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1 Link to course lectures

In lecture Il.a we introduced the topic of statistical mechanics. There the concepts of microstate and
macrostate are studied, deriving properties and notions.

What we usually can measure efficiently is the macrostate, but how can we draw conclusions for the mi-
crostate features? Formulated differently, how can we efficiently extract relevant information from easy to

measure signals of a system?

Evidently, it is not possible to look at the space of outcomes 2 all at once. Indeed, we only see one realization
of it X¢(w) : w € Q. With time we could collect a sample of consequent realizations of the same w, and with
additional assumption claim that a measurement on the sequence is a reliable estimation of the measurement
on the actual distribution. This is equivalent to assuming that the sequence is ergodic and that the values
of interest are stationary'. With this setting, we can resort to sampling techniques that simulate the actual

target almost surely.

We need these properties to be able to generate a consecutive sample that resembles what the distribution
would look like for a given time ¢. In a microstate/macrostate fashion (remember what we saw in class?)
the time average is equal to the ensemble average, which is the target distribution. Thanks to this property,

we can think of drawing sequentially while being sure that this sample resembles the whole.

To check that these hold, we should look for an aperiodic and irreducible chain. Formally, ergodicity is
impossible to verify for long to enumerate cases. We just wish that the sequence explores all possible
configurations of the variable of interest without systematic periods of occurrence inside. This would ensure
that the Markov Chain is stationary and that the process is ergodic.

In this brief Bonus lecture, we will have a glimpse on how to solve a difficult problem using these concepts
for a technique called Simulated Annealing.

Talk Outline

1. Introduction to the application
2. Complexity assessment
e Linking class topics
e Modifying the distribution of routes
3. Stochastic Algorithmic Solution
e Requirements
e An interesting Matrix split to interpret the procedure
e Fasy case Simulated Annealing

4. Takeaways & food for thought

IWhere ergodicity is a property of a generated sequence and stationarity is a property of the generated distribution



2 Problem and Complexity

Problem 1 (Travelling Salesman Problem).

We are given a set of N cities, and a matrix D = {d,; }3:11]1\\,/ € RY x RY storing symmetric distances
between each of the cities. The well known Travelling Salesman Problem? resorts to finding a minimum
length cycle of the cities. In other words we are asked to find a permutation of the indices {1,...,n} such

that it is the least distance consuming trip across all cities.

Definition 2 (Permutation of cities r). Given a list of cities {1,..., N} and a permutation function o

then a permutation of cities/route/tour? is:

r=a{l,...,N}) € R = {space of possible routes} (2.1)

Definition 3 (Cost function F(-) for TSP). Assume we are using zero based array-indexing, and that a

permutation 7 is used for a distance matrix D. Then, the cost function E(-) is such that*:

N-1

E(r) = Z dr[k],r[(k+1)%N] (2.2)
k=0

Definition 4 (TSP as an integer programming formulation). Using the concept of Adjacency matrix

A for a given tour r we can define A" = {al(;) = agz) =1 < (i,j) adjacentin r} and claim that a

solution to Problem 1 satisfies:

= arggm{E(r)} = argmin{ > dijaij} (2.3)

R i<j

Where the sum for ¢ < j is done to avoid double counting connections.

We also have that a valid r induces an adjacency matrix A:

> ; @ij = 2Vi degree of a node is two

Psubcycles € A
Other problem formulations, are not needed for the sake of the lecture and will be skipped.

2.1 Why is it difficult?

If we wish to permute N cities, there are N! ways to do so. Assuming that we start from any city, there will

be (N — 1)! possible ways to visit all the others and come back to the starting point.

Ezample 2.1 (An Enumeration attempt from FourmiLab.ch (Autodesk creator)[6]). Assume we have at dis-

posal a computer that does 2.59 - 10° operations per second (just to simplify things). Usually, we are around

2In terms of optimization
3We will consider them to be equivalent in this document
48lightly adapted, as we are representing the cost function of N possible permutations, can you see why?



Algorithm 1 Enumeration (not really) Algorithm

Tmin < None
Emin <~ 00
for r € R do
if E(r) < Ep,in then
Tmin < T
E’min — E(T)
end if
end for
return r,,;n

hundreds of millions per seconds, so consider it to be very powerful.
Let N = 31 cities, then:
N—1
(N=D!'=(N-1)(N=2)...(N=(N=2)(N = (N=1)) = [[(N—1i) =30~ 26510

i=1

This is clearly a large number of possible options to evaluate. Still, someone might say that a good procedure
would be enumerating all of them and evaluating the distance for each one. Assuming that the calculation
is done efficiently in negligible time, we would still have 30! enumerations to do. Then we would need a total

time of

30!

msec = 10%sec = 31709791983764584 years ~ 3 - 1016 years ~ 2 x 10 stories of the universe®

Clearly this is not the most efficient way to tackle the problem!

2.2 Formalisms

Definition 5 (P class of Problems).

P :={L problems : 3 polynomial time solution with a deterministic turing machine M} (2.5)

Definition 6 (NP class of problems).

NP :={Lproblems : Jpolynomial time solution for a deterministic turing machine M} (2.6)

Definition 7 (N P-hard class of problems).
NP-hard :={H : VL € NP3ef ficient reduction {L;} — H} (2.7)

Were by efficient we mean in Polynomial time.

5 Assuming the universe is about 13.8 Billion years old, first google suggestion



Observation 8 (P = NP with NP-hard solutions?).
if 3 deterministic polynomial solution for H € NP-hard = P = NP (2.8)

However, this is one of the most debated unsolved Computer Science problems known as the P versus NP

problem.

The traveling salesman problem optimization problem is part of the class of problems defined as NP-hard.
There, solutions and results cannot be found or checked in Polynomial time by a deterministic Turing
Machine.

In theoretical terms, there is no known efficient algorithm for an exact solution, nor a candidate route r.qnqg
can be validated as the lowest distance permutation.
In practical terms, there are instances that have easy solutions, heuristics, satisficing solutions. Let us

introduce the second and third procedure we can think of apart from enumeration.

Algorithm 2 Nearest Neighbor Algorithm O(N?)

T[]
Select a random city ¢
r.append(c)
while len(r) | = N do
Courr — r[—1]
Cnew < argmin{de,,., .}
cié¢r
r.append(Cpew)
end while
9: return r

o

Algorithm 3 Greedy Algorithm O(N?log(N))

1. arr < sort(cities)
2: edges + []

3: while len(edges) ! = N do
4: Select minimum distance tuple (i, j) € arr
5: if [check no subcycles if add (4, j) to edges] then
6: if [check degrees <= 2 if add (4, J) to edges] then > Namely, check conditions at Eq 2.4
7: edges.append((i, 7))
8: end if
9: end if

10: end while

11: return edges

Definition 9 (Big-Theta bound). Given a function g(-)
Olg(N)] == {f(N) : Fe1,c2 €ERT Ny € NT 1 0<c19(N) < f(N) < cag(N) VN > No} (2.9)

Broadly speaking, g(-) bounds a set of functions f(-) after some point.



Definition 10 (Approximation ratio of an Algorithm). Ratio cost of Algorithm solution & exact

solution

In [1] the authors claim is that a greedy solution from Algorithm 3 is ©[log(N)] longer than the optimum
solution. It is also empirically found that such a process leads to results that are on average in the 15-20%
bound of the best known method to find an exact solution[3], the Held-Karp Algorithm, which runs in
exponential time®. Surprisingly, they also claim that in some applications we can have a < 25% difference
of Algorithm 2 and the lower bound.

In most cases, this result is satisfactory. This is also due to the fact that VP hardness generalizes to any
instance of the problem, and thus accounts for the worst case scenario. In real life, the average case prevails,

and many times this makes computations easier.

Observation 11. Does this mean that P = N P? Not at all, we would need to find an instance-overall effi-
cient procedure to claim that H € N P-hard has a deterministic solution in polynomial time as in Observation
8.

We can thus link the following notions together and claim that:
e T'SP is a combinatorially exploding problem in computational time
e greedy non-optimal solutions can be found in efficient time
e real life cases are not edge/corner cases
Nevertheless:
Why would we want to find a better solution?

We would like to, since another efficiently retrievable and reasoned solution is (hopefully) going to generalize
better. At the moment, we are not exploiting any peculiarity of the structure. Algorithm 1 is impossible to

implement, Algorithms 2 & 3 are highly dependent on the starting point.

3 Why is it linked to what we saw in class?

Coming back to the concepts of microstate and macrostate, in this setting we have that it is easy to measure
the total distance of a route, but highly inefficient to do so for each and every case. Due to this finding
exact bounds of values 7 is hard, factorially hard, which is worse than exponentially. In practice, there are

no trivial solutions to the problem.

Now, Imagine transferring the same question to an isolated system of particles and being asked to find the
possible configuration to grant minimum energy F. Instead of finding a path, we have to find an arrangement
that does the same. In the simplest case, without considering many restrictions on the types of particles and
possible matching configurations in terms of temperature, we have that for n? spots in R? and k particles
there are (’;:) options to arrange them. For a more difficult case not yet completely generalizable, I reroute

you to this question asked on the Math StackExchange.

6This is the standard best working exact solution algorithm for TSP
"maxima and minima, where in this case we are interested in the latter


https://math.stackexchange.com/questions/4349648/possible-arrangements-of-points-in-cartesian-plane-considering-symmetry

We have to envision a system that is able to explore options efficiently and does not get stuck at satisficing
options (so called local minimas).

To do so, we will link the problem to the concept of energy and build up on this.

Assumption 12 (States as routes & indexing). Routes will be called states in some cases. We will refer

to r with the pedix ¢ or j to follow a canonical notation when we deal with multiple states.

Theorem 13 (Expressing a probability distribution as a Boltzmann Distribution). Assume the

possible configurations R := {r; routes} have a feature u; € X probability distribution p(-) with its usual

properties. Then Vi p(r;) > 0 and up to an additive constant we can find {Z, {u;} ¢ such that

et _
Vrp(r)=pi=—  Z=) " (3.1)

Which is just a rewording of the distribution.

Assume that we could somehow exploit a draw of consequent routes indexed by time® ¢ = {1,...,taz}
expressed by a random variable X; € X = R. For simplicity, we assume each draw depends on its previous
state only. This is equivalent to drawing Markov Chains (MCs). We need to define some objects before
making meaningful claims. For readers not knowledgeable of Markov Chains, I prepared a small redux on

the topic in Appendix A.

Theorem 14 (Strong Stationarity Necessary conditions).

{X:}:3Q : Qp=p < Vie Xnonnull recurrent (3.2)

Theorem 15 (Ergodic theorem).
tmaz

{Xi} Vi€ Xiergodic = lim I] VX0 =0 (3.3)
mas t

In other words, as the the size of the sampled MC increases, we reach independence from the starting point
Xy and obtain the real distribution of the variable X ~ p(-).

vj lim PX, = j] = gx&;(PXt_ﬂXO:z [(Xo=1i] = ;{PXO_z = 4] (3.4)
=p X =jlLt = p'X=j=p (3.5)

Moreover this implies that if ¢ is a bounded function:
= E[§(X)] *¥ E[g(X)] (3.6)

Where if g(X) = X we have the easy case where the time average is equal to the ensemble average.

8Note: tmaz # N. N is the number of cities, tmaqsz is the number of draws from the random variable. X can take any
configuration r; € R at any time t where |R| = N!



If we had a stationary ergodic and aperiodic distribution, the probability distribution p would be invariant
to the transition matrix. Namely, this denotes an equilibrium condition in a closed system.

If we also had that this equilibrium condition concentrated around the global minimum distance configuration
we could find a way to simulate such a system and evaluate its limiting behavior.

A way to concentrate a set of configurations depending on some feature (in this case, the distance) is

E(r;
exactly the Boltzmann distribution we saw in class for a given parameter {T, u; = — gl) } where E(r) =
dist(route) in our case:
. —ET(”)
pi = p(ri) = Z (3.7)

Here:
e At lower distance configurations the probability is higher
e The temperature T is a common scaling parameter

If we found an efficient way of sampling from this distribution we would be able to find one of those

configurations.

Observation 16 (Transition Representation). Given a transition matrix Q = {p;; = P(i — j)} we can
see that:

P(jli € X) =Y Qjipi = (Qp); (3.8)

ieX
Namely, for a target configuration j we extract the contribution from all configurations and cross multiply

with the matrix that allocates the probability of an outcome.
A desirable stability property follows:
Definition 17 (Global Balance Condition (GBC)).
VieX D Qjipi=>_ Quip; (3.9)
it k£

In plain words the contribution to other configurations is balanced by the same other configurations for each

7. Influx = Out fluz for all configurations.

Theorem 18 (Strong stationarity Implications). MC strongly stationary as in Definition 43 satisfies
GBC.

Proof. By the strong stationarity requirement of the chain, using Observation 16 we impose Vj € X"

P(jli € X) = p; The probability of reaching j is the actual probability of j  (3.10)
Z Qjipi = pj We just translated it into the matrix (3.11)
ieX

Z Qjipi + Qjip; = { Z ij} p;  Split on the left and same on the right (3.12)
i#] kex



Where in the last passage we added a term on the RHS which is 1, as shown in Equation A.3. Going on:
Z Qjipi + Qjjp; = Z Qripi + Qjjip; Repeating the passage of Equation 3.12 on the RHS  (3.13)
i#] k]

Z Qjipi = Z Qrjp;i by direct implication Vj € X (3.14)
i#£j k#j

O

Definition 19 (Detailed Balance Condition (DBC)).
Vi,j €X Qjipi = Qijpj (3.15)
Namely, this stricter condition imposes that each couple of configurations (i,j) satisfies the Influx =

Out flux requirement.

Theorem 20 (DBC vs DBC). Detailed balance is stricter than global balance as a restriction, it allows
for less variability of flows.
DBC = GBC (3.16)

Nevertheless, it is easier to check and will help us further. Somehow we could say:
DBC »~ GBC (3.17)

For a relation >.

Assumption 21 (DBC holds). We impose that DBC of Definition 19 holds and derive the properties of
a chain of this type.

Given that we are in a setting in which size(Q) = (N — 1)! we will avoid evaluating all possible cases and
simplify the requirement by making it stricter . This would ensure that each contribution is balanced with

respect to its opposite direction and not their joint dynamics.

4 Sampling Scheme

Observation 22 (Idea). If we had an efficient way of exploring the space X with easy to check properties
such as the DBC of Assumption 21, we might find a reasoned solution in efficient time. Given a starting
configuration the target would be proposing possible options efficiently and in a clever way. Some basic

requirements would be creating a process such that:
e [t is easy to propose
e given a configuration we propose another one accordingly”
e Ideally, this is done by comparing the Distance/Energy

e For any tuning of any parameter, we always accept when the Energy/Distance is lower.

9This is formally equivalent to building a non homogeneous Markov Chain as moves will depend on time t somehow



One can argue that we wish to find a balance between greedy algorithms such as Algorithms 2 and 3 and a
Random Walk that just wanders the space X.

Definition 23 (Proposal/Acceptance (PA) matrix split). In our setting, we wish to propose candidates
that are valid. For this reason, for each i, j tuple we will split the matrix into a proposal part P and an

acceptance part A
Qji = PjiAj; (4.1)

Intuitively, @ is the distribution of shifts where each entry can be seen as: P(sample j|i)P(accept j|i).

Theorem 24 (PA split properties). Vi, j

P;; €(0,1) is the distribution of the j proposals (4.2)

Z P=1 As before, we always propose something (4.3)
j

Aji € (0,1] is the probability of accepting (4.4)

P; =0 = Ay ignored No null moves (4.5)

Where the last point is worth focusing on since:
Qii=1-— Z Qj; = Plrejection] (4.6)
J#i
Is implied in this setting.

Assumption 25 (Symmetric proposals). For simplicity, we assume symmetric proposals.
P=P' «—= P, =P;Vi,jcXx (4.7)

This can be relaxed quickly, but is out of the scope of the lecture.

Definition 26 (Distance change Aj;). Aj;;Vi, j € X is the change in the Energy of interest scaled by the
Temperature T. The reader can think both in terms of u or E(-),T.

Ajii==u; —u; = — <E<Tj);E(TZ)) (4.8)

4.1 Building A

Going back to how we defined the distribution in Equation 3.7 and using the detailed balance condition of

Equation 3.15 we have that:

Q]1p7 = P]ZAﬂ[h = Piinjpj = Qijpj using PA Spht of Def 23 and DBC of Def 19 (49)
= Ajipi = Aijpj by symmetric proposals, Assumption 25 (4.10)
—E(ry) —E(rj)
e T e T

= Ajipi = AjiT = Al-j7 = Aijp; by Boltzmann Distribution, Thm 13 (4.11)

10



E(ri)
T

E(rj)

= ZTL(AU) —

Moving A to the exponent and equating powers (4.12)

Definition 27 (A Design ). Now, the equation does not tell us anything yet. Indeed, here the design portion
of the procedure comes into play. We can choose to build an acceptance matrix A with the easiest settings,
where it is defined by an auxiliary function h(-) dependent on the energy change and the Temperature only,

h(-) = f(Aj;) for some i,j € X. The choice for A is clever as it simplifies calculations:

1
Vi,jeX Aj = 6xp{2(Aji - h(Aji))} (4.13)
Now this can serve to go on in this analysis with:
Aji = exp{;(Aji - h(Aji))} Where Aj; € [0,1] is a probability (4.14)
= In(Aj;) = %((Aﬁ —h(Aj)) <0 And thus it has a negative logarithm (4.15)
= h(A;) > Ay setting the value of the logarithm to negative (4.16)
Then, noting that A;; = —Aj; our condition at equation 4.12 becomes:
1 E(r;) 1 E(ry)
3 {Aﬁ - h(Aji)] -~ =3 {Aij - h(Aij)] - Tj (4.17)
1 E(r;) 1 E(rj)
=5 |:Aji - h(Aji)] T~ T3 { —Aji— h(_Aji)] - Tj (4.18)
1
=3 (Aji = h(Aji) + Aji + h(Aji)> —A;;i=0 (4.19)

Where Equations 4.16 and 4.20 together make the function even and always less than its argument. This
double restriction can be expressed as:
h(Aji) > 1Ajil (4.21)

Definition 28 (Metropolis Rule). In terms of practice, the most widely used proposal auxiliary function

is this same restriction and is called Metropolis Rule.

h(Aji) = 1Al (4.22)

Theorem 29 (Metropolis Rule Properties). If the rule introduced in Definition 28 is used for a matrix
A then Vi, j € &

i P candidate
Ay = min{l, ”7} = min{L (Td‘“)} (4.23)
Pi P(Tcurrent)

11



Proof.

1
Aj = exp{z(Aji - |Ajl-)} applying Definition 28 (4.24)
60 =1 Zf A]’i > 0 .
NS Expanding the modulus (4.25)
efit = exp{— =72} if Ay <0
= Ay = mz’n{l, eAil} considering both cases of the modulus (4.26)
= A= min{ 1, p]} Explained below (4.27)

Where the last passage comes from the fact that:

E(r;) — E(r;
eA]‘?‘, — eu]'—ui — el‘p{ _ (TJ)T (’r )} — Z — p]
exp ( 7E7£”) ) pi
Z

O

As hoped, whenever a move is beneficial in terms of reduced distance we accept it, while in the opposite case
acceptance depends on the relative change and decays quickly '°. In any non-decreasing-distance proposal,

the probability of acceptance depends on T.

Theorem 30 (7 extreme cases). We have that for T — oo the distribution is perfectly uniform, while for

T — 0 the curve concentrates around the minimum.

Proof. If T'— oo then:

lim ———% = lim (4.28)
T— 00 7 T— o0 —E(ry)
Yoreer eap| =7
1
= (4.29)
ZT}CGR 1
1
= (4.30)
R
= Vi,j €EX Aj; = min{l,eAﬂ}} - min{l,eo} =1 (4.31)

This is equivalent to always accepting with a uniform distribution on X'.

10being inside an exponent

12



If T — 0 instead:

exp ( 7EIE”) >

lim ————~ = lim (4.32)
T—0 VA T—0 _E(r3)
DorpeR ETD T
exp<_E:ﬁrj))
= lim (4.33)

T50 —E(r _E(r
— emp( E(Tnun)) +Zrk?§,’4min emp( Ej(1 k))

erp <Ej(fy))
exp <E(;m”)>
o (4.34)
- .
exp (_E(;’””)) D rtroin €L (—E(m))

T
+

Were we just collected the minimum distance configuration for all elements.

exp < ~(B(r)—B(rnin) >

= (4.35)
S 2 rmin ewp(W)
0 otherwise
O

Observation 31 (On Theorem 30). In the case in which T"— oo we would randomly walk around the
space of configurations, in the case in which 7" — 0 we would only accept moves that decrease the energy.

None of the two options are feasible in a complex optimization problem. As we will later see.

Below, two graphical examples of the extreme cases'!:

1 Credits: Bocconi University, Computer Programming, 30509. Lucibello C., Baldassi C.
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Figure 1: Energy and distribution plot at 7" — oo

Ex)] T<1

e o S o e e

-

Ll ] R ——

Figure 2: Energy and distribution plot at 7' — 0

4.2 Building P

What is missing is just an efficient way to evaluate a candidate move. As observed at the beginning, we
would never propose moves that are null, but we can go further than this.
P needs to produce a distribution of valid candidates. Restricting ourselves to the TSP problem, for each

candidate, it must hold that the tour:
e starts and ends at the same city
e touches all cities only once = |regna| = N
e does not dis-join the tour = keeps the path valid.
e Is possibly easy to evaluate in terms of comparison with different rs

All together these requirements, other than being dependent on the current configuration'? rey.y, restrict

the possible options to a smaller set Ryqiid(Teurr) € R.

125gain we notice that the Chain is not homogeneous

14



Definition 32 (An efficient P for TSP). For the TSP problem an easy and intuitive approach is to
propose a swap of cities

Tewrr @ 055,051} Teanad : {1 S0, jSr}

That satisfies the requirements. Under random sampling and appropriate checking of the candidate, we
basically sample randomly from R,q;iq(2)¥Vr € R configurations '®. Provided that the move is valid, the

change in energy will simplify to:
AE = E(reana) — E(reurr) = diy + djr — dij — d; (4.37)

As all the other distances are the same and cancel out. Evidently, this is easy to evaluate.

Figure 3: An example of a city swap proposal

Definition 33 (Kernel k(:|r)). From now onwards, we will refer to P as the kernel of r k(-|r)

131t is efficient to check for the validity of these

15



5 Algorithm Design

Observation 34 (One T is not enough). Before it was claimed that there is no optimal T choice for a

complex optimization problem. These three claims will clear any doubt:
e When T = oo we would need O(N!) operations to reach the solution in the worst case

e When T = 0 we would get stuck at local minimas if the energy function E is non-convex (highly likely

this is the case)

e VT € (0,00) the distribution concentrates around the global minima but does not avoid escaping all

local minimas, as the selectiveness blocks the procedure at depression areas.

Definition 35 (Informal Simulated Annealing (SA)). Simulated Annealing is an approach that finds
a balance between the extremes of Theorem 30, gradually decreasing the temperature to explore at the
beginning and sequentially become more selective as T' — 0.

Its name comes from the Physical process of annealing, which Wikipedia defines as follows:

[...J(annealing) involves heating a material above its recrystallization temperature, maintaining a suitable

temperature for an appropriate amount of time and then cooling

We exploit the concept in this particular environment to attempt to explore and then sequentially reach a

minimum.

Definition 36 (SA problem). We are given a general minimization problem such as:

r* =argmin{E(r)} (5.1)
R
Definition 37 (Temperature Schedule T'). Given a sequence of natural numbers {1,...,¢ma} C N:
T :{1,... tmaz} = [0,00) : V' >c T() <T(c) T(0) =00, T(tmaz) =0 (5.2)

T is thus a decreasing function in the region.
Thanks to it, we can choose a random starting configuration rg, and for a given number of iterations ¢,,,, € N

explore the space R with different selectiveness granularities.

Observation 38 (On Definition 37). The requirements at the extremes are not necessarily enforced.
Fine tuning of the function could present better performances.
Notwithstanding, running the algorithm for some time with 7' = 0 at the end would ensure that the local

minima is reached for the last valley encountered.

Given this setting we can construct a procedure of this kind:

16



Algorithm 4 Simulated Annealing

Require: ry and E(-) specification as in 5.1
Require: t,,,, and T(-) in accordance with ¢4, as in 5.2
Require: k(:|)

<10 > we assign r as the starting configuration, r is current
fori=1,...,tmes do > for a given number of iterations
Teand ~ k(-7 > sample a valid candidate from P
t; =T(i) > ¢; is the current temperature
AE = E(reana) — E(1) > new-old energy change, use Eq 4.37 for TSP
draw u; ~ U(0,1) > u; used to simulate a probability
if u; < min{l, AE} then > Metropolis rule Def 28
T 4 Teand ' > Teand 18 the update of r, move accepted
end if > otherwise r is unchanged
end for
return x

The returned value will be a configuration. More precisely, it will be the result of an iterative process
of exploration of routes which gradually accepts less and less worse proposals until it reaches a minimum

solution.

Using Boltzmann Distribution and an energy-based fashion we derived an efficient procedure to sample from
a Markov Chain. Provided that the parameters are well tuned, it will reach a satisfactory configuration.
This ensures competitive solutions to combinatorially exploding problems such as TSP.

Ideally, Simulated Annealing is capable of escaping local minimas thanks to its adapting temperature, as

shown in the picture below!?:

E(x)

Xo x* = min E(x)

xe=X

Figure 4: Simulated Annealing desired behavior

14Credits: Bocconi University, Computer Programming, 30509. Lucibello C., Baldassi C.
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6 Conclusions

On the importance of the Detailed Balance Condition

The Detailed Balance Condition (DBC) of Definition 19 is a simplification of a stationary system with
interacting elements. It guarantees specific properties, better explained by the PA split introduced in
Definition 23. This perspective, joined with DBC, allows for the derivation of easy to apply acceptance
rules, of which we only mention the most widely used, the Metropolis rule of Definition 28. This is a

well-designed system, able to explore non convex spaces thanks to its flexibility.

Limitations

On the other hand, it requires fine tuning of the temperature schedule T" which is highly dependent on the

application, or in other words, the shape of the function.

Being a metaheuristic method, it does not ensure finding an optimal solution, and is thus not generalizable

to different problem specifications.

In addition to this, it is believed to be less efficient in flat energy problems where less complicated methods

such as Gradient Descent present a more favourable trade off.

In conclusion, Simulated Annealing is an adaptive technique that can be implemented in a wide range of
difficult problems such as the Travelling Saleman Problem, for which we gave basic intuitions for a solving
method.
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A Markov Chain Redux

Definition 39 ({X;} Markov Chain (MC)).
(X} is MC = Xy|X;_1 L {Xy_0,...} Vt (A.1)
Basically, X; is influenced by its past state only.
Definition 40 (Transition matrix Q).
QW = {pji(t) = P[X; = j|X;1 =i, 1] Vi, j € R} (A2)

Where, noticing the order of the indices, we can claim that:

Z Qri =1 (A.3)

kex
As starting from a route ¢ the transition must reach another one.

Theorem 41 (Charachterizing an MC). MC is perfectly characterized by the couple:

Definition 42 (Weakly Stationary Distribution). {X;} = {X31,..., X,,} : X; € X is said to be weakly

stationary if the following conditions hold:

E[X, =y L t (A.5)
VX =0 1Lt (A.6)
CoV[Xy, Xp )= : h=|t—1] (A7)

Definition 43 (Strongly Stationary Distribution). {X;} = {X;1,...,X,,..} : Xi € X, X ~ p(-) is

said to be strongly stationary if the following condition holds:

3Q:Qp =0 (A8)

Ergo, the distribution is invariant to a transition matrix.

Definition 44 (Accessibility — & Communication Relation ). e j is accessible from 7 and we
write i — j if 3t € N : p;(t) >0

e j and ¢ communicate if j — i A7 — j and we write ¢ <> j

Theorem 45 (++ Communication Property).

> is an equivalence relation (A.9)

19



Definition 46 (Closet states set C).

C={icX : i=rjVj¢C}

Definition 47 (Types of states). e irecurrent <= It >1 : p;(t) =1
e i transient <= Jt >1 : pu(t) <1
e i periodic <= It >1,T : tmodT =0 A p;i(t) =1

Theorem 48 (Facts about states types).

1 recurrent Ni <+ j = j recurrent
1 transient N i <> 7 = j transient
X = U X; X = {transient states} V X; = {recurrent states}

VX, = {transient states} X; is closed

Definition 49 (Irreducible MC).

{X,} irreducible <= Yi,je X i< j

Theorem 50. MC properties with chain types

MC :|X| <00 = i€ Xrecurrent
MC : |X| < oo Airreducible = Vi € X i recurrent
MC : |X| <ocoANPC C X = MCirreducible

Definition 51 (mean recurrence time m;).

Namely the expectation of the minimum time to reach again a state starting from it.
Definition 52 (Null and Non-null states). e inull <= m; =

e i non-null <= m; <

Dii m; type
<1 00 transient
%9 null recurrent
1 < oo | non null recurrent

Table 1: States classification
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Definition 53 (Ergodic state).

i € X ergodic <= i recurrent aperiodic non null (A.20)
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