
√

N
∆
zi∗−N log(2)

]}
(6.99)

=
1

N
Ezi∗

{
Ezi

[
log︸ ︷︷ ︸

E log

(
1

2N

∑
i ̸=i∗

e
− N

2∆
+
√

N
∆
zi + e

N
2∆

+
√

N
∆
zi∗−N log(2)

)]}
(6.100)

≤ 1

N
Ezi∗

{
log

[
Ezi︸ ︷︷ ︸

logE

(
1

2N

∑
i ̸=i∗

e
− N

2∆
+
√

N
∆
zi + e

N
2∆

+
√

N
∆
zi∗−N log(2)

)]}
(6.101)

≤ 1

N
Ezi∗

{
log

[
Ezi

(
1

2N

∑
i ̸=i∗

e
− N

2∆
+
√

N
∆
zi + e

N
2∆

+
√

N
∆
zi∗−N log(2)︸ ︷︷ ︸
⊥⊥zi

)]}
(6.102)

≤ 1

N
Ezi∗

{
log

[
Ezi

(
1

2N

∑
i ̸=i∗

e
− N

2∆
+
√

N
∆
zi

)
+ e

N
2∆

+
√

N
∆
zi∗−N log(2)

]}
(6.103)

Focus on the red term to compute the expectation:

Ezi

(
1

2N

∑
i ̸=i∗

e
− N

2∆
+
√

N
∆
zi

)
=

1

2N

∑
i ̸=i∗

Ezi

(
e
− N

2∆
+
√

N
∆
zi

)
E linearity

=
e−

N
2∆

2N

∑
i ̸=i∗

Ezi

(
e

√
N
∆
zi

)
where zi ∼ N (0, 1)

=
e−

N
2∆

2N

∑
i ̸=i∗

e
N
2∆ Lem. A.3, κ =

√
N

∆

=
1

2N

∑
i ̸=i∗

1

=
1

2N
(2N − 1) only one index is nonzero

= 1− 1

2N

Coming back to Equation 6.103, we can further complete the inequality as:

ΦN (∆) ≤ 1

N
Ezi∗

{
log

[
Ezi

(
1

2N

∑
i ̸=i∗

e
− N

2∆
+
√

N
∆
zi

)
+ e

N
2∆

+
√

N
∆
zi∗−N log(2)

]}
(6.104)

≤ 1

N
Ezi∗

{
log

[
1− 1

2N
+ e

N
2∆

+
√

N
∆
zi∗−N log(2)

]}
(6.105)

≤ 1

N
Ezi∗

{
log

[
1 + e

N
2∆

+
√

N
∆
zi∗−N log(2)︸ ︷︷ ︸

=η(zi∗ )

]}
(6.106)

9E log ≤ logE
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Where in the last passage we remove − 1

2N
< 0 since the log function is increasing.

At this point, we recognize that:

η(zi∗) = 1 + e
N
2∆

+
√

N
∆
zi∗−N log(2) ≤ η(|zi∗ |) (6.107)

Where further:

log[|η(zi∗)|] = log[η(0)] + (|zi∗ | − 0)
∂

∂z

(
log[η(z)]

)∣∣∣∣
z=zi∗

Taylor (6.108)

= log[η(0)] + |zi∗ |
η′(z)

η(z)

∣∣∣∣
z=zi∗

(6.109)

≤ log[η(0)] + |zi∗ |max
z

{
η′(z)

η(z)

}
(6.110)

≤ log[η(0)] + |zi∗ |max
z

{√
N
∆e

N
2∆

+
√

N
∆
zi∗−N log(2)

1 + e
N
2∆

+
√

N
∆
zi∗−N log(2)

}
(6.111)

≤ log[η(0)] + |zi∗ |
√
N

∆
max

z

{
ef(z)

1 + ef(z)

}
(6.112)

≤ log[1 + e
N
2∆

−N log(2)] + |zi∗ |
√
N

∆
max is 1 (6.113)

Coming back to the calculation of the free entropy, we can eventually say that:

ΦN (∆) ≤ 1

N
Ezi∗

{
log

[
η(zi∗)

]}
Eqn. 6.106 (6.114)

≤ 1

N
Ezi∗

{
log

[
η(|zi∗ |)

]}
Eqn. 6.107 (6.115)

≤ 1

N
Ezi∗

{
log[1 + e

N
2∆

−N log(2)] + |zi∗ |
√
N

∆

}
Eqn. 6.113 (6.116)

≤ 1

N
Ezi∗

{
log[1 + e

N
2∆

−N log(2)]

}
+

1

N
Ezi∗

{
|zi∗ |

√
N

∆

}
(6.117)

≤ 1

N
log[1 + eN( 1

2∆
−log(2))] +

√
1

N∆
Ezi∗

{
|zi∗ |

}
︸ ︷︷ ︸

=o(1) as N→∞

(6.118)

≤ 1

N
log

[
(eNϑ)

(
1

eNϑ
+ 1

)]
+ o(1) ϑ =

1

2∆
− log(2)

(6.119)

≤ 1

N
log[eNϑ] +

1

N
log

[
1

eNϑ
+ 1

]
+ o(1) (6.120)

≤ ϑ+
1

N

1

eNϑ︸ ︷︷ ︸
=o(1) as N→∞,ϑ≥0

+o(1) log(1 + x) ≤ x∀x

(6.121)

Where, taking the limit we approach f(∆|ϑ ≥ 0) from below meaning:

Φ(∆) = lim
N→∞,θ≥0

{
ΦN (∆)

}
= lim

N→∞

{
1

2∆
− log(2) + o(1)

}
= f(∆) (6.122)

If ϑ < 0 instead, we get that ΦN (∆) ≤ 0, again recovering the second case of the claimed
form of f(∆).

77



CHAPTER 6. BAYESIAN INFERENCE

Figure 6.3: Tractability map as ∆ increases, N = 300

The result of Theorem 6.24 allows us to apply Theorem 6.22 to recover the MMSE for
denoising a d dimensional vector:

MMSE = 1− q Eqn. 6.92 (6.123)

= 1− 2
∂

∂∆−1
Φ(∆) inverse Thm. 6.22 (6.124)

=


1− 2

1

2
∆ ≤ 1

2 log 2

1− 0 ∆ >
1

2 log 2

(6.125)

=


0 ∆ ≤ 1

2 log 2

1 ∆ >
1

2 log 2

(6.126)

Where we recognize a sharp phase transition from impossible to possible at the critical
variance:

∆c =
1

2 log 2
(6.127)

In the event in which ∆ > ∆c the MMSE is as good as random guessing. On the contrary,
if the variance of the noise is low enough, there should be a method to find 0 MMSE (i.e.
an algorithm which is correct in expectation). The tractability map can be visualized in
Figure 6.3

In the original lecture notes, under the condition that ∆ < ∆c, the authors explain how
a very much trivial algorithm can be derived [KZ21b].

6.4 Visualizing an Example and Further References

This final section is devoted to presenting quickly a real example and reporting the
paragraph present in the original lecture notes [KZ21b], as to give further directions to
delve into the topic.

Example 6.25 (Denoising Graphically). Consider a sparse vector of size d = 300. For
various examples of ∆, the situation is different. In Figures 6.4, 6.5 we can see that the
problem is almost impossible, while getting closer to the critical value of ∆c = 0.08, it
becomes more and more trivial.

After having surpassed the phase transition at Figure 6.6, the easiest algorithm has a
guaranteed MMSE of 0 as in Figure 6.7.

Below, the Bibliography paragraph is reported for the sake of completeness
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6.4. Visualizing an Example and Further References

Figure 6.4: Noisy vector ∆ = 0.5, N = 300

Figure 6.5: Noisy vector ∆ = 0.3, N = 300

Figure 6.6: Noisy vector ∆ = 0.08, N = 300

Figure 6.7: Noisy vector ∆ = 0.05, N = 300
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The legacy of the Bayes theorem, and the fundamental role of Laplace in the invention
of "inverse probabilities" is well discussed in [McG11]. Bayesian estimation is a
fundamental field at the frontier between information theory and statistics, and is

discussed in many references such as [CT06]. The I-MMSE theorem was introduced by
[GSV04]. Nishimori symmetries were introduced in physics in [Nis80] and soon realized
to have deep connection to information theory [Nis93] and Bayesian inference [Iba99].
The model of denoising a sparse vector was discussed in Donoho et al. (1998). This

problem has deep relation to Shannon’s Random codes [Sha48] and the Random energy
model in statistical physics [Der81].

80



Chapter 7

Matrix Factorization

We now move to a more complicated setting in which the tools studied in Chapter 2 can
be applied. This Chapter, we will specifically implement the Replica Method of Section
2.4.2.

7.1 Clustering for Variable Alignment

A common problem in data analysis is finding patterns in data. In case of correlated
features, understanding clusters of variables that move together is of pivotal importance.
An example of satisfactory result is Figure 7.1.

However, making sense of a correlation matrix by grouping variables is not an easy task,
and plotting patterns ends up being not straightforward. While a desired result would
be that of Figure 7.2, we recognize that in reality data does not present itself with this
visualization advantage.

There are two main issues in how information actually presents itself:

• noise: correlation is a statistical phenomenon, and is different at different realiza-
tions. See Figure 7.3 for an example of noisy

• absence of order and association: correlated features are not adjacent in the
columns and rows of the correlation matrix in principle. Reality has no implied
order of factors, nor it naturally presents which features should be grouped under
a distinctive color. Eventually, data appears most of the times as in Figure 7.4,
where permutation and noise make grouping non trivial.

To understand the nature of this task, we will recover an idealized version of it.

Definition 7.1 (Spike-Wigner model). Consider a set of variables

x∗ = {x∗i }Ni=1 ∈ RN | x∗i
i.i.d.∼ PX(x) (7.1)

Such that its correlation matrix is perturbed by Gaussian White noise as:

RN × RN ∋ Y =
x∗(x∗)T√

N
+
√
∆ξ | ξij ∼ N (0, 1), ξij = ξji∀i < j (7.2)

If the matrix Y was only Gaussian noise it would be a wigner matrix as in Definition
B.2, but we are adding a rank one1 matrix, which has one eigenvalue (i.e. a spike), hence
the name Spike-Wigner.

1Notice the 1√
N

normalization
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Figure 7.1: Gene Expression of corn tissues

Figure 7.2: Ordered correlation matrix

Figure 7.3: Ordered noisy correlation matrix

Figure 7.4: Permuted noisy correlation matrix
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7.2. Bayes Formalism and Replica Method Approach

From Definition 7.1, we draw our starting point, with the task of recovering the patterns
in the original correlation matrix x∗(x∗)T

Definition 7.2 (Signal to noise ratio, SNR λ). In Statistics and Signal Processing it is
more natural to choose as variance parameter:

λ := ∆−1 (7.3)

Readjusting Equation 7.2 to the more intuitive form:

Y =

√
λ

N
x∗(x∗)T + ξ (7.4)

With equivalence up to rescaling.

Observation 7.3 (SNR role). It is clear that:

λ→ 0 =⇒ only noise

λ→ ∞ =⇒ strong signal

The question we will answer in this Chapter can be summarized as follows:

What is the best possible error on inferring x∗ upon knowledge of Y,PX ,PΞ?

Assumption 7.4 (Choice of error function). Throughout the discussion, we will impose
as error function the MMSE, with the formalism of Definition 6.8, found in Example 6.9.
In this case, it will explicitly depend on the SNR with the form MMSE(λ).

In the next chapter, we will formalize how to find a good estimator x̂ in practice as an
algorithm. For the moment, we focus on the error function discussion.

For such a measure of correctness, the best overall is obviously zero, and the worst is
collapsing to random guessing performance. When random guessing, the error will fall
inside the interval MMSErandom ∈ [1, 2] TODO check.

7.2 Bayes Formalism and Replica Method Approach

Thanks to the discussion carried out in Chapter 6, we already have all the tools to draw
meaningful conclusions with:

• bayesian probability
• statistical physics interpretation
• free entropy
• thermodynamic limit N → ∞
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Using Bayes Rule we have:

PX|Y (x|Y ) =
PY |X(Y |x)PX(x)

PY (Y )
(7.5)

∝
∏
i

PX(xi)
∏
i≤j

1√
2π
e
− 1

2
(yij−

√
λ
N
xixj)

2

Yij |x ∼ N
(√

λ

N
xixj , 1

)
TODO check

(7.6)

∝
∏
i

PX(xi)
∏
i≤j

1√
2π
e
− 1

2
(y2ij−2

√
λ
N
xixjyij+

λ
N
x2
i x

2
j ) expand square

(7.7)

∝
∏
i

PX(xi)
∏
i≤j

e
1
2
(+2

√
λ
N
xixjyij− λ

N
x2
i x

2
j ) remove constant w.r.t x factors

(7.8)

=⇒ PX|Y (x|Y ) =
1

Z(y)

∏
i

PX(xi)
∏
i≤j

e
− λ

2N
x2
i x

2
j+

√
λ
N
yijxixj letting β = 1

(7.9)

=
1

Z(y)

∏
i

PX(xi)
∏
i≤j

e
− λ

2N
x2
i x

2
j+

√
λ
N
(
√

λ
N
x∗
i x

∗
j+ξij)xixj (7.10)

=
1

Z(y)

∏
i

PX(xi)
∏
i≤j

e
− λ

2N
x2
i x

2
j+

λ
N
xixjx

∗
i x

∗
j+

√
λ
N
ξijxixj (7.11)

Where the MMSE, from Proposition 6.11 will be of the form:

RN ∋ x̂MMSE(Y ) = ⟨x⟩ =

 x̂MMSE,1

. . .

x̂MMSE,N

 =


∫
dxPX|Y (x|Y )x1

. . .∫
dxPX|Y (x|Y )xn

 (7.12)

The discussion carried out in Section 2.3 and Theorem 6.22 suggest inspecting the free
entropy at the thermodynamic limit:

Φ(λ) = lim
N→∞

ΦN (λ)

N
= lim

N→∞

EY [log[Z(Y )]

N
= lim

N→∞

Ex∗,ξ log[Z(Y )]

N
(7.13)

However, to evaluate this expression, we would need to compute an integral over infinite
dimensions as N → ∞. While this is not feasible, we can exploit the replica method
from Section 2.4.2 and start from the expectation of Zn : n → 0. To do so, we would
need to apply Nishimori identity again (Thm. 6.19), where we state that q = m and
replica symmetry holds. Another important assumption we make is concentration, which
in this case is equivalent to asserting that the magnetization variance is nullified at the
thermodynamic limit:

Ex∗,ξ

[〈(∑
i

xix
∗
i

N
−m

)2〉]
→

N→∞
0 (7.14)

Which by Nishimori identity holds for two copies and their overlaps as well:

Ex∗,ξ

[〈(∑
i

x
(α)
i x

(β)
i

N
− q

)2〉]
→

N→∞
0 (7.15)

This fact holds since if we imagine the generating process detailed in Equation 7.4 paired
with a problem of the easier form:

x̃ =
√
λ′x∗ + ξ (7.16)
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We can see that this augmented problem is solved by applying Theorem 6.22 for one
observation of vector with noise as:

∂Φ

∂λ
=
∂( lim

N→∞
log[Z]
N )

∂λ
=

1

2
q = Ex∗,ξ[⟨x⟩2] = Ex∗,ξ

{[
1

Z(Y )

∫
dxPX(x)

∏
i≤j

e
− λ

2N
x2
i x

2
j+

λ
N
xixjx

∗
i x

∗
j+

√
λ
N
ξijxixjx

]2}
(7.17)

Which in turn means that the second derivative, or the curvature easily collapses to being
TODO maybe rewatch video:

∂2Φ

∂λ2
=
N

4
Ex∗,ξ

[〈(∑
i

x
(α)
i x

(β)
i

N
− q

)2〉]
(7.18)

=
N

4
V ar[q] (7.19)

Which implies that:

1

4

∫ λ′

λ
NV ar[q]dλ =

∫ λ′

λ

∂2Φ

∂λ2
=

1

2

[
q(λ2)− q(λ1)

]
(7.20)

And, since q is a constant number, it is bounded and we can say that

∫
V ar[q] ≤ c

N
=⇒ V ar[q] →

N→∞
0 for a.e. λ ∈ (λ1, λ2) (7.21)

This concept will be precisely exploited in the replica computations TODO check ex-
acly where and make it a theorem.
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Coming back to out original computation, we evaluate the expectation over the noise of
the partition function to the power n:

Ex∗,ξ

[
Zn

]
= Ex∗,ξ

{[∫
dxPX(x)

∏
i≤j

e
− λ

2N
x2
i x

2
j+

λ
N
xixjx

∗
i x

∗
j+

√
λ
N
ξijxixj

]n}
(7.22)

= Ex∗,ξ

{ n∏
α=1

∫
dx(α)

N∏
i=1

PX(x(α)
i ) (7.23)

×
∏
i≤j

exp

{
− λ

2N
(x

(α)
i )2(x

(α)
j )2 +

λ

N
x
(α)
i x

(α)
j x∗ix

∗
j +

√
λ

N
ξijx

(α)
i x

(α)
j

}}

= Ex∗,ξ

{∫ ∏
α,i

dx
(α)
i PX(x

(α)
i ) (7.24)

× exp

{∑
i≤j

− λ

2N

∑
α

(x
(α)
i )2(x

(α)
j )2 +

λ

N

∑
α

x
(α)
i x

(α)
j x∗ix

∗
j +

√
λ

N
ξij

∑
α

x
(α)
i x

(α)
j

}}
exchange product-sum in e

= Ex∗,ξ

{∫ ∏
α,i

dx
(α)
i PX(x

(α)
i )exp{

∑
i≤j

− λ

2N

∑
α

(x
(α)
i )2(x

(α)
j )2 +

λ

N

∑
α

x
(α)
i x

(α)
j x∗ix

∗
j}

(7.25)

×
∏
i≤j

Eξij

[
exp

{
ξij

(√
λ

N

∑
α

x
(α)
i x

(α)
j

)}]
︸ ︷︷ ︸

Lem A.3, for ξij∼N (0,1)

}

= Ex∗,ξ

{∫ ∏
α,i

dx
(α)
i PX(x

(α)
i )exp{

∑
i≤j

− λ

2N

∑
α

(x
(α)
i )2(x

(α)
j )2 +

λ

N

∑
α

x
(α)
i x

(α)
j x∗ix

∗
j}

(7.26)

×
∏
i≤j

exp

{
λ

2N

∑
α,β

x
(α)
i x

(α)
j x

(β)
i x

(β)
j

}}
copies indexed by α, β

= Ex∗,ξ

{∫ ∏
α,i

dx
(α)
i PX(x

(α)
i )exp{

∑
i≤j

∑
α

− λ

2N
(x

(α)
i )2(x

(α)
j )2 +

∑
i≤j

∑
α

λ

N
x
(α)
i x

(α)
j x∗ix

∗
j}

(7.27)

× exp

{
λ

2N

∑
i≤j

∑
α,β

x
(α)
i x

(α)
j x

(β)
i x

(β)
j

}}
Notice now that for the red, blue, and orange terms we can apply the identity:∑

i≤j

ai
N

aj
N

=
1

2

(∑
i

ai
N

)2

+
1

2

∑
i

(
a2i
N2

)2

︸ ︷︷ ︸
∈O(N−1)

≈
N→∞

1

2

(∑
i

ai
N

)2

(7.28)

Which transferred to our three terms, by adjusting the 1
N factor inside the sum, makes

them:

∑
i≤j

∑
α

− λ

2N
(x

(α)
i )2(x

(α)
j )2 = −λN

2

∑
α

1

2

(∑
i

(x
(α)
i )2

N

)2

= −λN
4

∑
α

(∑
i

(x
(α)
i )2

N

)2

∑
i≤j

∑
α

λ

N
x
(α)
i x

(α)
j x∗ix

∗
j = λN

∑
α

1

2

∑
i

(
x
(α)
i x∗i
N

)2

=
λN

2

∑
α

∑
i

(
x
(α)
i x∗i
N

)2

λ

2N

∑
i≤j

∑
α,β

x
(α)
i x

(α)
j x

(β)
i x

(β)
j =

λN

2

∑
α,β

1

2

∑
i

(
x
(α)
i x

(β)
i

N

)2

=
λN

4

∑
α,β

∑
i

(
x
(α)
i x

(β)
i

N

)2
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Where the first and the third have the same coefficient in front and obey the identity
TODO maybe state in its general form:

2
∑
α<β

∑
i

(
x
(α)
i x

(β)
i

N

)2

=
∑
α,β

∑
i

(
x
(α)
i x

(β)
i

N

)2

−
∑
α

(∑
i

(x
(α)
i )2

N

)2

Going back to Equation 7.27, we get that:

Ex∗,ξ

[
Zn

]
= Ex∗,ξ

{∫ ∏
α,i

dx
(α)
i PX(x

(α)
i )exp

{
λN

2

∑
α

(∑
i

x
(α)
i x∗i
N

)2

︸ ︷︷ ︸
=blue

+
λN

2

∑
α<β

(∑
i

x
(α)
i x

(β)
i

N

)2

︸ ︷︷ ︸
=orange+red

}}}

(7.29)

= TODOfinish (7.30)

Eventually, the free entropy under the replica symmetry ansatz reads:

ΦRS(m) = −λ
4
m2 + Ex∗,z

[
log

(∫
PX(x)dx e−

λm
2

x2+(λmx∗+
√
λmz)x

)]
(7.31)

And the self consistent equation obtained by taking the maximum is:

∂ΦRS(m)

∂m

∣∣∣∣
m∗

= 0 =⇒ m∗ = Ex∗,z

[∫
PX(x)dx e−

λm
2

x2+(λmx∗+
√
λmz)x x∫

PX(x)dx e−
λm
2

x2+(λmx∗+
√
λmz)x

]
(7.32)

Requires the evaluation of three integrals, a generally feasible task, either analytically or
by numerical integration.

Remark. Remember that we started with ∞ integrals! Even if the formula looks ugly,
it is far easier than what it was before.

TODO HW 7.1, 7.2

Observation 7.5 (On the maximizer m∗). An interesting fact is that the maximizer is
equal to the overlap:

m∗ = q = E
[∑

i⟨xi⟩x∗i
N

]
= E

[∑
i⟨xi⟩2

N

]
(7.33)

Which also means that the MMSE is TODO maybe recall equation:

MMSE = E[⟨x2⟩]−m∗ (7.34)

7.3 Rigorous Matrix Factorization by the Interpolation Method

Following the approach of Section 3.2 with the method designed by Guerra TODO cite,
we aim to prove rigourously that Equation 7.32 is correct.
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To do so, we consider the easier problem, labeled by the letter A, as a parallelized
denoising2 problem of the form:

ỹ =
√
λmx∗ +ω (7.35)

=⇒ PX|Y (x|y) ∝ exp

{∑
i

log

[
PX(xi)

]
+
∑
i

[
− λm

2
x2i + λmx∗ixi +

√
λmωixi

]}
(7.36)

HA(x, λ,x∗,ω;m) =
∑
i

− log

[
PX(xi)

]
−
∑
i

[
− λm

2
x2i + λmx∗ixi +

√
λmωixi

]
(7.37)

β = 1 (7.38)

For such a formulation, we have that the partition function and the free entropy take the
form:

ZA(λ,x∗,ω;m) =

∫ ∏
i

dxie
−βHA (7.39)

=

∫ ∏
i

dxiexp

{∑
i

log

[
PX(xi)

]
+
∑
i

[
− λm

2
x2i + λmx∗ixi +

√
λmωixi

]}
(7.40)

=

∫ ∏
i

dxiPX(xi)exp

{∑
i

[
− λm

2
x2i + λmx∗ixi +

√
λmωixi

]}
(7.41)

=⇒ ΦA,N =
1

N

∑
i

Ex∗
i ,ωi

[
log

{∫
dxiPX(xi)exp

{∑
i

[
− λm

2
x2i + λmx∗ixi +

√
λmωixi

]}
(7.42)

= Ex∗
1,ω1

[
log

{∫
dx1PX(x1)exp

{∑
1

[
− λm

2
x21 + λmx∗1xi +

√
λmω1x1

]}
(7.43)

= Φdenoising(λm) (7.44)

Where we have exploited the parallel formalism (i.e. independence) and recognized that
the final result is just the free entropy from Chapter 6 with a λm = ∆−1m argument
inside.

Additionally, we recall the focus points of the target problem, labelled by the letter B,
which is stated in Equation 7.4, has posterior described in Equation 7.8 and Hamiltonian:

HB(x, λ,x∗,ξ) = −
∑
i

log(PX(xi))−
∑
i≤j

λ

2N
x2ix

2
j +

λ

N
xixjx

∗
ix

∗
j +

√
λ

N
ξijxixj (7.45)

Of which we specifically look for its partition function ZB(λ,x∗,ξ).

2For more see Chaper 6 adapting it to a vector in RN
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We eventually implement a time interpolation of Equations 7.37, 7.45 that reaches at
t = 1 the target form for our partition function ZB:

Ht(x, λ,x∗,ω,ξ;m) := HA(x, (1− t)λ,x∗,ξ;m) + HB(x, tλ,x∗,ξ) (7.46)

= −
∑
i

[
− (1− t)λm

2
x2i + (1− t)λmx∗ixi +

√
(1− t)λmωixi

]
(7.47)

−
∑
i≤j

tλ

2N
x2ix

2
j +

tλ

N
xixjx

∗
ix

∗
j +

√
tλ

N
ξijxixj

Notice that we model the strength of the SNR in each of the two energy configurations,
where however λ is shared across. Basically, we choose depending on time which model
to completely make silent.
Denoting the parameters by the shorthand θ = {λ,x∗,ω,ξ} we precompute some quan-
tities of interest such as:

∂

∂t
Ht(x,θ;m) = −

∑
i

[
λm

2
x2i − λmxix

∗
i −

√
λm

2
√
1− t

ωixi

]
−
∑
i≤j

λ

2N
x2ix

2
j +

λ

N
xixjx

∗
ix

∗
j +

√
λ
N

2
√
t
ξijxixj

(7.48)
∂

∂t

log[Zt(θ;m)]

N
=

1

N

1

Zt(θ;m)

∂Zt(θ;m)

∂t
(7.49)

=
1

N

1

Zt(θ;m)

∂

∂t

∫
dxe−Ht(x,θ;m) (7.50)

=
1

N

∫
dx

e−Ht(x,θ;m)

Zt(θ;m)︸ ︷︷ ︸
=Boltz weight t,θ;m

∂

∂t

(
− Ht(x,θ;m)

)
(7.51)

= − 1

N

〈
∂

∂t
Ht(x,θ;m)

〉
t,θ;m

(7.52)

= − 1

N

〈
−
∑
i

[
λm

2
x2i − λmxix

∗
i −

√
λm

2
√
1− t

ωixi

]
(7.53)

−
∑
i≤j

λ

2N
x2ix

2
j +

λ

N
xixjx

∗
ix

∗
j +

√
λ
N

2
√
t
ξijxixj

〉
t,θ;m

= − 1

N

{
−
∑
i

[
λm

2
⟨x2i ⟩t,θ;m − λm⟨xix∗i ⟩t,θ;m −

√
λm

2
√
1− t

ωi⟨xi⟩t,θ;m
]

(7.54)

−
∑
i≤j

λ

2N
⟨x2ix2j ⟩t,θ;m +

λ

N
⟨xixjx∗ix∗j ⟩t,θ;m +

√
λ
N

2
√
t
ξij⟨xixj⟩t,θ;m

}

= − 1

N

{
λ

N

∑
i≤j

[⟨x2ix2j ⟩t,θ;m
2

− ⟨x∗ix∗jxixj⟩t,θ;m
]
− λm

∑
i

[
⟨x2i ⟩t,θ;m

2
− ⟨x∗ixi⟩t,θ;m

]
(7.55)

−

√
λ
N

2
√
t

∑
i≤j

ξij⟨xixj⟩t,θ;m +

√
λm

2
√
1− t

∑
i

ωi⟨x− i⟩t,θ;m
}
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As argued before, by simple integration one can conclude that the free entropy for the
matrix factorization problem, denoted as ΦMF (λ) takes the form:

ΦMF (λ) = lim
N→∞

{
Ex∗,ξ

[
log(ZB(λ,x∗,ξ)

N

]}
(7.56)

= lim
N→∞

{
Ex∗,ω,ξ

[
log(ZA(λ,x∗,ω;m)

N
+

∫ 1

0
dτ

∂

∂t

log(Zt(θ;m)

N

∣∣∣∣
t=τ

]}
(7.57)

Tedious TODO write them calculations eventually lead to an upper bound result:

ΦMF (λ) ≥ Φdenoising(λm)− λm2

4
∀m =⇒ ΦMF (λ) = max

m

{
Φdenoising(λm)− λm2

4

}
(7.58)

Observations to put: we started with overlaps, now only ⟨x2i ⟩, ⟨x2ix2j ⟩. and we will get
rid of them.
⟨xi⟩zi and ⟨xixj⟩ξij are hard to interpret, we solve them using stein’s lemma.

With a lower bound, we have one direction of the proof of equality. We now move to the
creation of an upper bound by fixed magnetization.
Readjusting problem A into a fixed magnetization problem, we again find that by inter-
polating TODO continue:

Φfixed
MF (λ;M) ≤ Φdenoising(λm) +

λq2

4
+
λ

2
(m−M)2 − λm2

2
∀m, q

(7.59)

=⇒ Φfixed
MF (λ;M) ≤ min

m,q

{
Φdenoising(λm) +

λq2

4
+
λ

2
(m−M)2 − λm2

2

}
(7.60)

To exploit these bounds, observe that by the Laplace transform in the thermodynamic
limit, the configurations of magnetization M will dominate the landscape TODO check
explain better:

ΦMF (λ) = max
M

{
Φfixed
MF (λ;M)

}
(7.61)

≤ max
M

{
min
m,q

[
Φdenoising(λm) +

λq2

4
+
λ

2
(m−M)2 − λm2

2

]}
(7.62)

≤ max
M

{
Φdenoising(λm) +

λq2

4
+
λ

2
(m−M)2 − λm2

2

∣∣∣∣
m=M,q=M

}
(7.63)

≤ max
M

{
Φdenoising(λm)− λM2

4

}
(7.64)

Combining Equation 7.58 and 7.64 we reach the same conclusion of the replica method
(Equation 7.31).

Observation 7.6 (Lower bound and Replica symmetry). The lower bound obtained in
Equation 7.58 is part of the proof of the large deviation TODO check which one, but
is not true under general conditions. Indeed, if the problem is not convex, outside of the
maximum it does not hold and we get replica symmetry breaking, a concept that will
be explored in later Chapters.

In the next chapter, we will explore a solution by the cavity method by assuming that
concentration principle holds.

Below, the Bibliography paragraph is reported for the sake of completeness
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Nishimori demonstrated that his symmetry implied replica-symmetry in Nishimori
(1980). The modern approach in terms of perturbations is discussed in Korada and

Macris (2009); Abbe and Montanari (2013); Coja-Oghlan et al. (2018). The
spikedWigner model has been studied in great detail over the last decades, and has been

the topics of many fundamental papers Johnstone (2001); Baik et al. (2005). The
replica approach to this problem is reviewed in details in Lesieur et al. (2017). The

results was first proved in Barbier et al. (2016). We presented here the alternative later
proof of El Alaoui and Krzakala (2018). Thanks to an universality theorem Krzakala et

al. (2016), many problems can be reduced to variants of such low-rank factorization
problems and generic formula have been proven for these Lelarge and Miolane (2019);
Miolane (2017); Barbier and Macris (2019). Extensions can also be made for almost
arbitrary priors, including neural networks generating models Aubin et al. (2020).
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Appendix A

Mathematical Facts

The purpose of this collection is providing the less experienced reader with noteworthy
mathematical results. To avoid interrupting the discussion of the reasoning, they are
reported here for coherence.

The starting triplet of results is directly derivable from the first, or indirectly, using the
fact that a normal density sums to one, and reworking the coefficients.

Fact A.1 (Easy gaussian integrals). It holds that:

1. ∫ ∞

−∞
e−x2

dx =
√
π (A.1)

2.

a > 0 =⇒
∫ ∞

−∞
e−ax2

dx =

√
π

a
(A.2)

3. ∫ ∞

−∞
e−ax2+bxdx =

√
π

a
e

b2

4a (A.3)

Proof. (Claim 1) Let I =
∫∞
−∞ e−x2

dx =
∫∞
−∞ e−y2dy since the summand is a dummy

index. Then:

I2 =

(∫ ∞

−∞
e−x2

dx

)(∫ ∞

−∞
e−y2dy

)
(A.4)

=

∫ ∞

−∞
e−x2

(∫ ∞

−∞
e−y2

)
dydx (A.5)

=

∫ ∞

−∞

(∫ ∞

−∞
e−(x2+y2)

)
dydx bring inside x argument as x ⊥⊥ y (A.6)

=

∫ 2π

0

∫ ∞

0
e−r2r drdϑ change to polar coordinates (⋆) (A.7)

= 2π

∫ 0

−∞

1

2
es ds substituting s = −r2, ds = −2rdr (A.8)

= π

∫ 0

−∞
es ds (A.9)

= π(e0 − e−∞) (A.10)

= π =⇒
√
I2 =

∫ ∞

−∞
e−x2

dx =
√
π (A.11)
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Warning: we have overlooked some improper integrals to give a sketch of the proof, a
more formal treatment is proposed in the Wikipedia page "Gaussian Integral"1.
Where in (⋆) we mean:

r =
√
x2 + y2

ϑ = tan−1( yx)

|J | = r Jacobian determinant

(A.12)

(Claim 2) Rework the integral as follows:∫ ∞

−∞
e−ax2

dx =

∫ ∞

−∞
e−u2 1√

a
du substitute u =

√
ax, du =

√
adx (A.13)

=
1√
a

∫ ∞

−∞
e−u2

du (A.14)

=
1√
a

√
π Eqn. A.1 (A.15)

(Claim 3) we prove this in Lemma A.3 which is equivalent.

Fact A.2 (Easy identity).

x ∼ NN (0,M−1) =⇒
√
det(M)

∫
RN

dx

(2π)
N
2

e−
1
2
xTMx = 1 (A.16)

Proof. Notice this is just the definition of density function for a multivariate normal,
which integrates to 1. M is the inverse of the variance covariance matrix. Whenever
this integral is proposed with M invertible, it is possible to state the equivalence to 1.
Observe also that it is the multidimensional equivalent of Equation A.1.

Lemma A.3 (Another perspective for Equation A.3). Let X ∼ N (0, 1). Then:

EX

[
eκx

]
= e

1
2
κ2

(A.17)

Proof. Expanding the expectation:

EX

[
eκx

]
=

∫
dx

1√
2π
e−

x2

2 eκx (A.18)

=

∫
dx

1√
2π
e−

x2

2
+κx (A.19)

=

∫
dx

1√
2π
e−

1
2
(x2−2κx) (A.20)

=

∫
dx

1√
2π
e−

1
2
[(x−κ)2−κ2] completing the square (A.21)

=

∫
dx

1√
2π
e−

1
2
[(x−κ)2]e−

1
2
(−κ2) (A.22)

= e
1
2
κ2

∫
dx

1√
2π
e−

1
2
[(x−κ)2]︸ ︷︷ ︸

x∼N (κ,1) density

(A.23)

= e
1
2
κ2

(A.24)

1wiki/gaussian_integral
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Lemma A.4 (Gaussian Identity). The following equality holds:∫
dx(x− µ)e−

(x−µ)2

2σ2 = −σ2e−
(x−µ)2

2σ2 (A.25)

Proof. Proceed by substitution, letting:

u = −(x− µ)2

2σ2
=⇒ du = −x− µ

σ2
dx =⇒ −σ2du = (x− µ)dx

So that: ∫
dx(x− µ)︸ ︷︷ ︸

=du

exp

{
−(x− µ)2

2σ2︸ ︷︷ ︸
=u

}
= −σ2

∫
dueu

= −σ2eu

= −σ2e−
(x−µ)2

2σ2
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Appendix B

Random Matrices, Replica & Cavity

The following is a nice and rigorous application of the Replica Method presented in
Chapter 3 and of the Cavity Method introduced in Chapter 2.

Definition B.1 (Random Matrix X). X ∈ RN×N is a matrix such that:

Xij ∼ ν(ϑ) ∀i, j ∈ {1, . . . , N} (B.1)

An interesting random matrix was used by Wigner to model the nuclei of heavy atoms
[WF60].

Definition B.2 (Wigner Matrix AN ). A Wigner matrix is a random matrix where:

AN =
1√
2N

(G+GT ) ∈ RN×N (B.2)

Gij ∼ N (0, 1) ∀i, j (B.3)

Sometimes, when it is clear that the size is N , the subscript will be omitted

Proposition B.3 (Properties of AN ). For a Wigner matrix as in Definition B.2 it holds
that:

1. Aij = Aji ∀i, j
2. λi ∈ R ∀i eigenvalues

Proof. (Claim 1) Almost definitional, as G+GT = GT +G

(Claim 2) By direct implication of Claim 1, a symmetric matrix has real eigenvalues.
Let † denote the complex conjugate. For an eigenpair (x, λ) we have:

Ax = λx =⇒ x†Ax− (x†Ax)† = 0 symmetry of A (B.4)

x†λx− (x†λx)† = 0 eigenpair (B.5)

(λ− λ†)(x†x) = 0 (B.6)

⇐⇒ λ− λ† = 0 ⇐⇒ λ = λ† ⇐⇒ λ ∈ R (B.7)

Which holds for any eigenpair.

An informative question to ask is what is the spectrum of a Wigner matrix? In other
terms:

what is the distribution of its eigenvalues?
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It turns out that both the Replica and the Cavity method can be used to determine the
(limiting) distribution of the eigenvalues νAN

(λ) as N → ∞. We will show that it tends
to the semicircle law distribution:

νAN
(λ) →


1

2π

√
4− λ2 λ ∈ [−2, 2]

0 otherwise
(B.8)

Most of random matrix theory is based on the Stieltjes Transform. Its starting point is
a very important identity for the dirac delta function.

Lemma B.4 (Dirac Delta identity). Let ℑ denote the imaginary part of a complex valued
number. Then:

δ(x− x0) = −lim
ϵ→0

1

π
ℑ
[

1

x− x0 + iϵ

]
(B.9)

Definition B.5 (Stieltjes Transform SA(·)). Given a random matrix A, define the Stielt-
jes Transform as:

SA(λ) = − 1

N

∑
i

1

λ− λi
= − 1

N
∂λ log[det(A− λI)] (B.10)

Where the second equality is proved for a similar case in Theorem B.6.

Theorem B.6 (Stieltjes Transform Properties). The distribution of the eigenvalues of a
Wigner matrix is of the form:

νA(λ) =
1

π
lim
ϵ→0

ℑ
{
SA(λ+ iϵ)

}
(B.11)

Proof. Consider a uniform distribution ν(x) that can take {xi}Ni=1 values with uniform
measure, using Lemma B.4 we have that:

ν(x) =
1

N

∑
i

δ(x− xi) = −lim
ϵ→0

1

Nπ

∑
i

ℑ
[

1

x− xi + iϵ

]
(B.12)

It can be noticed that a sum of fractions can be expressed as the derivative of a logarithm:

1

N

∑
i

1

x− xi
=

1

N

d

dx

∑
i

log(x− xi) =
1

N

d

dx
log

[∏
i

(x− xi)

]
(B.13)

So that for AN and its eigenvalues λ1, . . . , λN :

νA(λ) =
1

N

∑
i

δ(λ− λi) (B.14)

= −lim
ϵ→0

1

Nπ

∑
i

ℑ
[

1

λ− λi + iϵ

]
Lemma B.4 (B.15)

= − 1

Nπ
ℑ
{
lim
ϵ→0

d

dλ
log

[ N∏
i=1

λ− λi + iϵ

]}
Eq B.13, linearity of ℑ (B.16)

= − 1

Nπ
ℑ
{
lim
ϵ→0

∂λ log

[∏
i

(λ+ iϵ)− λi

]}
(B.17)

= − 1

Nπ
ℑ
{
lim
ϵ→0

∂λ log

[
det[A− (λ+ iϵ)I]

]}
det definition (B.18)

=
1

π
lim
ϵ→0

ℑ
{
SA(λ+ iϵ)

}
Def. B.5 (B.19)
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Being able to compute exactly the Stieltjes transform of Definition B.5 is sufficient to
know the distribution of eigenvalues of a function. As N → ∞, assume further that the
density of eigenvalues is self-averaging with a result similar to that of Theorem 3.4.

We wish to compute:

lim
N→∞

E[SAN
(λ)] = −∂λ lim

N→∞

1

N
E
[
log[det(AN − λI)]

]
(B.20)

Where to simplify calculations we use the following for for the logarithm and expectation:

E
[
log[det(AN − λI)]

]
= −2E

[
log[det(AN − λI)−

1
2 ]

]
(B.21)

B.1 Replica Method

Following the approach of Section 3.1, we avoid computing log[det(. . .)−
1
2 ] and opt for a

small n approximation through powers of the argument det[. . .]−
1
2
n.

E
[
− 2 log[det(A− λI)−

1
2 ]

]
≈ −2 lim

n→0

[
E[det(A− λI)−

1
2
n]− 1

n

]
(B.22)

In this context, the formulation of Equation B.21 allows us to exploit the Gaussian
Integral identity from Proposition A.2:√

det(M)

∫
RN

dx

(2π)
N
2

e−
1
2
xTMx = 1 (B.23)

Indeed:

E
[
det[A− λI]−

1
2
n

]
= E

[(
1√

det[A− λI]

)n]
(B.24)

= E
[ ∫

RN

dx

(2π)
N
2

e−
1
2
xT (A−λI)x

]
Eq. B.23

(B.25)

= E
[ n∏
α=1

∫
RN

dx(α)

(2π)
N
2

e−
1
2
(xT )(α)(A−λI)x(α)

]
(B.26)

= E
[ ∫

RN

n∏
α=1

dx(α)

(2π)
N
2

e−
1
2
(xT )(α)(A−λI)x(α)

]
copies are ⊥⊥

(B.27)

= E
[ ∫

RN

n∏
α=1

[
dx(α)

(2π)
N
2

] n∏
α=1

e−
1
2
(xT )(α)Ax(α)

e−
1
2
(xT )(α)(−λI)x(α)

]
(B.28)

=

∫
RN

n∏
α=1

[
dx(α)

(2π)
N
2

e−
1
2
(xT )(α)(−λI)x(α)

]
E
[ n∏
α=1

e−
1
2
(xT )(α)Ax(α)

]
linearity

(B.29)

=

∫
RN

n∏
α=1

[
dx(α)

(2π)
N
2

e
λ
2
∥x(α)∥22

]
E
[ n∏
α=1

e−
1
2
(xT )(α)Ax(α)

]
(xT )(α)Ix(α) = ∥x(α)∥22

(B.30)

=

∫
RN

n∏
α=1

[
dx(α)

(2π)
N
2

e
λ
2
∥x(α)∥22

]
E
[
e−

1
2

∑
α(x

T )(α)Ax(α)

]
(B.31)
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Clearly randomness is in the matrix A, which is a Wigner matrix (Definition B.2). At
this moment, its form becomes useful since the expectation inside the integral takes the
form:

EA

[
e−

1
2

∑
α(x

T )(α)Ax(α)

]
= EG

[
e
− 1

2

∑
α(x

T )(α)[ 1√
2N

(G+GT )]x(α)
]

(B.32)

= EG

[
e
− 1

2
√
2N

∑
α(x

T )(α)Gx(α)+(xT )(α)GTx(α)
]

(B.33)

= EG

[
e
− ̸2

̸2
√
2N

∑
α(x

T )(α)Gx(α)
]

G,GT equal in E

(B.34)

= EG

[
e
− 1√

2N

∑
α(x

T )(α)Gx(α)
]

(B.35)

=
∏
ij

EGij

[
e
−

Gij√
2N

∑
α x

(α)
i x

(α)
j

]
Gij i.i.d. (B.36)

We recognize a well known Gaussian integral of the form of Proposition A.1∫
e−ax2+bxdx =

√
π

a
e

b2

4a or Ex[e
bx] = e

b2

2a (B.37)

Where for the latter, we set b = − 1√
2N

∑
α x

(α)
i x

(α)
j and a = 1 to get:

EA

[
e−

1
2

∑
α(x

T )(α)Ax(α)

]
=

∏
ij

e
1

4N
[
∑

α x
(α)
i x

(α)
j ]2 (B.38)

=
∏
ij

e
N
4

∑
α

∑
β(

x
(α)
i

x
(α)
j

x
(β)
i

x
(β)
j

N2 ) recollect N , reindex square by α, β

(B.39)

= e
N
4

∑
α,β(

x(α)·x(β)
N

)2 (B.40)

Putting together Equations B.31 and B.40 we conclude that:

E
[
det[A− λI]−

1
2
n

]
=

∫
RN

n∏
α=1

[
dx(α)

(2π)
N
2

e
λ
2
∥x(α)∥22

]
e

N
4

∑
α,β(

x(α)·x(β)
N

)2 (B.41)

The integration over the disorder has coupled the independent replicas. We call this
overlap.

Definition B.7 (Overlap q(αβ)). Define the overlap as:

q(αβ) :=
1

N
x(α) · x(β) (B.42)

In order to decouple the overlap we use the same approach as that of Section 3.1 for the
magnetization of the Curie-Weiss model. The delta function in this case is:

f

(
1

N
x(α) · x(β)

)
= Nn

∫ ∏
1≤α≤β≤n

dq(αβ)δ(Nq(αβ) − x(α) · x(β))f(x(α) · x(β)) (B.43)
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Again, as before, we drop the Nn factor in front and use the approximation ≈ symbol.
As N → ∞ the normalized logarithm becomes:

E
[
det[A− λI]−

1
2
n

]
=

∫
RN

n∏
α=1

[
dx(α)

(2π)
N
2

e
λ
2
∥x(α)∥22

]
e

N
4

∑
α,β(

x(α)·x(β)
N

)2 (B.44)

≈
∫
RN

∏
1≤α≤β≤n

dq(αβ)δ

(
q(αβ) − x(α) · x(β)

N

)
eN

λ
2

∑
α q(αα)+N

4

∑
α,β(q

(αβ))2

(B.45)

Taking the Fourier representation with the change of variables q̂(αβ) = 2πiλ the products
of delta functions become:

∏
1≤α≤β≤n

dq(αβ)δ

(
q(αβ) − x(α) · x(β)

N

)
=

∫ ∏
1≤α≤β≤n

dq̂(αβ)

2π
e
−

∑
1≤α≤β≤n

q̂(αβ)(Nq(αβ)−x(α)·x(β))

(B.46)
Which joined with Equation B.45 returns:

E
[
det[A− λI]−

1
2
n

]
≈

∫
RN ,CN

∏
1≤α≤β≤n

dq(αβ)dq̂(αβ)

2π
(B.47)

× e
−

∑
1≤α≤β≤n

q̂(αβ)(Nq(αβ)−x(α)·x(β))

eN
λ
2

∑
α q(αα)+N

4

∑
α,β(q

(αβ))2

≈
∫
RN ,CN

∏
1≤α≤β≤n

dq(αβ)dq̂(αβ)

2π
(B.48)

× e
−

∑
1≤α≤β≤n

q̂(αβ)(Nq(αβ)−x(α)·x(β))+N λ
2

∑
α q(αα)+N

4

∑
α,β(q

(αβ))2

≈
∫
RN ,CN

∏
1≤α≤β≤n

dq(αβ)dq̂(αβ)

2π
(B.49)

× exp

{
N

[
−

∑
1≤α≤β≤n

q̂(αβ)
(
q(αβ) − 1

N
x(α) · x(β)

)
+
λ

2

∑
α

q(αα) +
1

4

∑
α,β

(q(αβ))2
]}

≈
∫
RN ,CN

∏
1≤α≤β≤n

dq(αβ)dq̂(αβ)

2π
eNΦ(q(αβ),q̂(αβ)) (B.50)

Where in the exponential:

Φ(q(αβ), q̂(αβ)) = −
∑

1≤α≤β≤n

q̂(αβ)
(
q(αβ) − 1

N
x(α) · x(β)

)
+
λ

2

∑
α

q(αα) +
1

4

∑
α,β

(q(αβ))2

(B.51)

= −
∑

1≤α≤β≤n

q̂(αβ)q(αβ) +
λ

2

∑
α

q(αα) +
1

4

∑
α,β

(q(αβ))2 +Ψx(q̂(αβ)) reordering

(B.52)
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And further, by the decoupling of αβ sites, the Ψ function can be simplified to:

Ψx(q̂(αβ)) = −
∑

1≤α≤β≤n

− q̂(αβ)
1

N
x(α) · x(β) (B.53)

=
1

N

∑
1≤α≤β≤n

log

{
eq̂

(αβ)x(α)·x(β)

}
(B.54)

=
1

N
log

{ ∏
1≤α≤β≤n

eq̂
(αβ)x(α)·x(β)

}
(B.55)

=
1

N
log

{
e

∑
1≤α≤β≤n

q̂(αβ)x(α)·x(β)}
(B.56)

=
1

N
log

∫ ∏
α

dx(α)

(2π)
N
2

e

∑
1≤α≤β≤n

q̂(αβ)x(α)·x(β)

(B.57)

=
1

N
log

{∫ ∏
α

dx(α)√
2π

e

∑
1≤α≤β≤n

q̂(αβ)x(α)·x(β)}N

(B.58)

=
1

N
N log

{∫ ∏
α

dx(α)√
2π

e

∑
1≤α≤β≤n

q̂(αβ)x(α)·x(β)}
(B.59)

= log

{∫ ∏
α

dx(α)√
2π

e

∑
1≤α≤β≤n

q̂(αβ)x(α)·x(β)}
(B.60)

The integral in Equation B.50 can be evaluated with the saddle point method being in
exponential form. Thus:

E
[
det[A− λI]−

1
2
n

]
≈ exp

{
N Extr

q̂(αβ),q(αβ)

[
Φ(q(αβ), q̂(αβ))

]}
(B.61)

As in Section 3.1, the extremization is over a difficult space1. The replica symmetric
ansatz in this case is stated as:

q
(αβ) = δ(αβ)q

q̂(αβ) = −1

2
δ(αβ)q̂

=⇒


∑

α q
(αα) = nq∑

α,β(q
(αβ))2 = nq2∑

1≤α≤β≤n

q̂(αβ)q(αβ) = −n
2
qq̂

(B.62)

1In this case, a matrix Rn×n.
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This simplification has an effect on the Ψ integral:

=⇒ Ψx(q̂(αβ)) = log

{∫ ∏
α

dx(α)√
2π

e

∑
1≤α≤β≤n

q̂(αβ)x(α)·x(β)}
(B.63)

= log

{∫ ∏
α

dx(α)√
2π

e

∑
1≤α≤β≤n

q̂(αβ)Nq(αβ)}
Definition B.7 (B.64)

Ψ(q̂) = log

{∫ ∏
α

dx(α)√
2π

e−
Nn
2

qq̂

}
(B.65)

= n log

{∫
dx√
2π
e−

N
2
qq̂

}
take out n (B.66)

= n log

{∫
dx√
2π
e−

1
2
q̂x2

}
Eq. B.62 (B.67)

= n log

{√
1

q̂

}
Fct. A.1 (B.68)

= −n
2
log(q̂) (B.69)

Where in the last passage we use the Gaussian integral of Equation A.2. We now have
a closed easy form for the Φ function:

Φ(q(αβ), q̂(αβ)) = −
∑

1≤α≤β≤n

q̂(αβ)q(αβ) +
λ

2

∑
α

q(αα) +
1

4

∑
α,β

(q(αβ))2 +Ψx(q̂(αβ)) Eq. B.52

(B.70)

=⇒ Φ(q, q̂) =
n

2
qq̂ +

λ

2
nq +

1

4
nq2 − n

2
log(q̂) Eqs. B.62, B.68

(B.71)

= −n
2

(
− qq̂ − λq − 1

2
q2 + log(q̂)

)
(B.72)

Which plugged into the extremization and the approximation, with an added
1

N
factor

as in Equation B.20 to include in the limit for N → ∞:

E
[
− 2

N
log[det(A− λI)−

1
2 ]

]
≈ −2 lim

n→0

[
E[det(A− λI)−

1
2
n]− 1

n

]
Eq. B.22

(B.73)

≈ − 2

N
lim
n→0

exp

{
N Extr

q̂(αβ),q(αβ)

[
Φ(q(αβ), q̂(αβ))

]}
− 1

n
Eq. B.31

(B.74)

≈ − 2

N
lim
n→0

exp

{
−Nn
2

Extr
q̂,q

[
− qq̂ − λq − 1

2
q2 + log(q̂)

]}
− 1

n
Eq. B.72

(B.75)

≈ − 2

N
lim
n→0

[
exp

{
−N
2
Extr
q̂,q

[
− qq̂ − λq − 1

2
q2 + log(q̂)

]}]n
− 1

n
(B.76)

≈ 2

N

N

2
Extr
q̂,q

[
− qq̂ − λq − 1

2
q2 + log(q̂)

]
(B.77)

≈ Extr
q̂,q

[
− qq̂ − λq − 1

2
q2 + log(q̂)

]
(B.78)
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Where in the last passage we use the limit:

lim
n→0

ean − 1

n
= a (B.79)

With a =
N

2
Extr
q̂,q

[
− qq̂ − λq − 1

2
q2 + log(q̂)

]
, and simplify the equation accordingly.

To solve the extremization, we impose null partial derivatives of the argument of the
extremization, denoted as Q:

∂

∂q
Q = −q̂ − λ− q = 0

∂

∂q̂
Q = −q + 1

q̂
= 0

⇐⇒


q̂ =

1

q
1

q
+ λ+ q = 0

⇐⇒ q∗ =
−λ±

√
λ2 − 4

2

(B.80)
Which eventually tells us that:

lim
N→∞

E[SAN
(λ)] = −∂λ lim

N→∞

1

N
E
[
log[det(AN − λI)]

]
Eq. B.20 (B.81)

= q∗ =
−λ±

√
λ2 − 4

2
(B.82)

While there are two solutions, given that the spectrum is a probability distribution, the
negative one will be discarded.

Recalling Equation B.19 we have:

νA(λ) =
1

π
lim
ϵ→0

ℑ
{
SA(λ+ iϵ)

}
(B.83)

=
1

π
lim
ϵ→0

ℑ
{
−λ− iϵ±

√
(λ+ iϵ)2 − 4

2

}
(B.84)

Concentrating on the term inside the root:√
(λ+ iϵ)2 − 4 =

√
λ2 + 2iϵ− ϵ2 − 4 (B.85)

=

√
(λ2 − ϵ2 − 4)

(
1 +

2iϵλ

λ2 − ϵ2 − 4

)
(B.86)

=
√
(λ2 − ϵ2 − 4)

√(
1 +

2iϵλ

λ2 − ϵ2 − 4

)
(B.87)

→
ϵ→0

√
(λ2 − ϵ2 − 4) (B.88)

≈
√
λ2 − 4

√
1− ϵ2

λ2 − 4
(B.89)

≈
√
λ2 − 4 +O(ϵ) (B.90)

So, if |λ| > 2 the square root is real and as ϵ → 0 all the imaginary parts get canceled.
On the contrary, if λ| < 2 then

√
λ2 − 4 = i

√
4− λ2 and:

|λ| < 2 =⇒ 1

π
lim
ϵ→0

ℑ
{
−λ− iϵ±

√
(λ+ iϵ)2 − 4

2

}
=

1

π
ℑ
{
−λ− iϵ± i

√
4− λ2 +O(ϵ)

2

}
(B.91)

=
1

π
ℑ
{
−λ±

√
4− λ2

2

}
(B.92)

=
1

2π

(
±
√

4− λ2
)

(B.93)
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Where we take the + solution to obtain a valid density over eigenvalues and conclude
that as claimed:

νA(λ) =


1

2π

√
4− λ2 |λ| < 2

0 otherwise
(B.94)

In the notes, the two factor is omitted, but it is necessary to make the distributino
integrate to 1 over its support, and is also justified by the q∗ solution chosen.

The cavity method solution can be found in the original lecture notes [KZ21b].
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