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Abstract

We discuss recent results on the problem of balancing random matrices. The origin is
from its deterministic version, one of the most important open questions in discrepancy
theory. The first part is a walk through of a very recent paper (Maillard 2024), emphasizing
its contribution. Then, drawing up on the final comments of the results, we analyze the
geometry of solutions, i.e. how the balancing points are arranged in space. We do this
through a companion model that was the main object of the analysis for the analog vector
problem. For a specific design, we find that solutions are isolated, meaning that at least
Ω(n) signs have to change to hop from one to the other. This suggests that starting from a
solution it is polynomially hopeless to find another.

mailto:simonegiancola09@gmail.com
mailto:imrane.zaakour@ensae.fr


Contents

I Introduction 3

I.I Sprinkling randomness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

II Recent developments 5

II.I What is the natural order of tolerance? . . . . . . . . . . . . . . . . . . . . . . . . 5

II.II Vectors are again useful . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

II.IIIDrawing a partial phase diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

II.IVKnown weaknesses in the results . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

IIIAnalogy with planting vectors 9

III.I What is the exact meaning of planting a solution? . . . . . . . . . . . . . . . . . 9

III.IIReasons why the planted solution is interesting . . . . . . . . . . . . . . . . . . . 12

III.IIIComputation of the planted annealed local entropy . . . . . . . . . . . . . . . . . 13

IV Conclusion and perspectives 19

A More words on the techniques 24

A.I Proof outline of theorem 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

A.II Proof outline of theorem 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27



I Introduction

In this document we present random properties of matrix discrepancy. The deterministic for-
mulation is as follows.

Matrix discrepancy

Given n square symmetric matrices {A(i)}ni=1 in Rd×d and a tolerance ∆ ≡ ∆(n, d) > 0

find if there is a collection of signs {ϵi}ni=1 ∈ {±1}n such that∥∥∥∥∥
n∑

i=1

ϵiA
(i)

∥∥∥∥∥
op

≤ ∆. (I.1)

In words: we want to find a balancing of the matrices such that their magnitude is small. It is
important to notice that we only require an answer for existence, as finding an explicit solution
is even harder.

Let us briefly discuss why the question is interesting and non-trivial. For validity: understanding
the discrepancy of a collection of objects has applications in many fields of mathematics. We
refer to an introductory blog-post (Bandeira 2024) and some works (Spencer 1985; Maillard
2024; Kunisky and Zhang 2024) for more context.
Concerning why it is not immediate, the first observation is that norms are not additive, but
there are deeper reasons. If we replace matrices with vectors, the result is classical. Six deviations
suffice to get to a “sub-entropic” behavior.

• Theorem 1 (Spencer (1985)). There exists C ∈ (0, 6) such that for all n, d ≥ 1:

sup
{u(i)}ni=1:∥u(i)∥∞≤1

min
{ϵi}ni=1

∥∥∥∥∥
n∑

i=1

ϵiu
(i)

∥∥∥∥∥
∞

≤ C

√
nmax

{
1, log

d

n

}
. (I.2)

In words, for any collection of vectors with bounded sup norm taking ∆ scaling as
√
n log d/n we

know there are signs balancing below this threshold.

Coming back to our case, we get stuck on the simplest linear algebra remark: matrices do
not commute. Indeed, the result would be extended for free since vectors are just diagonal
matrices, but the first annoying difference between diagonal and generic matrices is exactly
commutativity. Nevertheless, there is increasing interest in proving a free-lunch theorem, i.e.
that the same bound extends. We box it below for future reference.

Conjecture 2 (Matrix Spencer’s). There exists C > 0 such that for all n, d ≥ 1:

sup
{A(i)}ni=1:∥A(i)∥

op
≤1, A(i)=[A(i)]⊤

min
{ϵi}ni=1

∥∥∥∥∥
n∑

i=1

ϵiA
(i)

∥∥∥∥∥
op

≤ C

√
nmax

{
1, log

d

n

}
. (I.3)

We avoid discussing why the current state of solutions is not satisfactory, but remark that we
are far from having a bound of the same order for any symmetric collection. The interested



reader can check (Maillard 2024, section 1.1.1).
Motivated by the generalization claim, throughout the text we will discuss the vector case to
guess or justify some choices by the principle of analogy.

Notation Most symbols are standard. The only difference is a clear distinction between
randomness and size. This is useful in the long run. We denote scalars a, b, c, random scalars
a, b, c; vectors a, b, c, with entries ai, bi, ci random vectors a,b, c, with entries ai, bi, ci; matrices
A,B,C, with entries Aij , Bij , Cij , random matrices A,B,C with entries Aij ,Bij ,Cij .

I.I Sprinkling randomness

Often studying a random version of a problem is easier. The idea is that laws of probability inject
regularity. While apparently useless, it is also common that this improves the understanding
of the deterministic case. Let us then rephrase our problem in the language of ensembles. The
nicest choice as usual is Gaussian. For convenience, we remind below what it means to be
Gaussian (in a particular way) for a matrix.

• Definition 3 (Gaussian Orthogonal Ensemble (GOE)). The Gaussian Orthogonal Ensemble
(GOE) is a distribution over symmetric matrices in Rd×d that is Gaussian in the sense that each
entry is Gaussian and independent. For the purpose of this document, the scaling we choose is
such that each entry has mean zero and variance 1/d in the off-diagonal and 2/d in the diagonal.
We denote it as GOE(d), which stresses the dimension and the moments. If we write GOE(d, p),
then p is a added in the numerator of the moments.

Remark. The normalization choice is without loss of generality but is useful because the law is
invariant with respect to rotations, not only asymptotically. Moreover, it has finite variance for
any dimension.

It is very easy to sample from the GOE. For a given d, we throw d iid Gaussians from N (0, 2/d)

and 1/2 d(d− 1) iid Gaussians from N (0, 1/d). Then, we fill the matrix in the diagonal with the
first ones, and use the others to complete the table such that Aij = Aji for each j ̸= i. The
resulting A is sampled from the GOE, and we write A ∼ GOE(d).
The random version of the matrix discrepancy problem just replaces any matrix with our favorite
distribution.

GOE-Average-case matrix discrepancy

Given n matrices sampled as {A(i)}ni=1 ∼ GOE(d)⊗n and a tolerance ∆ ≡ ∆(n, d) > 0

find if there is a collection of signs {ϵi}ni=1 ∈ {±1}n such that∥∥∥∥∥
n∑

i=1

ϵiA
(i)

∥∥∥∥∥
op

≤ ∆, (I.4)

in some “nice” probabilistic sense.

In what follows, we focus on this last problem, and omit the distribution since it will be fixed.
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The paper has four other sections and an appendix. In section II we review the results for the
random version. In section III we propose a method to build a solution for the planted version
of the problem. In section IV we summarize. Appendix A is a walk-through of some ingredients
of the main theorems. Throughout, we keep a rather constructive approach and propose non-
working solutions commenting over them. The intention is to be as pedagogical as possible. We
keep references to a minimum, explicit calculations, state clearly when we take a non-rigorous
choice, and criticize at length our approach.

The cover image was made with DALL-E2 (link to website) with the prompt “A cartoon-style
illustration of the discrepancy problem in random matrices, featuring a playful and colorful grid
of matrix-like blocks”.

II Recent developments

The average-case discrepancy problem is recent in literature. The first papers are from the end
of 2024 (Kunisky and Zhang 2024; Maillard 2024). Below, we sum up the spirit of some results
and their connections with other models.

II.I What is the natural order of tolerance?

Even if we have n matrices, the quickest analysis to make passes by the properties of a single
matrix. The intuition behind the simplification is that the Gaussian law is stable with respect to
sums with equal weights, and obeys nice limit theorems. Indeed, there is a well-defined limiting
law of the spectrum that induces a result for the operator norm.

Since we work with symmetric matrices everything is simplified, and we can associate to each
A ∼ GOE(d) its increasingly ordered real eigenvalues with multiplicities:

λ1 ≥ λ2 ≥ . . . ≥ λd. (II.1)

We can study their global behavior of random eigenvectors as d grows large. One direct approach
is via the empirical distribution, which we denote as:

µA :=
1

d

d∑
i=1

δλi
. (II.2)

Interestingly in the limit, we have an almost sure result in the sense of probability distributions.
Related to our problem, it directly implies convergence of the maximum eigenvalue, which in
this case is the operator norm. For more details we refer to (Anderson, Alice Guionnet, and
Zeitouni 2009; Bordenave and Chafai 2012).

• Theorem 4 (Wigner’s semicircle law and related). For A ∼ GOE(d), it holds that:

µA
w→

d→∞
ρsc, almost surely, (II.3)

where the convergence is weak in the sense of distributions and ρsc is the semicircular law, with
density with respect to Lebesgue given by 1/2π

√
4− x2δ[−2,2].
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Consequently, the operator norm converges with probability one to the edge of the semicircle law,
i.e.:

∥A∥op →
d→∞

2, almost surely. (II.4)

We can use this theorem to find a “trivial regime” where the balancing is easy to find. Consider
a n-dimensional sample {A(i)}ni=1 ∼ GOE(d)⊗n. If we just sum all of them, we have that∑n

i=1A
(i) ∼ GOE(d, n), observing that a sum of GOE matrices is just a rescaled GOE, which

follows by the classic property of Gaussians being stable. But then, rescaling 1√
n

∑n
i=1A

(i) ∼
GOE(d), and theorem 4 holds. This implies that:∥∥∥∥∥ 1√

n

n∑
i=1

A(i)

∥∥∥∥∥
op

d→∞→ 2, almost surely. (II.5)

Reordering terms, we can conclude that for a candidate tolerance ∆ = κ
√
n the configuration

ϵi ≡ 1 for all i is such that:

P

∥∥∥∥∥
n∑

i=1

A(i)

∥∥∥∥∥
op

≤ κ
√
n

 =

{
1− od(1) if κ > 2

non-trivial otherwise.
(II.6)

In words, since the operator norm concentrates at 2, the 2
√
n threshold is fundamental; above,

at κ > 2, an “all spin up” configuration has a good discrepancy, below, this is not guaranteed.

Proceeding step by step, the second-best configuration to try is uniformly random signs ϵi
i.i.d.∼

Unif({±1}). By symmetry of Gaussian distributions, it is analogous to conclude that
∑n

i=1 ϵiA
(i) ∼

GOE(d, n), and the same reasoning shows that completely random signs do not improve the con-
clusion. To go beyond the semicircular behavior, we need to let ∆ ≡ ∆(n, d) = κ

√
n where κ < 2

at the very least. In particular, we will inspect the existence of non-trivial choices of signs.

II.II Vectors are again useful

Mathematical works suggested the extension of Spencer’s theorem to matrices. In a related way,
a line of research in statistical physics inspected the average-case vector version of discrepancy.
Let us avoid the classical formulation and directly rewrite it in our setting. We sample n iid
vectors u(i) i.i.d.∼ N (0, Id) and want to find a balancing with tolerance ∆̃ := K

√
n. Since our

question is about existance, it makes sense to introduce a random set that collects satisfying
configurations:

VK :=

{
ϵ ∈ {±1}n :

∥∥∥∥∥
n∑

i=1

ϵiu
(i)

∥∥∥∥∥
∞

≤ K
√
n

}
. (II.7)

Then, tuning (K, d, n), we seek an all-or-nothing phenomenon on #VK . In other words, we
study in the R3

+ plane choices of the three parameters such that the probability that the size
is non-empty changes, possibly abruptly. It turns out that the roughest analysis one can make
requires a lot of simplifications. Firstly, we do not let the three vary freely, but rather make
n, d scale at the same rate, i.e. n/d → β > 0. Then, we take a limit d → ∞. This forces the
conclusion to be non-asymptotic, but naturally easier to derive because the complexity is not
on R3

+ but rather on R2
+ for (K,β) only. We then find:
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• Theorem 5 (Counting solutions of average-case vector discrepancy (Aubin, Perkins, and
Zdeborová 2019; Abbe, Li, and Sly 2022)). Let n/d → β > 0 as d → ∞, and K > 0. Define the
critical value:

βc ≡ βc(K) := −1/log 2 logP [|z| ≤ K, z ∼ N (0, 1)] . (II.8)

Then, the average case vector discrepancy problem has the following all-or-nothing behavior:

lim
n∼βd, d→∞

P[#VK ≥ 1] =

{
0 if β < βc

1 if β > βc.
(II.9)

In words, the number of configurations that attain K
√
n discrepancy in the proportional regime

has a sharp phase transition in the (β,K) plane. If β is too small, there are no solutions. If β
is large enough, there are solutions. Crucially, the notion of “too small” and “large enough” are
quantitative at the critical value.

Remark. The critical value coincides with the transition of E[#VK ] from being exponentially
small to exponentially large in size wrt the (n, d) pair. In some sense, we will see later that this
closes the phase diagram in the proportional regime.

From the theorem and the remark we borrow the conclusions and the technique, which is the
first-second moment method. In what follows, we will present the main results of Maillard
(2024).

II.III Drawing a partial phase diagram

The first step is noticing that the asymptotically proportional regime changes. The intuitive
dimension of vectors is d, while for matrices it is d2. We then anticipate that we will let
n/d2 → τ > 0 and expect a critical value τc ≡ τc(κ) that depends on the κ tuning parameter
of the discrepancy. The analogy is with (β, βc) of the previous section. However, the situation
complicates. We will actually have two critical values, τc1, τc2 that encode the transition for the
two probabilities. This is mainly because the proof technique does not cover the whole phase
diagram and there is a dark region. Let us be more specific with statements. Throughout,
κ ∈ (0, 2], as otherwise the question is trivial. Also, we define the set of satisfying solutions just
like we did for vectors:

Mκ :=

ϵ ∈ {±1}n :

∥∥∥∥∥
n∑

i=1

ϵiA
(i)

∥∥∥∥∥
op

≤ κ
√
n

 . (II.10)

We are now ready to restate the results of Maillard (2024, thms. 1.5, 1.7). Further details about
the proof are in appendix A.

• Theorem 6 (No solutions regime). Let τc1 ≡ τc1(κ) be an explicit threshold found in (Maillard
2024, eqn. 4). Then sampling {A(i)}ni=1 ∼ GOE(d)⊗n it holds that:

lim
n∼τd2, d→∞

1

d2
logE[#Mκ] = (τ − τc1) log 2. (II.11)

In particular, if τ < τc1:
lim

n∼τd2, d→∞
P[#Mκ = 0] = 1. (II.12)

7



In words, for fixed κ in the regime where n/d2 ∼ τ < τc1, there are asymptotically almost surely
no solutions to the discrepancy problem.

We stress that the expression for the no-solutions-threshold τc1 is explicit. From previous discus-
sions, we can also derive its value at the limits. For κ ≥ 2, we expect easy solutions, and indeed
it holds that τc1(2) = 0 so that any positive proportional rate of observations over complexity
is sufficient. Similarly, as the κ → 0, we will have τc1 → ∞, so that no complexity will satisfy
the discrepancy required. The intuition here is also direct: as the discrepancy gets small, we
expect to get out of the interesting regime

√
n and the problem becomes essentially too hard to

be interesting.

As previously mentioned, we do not have a clear all-or-nothing phenomenon like for vectors.
The careful reader will have already noticed that the object we used is P[#Mκ = 0] rather than
P[#Mκ ≥ 1]. The result for the latter is slightly more delicate. All depends on an implicit
critical value τc2 that solves an optimization problem found in (Maillard 2024, prop. 1.6). For
the sake of simplicity, we avoid restating it here and just mention that it is not explicit. The
result is analogous to one side of the vector version.

• Theorem 7 (Solutions regime). Let τc2 ≡ τc2(κ) be the implicit threshold found in (Maillard
2024, eqn. 8). Then sampling {A(i)}ni=1 ∼ GOE(d)⊗n it holds that:

if τ > τc2 then lim
n∼τd2,d→∞

P[#Mκ ≥ 1] = 1. (II.13)

In words, for fixed κ satisfying the condition on the complexity ratio n/d2 there exists a solution
asymptotically almost surely.

II.IV Known weaknesses in the results

Where is the catch? Why did we define two critical values and change the style of the statement?
Comparing theorem 5 with theorems 6-7 we see that they look similar but not quite. With
vectors, we were able to report a sharp transition on the same quantity depending on the natural
complexity parameter β. For matrices instead, we found something more intricate. It turns out
that the proof technique does not extend, and that with some improvements one can basically
fill the negative answer up until a value τc1 that does not coincide with τc2 (to trust this, see the
simulation in (Maillard 2024, fig. 1)). In other words, there is a region where the two theorems
cannot predict the behavior. There are two further conclusions that we draw upon. Both mix
formal results and non-rigorous predictions.

The first observation is that building up on different works we can say something more about
the unknown region. This is the content of Maillard (2024, cor. 1.9).

• Corollary 8 (Sharp threshold sequence existence). In the proportional regime where n/d2 →
τ > 0, where τ is large enough, there exists a sequence of tolerance parameters κc(d, τ) such we
have a sequential version of theorem 5. Namely, for any ϵ > 0:

lim
n∼τd2, d→∞

P[#Mκc−ϵ ≥ 1] = 0, lim
n∼τd2, d→∞

P[#Mκc+ϵ ≥ 1] = 1. (II.14)

In words, there exists a sequence of tolerances such that slightly above or slightly below it we can
replicate theorem 5, without a well-defined limit. By theorems 6-7, the tuple (τ, κ) must satisfy
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the inclusion
τc1(κc) ≤ τ ≤ τc2(κ), (II.15)

therefore placing it in closure of the unknown region.

Remark. Maillard (2024) also mentions that the limit is expected to exist from non-rigorous
computations.

Staying on the just mentioned non-rigorous computations, in a forthcoming work the author of
(Maillard 2024) hints that the second-moment method used to identify τc2 is not expected to be
tight. On one side, the upper bounds for the second-moment part (i.e. theorem 7) are rough.
On the other, there is evidence at the rigor of physics that the τc1 threshold and any improved
version of τc2 will never coincide. For more details, we refer to (Maillard 2024, conj. 1.10) and
the discussion around it.

III Analogy with planting vectors

One captivating question raised in (Maillard 2024, section 1) is about the properties of the
solutions to the average case discrepancy problem. In practice, we may be interested in under-
standing what are the properties of Mκ as a whole set. What is the motivation? The intriguing
reason is that theoretical results for the vector version predict that with measure one solutions
are isolated and distant, but with a catch. Indeed, when solutions are isolated and distant it
is natural to claim that algorithms will fail at finding them, by a simple “needle in a haystack”
heuristic. Yet, empirical evidence showed that it is not hard to find solutions. This aspect is
under investigation by the statistical physics community, but the current best explanation of the
departure theory practice is that there are nearly measure-zero sets of well-connected solutions
to which algorithms point in their dynamics. This is yet another example of inductive bias of
classical algorithms. For more context on our brief explanation, the shortest argument in favor
of the technique we found is in (Barbier et al. 2024), but the context is also largely discussed in
(Zdeborová and Krzakala 2016, chap. II).

The first step for studying what happens with matrices is certainly not numerical, as the space
to explore is combinatorial in nature. There are 2n choices for signs, and one cannot hope to
even find a solution and explore around it, unless there are many. What is more natural to do
is to inject a solution of choice and proceed from there. This operation changes the problem,
but the intuition is rather to simplify and see what happens to start understanding. In what
follows, we try to replicate some results developed for vectors in (Barbier 2024; Barbier et al.
2024).

III.I What is the exact meaning of planting a solution?

We just said we want to “force” a solution. The starting point is to choose one. Let us begin with
the reasoning for vectors. We first need to make the identification with the classical formulation
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of the problem in statistical physics. From basic operations:∥∥∥∥∥
n∑

i=1

ϵiu
(i)

∥∥∥∥∥
∞

= max
1≤k≤d

∣∣∣∣∣
n∑

i=1

ϵiu
(i)
k

∣∣∣∣∣ = max
1≤k≤d

∣∣∣∣∣
n∑

i=1

ϵig
(k)
i

∣∣∣∣∣ = max
1≤k≤d

∣∣∣〈s,g(k)
〉∣∣∣ , (III.1)

where we just “flipped” the vectors and got an expression in terms of an inner product with
s = {ϵ1, . . . , ϵn} a vector of signs. Here by “flipping” we mean that we force an inner product
formulation by letting g be the transpose of u, as done in (Maillard 2024). This is important
to make matters easy. We will show that once the optimization is not jointly on {u(i)}ni=1 as on
the left-hand side but separately on the {g(k)}dk=1 as on the right-hand side we can construct a
solution. We now fix signs s(0). Then, we sample a biased dataset as in (Barbier 2024, sec. 2):

g(k) =
v(k)√
n
s(0) + g(k⊥), g(k⊥) ∼ N (0n, In − 1/ns(0)[s(0)]⊤), (III.2)

for all 1 ≤ k ≤ d where v(k) is a random variable supported on [−K,K]. The idea is that∥∥s(0)∥∥2
2
= n and that the random variable

〈
g(k⊥), s(0)

〉
is a Gaussian with mean zero and

variance zero. Then,
max
1≤k≤n

∣∣∣〈s(0),g(k)
〉∣∣∣ ≤ K

√
n, (III.3)

and we satisfy the discrepancy scaling presented earlier.

Remark. Notice that the variance of the perpendicular vector above is a projection, so it is
idempotent and any power is the same. This will be used throughout the document.

This approach is neat, and we wish to replicate it below but for matrices. The key ingredient
was to pass from an entangled problem in the infinity norm to a maximization over separate
inner products. The main hurdle is that the operator norm is not the infinity norm, and is
somehow more implicit. Two methods are possible. We will showcase both, and eventually find
out that only one barely works.

Method one Let us denote such solution s(0) ∈ {±1}n. We may use the inequality for
Hermitian matrices:

∥A∥op ≤ max
1≤r≤d

∥Ar·∥1 , (III.4)

where r stands for row. We see this as an application of a very nice theorem in linear algebra
from (Potters and Bouchaud 2020, chap. 1).

• Theorem 9 (Gershogin’s circle theorem). Let A ∈ Cd×d. We say a Gershogin disk is a
ball centered at Aii with radius

∑
j ̸=i |Aij |, or similarly for the row. Every eigenvalue of A lies

within at least one of the Gershogin disks.

For symmetric real matrices, the theorem holds with the specialty that row-column disks are
the same, eigenvalues are real, and the operator norm is the maximum eigenvalue. We can then
bound the maximum eigenvalue by the maximum circle:

∥A∥op ≤ max
1≤r≤d

Arr +
∑
c̸=r

|Arc| ≤ max
1≤r≤d

∥Ar·∥1 . (III.5)
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Reconnecting with the work on vectors:∥∥∥∥∥
n∑

i=1

s
(0)
i A(i)

∥∥∥∥∥
op

≤ max
1≤r≤d

∥∥∥∥∥
n∑

i=1

s
(0)
i A

(i)
r·

∥∥∥∥∥
1

= max
1≤r≤d

d∑
c=1

∣∣∣∣∣
n∑

i=1

s
(0)
i A(i)

rc

∣∣∣∣∣ = max
1≤r≤d

d∑
c=1

∣∣∣〈g(rc), s(0)
〉∣∣∣ ,

(III.6)
where we identified again a flipped version. Now, we want the sum of d absolute values to be
less than our scaling. This could potentially go as follows. Let us sample iid variables:

g(rc) =
w(rc)

d
√
n
s(0) + g(rc⊥), g(rc⊥) ∼ N (0n, In − 1/ns(0)[s(0)]⊤), (III.7)

for all r, c ∈ {1, . . . , d} where w is random and independent, from a distribution supported on
[−κ, κ].1 Now, if we redo the computation, the sum readily cancels the d factor and for each
row 1 ≤ r ≤ d we have a κ

√
n bound ready.

Remark. It is crucial here to realize that we are losing something with the inequality. As our
representation is not tight, and ≤ might actually be a < strict sign, we are dealing with a different
problem. At the same time, we found no direct way to disentangle the matrices while keeping the
operator norm. A good idea could be to just notice that since the inequality holds, then equality
holds for some unknown λ ∈ (0, 1]. This unknown factor can go inside the norms and will just
rescale variances by a constant, which makes no difference.

The approach might be suspicious: as a matter of fact we are changing the problem. From looking
for a solution given a distribution we take a solution and choose a very peculiar distribution
that accommodates it. This is true, but the intuition is that the geometry of simpler problems
ought to bring information for harder ones. There is also a body of work on this concept for a
specific class of models. The principle goes by the name of “contiguity” and roughly states that
if in the interpretation of thermodynamics the statistics are annealed then the planted model
inherits the high probability properties of the non-planted model. For more information, we
suggest checking the review (Zdeborová and Krzakala 2016), the lecture notes (Krzakala and
Zdeborová 2021), and some recent works for the vector case (Aubin, Perkins, and Zdeborová
2019).

Method two Let us remind once again that for a given matrix A ∈ Rd×d it holds:

∥A∥op := sup
x:∥x∥=1

∥Ax∥2 , ∥A∥∞ := max
i,j

|Aij |, ∥A∥op ≤
√
d ∥A∥∞ . (III.8)

The last inequality should already ring a bell: we can hope to get a
√
n upper bound on the

operator norm if we reduce the problem directly to the infinity norm. In our scaling, we have
n ∼ d2 so

√
d ∼ n1/4. By the same principle, we will find that:∥∥∥∥∥
n∑

i=1

s
(0)
i A(i)

∥∥∥∥∥
op

≤ n
1/4 max

1≤r,c≤d

n∑
i=1

|s(0)i A(i)
rc | = n

1/4 max
1≤r,c≤d

∣∣∣〈s(0),g(rc)
〉∣∣∣ . (III.9)

1Momentarily, we ignore that on the off-diagonal there should be a two factor playing. This can probably be
fixed but notice that it is not immediate how to make it nice. In some sense, we want g(cc) to have twice the
“variance” of g(rc). Also, the global properties of the GOE ensemble do not care about this aspect. Even the
right limit of the bulk of the spectrum is preserved at two (Anderson, Alice Guionnet, and Zeitouni 2009, thm.
2.1.22).
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Therefore, we have a feasible configuration if:

max
1≤r,c≤d

∣∣∣〈s(0),g(rc)
〉∣∣∣ ≤ κn

1/4. (III.10)

Replicating the approach above, we generate d2 vectors g(rc) ∈ Rn that satisfy a slightly different
relation:

g(rc) =
w(rc)

n3/4
s(0) + g(rc⊥), g(rc⊥) ∼ N (0n, In,−1/ns(0)[s(0)]⊤). (III.11)

A moment of thought reveals that the scaling are just correct to get the right κ
√
n upper bound.

Additionally, by n ∼ d2 the problem we study in both plantings will be of the same nature. The
only apparent difference in the sampling is the scaling, but n3/4 ∼ d

√
n

A non-method We can also check how other authors massaged the equations for matrices.
In particular, Kunisky and Zhang (2024) deal with the same problem, in generic scaling (not
proportional), and even derive an algorithm! While most of their results are not pertinent to our
choice as they are sub-optimal (see (Maillard 2024, sec. 1)), some clever ideas remain. Adapting
the notation and the scaling of (n, d), they found two bounds. From (Kunisky and Zhang 2024,
cor. 2.5, eqn. 2.11) we have:

min
ϵi∈{±1} ∀i

∥∥∥∥∥
n∑

i=1

ϵiA
(i)

∥∥∥∥∥
op

≤ C
√
dmax

i

∥∥∥A(i)
∥∥∥
F
≤

√
dλmax(M), (III.12)

where M is the gram matrix (w.r.t. the Frobenius inner product) of {A(i)}ni=1. However, we
can see that we lost the handle of the problem as on both bounds the signs disappeared, and we
cannot plant signs.

III.II Reasons why the planted solution is interesting

The following section is based largely on speculations from the vector problem. As a matter of
fact, getting to a positive result would require extensive computations. For the sake of brevity,
we summarize here an idea to draw conclusions about the behavior of the average-case matrix
discrepancy problem from the point of view of its planted formulation. We draw inspiration
from two works (Barbier et al. 2024; Barbier 2024).

In search for a discrepancy of κ
√
n order, we consider a margin κ0 ≤ κ. The natural distance

in a hypercube is commonly termed Hamming distance, and just counts the number of different
components between two vectors. From now onwards, we denote it as:

dH(s, s
′) :=

n∑
i=1

δsi ̸=s′i
∈ {0, . . . , n}. (III.13)

We are interested in the geometry of solutions. Then, a natural object to inspect is the number
of solutions that are close in distance to a given one. For notation purposes, we refer to the
formulation in terms of vectors {g(rc)}dr,c=1. They lie in Rn and are stored in a matrix G ∈ Rd2×n,
which upon flipping forms the matrices {A(i)}ni=1. Given a margin κ0, and a matrix G, the set of
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solutions is again Mκ0 ≡ Mκ0,G as in the previous sections. For a reference solution s(0) ∈ {±1}n,
we can search others that are close via the (random) quantity:

z(s(0), κ0, r) := #
{
s ∈ Mκ0,G | dH(s(0), s) = nr

}
. (III.14)

Remark. The n scaling in the distance is forced to derive a result that will be in the line of “we
need to flip Ω(n) signs to get to the closest solution, hence solutions are isolated”. This justifies
the choice above.

We then define the local entropy of our problem at rate (n, δ) and distance r as the average
number of solutions that are nr close to any other. Here, the δ > 0 parameter rules out cases in
which the logarithm is sub-linear. Mathematically we adapt (Barbier et al. 2024, eqn. 6):

ϕn,δ(r) :=
1

n
EG

 1

#Mκ0,G

∑
s(0)∈Mκ0,G

lognδ z(s(0), κ0, r) | Mκ0,G ̸= 0

 , (III.15)

where we define the truncated log as:

lognδ(x) := max{log(x), nδ}. (III.16)

For vectors, Barbier et al. (2024) show that under certain assumptions the behavior of this local
entropy is characterized by the annealed entropy of the planted model. From this and other
considerations already mentioned about the concept of contiguity, we will study the planted
version. Some words of caution are needed here to unravel all the terminologies. The result is
in the limit of a precise scaling, hence being non-asymptotic. Secondly, it will get rid of δ, by
letting it go to zero. Moreover, the behavior will also depend on how we change the margin κ,
which plays the role of a temperature. The full statement with context is (Barbier et al. 2024,
thm. 1).
The term “annealed” originates in physics, and is life-saving for us. When dealing with a random
problem, if we want to access its statistics, it is natural to inspect the partition function or
log-partition function, also termed cumulant generating function. Early in the process, one
encounters the issue that its integral is a black box: the form is essentially E[log

∑
], where

the sum is over a large space. In statistical physics literature, it is termed quenched average.
What comes to the rescue is the annealed version, which in plain mathematical terms is applying
Jensen’s inequality and studying logE

∑
. While only an inequality holds, it gives non-trivial

information on the problem, as it is basically a first-moment bound. Moreover, in some low
temperature regimes, it is expected to be the right behavior of the problem. We reroute the
reader to pedagogical works on the intersection of machine learning and thermodynamics for
more precise statements (Mezard and Montanari 2009; Krzakala and Zdeborová 2021).

III.III Computation of the planted annealed local entropy

While we could proceed with further justification of the intention to study the annealed entropy
of the planted problem, we make a leap of faith; it is the simplest thing we can try, so we just
go on with it. For further technical aspects, the reader can check (Barbier et al. 2024), and the
references therein. From now onwards, we take this for granted and also presume that a certain
first (conditional) moment we will use is the right object to consider following the reasoning of
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Barbier et al. (2024, thm. 3), where they also prove that its variance vanishes. Then, we will
postulate that such annealed local entropy is faithful in certain regimes of interest, and study its
sign perturbatively, as done in (Barbier 2024, sec. 2).2 If said sign is negative, we will guess that
the solutions are typically isolated in the planted model, and hence too in the original model.
Let us unravel once again the heuristic route. We:

1. had a random problem over matrices;
2. rewrote it in terms of a certain collection of Gaussian vectors stored in a matrix G;
3. formulated a planted version, where we choose one vector that is a solution and can look

around it;
4. came back to the original problem and proposed a quantity that counts neighboring solu-

tions;
5. believed in the possibility of contiguity between planted and original problem, for which

roughly high probability events are shared;
6. believed in the idea that the local entropy of the original problem is well approximated in

certain regimes by the annealed local entropy of the planted model;
7. having an explicit formula for said last object, we can simulate it. If its sign will be

negative at small distances then we will conclude that solutions are isolated.

It is clear that many passages are rough, but hopefully, the thread of the idea is valuable. In
step 2 we lose something by the inequality, in steps 5 & 6 we presume that some results could
be proved, but stress that nevertheless what we do is often the first attempt. In step 7, if the
formula will be nice enough, it will be numerically stable.

Remark. As a last point, why would a negative log-expectation tell us that solutions are isolated?
Roughly, this is because if we count in log-scale some large object, a negative number indicates
that there are no solutions at order o(n). In other words, we need to flip about Ω(n) signs from a
planted solution to find another. In the larger sense, this is the principle of overlap-gap property
(see (Gamarnik et al. 2022) and the line of work of the first author).

Let us proceed by the reasoning of (Barbier et al. 2024, thm. 3). We sample as in equation III.7,
and specify that the random margins w(rc) are Gaussians conditioned on being less than κ0.
Their p.d.f. is:

f(ω) :=
1√
2π

e−ω2/2δ|ω|≤κ0

P[|z| ≤ κ0]
, z ∼ N (0, 1). (III.17)

Remark. It is important to notice that Barbier (2024) claims that the local entropy is non-zero
when the margin distribution satisfies the condition f(κ) + f(−κ) ̸= 0 which holds here if we let
κ0 = κ.

The planted local entropy reads (Barbier et al. 2024, eqn. 17):

ϕpl
n,δ(r) :=

1

n
Epl

[
lognδ z(s(0), κ, r)

]
. (III.18)

2In statistical physics this regime is the annealed replica: it is an ansatz on the optimal solutions of a large
optimization problem that appears when doing replica computations. The intention of this document is not to
be an exposé of this magical computation. The original works of Parisi (Parisi 1979a; Parisi 1979b; Parisi 1983)
lead to a Nobel prize in Physics. For a more computation oriented perspective one can consult (Krzakala and
Zdeborová 2021), for a review of the potential (Zdeborová and Krzakala 2016). It was in particular applied in
the vector case (Aubin, Perkins, and Zdeborová 2019; Barbier et al. 2024; Barbier 2024) and it should be one of
the ingredients of the working paper mentioned by Maillard (2024).
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In particular, the expectation is with respect to the random quantities:

• s(0), uniform on the hypercube {±1}n;
• G, which conditional on s(0) is sampled as in equation III.7.

As said previously, this is rather hard to compute in general; it is the expectation of a log of a
sum. We believe that in appropriate cases the annealed entropy is interesting to compute. It
has the easier expression:

ϕpl;ann
n (r) :=

1

n
logE[z(s(0), κ, r)]. (III.19)

Notice that now we can sum over s(0) and just compute the randomness w.r.t. the number
of solutions that are close to it, and that we blindly took δ → 0. In this perspective, the
annealed assumption is like saying that “any configuration behaves like the other”. This is one
of the reasons why it is expected to be not always true: in certain regimes, the properties of the
problem will break symmetries. Again, for more context, full statements for the vector case are
mostly in (Barbier et al. 2024). For more standard theory, we refer to (Mezard and Montanari
2009; Krzakala and Zdeborová 2021).
Now, we argue that conditional on w ∈ Rd2 , the argument inside the logarithm converges almost
surely to a deterministic limit. We have by linearity of expectation:

E[z(s(0), κ, r) | w] =
∑

s∈{±1}n
E
[
1

{
s ∈ Mκ,G, |

〈
s, s(0)

〉
| = nr | w

}]
, (III.20)

now it is natural to let the inner product express its sign: we parameterize r = (1−m)/2 for
m ∈ (−1, 1), and write:

E[z(s(0), κ, r) | w] =
∑

s∈{±1}n
E
[
1

{
s ∈ Mκ,G,

〈
s, s(0)

〉
= nm | w

}]
. (III.21)

The expectation is partly w.r.t s(0), which is uniform over the hypercube with equal weights 1/2n

so we can add a second sum over the hypercube and recognize that the indicator splits into two
indicators. In equations now we have fixed s(0):

E[z(s(0), κ, r) | w] =
1

2n

∑
s∈{±1}n

∑
s(0)∈{±1}n

E
[
1{s ∈ Mκ,G}1

{〈
s, s(0)

〉
= nm

}
| w, s(0)

]
.

(III.22)
The second indicator is now deterministic so we can take it out, and it remains to compute the
probability that s is in Mκ,G given a reference planted solution s(0) and reference margins w.
This might be complicated, but we also remind that the indicator outside forces us to consider
configurations that are exactly at nm distance from s(0) in each term. We will see that it boils
down to some computations that use the sampling model of equation III.7. We have:

E[z(s(0), κ, r) | w] =
1

2n

∑
s∈{±1}n

∑
s(0)∈{±1}n

1

{〈
s, s(0)

〉
= nm

}
P
[
s ∈ Mκ,G | w, s(0)

]
, (III.23)

with:

P
[
s ∈ Mκ,G | w, s(0)

]
=

∏
1≤r≤d

P

[
d∑

c=1

∣∣∣〈g(rc), s
〉∣∣∣ ≤ κ

√
n | (w(r1), . . . , w(rd)), s(0)

]
. (III.24)
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In particular, we rewrite equation III.7 as:

g(rc) =
w(rc)

d
√
n
s(0) +

[
In − 1

n
s(0)[s(0)]⊤

]
g̃(rc), g̃(rc) ∼ N (0n, In), (III.25)

So the inner products inside the probability take form (putting the
√
n factor on the left-hand

side of the inequality):

1√
n

〈
g(rc), s

〉
=

w(rc)

dn

〈
s(0), s

〉
+

1√
n

〈[
In − 1/ns(0)[s(0)]⊤

]
g̃(rc), s

〉
(III.26)

=
1

d

w(rc)

dn
nm+

1√
n

〈
g̃(rc),

[
In − 1/ns(0)[s(0)]⊤

]⊤
s

〉
by the indicator in the sum;

(III.27)

=
1

d
w(rc)m+

1√
n

〈
g̃(rc),

[
In − 1/ns(0)[s(0)]⊤

]
s
〉

by symmetry of the matrix;

(III.28)

=
1

d
w(rc)m+

1√
n

〈
g̃(rc), s−ms(0)

〉
again by the indicator in the sum.

(III.29)

The inner product has a Gaussian distribution, since g̃(rc) is a standard Gaussian vector. The
mean is zero. The variance is then the second moment, which is a standard computation since
the vector has a diagonal covariance matrix. We make it explicit below:

E
[〈

g̃(rc), s−ms(0)
〉2]

=
n∑

i,j=1

E
[
g(rc)i g(rc)j (si −ms

(0)
i )(sj −ms

(0)
j )
]

(III.30)

=

n∑
i=1

(si −ms
(0)
i )2 (III.31)

=
∥∥∥s−ms(0)

∥∥∥2 (III.32)

= ∥s∥2 +m2
∥∥∥s(0)∥∥∥2 − 2m

〈
s, s(0)

〉
(III.33)

= n+m2n− 2m2n (III.34)

= n−m2n, (III.35)

where we used that the vectors have inner product mn and that the norm of a vector in the
hypercube is n. The normalization by 1/

√
n in the inner product makes it overall a centered

Gaussian with variance 1−m2. In other words, we can write:
1√
n

〈
g̃(rc), s−ms(0)

〉
d
=
√
1−m2z(rc), z(rc) ∼ N (0, 1), (III.36)

where z(rc) is independent of the other random variables. We know reach a fundamental hurdle
that will be solved by a switch. In practice, we found that:

P
[
s ∈ Mκ,G | w, s(0)

]
=

∏
1≤r≤d

P

[
d∑

c=1

∣∣∣〈g(rc), s
〉∣∣∣ ≤ κ

√
n | (w(r1), . . . , w(rd)), s(0)

]
(III.37)

=
∏

1≤r≤d

P

[
d∑

c=1

∣∣∣∣1dw(rc)m+
√

1−m2z(rc)
∣∣∣∣ ≤ κ | (w(r1), . . . , w(rd))

]
.

(III.38)
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What we would like to say is the following. First, we plug our expressions into the conditional,

1

n
logE

[
z(s(0), κ,m) | w

]
(III.39)

=
1

n
log

 1

2n

∑
s,s(0)∈{±1}n

1

{〈
s, s(0)

〉
= nm

} ∏
1≤r≤d

P

[
d∑

c=1

∣∣∣∣1dw(rc)m+
√

1−m2z(rc)
∣∣∣∣ ≤ κ | (w(r1), . . . , w(rd))

] .

(III.40)

While apparently monstrous, this expression is not super bad. First of all, the normalization
factor can be placed outside. Then, the double sum inside is independent of the probability, so
we eventually have:

1

n
logE

[
z(s(0), κ,m) | w

]
=

1

n

∑
1≤r≤d

log

(
P

[
d∑

c=1

∣∣∣∣1dw(rc)m+
√

1−m2z(rc)
∣∣∣∣ ≤ κ | (w(r1), . . . , w(rd))

])
(III.41)

+
1

n
log

 1

2n

∑
s,s(0)∈{±1}n

1

{〈
s, s(0)

〉
= nm

} . (III.42)

Barbier et al. (2024) now do the following. They simplify with Stirling’s formula the first term
(for more details, one might check (Krzakala and Zdeborová 2021, sec. 1.1)), and find that:

1

n
log

 1

2n

∑
s,s(0)∈{±1}n

1

{〈
s, s(0)

〉
= nm

} = H(m) + on(1), (III.43)

where we wrote Shannon’s binary entropy,

H(m) := −(1 +m)

2
log

(
1 +m

2

)
− (1−m)

2
log

(
1−m

2

)
. (III.44)

Instead, the first term should converge by the law of large numbers as n → ∞ with n ∼ τd2

almost surely to its expectation, which in this case would be w.r.t. the (w(r1), . . . , w(rd)) random
variable; some truncated Gaussians. However, there are two issues:

• the normalization is 1/n, but the sum is over d elements; in our scaling, we have n ∼ τd2

so this is not really a normalized sum;
• the probability inside is yes a probability, but it is not nice w.r.t. the vector (w(r1), . . . , w(rd)),

so what is its limit?

We resolve this perspective by changing the way we plant a solution. Indeed, we presented
another possibility to build a solution around a given vector, that used another inequality, i.e.
Method two. It also had a different normalization, and we will need just a minimal (but
potentially not nice) adjustment. Many equations are the same, what we need to fix is the way
we evaluate the probability of having a neighbor solution. Indeed, sampling as in equation III.11
we may write:

g(rc) =
w(rc)

n3/4
s(0) +

[
In − 1

n
s(0)[s(0)]⊤

]
g̃(rc), g̃(rc) ∼ N (0n, In). (III.45)
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Notice that we have a different normalization in the first term, which is because the constraint
we want to satisfy is that of equation III.10 and it loses a n1/2 factor in the inequality. If we
write the analog of equation III.24 we have:

P
[
s ∈ Mκ,G | w, s(0)

]
=

∏
1≤r≤d

∏
1≤c≤d

P
[∣∣∣〈g(rc), s

〉∣∣∣ ≤ κn
1/4 | w(rc), s(0)

]
. (III.46)

The expression above is better for two reasons:

• it is rightfully a product of d2 ∼ 1
τ n terms, which once we take the log will allow us to

apply the law of large numbers;
• inside there is no sum, so we might hope to get something that converges to constant

random variables like before.

However, it is not nice all the way until the end. Replicating the computation for the inner
product inside the probability, we find:

1

n1/4

〈
g(rc), s

〉
= w(rc)m+

1

n1/4

〈
g̃(rc), s−ms(0)

〉
. (III.47)

Again, the first term is nice, even better than before, but the second diverges as n → ∞ since
the normalization is not enough.3 We fix this last issue by decreasing the variance. Let us then
propose a third way to sample planted solutions:

g(rc) =
w(rc)

n3/4
s(0) +

1

n1/4

[
Id −

1

n
s(0)[s(0)]⊤

]
g̃(rc), g̃(rc) ∼ N (0n, In). (III.48)

In words, we add just what we need: a normalizing factor on the perpendicular component.

Remark. Notice that this adjustment is not great in the sense that as n → ∞ we will sample
with an orthogonal Gaussian bias that becomes small, albeit slowly. This might be an indication
that this planted model is not the right one to observe contiguity and that we might need better
ways to not lose factors with an inequality on the operator norm.

Borrowing the reasoning in the proof of (Barbier et al. 2024, thm. 3), we may conclude that in
our proportional scaling seeing the distance r = (1−m)/2 to account for symmetries:

ϕpl;ann
n (r) =

1

n
logE

[
z(s(0), κ,m) | w

]
(III.49)

= H(m) +
1

n

∑
1≤r≤d

∑
1≤c≤d

log
(
P
[∣∣∣w(rc)m+

√
1−m2z(rc)

∣∣∣ ≤ κ | w(rc)
])

+ on(1)

(III.50)

∼ H(m) +
1

τ

1

d2

∑
1≤r≤d

∑
1≤c≤d

log
(
P
[∣∣∣w(rc)m+

√
1−m2z(rc)

∣∣∣ ≤ κ | w(rc)
])

+ on(1)

(III.51)
a.s.→

n→∞,n∼τd2
H(m) +

1

τ
Ew

[
log
(
P
[∣∣∣wm+

√
1−m2z

∣∣∣ ≤ κ | w
])]

(III.52)

:= ϕpl;ann(m). (III.53)

3Proceeding as before: if we compute the variance it is not of constant order, but rather ∝
√
n.

18



Figure 1: Local entropy approximation plot.
We remark that this function is a good approximation for m ≈ 1.

by an application of the law of large numbers to the probabilities inside, which are random w.r.t.
the collection of w(rc) that are independent and identically distributed with support on [−κ0, κ0].
In particular, the probability is for z being random and i.i.d. conditioned on the value of w, then
we take the log, then we integrate w.r.t. w. This expression is the same as the one of Barbier
(2024, eqn. A.12) and Barbier et al. (2024, eqn. 24, eqn. 8). Additionally, we can compute its
Taylor expansion around m = 1 which counts “close in order n” solutions. Reporting (Barbier
2024, eqn. A.13) as is:

ϕpl;ann(m)
m≈1
≈ −(1−m)

2
log

(
1−m

2

)
+

2

τ

√
1−m [f(κ) + f(−κ)]

∫ ∞

0
log

(
1 + erf(x)

2

)
dx.

(III.54)
In particular, if κ0 < κ then it is always negative, while if κ0 = κ, we can check numerically that
there is a range of values (m0, 1) such that it is negative. We propose two quick simulations in
figures 1-2.

IV Conclusion and perspectives

We have only scratched the surface, but will try to review our attempt and infer the next steps.
Starting from an interesting conjecture that would extend non-asymptotic results of vectors
to matrices, we presented the average-case matrix discrepancy problem. It was very recently
formulated in two works (Maillard 2024; Kunisky and Zhang 2024). For the sake of space, we
ignored the second, and briefly reviewed the interesting results in the first. The current sketch
of the phase diagram tells us that in the proportional scaling of n ∼ τd2 there is a threshold
at which solutions do not appear, and another at which solutions appear. However, the two
seem to be distinct and not possible to join with previous methods. This last aspect is the main
difference with the vector case, where the moment method fills the phase diagram.
Nevertheless, it appears that some techniques (but not all!) can be transferred from the analysis
made for vectors. The last comments of Maillard (2024) hint at some potential directions. One
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Figure 2: Local entropy approximation in (m,κ) plane.
We remark that this function is a good approximation for m ≈ 1. Also, in 3 dimensions it is

not nice at all, but it is always negative.

of these is understanding better the geometry of solutions, meaning how the good signs are
arranged in the hypercube. The first question in this case is how close they are.

Believing in the potential of a parallel, we took more practical inspiration from earlier works
on vectors. The methodology which extends well over this case, is to analyze a companion
problem where can choose to inject a solution: this is the principle of planting. We propose
some ways to plant and analyze the expectation of a certain object that is supposed to count
close solutions. We find that in regimes of closeness (i.e. m ≈ 1), there are no solutions. This
suggests in layman’s terms that solutions are isolated to order Ω(n).

Weaknesses Our approach needs critique for many reasons, with no regard to completeness,
we overview some below. Firstly, we plant with an inequality: we could not find an exact repre-
sentation of the problem over which we could plant, so we found a solution for an upper bound
on our objective quantity and then wrote down a model that satisfied the original requirement.
As a matter of fact, there might be a way to write a model that satisfies directly the operator
norm bound. Secondly, we glossed over many aspects of the steps needed to conclude that a
planted model is interesting at all, and just proceeded by the principle of doing the first feasible
thing.

What is next? At the same time, there are many ways to improve our understanding. Draw-
ing on the methods of Barbier et al. (2024), we could show that the planted local entropy is
really a good approximation of the local entropy of the original problem, and that in the right
regime, the annealed local entropy we found is again faithful. If this were true, we would again
“rigorously” conclude that there are only isolated solutions in the average-case matrix discrep-
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ancy problem, in line with the result for vectors. Here, by “rigorously”, we mean that the works
we relied on either use physics methods (e.g. (Barbier 2024)) or a mix of physics, proofs, and
unproven assumptions (e.g. (Barbier et al. 2024)). As always, this is the first step. The next
best thing would be closing the argument formally as done in (Abbe, Li, and Sly 2022) for
vectors, but we did not focus much on this second step here.
From the practical point of view, pushing on the development of (Barbier et al. 2024) looks
like the natural choice to make, while keeping an eye on the incoming publication mentioned
by Maillard (2024) that might include some new aspects of the problem. Once we will have
understood the model from the point of view of physics, it will be the time for non-asymptotic
refinements, and possibly more information about the original deterministic problem.
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A More words on the techniques

The two main results of Maillard (2024) build on previous knowledge extensively. In this ap-
pendix, we will not focus on giving the details but rather the intuition. In simple words, we
partially dissect the work for less experienced audiences.

A.I Proof outline of theorem 6

We want to count solutions. By Markov’s inequality, to show that solutions are asymptotically
almost surely zero, we may use the bound:

P[#Mκ > 0] ≤ E [#Mκ] , (A.1)

and if we show that the expectation is null in the limit, we are done. Thus, we we focus on the
expectation of #Mκ. Practically, it just counts the number of satisfying solutions, so that:

E [#Mκ] =
∑

ϵ∈{±1}n
E

1

∥∥∥∥∥∑
i=1

ϵiA
(i)

∥∥∥∥∥
op

≤ κ
√
n


 =

∑
ϵ∈{±1}n

P

∥∥∥∥∥∑
i=1

ϵiA
(i)

∥∥∥∥∥
op

≤ κ
√
n

 .

(A.2)
By invariance and centering, as we saw earlier, the large sum of GOE matrices is just a large
GOE matrix, and the probability inside the sum is invariant w.r.t. the specific sign. Then, we
can rewrite:

E [#Mκ] = 2nP
[
∥A∥op ≤ κ

]
. (A.3)

Obviously, it will not always be small; we need top find the right conditions on (κ, τ). Let
us cheat a little beat, or put more simply, use previous results. In particular, we want some
upper bound on a probability, that beats the 2n factor. This suggests looking at large deviations
theory, which describes the limiting behavior of the log-probability of events. Since we have an
operator norm, the natural object to look at is the empirical measure. If we had scalar random
variables we would roughly look for a rate function I : R → R such that:

P [xn > x] ≈ e−nI (x), for n ≫ 1. (A.4)

Moreover, such rate function is expected to be the result of a balancing between energetic and
entropic contributions, in the sense of a regularized companion problem (i.e. a Legendre-Fenchel
transform).
However, given an empirical measure, we cannot compute probabilities at points, and will need
a generalization, but the principle is the same. Also, we remark that:

• the natural dimension of matrices is n1/τ ∼ d2;
• we cannot take the limit in equation A.4 as the n is on both sides.

This quickly suggests looking at log probabilities in their natural dimensions, i.e. 1/d2 logP[[µA ∈
S], where S ⊂ R. The generalization to empirical measures of GOE matrices was studied in the
90s by Arous and A. Guionnet (1997). The authors find that the large deviation principle is
described by two optimization problems over the space of measures. Let us briefly define some
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objects and unroll the content of (Maillard 2024, prop. 2.3). We write M1(R) for probability
measures in the real line.

Our rate function can be seen as a free energy that gives weights in the limit. We will have an
energetic contribution and an entropic contribution. For a given probability measure µ ∈ M1(R),
a good notion of entropy first studied by Voiculescu (1994) is the so-called non-commutative
entropy. We denote it as:

S (µ) :=

∫
log |x− y|µ(dx)µ(dy). (A.5)

It turns out that GOE matrices, and more generally Wigner matrices, obey a large deviation
principle with rate function that has Voicolescu’s entropy inside:

I : M1(R) → R (A.6)

µ 7→ −1

2
S (µ) +

1

4

∫
x2µ(dx)− 3

8
. (A.7)

The analogy with the scalar case is now fundamental, if a random variable may live in R, mea-
sures live in M1(R), and we may write the large deviation principle in the style of Portmanteau’s
theorem, i.e. in terms of open or closed sets. In other words, we will find some upper and lower
bounds in terms of optimization problems over the space of measures. Mathematically, in (Arous
and A. Guionnet 1997) we find:

lim inf
d→∞

1/d2 logP [µA ∈ O] ≥ − inf
µ∈O

I (µ), ∀O ⊆ M1(R) open; (A.8)

lim sup
d→∞

1/d2 logP [µA ∈ F ] ≤ − inf
µ∈F

I (µ) ∀F ⊆ M1(R) closed. (A.9)

Originally, we were interested in the probability of the event {∥A∥op ≤ κ}, how can we bound
it? It turns out that we can write it as:

{∥A∥op ≤ κ} = {µA ∈ Q}, Q := {µ : M1(R) | µ([−κ, κ]) = 1}, (A.10)

where Q is closed (Maillard 2024, sec. 2.2). The upper bound of the limit is direct, the lower
bound is by deduction.

Upper bound By the large deviation upper bound, we have the asymptotic inequality:

P
[
∥A∥op ≤ κ

]
≲ e−d2 infµ∈Q I (µ) (A.11)

It remains to compute the true value of the optimization problem. As previously mentioned, the
rate function(al) has an energetic and entropic contribution. Using results from earlier works on
potential theory (Saff and Totik 2024) and (Maillard 2024, lem. 2.5), we get that the existing
and unique optimizer of the rate function satisfies:∫

log |x− y|µ(dy) = x2

4
+ C, for some C, for all x ∈ (−κ, κ). (A.12)

Remark. The equation above is an optimality first order condition. If we take the functional
derivative of the rate functional in equation A.7 it should be analogous. Indeed, we want to study
the infimum of I over a closed set.
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It turns out that after some computations equation A.12 is solved by the following measure
(Maillard 2024, prop. 2.7):

µ⋆
κ(dx) :=

4 + κ2 − 2x2

4π
√
κ2 − x2

δ(−κ,κ)(x)dx. (A.13)

In particular, the case κ = 2 is Wigner’s semicircle law, the result of theorem 4. Once the
optimal measure is known, a little more patience gives us the optimal value of the rate function:

inf
µ∈Q

I (µ) = I (µ⋆
κ) = − κ4

128
+

κ2

8
− 1

2
log

κ

2
− 3

8
. (A.14)

Lower bound For the other side, there is no clever open set to use to lower bound. The
intuition will be to seek an asymptotic lower bound that attains the same optimal rate functional.
As a matter of fact, Maillard (2024) takes inspiration from he proof technique of the lower
bound in (Arous and A. Guionnet 1997) but proves directly the matching result. Since it is a
long exercise in inequalities, we just remark the main aspects of it. The first crucial passage is
recognizing that the GOE comes with an explicit expression for the joint law of the eigenvalues.
We have from (Anderson, Alice Guionnet, and Zeitouni 2009, sec. 2.5.4) that for a function
depending only on the eigenvalues like the operator norm (take β = 1 in their notation):

P
[
∥A∥op ≤ κ

]
= E

[
1{|λi|≤κ for all i∈{1,...,d}}

]
=

1

Z

∫
Rd

d∏
i=1

1{|λi|≤κ}

d∏
i<j

|λi − λj |e−
∑d

i=1 λ
2
i

d∏
i=1

dλi,

(A.15)
where Z is a normalizing factor. Interestingly, the denominator has an explicit value at the limit,
which is computed via the so-called Selberg’s integrals. The story of this result is interesting
and well explained in (Forrester and Warnaar 2007). In particular in (Forrester and Warnaar
2007, sec. 1) the authors explain how in Random Matrix Theory the conjecture popularized by
Mehta (2004) is solved. Cutting matters short, we can say that in our case:

Z =

∫
R

d∏
i<j

|λi − λj |e−
∑d

i=1 λ
2
i

d∏
i=1

dλi ∼ e−d2 3
8 . (A.16)

Remark. Notice that the 3/8 appears also in the rate functional, i.e. eqn. A.7. This is not by
chance. The normalizaiton factor is a constant term once we take the rescaled limit, so its limit
will naturally appear in the rate functional.

Now, we have to compute a lower bound for the numerator. This is more technical; in substance,
we take a perturbed density νδ that removes δ from the κ margin to have stability. With careful
bounds, we will see that the non-commutative entropy and the rate function for νδ appear (refer
to (Maillard 2024, sec. 2.3)). Taking the limit δ → 0, we eventually recover a statement of the
form:

P
[
∥A∥op ≤ κ

]
≳ e−d2I (µ⋆

κ), (A.17)

which matches the upper bound in equation A.11.
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Finalization Joining the bounds with the optimal value of the rate function in equation A.14
we have:

E [#Mκ] = 2nP
[
∥A∥op ≤ κ

]
∼ 2ne−d2I (µ⋆

κ), I (µ⋆
κ) = − κ4

128
+

κ2

8
− 1

2
log

κ

2
− 3

8
. (A.18)

The expected size of the set of solutions obeys the asymptotic, so we might as well focus on the
argument of the exponential. recalling that n ∼ τd2 and putting everything in e-scale:

E [#Mκ] ∼ exp
{
−d2 [I (µ⋆

κ)− τ log 2]
}
. (A.19)

It is evident that we have an all or nothing behavior: if the argument is positive it is exponentially
fast exploding, if it is negative it is exponentially fast going to zero. The critical point in the
(τ, κ) plane is exactly that of theorem 6, i.e. τ > 1/log 2I (µ⋆

κ) gives infinity, while the opposite
sign gives zero. In particular, the value is 1/log 2I (µ⋆

κ) = τc1, the explicit threshold of (Maillard
2024, eqn. 4) mentioned in theorem 6. If we take the log, bring d2 to the left hand side and take
the limit d → ∞ with n ∼ τd2 we recover the exact same statement of (Maillard 2024, theorem
1.5) reported in theorem 6.

A.II Proof outline of theorem 7

The combination of the second-moment method and abrupt transition techniques allows us to
demonstrate that for τ > τ2(κ), the mean matrix imbalance problem has a solution with margin
κ with probability approaching 1 as the dimension d tends to infinity:

• Lemma 10. Let κ ∈ (0, 2]. Recall the definition of Mκ in Equation (3) and that of τ̄(κ).

Assume that τ > τ̄(κ). Then, for n, d → ∞ with n/d2 → τ :

lim sup
d→∞

E[M2
k]

E[Mk]2
≤ L

[
1− τ̄(κ)

τ

]−1/2

for an absolute constant L > 0.

Where τ̄(κ) is given by τ̄(κ) := minη>0 τ(η, κ). This quantity is the subject of lemma 3.1
in (Maillard 2024). Basically, we will notice that κ → τ̄(κ) is continuous. Also, we have
τ > τ2(κ) > τ̄(κ) by definition.

Lemma 10 characterizes the second-order method used to prove the result of theorem 7. An
important first observation is that the limiting term is strictly greater than 1, which is not strong
enough to prove the result with high probability. However, Altschuler (2024) has developed a
general method for this kind of transition. By applying it to our problem, we have:

• Lemma 11 (Theorem 7 of Altschuler (2024)). Let d ≥ 1, and {A(i)}ni=1 ∼ GOE(d)⊗n.
Define:

disc(A(1), . . . ,A(n)) := min
ϵ∈{±1}n

∥∥∥ n∑
i=1

εiA
(i)
∥∥∥
op
.

Assume that n/d2 → τ as d → ∞. Then there exists c(τ) > 0 such that:

E[disc(A(1), . . . ,A(n)]√
Var[disc(A(1), . . . ,A(n))]

≥ c(τ)
√
d.
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By continuity of τ̄(κ), we take ϵ such that τ > τ̄(κ− ϵ). With x = disc(A(1), . . . ,A(n)), we have
E[x] ≤ 2

√
n since x ≤ ∥

∑n
i=1A

(i)∥op. By lemma 11, we obtain:

Var(x) ≤ 4n

c(τ)2d
.

We apply the Paley-Zygmund inequality to Mκ−ϵ to get a lower bound on the probability that
the imbalance X is less than (κ− ϵ)

√
n:

P[x ≤ (κ− ϵ)
√
n] ≥ L−1 ·

[
1− τ̄(κ− ϵ)

τ

]1/2
+ od(1).

Using Chebyshev’s inequality and the variance of X, we show that:

P[x ≥ E[x]− t] ≥ 1− 4n

c(τ)2dt2
.

Choosing t = c(τ)−1
√
8C(τ, κ, ϵ)n/d, we get:

P[x ≥ E[x]− t] ≥ 1− (2C(τ, κ, ϵ))−1.

Combining the previous results, we obtain an upper bound on the expectation of x:

E[x] ≤ (κ− ϵ)
√
n+ c2(τ, κ, ϵ)

√
n

d
.

Applying Chebyshev’s inequality again, we show that for u = ϵ
√
n− c2

√
n/d, we have:

P[x ≤ κ
√
n] ≥ 1− 4c1(τ)

ϵ2d
→d→∞ 1.

This concludes the proof by showing that the probability that the imbalance is less than κ
√
n

tends to 1 as d → ∞.
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