# Simulated Annealing of the Travelling Salesman Problem

Advanced Session: Algorithmic approximate solution to a combinatorial problem

Giancola Simone<sup>1</sup>

<sup>1</sup>Bocconi University, Milan, Italy

Mini-Course on Computation, Harvard University, January 2022

# An ironic quote, hope this is not the case!

Before I came here I was confused about this subject. Having listened to your lecture I am still confused, but on a higher level.

Enrico Fermi, 1938 Physics Nobel Prize

## About & Main sources

#### About me

Currently an MS in Data Science candidate at Bocconi University General interest in science (still exploring) Enjoys coding

#### Contacts:

simonegiancola09@gmail.com personal webpage

### Acknowledgements

The opportunity could **not** have been possible **without**:

PhD student Chou Chi-Ning, Harvard University, School of Engineering and Applied Sciences

The whole presentation could **not** have been possible **without** the contents from:

Computer Programming, Bocconi University, 30509 (awesome course!)

Prof. Baldassi Carlo Prof. Lucibello Carlo

Thanks!

- Preliminaries
- 2 Intro to the application
- Complexity Assessment
- 4 Algorithmic Requirements
- Simulated Annealing
- Takeaways

### Lecture Path

- Preliminaries
- 2 Intro to the application
- Complexity Assessment
- 4 Algorithmic Requirements
- Simulated Annealing
- Takeaways



### **Notation**

#### This is a definition

Here I define something

#### This is a theorem

Something is gnihtemoS backwards

#### Proof

This is a proof

#### A remark an observation or an example

for example, I observe or remark that this is an observation



#### In short:

 Simulated Annealing (SA) is a technique used to solve complex non linear problems

In short:

• first application to the Travelling Salesman problem is attributed to Kirkpatric et Al. in 1983 [4]

In short:

• It is a metaheuristic method using Statistical Mechanics concepts

In short:

• Clever cross implementation of many subjects altogether

In short:

• perfect example of inspiration from natural phenomena



• Recap the framework of Statistical Mechanics



- Recap the framework of Statistical Mechanics
- Present and analyze the Traveling Salesman Problem

- Recap the framework of Statistical Mechanics
- Present and analyze the Traveling Salesman Problem
- Propose a setting that relaxes its complexity



- Recap the framework of Statistical Mechanics
- Present and analyze the Traveling Salesman Problem
- Propose a setting that relaxes its complexity
- Derive a Simulated Annealing algorithm that attempts to respect those requirements

### Link to course Lectures

Lecture II.a: Statistical Mechanics:

#### Microstates $\omega$

many, probabilistically distributed on  $\Omega$ 

# Macrostates $X(\omega)$

properties of microstates common to many  $\boldsymbol{\omega}$ 

$$X:\Omega\mapsto\mathbb{R}$$

### Link to course Lectures

Lecture II.a: Statistical Mechanics:

#### Microstates $\omega$

many, probabilistically distributed on  $\Omega$ 

# Macrostates $X(\omega)$

properties of microstates common to many  $\boldsymbol{\omega}$ 

$$X:\Omega\mapsto\mathbb{R}$$

- The problems
  - We can measure efficiently a macrostate, but do not identify the microstate
  - We can observe one realization of  $\omega$  across time, not many realizations  $\omega_1, \ldots, \omega_n$

# Thermodynamics Example

#### Microstate

Configurations (positions in  $\ensuremath{\mathbb{R}}^3)$  of particles with a non measurable energy

#### Macrostate

Temperature as a result of the geometrical configuration

# Thermodynamics Example

#### Microstate

Configurations (positions in  $\mathbb{R}^3$ ) of particles with a non measurable energy

#### Macrostate

Temperature as a result of the geometrical configuration

## Space of possible configurations, easy

If they are k, all distinct, to be placed in an  $(n \times n) \in \mathbb{R}^2$  grid, and we do not account for symmetry, we have:

$$\binom{n^2}{k}$$

arrangements.

Not easy at this Stack Question. Anyway Big!

### Not available vs available

## Ensemble Average

$$\mathbb{E}[X(\omega)] := \int_{\mathcal{X}} x(\omega) f(x(\omega)) dx(\omega)$$

integral over  $\Omega$ 



## Not available vs available

#### Ensemble Average

$$\mathbb{E}[X(\omega)] := \int_{\mathcal{X}} x(\omega) f(x(\omega)) dx(\omega)$$

integral over  $\Omega$ 

#### Time Average

$$\mathbb{E}[X_t] := \frac{1}{t_{max}} \sum_{k=1}^{t_{max}} x_k(\omega)$$

sum for a single realization  $\omega$ 



# **Ergodicity**

• Under appropriate assumptions:

$$\implies \mathbb{E}[X_t] \stackrel{a.s.}{\rightarrow} \mathbb{E}[X(\omega)]$$

# **Ergodicity**

Under appropriate assumptions:

$$\implies \mathbb{E}[X_t] \stackrel{a.s.}{\rightarrow} \mathbb{E}[X(\omega)]$$

 We could then sample iteratively and almost surely get to the mean of the distribution (actually any bounded function, more details later).

Z encodes all possible microstates! It is big indeed.



# **Ergodicity**

Under appropriate assumptions:

$$\implies \mathbb{E}[X_t] \stackrel{a.s.}{\rightarrow} \mathbb{E}[X(\omega)]$$

- We could then sample iteratively and almost surely get to the mean of the distribution (actually any bounded function, more details later).
- We will see an energy fashioned application of this including Boltzmann distribution:

$$\mathbb{P}(\frac{Energy_i}{T} = u_i) = \frac{e^{u_i}}{Z} : Z = \sum_i e^{u_i}$$

Z encodes all possible microstates! It is big indeed.



# Z Notable elements

Z depends on T



## Z Notable elements

- Z depends on T
- Z normalizes the energy configuration to a probability



## Z Notable elements

- Z depends on T
- Z normalizes the energy configuration to a probability
- Boltzmann distribution allows for a link between configurations and properties.
  - It denotes a phase space as we saw in class

### Lecture Path

- Preliminaries
- 2 Intro to the application
- Complexity Assessment
- 4 Algorithmic Requirements
- Simulated Annealing
- 6 Takeaways

# A difficult problem

### Travelling Salesman Problem (TSP)

We are given a set of N cities, and a matrix  $\mathcal{D} = \{d_{ij}\}_{i=1,\dots,N}^{j=1,\dots,N} \in \mathbb{R}^N \times \mathbb{R}^N$  storing **symmetric** distances between each of the cities. The well known **Travelling Salesman Problem**<sup>a</sup> resorts to finding a minimum length cycle of the cities.

<sup>&</sup>lt;sup>a</sup>In terms of optimization

# A difficult problem

### Travelling Salesman Problem (TSP)

We are given a set of N cities, and a matrix  $\mathcal{D} = \{d_{ij}\}_{i=1,\dots,N}^{j=1,\dots,N} \in \mathbb{R}^N \times \mathbb{R}^N$  storing **symmetric** distances between each of the cities. The well known **Travelling Salesman Problem**<sup>a</sup> resorts to finding a minimum length cycle of the cities.

Why is it difficult? We will formalize it and give a degree of complexity.

<sup>&</sup>lt;sup>a</sup>In terms of optimization

# A difficult problem

### Travelling Salesman Problem (TSP)

We are given a set of N cities, and a matrix  $\mathcal{D} = \{d_{ij}\}_{i=1,\dots,N}^{j=1,\dots,N} \in \mathbb{R}^N \times \mathbb{R}^N$  storing **symmetric** distances between each of the cities. The well known **Travelling Salesman Problem**<sup>a</sup> resorts to finding a minimum length cycle of the cities.

<sup>a</sup>In terms of optimization

Why is it difficult? We will formalize it and give a degree of complexity.

#### Minimization Problem Statement

If the total distance is E(r) for a route r then we wish to find:

$$r_{min} = \underset{\mathcal{R}}{argmin} \{ E(r) \}$$

## Lecture Path

- Preliminaries
- 2 Intro to the application
- Complexity Assessment
- 4 Algorithmic Requirements
- Simulated Annealing
- Takeaways

# Solver A

# **Algorithm 1** Enumeration (not really) Algorithm

```
1: r_{min} \leftarrow None

2: E_{min} \leftarrow \infty

3: for r \in \mathcal{R} do

4: if E(r) < E_{min} then

5: r_{min} \leftarrow r

6: E_{min} \leftarrow E(r)

7: end if

8: end for
```

9: return r<sub>min</sub>

# **Enumeration Attempt**

# An Enumeration attempt from FourmiLab.ch (Autodesk creator)[7]

Assume we have at disposal a computer that does  $2.59 \cdot 10^9$  operations per second (just to simplify things). Let N=31 cities, then:

$$(N-1)! = \prod_{i=1}^{N-1} (N-i) = 30! \approx 2.65 \cdot 10^{32}$$

Assuming that the distance is calculated in negligible time we would need a total time of

$$\frac{30!}{2.65\cdot 10^9} \textit{sec} = 10^{23} \textit{sec} \approx 3\cdot 10^{16} \textit{ years} \approx 2\times 10^6 \textit{ stories of the universe}^{\textit{a}}$$

<sup>&</sup>lt;sup>a</sup>Assuming the universe is about 13.8 Billion years old, first google suggestion

#### **Formalisms**

## NP-hard class of problems

$$NP$$
-hard :=  $\{H : \forall L \in NP \exists efficient \ reduction \{L_i\} \rightarrow H\}$  (3.1)

Difficult to solve, difficult to check for a candidate solution with a deterministic Turing Machine

#### TSP Hardness

TSP is NP-hard

#### Proof Sketch

TSP is combinatorially exploding, searching the space is inefficient with a deterministic Turing Machine. Also, given a claim that an instance is a solution, it is not efficient to check it in polynomial time.

Precisely: reduction of a Hamiltonial Cycle Problem  $\in$  *NP-Complete*.

# Solution B

# **Algorithm 2** Greedy Algorithm $O(N^2 log(N))$

```
1: arr \leftarrow sort(cities)
2: edges ← []
3: while len(edges) != N do
       Select minimum distance tuple (i, j) \in arr
4:
       if [check no subcycles if add (i,j) to edges] then
 5:
           if [check degrees \leq 2 if add (i, j) to edges] then
6:
               edges.append((i, i))
7:
           end if
 8.
       end if
 9.
10: end while
11: return edges
```

## Heuristics result

### Big-Theta bound

Given a function  $g(\cdot)$ 

$$\Theta[g(N)] := \{ f(N) : \exists c_1, c_2 \in \mathbb{R}^+ \ N_0 \in \mathbb{N}^+ : \\ 0 \le c_1 g(N) \le f(N) \le c_2 g(N) \ \forall N > N_0 \}$$

Broadly speaking,  $g(\cdot)$  bounds a set of functions  $f(\cdot)$  after some point.

### Approximation ratio of an Algorithm

Ratio cost of Algorithm solution & exact solution

## Heuristics are not reliable

• approximation ratio of Solution B is  $\Theta[log(N)]$  [1]

## Heuristics are not reliable

- approximation ratio of Solution B is  $\Theta[log(N)]$  [1]
- on average in the 15-20% more than best known method for exact solution[3]
  - Held-Karp Algorithm

#### P = NP?

Not at all, heuristics are not general exact solutions. Solution B is just satisficing.

Nothing is ever guaranteed

## Lecture Path

- Preliminaries
- 2 Intro to the application
- Complexity Assessment
- 4 Algorithmic Requirements
- Simulated Annealing
- Takeaways

## Framework

### Random sequential samples

Following what we observed in class about ergodicity, we could envision a system that:

- explores options efficiently
- does not get stuck at satisficing options (so called local minimas)
- resembles the actual distribution wrt  $E(\cdot)$

### Notation

Routes will be called states in some cases. We will refer to r with the pedix i or j to follow a canonical notation when we deal with multiple states.

## Setting

## Routes Space $\mathcal{R}$

$$\mathcal{R} \coloneqq \{r \ \textit{valid}\}$$

### feature *u<sub>i</sub>*

$$u_i = f(r_i) \forall i \in \mathcal{R} \text{ for some } f(\cdot)$$

Here f can be anything (it is the macrostate measurement!).

### probability distribution $\rho$

The feature, and thus  $r_i$  have a distribution  $r_i \sim \rho(\cdot)$ 

## Transition Matrix $Q^{(t)}$

$$Q^{(t)} := \{ p_{ji}(t) := \mathbb{P}[X_t = j | X_{t-1} = i, t] \ \forall i, j \in \mathcal{R} \}$$

## Boltzmann Fashion

### Expressing a probability distribution as a Boltzmann Distribution

With this setting  $\forall i \ \rho(r_i) > 0$  and up to an additive constant we can find  $\left\{Z, \{u_i\}\right\}$  such that

$$\forall r \ \rho(r_i) = \rho_i = \frac{e^{u_i}}{Z} : Z = \sum_i e^{u_i}$$
 (4.1)

Which is just a rewording of the distribution. It is **not** easy to sample directly, Z is a huge sum.

### Boltzmann precisely

 $u_i = -\frac{E(r_i)}{T}$  for a temperature T. We will use this later.

## Theoretical MC requirements I

## Strong Stationarity Necessary conditions

$$\{X_t\}:\exists Q:Q\rho=\rho\iff \forall i\in\mathcal{X}\ non\ null\ recurrent$$
 (4.2)

## Theoretical MC requirements I

### Strong Stationarity Necessary conditions

$$\{X_t\}:\exists Q:Q\rho=\rho\iff \forall i\in\mathcal{X} \ \textit{non null recurrent}$$
 (4.2)

This is **not** enough, imagine if we sampled from a distribution stuck at one point forever. It would be stationary, but it would always depend on its starting point and never explore the space. We need something else.

## Theoretical MC requirements I

### Strong Stationarity Necessary conditions

$$\{X_t\}:\exists Q:Q\rho=\rho\iff \forall i\in\mathcal{X} \ \textit{non null recurrent}$$
 (4.2)

This is **not** enough, imagine if we sampled from a distribution stuck at one point forever. It would be stationary, but it would always depend on its starting point and never explore the space. We need something else.

### What is missing

After a property of the distribution we need a property of the process itself

## Theoretical MC requirements II

## Ergodic theorem

$$\{X_t\}: \forall i \in \mathcal{X} \ i \ ergodic \implies \lim_{t_{max} \to \infty} \prod_{t}^{t_{max}} Q^{(t)} X_0 = \rho$$
 (4.3)

$$\forall j \lim_{t \to \infty} \mathbb{P}[X_n = j] = \lim_{t \to \infty} \sum_{i \in \mathcal{X}} \mathbb{P}[X_t = j | X_0 = i] \mathbb{P}[X_0 = i]$$
 (4.4)

$$\sum_{i \in \mathcal{X}} \mathbb{P}[X_0 = i] p^*[X = j] \tag{4.5}$$

$$= p^*[X = j] \perp t \implies p^*[X = j] = \rho_j \tag{4.6}$$

Moreover this implies that if g is a bounded function:

$$\implies \mathbb{E}[\hat{g}(X)] \stackrel{a.s.}{\rightarrow} \mathbb{E}[g(X)] \tag{4.7}$$

## Strong Stationarity effect

### Strong Stationarity implies DBC

$$\{X_t\}:\exists Q:Q\rho=\rho\implies \forall j\in\mathcal{X}\sum_{i\neq j}Q_{ji}\rho_i=\sum_{k\neq j}Q_{kj}\rho_j$$

We call this condition Global Balance Condition (GBC). Intuitively, inflow = outflow for every state.

### Detailed Balance (DBC) Assumption

GBC is difficult to check or impose. We will assume detailed balance holds:

$$\forall i, j \in \mathcal{X} \ Q_{ji}\rho_i = Q_{ij}\rho_j$$

Intuitively, each tuple has inflow = outflow. No joint dynamics considered.

Create an ergodic process such that:

• It is easy to propose

Create an ergodic process such that:

- It is easy to propose
- given a configuration we propose another one accordingly

Create an ergodic process such that:

- It is easy to propose
- given a configuration we propose another one accordingly
- Ideally, this is done by comparing the Distance/Energy

## Create an ergodic process such that:

- It is easy to propose
- given a configuration we propose another one accordingly
- Ideally, this is done by comparing the Distance/Energy
- For any tuning of any parameter, we always accept when the Energy/Distance is lower.

Create an ergodic process such that:

- It is easy to propose
- given a configuration we propose another one accordingly
- Ideally, this is done by comparing the Distance/Energy
- For any tuning of any parameter, we always accept when the Energy/Distance is lower.
- We will use this notion:

## PA split

In our setting, we wish to propose candidates that are valid. For this reason, for each i,j tuple we will split the matrix into a proposal part P and an acceptance part A

$$Q_{ji} = P_{ji}A_{ji} (4.8)$$

Intuitively, Q is the distribution of shifts where each entry can be seen as:  $\mathbb{P}(sample j|i)\mathbb{P}(accept j|i)$ .

# Simplifying work

## Symmetric Proposals Assumption

$$P = P^T \iff P_{ji} = P_{ij} \ \forall i, j \in \mathcal{X}$$

#### **Delta Notation**

$$\Delta_{ji} :== u_j - u_i = -\left(\frac{E(r_j) - E(r_i)}{T}\right)$$

Again, the  $E(\cdot)$  part will be used later!

## Building A(I): The rule

### Metropolis Rule

In terms of practice, the most widely used proposal auxiliary function is called Metropolis Rule. It merges both previous rules.

$$h(\Delta_{ji}) = |\Delta_{ji}| \tag{4.9}$$

### Metropolis Rule Properties

If the Metropolis Rule is used for a matrix A then  $\forall i, j \in \mathcal{X}$ :

$$A_{ji} = min\left\{1, \frac{\rho_j}{\rho_i}\right\} = min\left\{1, \frac{\mathbb{P}(r_{candidate})}{\mathbb{P}(r_{current})}\right\}$$
(4.10)

Further details in the lecture notes!



# Building A (II): The rule

#### Proof part one

$$A_{ji} = exp \left\{ \frac{1}{2} (\Delta_{ji} - |\Delta_{ji}|) \right\} \qquad \text{applying M rule} \qquad (4.11)$$

$$\iff \begin{cases} e^0 = 1 \text{ if } \Delta_{ji} \geq 0 \\ e^{\Delta_{ji}} = exp \left\{ -\frac{\Delta E_{ji}}{T} \right\} \text{ if } \Delta_{ji} < 0 \end{cases} \qquad \text{Expanding the modulus} \qquad (4.12)$$

$$\iff A_{ji} = min \left\{ 1, e^{\Delta_{ji}} \right\} \qquad \text{considering both cases} \qquad (4.13)$$

$$\iff A_{ji} = min \left\{ 1, \frac{\rho_j}{\rho_i} \right\} \qquad \text{Explained below} \qquad (4.14)$$

# Building A (III): The rule

#### Proof part two

Where the last passage comes from the fact that:

$$e^{\Delta_{ji}} = e^{u_j - u_i} = exp\left\{-\frac{E(r_j) - E(r_i)}{T}\right\} = \frac{\frac{exp\left(\frac{-E(r_j)}{T}\right)}{Z}}{\frac{exp\left(\frac{-E(r_i)}{T}\right)}{Z}} = \frac{\rho_j}{\rho_i}$$

## Building A (III): The rule

#### Proof part two

Where the last passage comes from the fact that:

$$e^{\Delta_{ji}} = e^{u_j - u_i} = exp\left\{-\frac{E(r_j) - E(r_i)}{T}\right\} = \frac{\frac{exp\left(\frac{-E(r_j)}{T}\right)}{Z}}{\frac{exp\left(\frac{-E(r_i)}{T}\right)}{Z}} = \frac{\rho_j}{\rho_i}$$

- whenever a move is beneficial in terms of reduced distance we accept it
- in the opposite case acceptance depends on the relative change and decays quickly (being inside an exponent)

# Building A (III): The rule

### Proof part two

Where the last passage comes from the fact that:

$$e^{\Delta_{ji}} = e^{u_j - u_i} = \exp\left\{-\frac{E(r_j) - E(r_i)}{T}\right\} = \frac{\frac{\exp\left(\frac{-E(r_j)}{T}\right)}{Z}}{\frac{\exp\left(\frac{-E(r_i)}{T}\right)}{Z}} = \frac{\rho_j}{\rho_i}$$

- whenever a move is beneficial in terms of reduced distance we accept it
- in the opposite case acceptance depends on the relative change and decays quickly (being inside an exponent)
- In any non-decreasing-distance proposal, the probability of acceptance depends on T.

## The role of *T*

#### T extreme cases

- for  $T \to \infty$  we have  $\rho \to \mathcal{U}(\mathcal{R}) \implies$  Random Walk, always accept candidates
- ullet for T o 0 we have  $ho o \mathbb{1}(r_{min})\implies$  accept iff  $\Delta_{ji}\geq 0$

These results are proved in the Lecture Notes!

## Example



Figure: Uniform for  $T \to \infty$ 

Figure: Concentrated for  $T \rightarrow 0$ 

Credits: Bocconi University, Computer Programming, 30509 (awesome class!)

*P* represents the distribution of feasible proposal routes. It must hold that an instance:

• starts and ends at the same city

*P* represents the distribution of feasible proposal routes. It must hold that an instance:

- starts and ends at the same city
- touches all cities only once  $\implies |r_{cand}| = N$

#### An efficient P for TSP

propose a switch of cities

$$r_{curr}$$
 :  $\{i \leftrightarrows j, v \leftrightarrows r\}$   $r_{cand}$  :  $\{i \leftrightarrows v, j \leftrightarrows r\}$ 

That satisfies the requirements. Under random sampling and appropriate checking of the candidate, sample randomly from  $\mathcal{R}_{valid}(x) \forall r \in \mathcal{R}$  configurations

*P* represents the distribution of feasible proposal routes. It must hold that an instance:

- starts and ends at the same city
- touches all cities only once  $\implies |r_{cand}| = N$
- does not dis-join the tour ⇒ keeps the path valid.

#### An efficient P for TSP

propose a switch of cities

$$r_{curr}$$
 :  $\{i \leftrightarrows j, v \leftrightarrows r\}$   $r_{cand}$  :  $\{i \leftrightarrows v, j \leftrightarrows r\}$ 

That satisfies the requirements. Under random sampling and appropriate checking of the candidate, sample randomly from  $\mathcal{R}_{valid}(x) \forall r \in \mathcal{R}$  configurations

*P* represents the distribution of feasible proposal routes. It must hold that an instance:

- starts and ends at the same city
- touches all cities only once  $\implies |r_{cand}| = N$
- does not dis-join the tour 
   keeps the path valid.
- Is possibly easy to evaluate in terms of comparison with different rs

### An efficient P for TSP

propose a switch of cities

$$r_{curr}$$
 :  $\{i \leftrightarrows j, v \leftrightarrows r\}$   $r_{cand}$  :  $\{i \leftrightarrows v, j \leftrightarrows r\}$ 

That satisfies the requirements. Under random sampling and appropriate checking of the candidate, sample randomly from  $\mathcal{R}_{valid}(x) \forall r \in \mathcal{R}$  configurations

## $\Delta E$ is easy

$$\Delta E = E(r_{cand}) - E(r_{curr})$$
 (4.15)  
=  $d_{iv} + d_{jr} - d_{ij} - d_{jr}$  (4.16)

As all the other distances are the same and cancel out.

We will refer to P as a kernel  $k(\cdot|r_{current})$ . It is easy to sample from this kernel.



Figure: City swap graphically

## Lecture Path

- Preliminaries
- 2 Intro to the application
- Complexity Assessment
- 4 Algorithmic Requirements
- Simulated Annealing
- 6 Takeaways



## A Stochastic Solution

One *T* is **not** enough!



## A Stochastic Solution

### One *T* is **not** enough!

- When  $T = \infty$  we would need O(N!) operations to reach the solution in the worst case
- When T = 0 we would get stuck at local minimas if the energy function E is non-convex (highly likely this is the case)

## A Stochastic Solution

## One *T* is **not** enough!

- When  $T = \infty$  we would need O(N!) operations to reach the solution in the worst case
- When T = 0 we would get stuck at local minimas if the energy function E is non-convex (highly likely this is the case)
- $\forall T \in (0, \infty)$  the distribution concentrates around the global minima but does not avoid escaping **all** local minimas, as the selectiveness blocks the procedure at depression areas.

What if we could use all of them?

## Again, inspiration from Nature

## Informal Simulated Annealing (SA)

Simulated Annealing is an approach that finds a balance between the extremes, gradually decreasing the temperature to explore at the beginning and sequentially become more selective as  $\mathcal{T} \to 0$ .

Its name comes from the Physical process of annealing, which Wikipedia defines as follows:

[...](annealing) involves heating a material above its recrystallization temperature, maintaining a suitable temperature for an appropriate amount of time and then cooling

# Dealing with T

### Temperature Schedule T

Given a sequence of natural numbers  $\{1,\ldots,t_{\sf max}\}\subset \mathbb{N}$ :

$$T: \{1,\ldots,t_{max}\} \rightarrow [0,\infty) : \forall c' > c \ T(c') \leq T(c)$$
 (5.1)

We could also impose:

$$T(0) = \infty \lor T(t_{max}) = 0$$

But this is not necessary. T is thus a decreasing function in the region.

Using this schedule:

• choose a random starting configuration  $r_0$ ,

# Dealing with T

#### Temperature Schedule T

Given a sequence of natural numbers  $\{1,\ldots,t_{\textit{max}}\}\subset\mathbb{N}$ :

$$T : \{1, \dots, t_{max}\} \to [0, \infty) : \forall c' > c \ T(c') \le T(c)$$
 (5.1)

We could also impose:

$$T(0) = \infty \lor T(t_{max}) = 0$$

But this is not necessary. T is thus a decreasing function in the region.

Using this schedule:

- choose a random starting configuration  $r_0$ ,
- ullet for a given number of iterations  $t_{max} \in \mathbb{N}$  explore the space  $\mathcal{R}$



# Dealing with T

#### Temperature Schedule T

Given a sequence of natural numbers  $\{1,\ldots,t_{\sf max}\}\subset \mathbb{N}$ :

$$T: \{1,\ldots,t_{max}\} \rightarrow [0,\infty) : \forall c' > c \ T(c') \leq T(c)$$
 (5.1)

We could also impose:

$$T(0) = \infty \lor T(t_{max}) = 0$$

But this is not necessary. T is thus a decreasing function in the region.

#### Using this schedule:

- choose a random starting configuration  $r_0$ ,
  - ullet for a given number of iterations  $t_{max} \in \mathbb{N}$  explore the space  $\mathcal{R}$
  - with different selectiveness granularities

42 / 60

#### Procedure

### **Algorithm 3** Simulated Annealing

```
Require: r_0 and E(\cdot), t_{max} and T(\cdot), k(\cdot|\cdot)
                        \triangleright we assign r as the starting configuration, r is current
   r \leftarrow r_0
  for i = 1, \ldots, t_{max} do
                                                   ▷ for a given number of iterations
       r_{cand} \sim k(\cdot|r)
                                                  t_i = T(i)
                                                       \triangleright t_i is the current temperature
       \Delta E = E(r_{cand}) - E(r)
                                                               draw u_i \sim \mathcal{U}(0,1)
                                                  \triangleright u_i used to simulate a probability
       if u_i \leq min \left\{ 1, exp \left[ -\frac{\Delta E}{t_i} \right] \right\} then
                                                                        ▶ Metropolis rule
                                         \triangleright x_{cand} is the update of x, move accepted
            r \leftarrow r_{cand}
       end if

    b otherwise x is unchanged

  end for
```

```
Require: r_0 and E(\cdot), t_{max} and T(\cdot), k(\cdot|\cdot)
                        \triangleright we assign r as the starting configuration, r is current
  for i = 1, \ldots, t_{max} do
                                                    ▷ for a given number of iterations
       r_{cand} \sim k(\cdot|r)
                                                   t_i = T(i)
                                                        \triangleright t_i is the current temperature
       \Delta E = E(r_{cand}) - E(r)
                                                                ▷ new-old energy change
       draw u_i \sim \mathcal{U}(0,1)
                                                    \triangleright u_i used to simulate a probability
       if u_i \leq min \left\{ 1, exp \left[ -\frac{\Delta E}{t_i} \right] \right\} then
                                                                          ▶ Metropolis rule
                                          \triangleright x_{cand} is the update of x, move accepted
            r \leftarrow r_{cand}
       end if

    b otherwise x is unchanged

  end for
```

```
Require: r_0 and E(\cdot), t_{max} and T(\cdot), k(\cdot|\cdot)
                                                                                                   \triangleright we assign r as the starting configuration, r is current
           for i = 1, \ldots, t_{max} do

    beta provided by provided provided by the provide
                               r_{cand} \sim k(\cdot|r)
                                                                                                                                                                                                                     t_i = T(i)
                                                                                                                                                                                                                                          \triangleright t_i is the current temperature
                              \Delta E = E(r_{cand}) - E(r)
                                                                                                                                                                                                                                                                          ▷ new-old energy change
                             draw u_i \sim \mathcal{U}(0,1)
                                                                                                                                                                                                                      \triangleright u_i used to simulate a probability
                            if u_i \leq min \left\{ 1, exp \left[ -\frac{\Delta E}{t_i} \right] \right\} then
                                                                                                                                                                                                                                                                                                                  ▶ Metropolis rule
                                                                                                                                                                             \triangleright x_{cand} is the update of x, move accepted
                                                  r \leftarrow r_{cand}
                              end if

    b otherwise x is unchanged

           end for
```

```
Require: r_0 and E(\cdot), t_{max} and T(\cdot), k(\cdot|\cdot)
                         \triangleright we assign r as the starting configuration, r is current
  for i = 1, \ldots, t_{max} do
                                                      ▷ for a given number of iterations
        r_{cand} \sim k(\cdot|r)

    ⊳ sample a valid candidate from P

       t_i = T(i)
                                                            \triangleright t_i is the current temperature
       \Delta E = E(r_{cand}) - E(r)
                                                                    ▷ new-old energy change
       draw u_i \sim \mathcal{U}(0,1)
                                                       \triangleright u_i used to simulate a probability
       if u_i \leq min \left\{ 1, exp \left[ -\frac{\Delta E}{t_i} \right] \right\} then
                                                                              ▶ Metropolis rule
                                            \triangleright x_{cand} is the update of x, move accepted
            r \leftarrow r_{cand}
       end if

    b otherwise x is unchanged

  end for
```

```
Require: r_0 and E(\cdot), t_{max} and T(\cdot), k(\cdot|\cdot)
                         \triangleright we assign r as the starting configuration, r is current
  for i = 1, \ldots, t_{max} do
                                                        ▷ for a given number of iterations
        r_{cand} \sim k(\cdot|r)
                                                      \triangleright sample a valid candidate from P
       t_i = T(i)
                                                           \triangleright t_i is the current temperature
       \Delta E = E(r_{cand}) - E(r)
                                                                     ▷ new-old energy change
       draw u_i \sim \mathcal{U}(0,1)
                                                       \triangleright u_i used to simulate a probability
       if u_i \leq min \left\{ 1, exp \left[ -\frac{\Delta E}{t_i} \right] \right\} then
                                                                               ▶ Metropolis rule
                                             \triangleright x_{cand} is the update of x, move accepted
             r \leftarrow r_{cand}
       end if

    b otherwise x is unchanged

  end for
```

```
Require: r_0 and E(\cdot), t_{max} and T(\cdot), k(\cdot|\cdot)
                      \triangleright we assign r as the starting configuration, r is current
  for i = 1, \ldots, t_{max} do
                                                  ▷ for a given number of iterations
       r_{cand} \sim k(\cdot|r)
                                                 t_i = T(i)
                                                     \triangleright t_i is the current temperature
       \Delta E = E(r_{cand}) - E(r)
                                                             draw u_i \sim \mathcal{U}(0,1)
                                                  \triangleright u_i used to simulate a probability
      if u_i \leq min \left\{ 1, exp \left[ -\frac{\Delta E}{t_i} \right] \right\} then
                                                                       ▶ Metropolis rule
                                        \triangleright x_{cand} is the update of x, move accepted
           r \leftarrow r_{cand}
       end if

    b otherwise x is unchanged

  end for
```

```
Require: r_0 and E(\cdot), t_{max} and T(\cdot), k(\cdot|\cdot)
                       \triangleright we assign r as the starting configuration, r is current
  for i = 1, \ldots, t_{max} do
                                                    ▷ for a given number of iterations
       r_{cand} \sim k(\cdot|r)
                                                   t_i = T(i)
                                                        \triangleright t_i is the current temperature
       \Delta E = E(r_{cand}) - E(r)
                                                               ▷ new-old energy change
       draw u_i \sim \mathcal{U}(0,1)
                                                   \triangleright u_i used to simulate a probability
       if u_i \leq min \left\{ 1, exp \left[ -\frac{\Delta E}{t_i} \right] \right\} then
                                                                          ▶ Metropolis rule
                                         \triangleright x_{cand} is the update of x, move accepted
            r \leftarrow r_{cand}
       end if

    b otherwise x is unchanged

  end for
```

```
Require: r_0 and E(\cdot), t_{max} and T(\cdot), k(\cdot|\cdot)
                       \triangleright we assign r as the starting configuration, r is current
  for i = 1, \ldots, t_{max} do
                                                    ▷ for a given number of iterations
       r_{cand} \sim k(\cdot|r)
                                                   t_i = T(i)
                                                        \triangleright t_i is the current temperature
       \Delta E = E(r_{cand}) - E(r)
                                                                ▷ new-old energy change
       draw u_i \sim \mathcal{U}(0,1)
                                                  \triangleright u_i used to simulate a probability
       if u_i \leq min \left\{ 1, exp \left[ -\frac{\Delta E}{t_i} \right] \right\} then
                                                                        ▶ Metropolis rule
                                         \triangleright x_{cand} is the update of x, move accepted
            r \leftarrow r_{cand}
       end if

    b otherwise x is unchanged

  end for
  return x
```

```
Require: r_0 and E(\cdot), t_{max} and T(\cdot), k(\cdot|\cdot)
                       \triangleright we assign r as the starting configuration, r is current
  for i = 1, \ldots, t_{max} do
                                                    ▷ for a given number of iterations
       r_{cand} \sim k(\cdot|r)
                                                   t_i = T(i)
                                                        \triangleright t_i is the current temperature
       \Delta E = E(r_{cand}) - E(r)
                                                                ▷ new-old energy change
       draw u_i \sim \mathcal{U}(0,1)
                                                   \triangleright u_i used to simulate a probability
       if u_i \leq min \left\{ 1, exp \left[ -\frac{\Delta E}{t_i} \right] \right\} then
                                                                        ▶ Metropolis rule
                                        \triangleright x_{cand} is the update of x, move accepted
            r \leftarrow r_{cand}
       end if

    b otherwise x is unchanged

  end for
  return x
```

```
Require: r_0 and E(\cdot), t_{max} and T(\cdot), k(\cdot|\cdot)
                       \triangleright we assign r as the starting configuration, r is current
  for i = 1, \ldots, t_{max} do
                                                    ▷ for a given number of iterations
       r_{cand} \sim k(\cdot|r)
                                                   t_i = T(i)
                                                        \triangleright t_i is the current temperature
       \Delta E = E(r_{cand}) - E(r)
                                                                ▷ new-old energy change
       draw u_i \sim \mathcal{U}(0,1)
                                                   \triangleright u_i used to simulate a probability
       if u_i \leq min \left\{ 1, exp \left[ -\frac{\Delta E}{t_i} \right] \right\} then
                                                                          ▶ Metropolis rule
                                        \triangleright x_{cand} is the update of x, move accepted
            r \leftarrow r_{cand}
       end if

    b otherwise x is unchanged

  end for
```

#### An observation

#### Output

The returned value r will be a configuration, the result of an iterative process of exploration of routes which gradually accepts less and less worse proposals until it reaches a minimum solution.



Figure: Algorithm Desired behavior

Credits: Bocconi University, Computer Programming, 30509 (awesome class!)

#### Lecture Path

- Preliminaries
- 2 Intro to the application
- Complexity Assessment
- 4 Algorithmic Requirements
- Simulated Annealing
- Takeaways





- Asymmetric *TSP*
- Code the problem (many sources on the internet)

- Asymmetric TSP
- Code the problem (many sources on the internet)
- Asymmetric proposals
  - Acceptance rule slightly more complicated



- Asymmetric *TSP*
- Code the problem (many sources on the internet)
- Asymmetric proposals
  - Acceptance rule slightly more complicated
- Proving all the statements

### Main points

• We are given a complex problem in combinatorics



### Main points

- We are given a complex problem in combinatorics
- Find an iterative solution with a metaheuristic method

### Main points

- We are given a complex problem in combinatorics
- Find an iterative solution with a metaheuristic method
- All thanks to the detailed balance condition!



- Clearly, not exact
  - solving TSP efficiently would imply P = NP

- Clearly, not exact
  - solving TSP efficiently would imply P = NP
- Needs tuning, case by case analysis



- Clearly, not exact
  - solving TSP efficiently would imply P = NP
- Needs tuning, case by case analysis
- Requires efficient sampling, otherwise no time saved

- Clearly, not exact
  - solving TSP efficiently would imply P = NP
- Needs tuning, case by case analysis
- Requires efficient sampling, otherwise no time saved
- smooth energy function makes SA redundant
  - slower than more straightforward optimization

# Concluding

Any question/discussion, let me know!

# Thank you!

simonegiancola09@gmail.com

personal webpage



### References I

- Judith Brecklinghaus and Stefan Hougardy. "The Approximation Ratio of the Greedy Algorithm for the Metric Traveling Salesman Problem". In: arXiv:1412.7366 [cs, math] (Dec. 23, 2014). arXiv: 1412.7366. URL: http://arxiv.org/abs/1412.7366 (visited on 01/14/2022).
- Introduction to Statistical Mechanics Introduction to Statistical Mechanics. URL:
  - https://web.stanford.edu/~peastman/statmech/ (visited on 01/14/2022).
- David S Johnson and Lyle A McGeoch. "The Traveling Salesman Problem: A Case Study in Local Optimization". In: (), p. 103.
- Scott Kirkpatrick, C. Gelatt, and M. Vecchi. "Optimization by Simulated Annealing". In: Science (New York, N.Y.) 220 (June 1983), pp. 671–80. DOI: 10.1126/science.220.4598.671.

### References II

- MarkovChains. URL: https://www.cs.yale.edu/homes/aspnes/pinewiki/MarkovChains.html (visited on 01/14/2022).
  - On the nearest neighbor rule for the metric traveling salesman problem Elsevier Enhanced Reader. DOI: 10.1016/j.dam.2014.03.012. URL: https://reader.elsevier.com/reader/sd/pii/S0166218X14001486?token= 5088E0AF37C6C017686E01FD171CA1756D9951F78D9B65F40E29AEC268 originRegion=eu-west-1&originCreation=20220114002155 (visited on 01/14/2022).
  - Simulated Annealing: The Travelling Salesman Problem. URL: https://www.fourmilab.ch/documents/travelling/anneal/(visited on 01/14/2022).