
Geometric Deep Learning Course : Lecture Notes
taught by Michael M. Bronstein, Joan Bruna, Taco Cohen, Petar Veličković

Giancola Simone Maria1†

†Bocconi University, Milan

December 31, 2022

1simonegiancola09@gmail.com

mailto:simonegiancola09@gmail.com

Abstract

Geometric Deep Learning (GDL) is a fast emerging field of research. Where Deep Learning fails to present
a unifying framework, GDL is a valid proposal for a theoretical framework under high dimensional learning.
This document is a collection (hopefully in continuous expansion) of the Lecture Notes of the course held at
the 2021 African’s Master in Machine Intelligence (AMMI). Recordings are available online [Vel21], and a
book is currently being written [Bro+21]. To craft such a framework notions from Statistics, Group Theory,
Geometry, Fourier Analysis, Continuous and Discrete Spaces are beautifully aligned together. The result
is a principled and contained collection of basics from which many architectures can be derived. Up to
my knowledge, this is the first set of lecture notes from the course. In the future, I plan to complete it
in its entirety, and enlarge it with deeper theoretical insights on the methods referenced, or with the help
of additional material available (there are recorded seminars [Vel21], and an upcoming Summer School in
Pescara, Italy [Par22]).

Disclaimer 1 The document could and might be expanded in the future.

Disclaimer 2 Chapters are in the order of teaching. Images are entirely taken from the presentations, and
come from different sources, please refer to the slides of [Vel21; Par22], to find the exact origins

Contents

List of Symbols xvii

1 Introduction 1

1.1 Geometry and Symmetry: a long history . 1

1.2 Artificial Intelligence: a recent breakthrough . 2

1.3 Chemistry: a friendly companion . 3

1.4 The meeting point . 5

1.5 Document Structure . 6

2 High-Dimensional Learning 9

2.1 Data and Error Decomposition . 9

2.2 The Curse of Dimensionality . 12

3 Geometric Priors 17

3.1 Domains & Signals . 17

3.2 Symmetries . 18

3.3 Invariance and Equivariance . 28

3.4 Scale Separation . 33

3.5 The Blueprint of Geometric Deep Learning . 36

4 Graphs & Sets 39

4.1 Foundational Bricks . 39

4.1.1 Sets . 40

4.1.2 Graphs . 41

4.1.3 The blueprint on graphs . 42

4.2 Graph Neural Networks (GNNs) . 46

4.2.1 Maximally Potent GNNs Specifications . 47

CONTENTS

4.2.2 Latent Graph Inference . 47

4.2.3 GNN Power Assessment through Graph Isomorphism Tests 51

5 Grids 57

5.1 Translation Group and Fourier Transform . 57

5.1.1 The Fast Fourier Transform Algorithm . 67

5.1.2 Limitations . 72

5.2 Wavelet Scattering Representations . 74

5.3 Convolutional Neural Networks . 77

6 Groups 79

6.1 Group Convolution . 79

6.1.1 A taste of the problem . 79

6.1.2 Formal approach for tackling it . 80

6.1.3 Spherical CNNs . 87

6.2 General Theory of Homogeneous Group-CNNs . 88

6.3 Steerable CNNs . 97

7 Geodesics & Manifolds 99

7.1 A primer on Manifolds . 99

7.2 Deformation Invariance . 118

7.3 Manifold Fourier Transform . 120

7.3.1 Laplacians 101 . 121

7.3.2 Laplacians analog for manifolds . 122

7.4 Discretization . 128

8 Gauges 133

8.1 Why Gauges? . 133

8.2 General Theory of Equivariant CNNs Sketch . 142

9 Category Theory 149

10 Sequences & Time-Warping 151

10.1 Sequential Problem Setup . 151

10.2 Neural Networks & Time Warping . 156

4

Contents

11 Applications & Conclusions 161

11.1 Advancing GDL . 162

11.2 Applications . 165

i

CONTENTS

ii

List of Figures

1.1 19th century Zoo of Geometries . 2

1.2 (some of) the Founding Fathers of Deep Learning: Geoffrey Hinton, Yoshua Bengio, Yann
LeCun, Jürgen Schmidhuber . 4

1.3 Deep Learning Zoo . 4

1.4 Symmetry Prior Diagram . 5

1.5 Shift Equivariant Function . 6

1.6 Invariance and Equivariance combined . 6

1.7 Structures (Domains) in GDL . 6

1.8 The five Gs of GDL . 7

1.9 Architectures from Fundamental Principles of GDL . 7

3.1 Symmetries of a triangle in a Cayley diagram . 19

3.2 Symmetry of the Parametrization . 19

3.3 Symmetry of the Label Function . 20

3.4 Non Abelian O(2) group . 21

3.5 Group product SO(2)× (R,+) . 22

3.6 Isomorphism of different groups . 24

3.7 Group action on signal space . 25

3.8 Symmetry of the description . 27

3.9 Partial rotation damages learning . 29

3.10 Equivariant Network . 31

3.11 Mountain vs Beach . 34

3.12 Mountain vs Beach coarsed . 34

3.13 MNIST . 34

3.14 MNIST coarsed . 35

3.15 Patches are the image . 35

iii

LIST OF FIGURES

3.16 Patches are not the image . 35

3.17 Compositional Model . 36

3.18 Graph neural network GDL Blueprint . 37

4.1 Latent node features generation . 43

4.2 GNN equivariant transformation of features for a node i . 43

4.3 GNN node classification . 43

4.4 GNN graph classification . 44

4.5 GNN link prediction . 44

4.6 Convolutional GNN . 45

4.7 Attentional GNN . 45

4.8 Message Passing GNN . 46

4.9 Edge update ψ . 48

4.10 Node update φ . 48

4.11 Graph update ρ . 48

4.12 Differentiable Graph Module layer . 50

4.13 Bad leg layout semantics . 51

4.14 Good leg layout semantics . 51

4.15 Example graph . 52

4.16 First iteration . 52

4.17 Stable configuration . 53

4.18 Isomorphic Graph (1-WL) . 53

4.19 6 cycle . 53

4.20 3 cycle . 54

4.21 Rollout of exploration steps . 54

4.22 Coloured vertices exploration steps . 54

5.1 1−d grid . 58

5.2 1−d ring graph . 58

5.3 Torus . 59

5.4 Some sinusoidal functions . 64

5.5 Convolutions and Shifts . 68

5.6 Computation graph of Theorem 5.30 . 72

iv

List of Figures

5.7 Loss of information of Newton vs Fourier portraits . 73

5.8 In order: original, Fourier, Scale . 74

5.9 Wavelet filters example . 75

5.10 Invariant filter alone . 76

5.11 One layer scale separation {A,AρW} . 76

5.12 Two layers scale separation {A,AρW,AρWρW} . 76

5.13 Performance comparison Wavelet Scattering vs DeepNets . 77

6.1 A discrete roto-translation map . 80

6.2 Discrete input roto-translation . 81

6.3 Discrete rotated layer roto-translation . 81

6.4 Discrete output roto-translation . 81

6.5 Discrete roto translation group . 83

6.6 3D cube filters and convolutions . 85

6.7 Equivariant layers with group convolutions . 85

6.8 Claim 1 Theorem 6.6 visualized . 86

6.9 Efficient Implementation of Group convolution . 87

6.10 Group Convolution letter F example . 87

6.11 Plane and Translation form a Homogeneous Space . 89

6.12 Sphere and 3D rotations form a Homogeneous Space . 89

6.13 Plane and 2D rotations do not form a Homogeneous Space . 89

6.14 Cosets for H = {e, r, r2, r3} . 91

6.15 Quotients for H = {e, r, r2, r3} . 91

6.16 Cosets for H = {e,m} . 92

6.17 Quotient for H = {e,m} . 92

6.18 SO(3)/SO(2) quotient is a sphere . 92

6.19 Isotropic SO(2) invariant filter . 95

6.20 Unconstrained filters . 95

6.21 Regular representation of C4 . 95

6.22 Cyclic and roto translation representation . 96

6.23 Scalar field RGB induced representation . 96

6.24 Vector Field RGB induced representation . 96

6.25 Vector Field and transformations . 97

v

LIST OF FIGURES

6.26 Homogeneous G-CNNs characterization . 98

7.1 Rabbit as a volume and as a (mesh) surface . 100

7.2 Global Symmetry group exists . 100

7.3 No Global Symmetry group . 101

7.4 Euclidean Convolution . 101

7.5 Non-Euclidean Convolution . 101

7.6 Non-Euclidean Convolution II . 101

7.7 Local gauge transformation . 102

7.8 Global deformation . 102

7.9 Topological Space . 103

7.10 Topological Spaces on Ω = {1, 2, 3} . 103

7.11 Euclidean Topological Space . 104

7.12 Continuity in a Topological Space . 104

7.13 Map f for Observation 7.7 . 105

7.14 Hausdorff Space condition for two points . 105

7.15 Manifold with s = 2 . 106

7.16 Transition maps . 107

7.17 Mug donut Homeomorphism . 107

7.18 Charts and function over manifold . 108

7.19 A smooth manifold . 109

7.20 Smooth map for two manifolds . 109

7.21 Tangent space view . 110

7.22 Some planes part of a Tangent Bundle . 110

7.23 Different frames over a manifold . 110

7.24 Manifold Ω, tangent plane TuΩ , tangent abstract vector X 111

7.25 A diffeomorphism/symmetry for the manifold M . 112

7.26 A geodesic with tangent planes . 113

7.27 A geodesic . 113

7.28 Exponential map expu . 114

7.29 Topological space, Manifold, Riemaniann Manifold transition 115

7.30 Convolution with ωu . 115

7.31 Convolution with ω̃u . 116

vi

List of Figures

7.32 Structure groups . 116

7.33 Gradient of intrinsic function . 117

7.34 Deformation-invariant stable gauge . 117

7.35 Angular Pooling technique . 117

7.36 Isotropic filter on a manifold . 117

7.37 Domain deformation . 118

7.38 Pushforward operation . 119

7.39 Pullback operation . 119

7.40 Domain deformation with tangent planes . 120

7.41 Scalar field on Ω . 122

7.42 Vector field on Ω . 122

7.43 Laplacian Eigenfunctions . 125

7.44 Laplacian Eigenfunctions II . 125

7.45 Manifold Ω with signals . 126

7.46 Edge detection filter α applied . 126

7.47 α applied on deformed manifold Ω̃ . 126

7.48 Spectral transfer function . 127

7.49 horse5 . 127

7.50 Horse mesh . 128

7.51 Manifold meshes . 129

7.52 Non manifold meshes (left violates 1, right violates 2) . 129

7.53 Discrete Laplacian elements . 129

7.54 Mesh (cotangent) Laplacian . 130

7.55 Elements required in intrinsic cotangent Laplacian . 130

7.56 Laplacian6 . 131

7.57 Convolution revisited . 132

8.1 Two Gauges, one Manifold . 134

8.2 Tangent plane fiber Cu = TuΩ . 134

8.3 Vector Field of tangent vectors . 135

8.4 Cartesian Gauge, easy . 135

8.5 Spherical Gauge, hard . 135

8.6 Toroid, smooth gauge, parallelizable . 136

vii

LIST OF FIGURES

8.7 Spin, non-smooth gauge, non parallelizable . 136

8.8 R2 domain Gauge Transformation . 137

8.9 Brain MRI and Diffusion Tensor . 137

8.10 Gauge Equivariant function f . 138

8.11 Icosahedron, not homogeneous . 138

8.12 Filters on flat and curved shape . 139

8.13 Vector Gauge Transformation . 140

8.14 Charts and . 141

8.15 G-padding . 141

8.16 Base, Fibers, Total Space . 142

8.17 A cylinder is globally trivial . 143

8.18 Non trivial bundle, the Möbius strip . 143

8.19 Möebius non-global trivialization . 143

8.20 Structure group G = {e} for a cylinder . 145

8.21 Structure group for the Möebius strip . 145

8.22 Tangent Bundle and its structure group functioning . 145

8.23 Klein bottle . 146

8.24 Sections σ, yellow to base . 146

8.25 The power of Gauge CNNs . 148

10.1 Sequential inputs, traffic data . 152

10.2 Sequential results {z(t)}t computation . 153

10.3 Summaries {h(t)}t computation . 153

10.4 Time scales, original (red), warped (blue) . 155

10.5 CNN with 4 layers . 155

10.6 Dilated CNN . 155

10.7 LSTM Architecture . 159

11.1 Five Gs of Geometric Deep Learning . 161

11.2 GDL architectures and symmetry groups . 162

11.3 A Gene Regulatory Network . 163

11.4 Two Knowledge Graphs . 163

11.5 Graph Rewiring . 163

viii

List of Figures

11.6 Network Geometry . 164

11.7 GANs Improvement over time . 164

11.8 3D Geometric Data Models . 165

11.9 Some Protein Functions . 167

ix

LIST OF FIGURES

x

List of Tables

1.1 Teaching Content Structure . 7

6.1 Convolutions Analogies . 82

8.1 Structure group reductions up to added requirements . 146

xi

LIST OF TABLES

xii

List of Algorithms

1 Weisfeiler & Lehman Test (1-WL) . 52
2 Radix-2 DIT Recursion R2DIT(·, ·, ·) . 71
3 Fast Fourier Transform Algorithm FFT(·) . 71

xiii

LIST OF ALGORITHMS

xiv

List of Theorems

2.17 Theorem (Error Decomposition) . 11

2.21 Theorem (Universal Approximation Theorem (informal)) . 14

2.22 Theorem (Sobolev Curse) . 14

2.23 Theorem (Barron Class avoids the Curse) . 14

2.26 Theorem (Perturbed GD quasi-dimension independence) . 15

3.59 Theorem (Approximation error and Smoothing) . 33

3.60 Theorem (Kernel Ridge Regression) . 33

3.63 Theorem (Composition of Linear Equivariants and Local non Linear Maps) 36

4.12 Theorem (Generalization power of φ specifications) . 46

5.11 Theorem (Shift operator is diagonalizable in complex space) 61

5.13 Theorem (Linear Invariants for Grids, Properties) . 62

5.14 Theorem (Linear Equivariants for Grids, Properties) . 63

5.15 Theorem (Eigendecomposition of Shift Operator) . 63

5.17 Theorem (Parceval’s Identity) . 64

5.21 Theorem (Characterization of Equivariant linear map for Grids) 66

5.30 Theorem (FFT Algorithm Computational Complexity) . 72

5.32 Theorem (Wavelet Linear Equivariance) . 74

5.33 Theorem (Wavelet Deformation Stability) . 75

5.34 Theorem (Wavelet Linear Invariance) . 75

6.6 Theorem (Regular Representation induces Equivariant group Convolution) 84

6.7 Theorem (Convolution is all you need, informal) . 86

6.12 Theorem (Stabilizer Subgroup Properties) . 89

6.14 Theorem (Coset Properties) . 90

xv

LIST OF THEOREMS

6.21 Theorem (Orbit Stabilizer Theorem) . 93

6.25 Theorem (Convolution is all you need II, informal) . 97

7.32 Theorem (Hopf-Rinov Theorem) . 113

7.42 Theorem (Myers Steenrod Theorem) . 119

7.55 Theorem (Self-Adjointness of ∆) . 124

10.11Theorem (Discrete RNN warp invariance Condition) . 157

xvi

List of Symbols

Ω data domain
ν data distribution
X distribution space
f∗ data generating process
F model hypothesis class
γ(·) complexity measure
` loss
R(f) population loss
R̂(f) empirical loss
Hs s-Sobolev Space
X (Ω, C) space of signals
g symmetry
G algebraic group
S group generators
∼= isomorphism relation
ρ group representation map
Ox orbit of a signal
q. quotient map
SG group smoothing operator
A group average
Σn permutation group⊕

permutation invariant operator
G graph
A adjacency matrix
N (·) neighborhood function
S shift operator
x̂ Fourier transformed vector
? convolution operation
H stabilizer subgroup
gH left coset
G/H quotient of subgroup
B topological basis
A atlas
TuΩ manifold tangent space
gu(·, ·) Riemaniann metric
γ geodesic
Γu→v parallel transport

xvii

List of Symbols

expu(·) exponential map
η(·) domain deformation
dηu(x) linearization differential
∆ laplacian
div,∇∗ divergence operator
T triangular mesh
Cu, F fiber
ωu gauge
π bundle
B,Ω Base space
E total space
σ section
P principal bundle
z(t) sequential result
τ(·) time warping function

xviii

Chapter 1

Introduction

Symmetry, as wide or as narrow as you may
define its meaning, is one idea by which man
through the ages has tried to comprehend and
create order, beauty, and perfection.

Hermann Weyl

The aim of this course is to propose a framework for Deep Learning that follows that of
the Erlangen programme for Geometry. The concepts of symmetry will arise frequently.
Hopefully, with the help of such lectures, fundamental principles underlying deep repre-
sentation learning architectures will be uncovered.

These lecture notes will cover the theoretical intuition to understand concepts explained
in literature.

Rather than reporting the whole introduction, we reroute the reader to the next Chapters
for formalisms. This Chapter will be mostly a presentation of the topic and the general
approach.

1.1 Geometry and Symmetry: a long history

If there is one takeaway from this approach it would be that symmetry is fundamental
to charachterize structures and methods. The term itself has a long history. In ancient
greek σνµµετ%íα roughly means same measure, and was used to describe the beauty of
proportion in arts and music. Platonic solids were considered to be the basic buidling
blocks by Plato and his Philosophy. Later in the 17th century, Kepler explored snowflake
shapes and attempted to understand its reasons.

Also modern geometry is based on the Greek Euclid. 4 basic postulates made the ba-
sis of his reasoning, and for hundreds of years, the 5th defied any attempt to prove its
redundancy1. Some noteworthy approaches included those of Omar Khayyam (11th cen-
tury) and Giovanni Saccheri (17th century). The latter’s contribution is considered to be
the first almost non Euclidean geometry attempt, despite being refused and judged as
repugnant by its own author. What ended the Euclidean Monopoly is the 19th century,
when Poncelet and Desargues developed projective geometry, where points and lines are
interchangeable. This was the first attempt to undermine Euclidean Geometry, by still

1In a plane, given a line and a point not on it, at most one line parallel to the given line can be drawn
through the point.

1

CHAPTER 1. INTRODUCTION

Figure 1.1: 19th century Zoo of Geometries

being inherently not so far apart from it. The first non-Euclidean geometry is credited
to Lobachevsky, a Russian mathematician that considered the 5th action to be too re-
strictive, and relaxed it, giving birth to Hyperbolic Geometry. Though highly criticized,
it gave rise to the contributions of Bolyai and Gauss. Lastly, Riemann, and his work on
differential geometry gave an end to Euclid’s Monopoly.

As a result of all these developments an entire Zoo of Geometries was created, with
research moving towards understanding what defined a geometry and its properties.

Klein, a young German mathematician, when asked to deliver his research program2,
proposed his approach of treating geometry by the study of symmetries. A geometry
could be defined by specifying specific transformations formalized by Group Theory, a
field born in the same century by the contributions of Galois, Lie, and Klein himself.

Even though the Erlangen Programme originated in Erlangen, Klein later moved to
Göttingen, where Gauss worked as well. There, his impact had profound spillovers
in Physics, thanks to Noether, his colleague there, who proved that the translational
symmetry of time naturally motivated conservation of energy. Also Hermann Weyl used
the same principles to study Gauge Invariance, leading to the unification of Forces by
Yang and Mills, with the Standard Model of Physics.

This historical context is very much similar to the current state of affairs of Deep Learn-
ing, or in broader terms Neural Networks, as a subfield of Artificial Intelligence.

1.2 Artificial Intelligence: a recent breakthrough

The field of AI, a term coined in the Dartmouth AI conference of 1956, had a tormented
development. Despite the starting hype, and the steep improvement, it was quickly
dismantled. The excitement of the first Artificial Neural Network as a brain model
developed in 1957 [Ros57], or the Summer Vision Project proposed in 1966 by the MIT
to model a visual system3, was replaced by results such as the impossibility of a Neural
Network of reproducing even a simple XOR function [MP69]. Funding was considerably
cut, and what can be thought of as the AI winter started. Noteworthy is the very

2The Erlangen Programme
3Quite ambitious as of today Computer Vision did not yet achieve this result

2

1.3. Chemistry: a friendly companion

primordial geometric treatment of the subject, with results such as the Group Invariance
Theorem [MP69], which informally states that:

"if a neural network is invariant to a group, then its output can be expressed as
functions of the orbits of the group"

A famous critique to the potential of the suject was also brought up in the Lighthill report
of 1972 [Lig72], which expressed concerns about the combintorial explosion of samples
needed to learn a function, which made scaling AI to practical terms unfeasible. This
problem, known as the Curse of Dimensionality, will be analized in Chapter 2.

Despite the difficulties, promising results in terms of the potential of Neural Networks4,
and improved computational power, paved the way for the breakthrough of these tech-
niques. The first recognition of potential in a hierarchical organization of the architecture
is found in the Neocognitron [Fuk80], which already presented:

• local connectivity
• weight sharing
• multiple layers
• average pooling
• ReLu activations
• non linear filters

But missed a backpropagation procedure for training, similarly to the first perceptron
[Ros57].

Efficiency of training was accomplished thanks to many subsequent results[IL66; Lin70;
Wer82; RHW86], and completed the puzzle with the final missing piece, which spurred
into the first CNN architecture developed at the Bell Labs [LeC+89], which engineered
the recognition of digits for letters dispatched at US postal offices. In the meantime, while
other fields of Computer Vision such as feature extraction struggled with handcrafted
methods and demotivating results [SZ03], another boost in computational power spurred
into promising architectures such as AlexNet [KSH12], the first GPU trained model of
this kind.

There is no doubt that Deep Learning brought a great revolution in Data Science, thanks
to the contributions of many researchers.

On the other hand, there is a zoo of networks with few unifying principles. As
a consequence it is difficult ot define relations between different methods, leading to
publishing the same methods over different domains and names, and lacking directions
to follow.

1.3 Chemistry: a friendly companion

Contemporary to the Computer Science evolution of Neural Networks, Chemistry, one
of the highest data intensive fields, developed similar methods. The motivation for mod-
elling and classifying compounds almost naturally spread to the implementation of Graph
methods. Indeed, the codification of molecules as cyphers, challenged by G. Vlăduţ in
1959 implied losing structural information of the compounds and possible spatial in-
teractions between atoms. Inspired by the attempt to highlight connections between
Chemistry and Algebra, many reasearches dove into their intersection. Noteworthy is

4See Universal Approximation Theorems, mentioned in Chapter 2

3

CHAPTER 1. INTRODUCTION

Figure 1.2: (some of) the Founding Fathers of Deep Learning: Geoffrey Hinton, Yoshua
Bengio, Yann LeCun, Jürgen Schmidhuber

Figure 1.3: Deep Learning Zoo

4

1.4. The meeting point

Figure 1.4: Symmetry Prior Diagram

the Algorithm for checking isomorphisms of graphs5, and the first examples of Graph
Neural Networks [SS95; GK96; Li+17]. Only in recent years Chemistry and Computer
Science melded together [Duv+15; Gil+17].

1.4 The meeting point

Large and High Quality datasets, combined with sufficient computational resources spurred
the success of Machine Learning methods that interpolate information by estimating func-
tions from large classes. A simple choice of architecture is already much expressive. A
Multi Layer Perceptron is granted to be able to Universally Approximate any continuous
function (more later in Chapter 2). What appears is that in high dimensions though,
the number of samples required for a given estimation error is exponentially increasing
in the dimensionality. This is commonly known as the curse of dimensionality, one
of the most difficult obstacles in learning. Indeed, event the easiest images are highly
dimensional. Yet, any object of this kind presents a well defined structure (e.g. a grid),
over which the signal is mapped (e.g. the colored pixels).

The culmination of local weight sharing ideas was the ultimately famous method of Con-
volutional Neural Networks for Computer Vision tasks [LeC+89]. This concept extends
quickly to other topics where graphs are used to study their characteristics.

CNNs and GNNs are milestones but evidently work on different kinds of data. Neverthe-
less, both methods work on an underlying geometric domain with a symmetry structure
and desired properties of invariance and equivariance at specific layers. In this context,
Geometric Deep Learning (GDL) proposes a minset and a teaching framework to under-
stand and study these architectures. This field was popularized by a recent publication
and book preview [Bro+17], [Bro+21].

The additional geometric structure of some domains can be used to break the curse of
dimensionality. For instance, symmetry priors (Figure 1.4), introduced in Chapter 3 are
able to unify under structural properties different samples with common features.

We will see that this symmetry operation acts on the function specification. In some
cases we wish the output to be equivariant to transformations (Figure 1.5), in others, we
wish an invariant output. Both these concepts will be explored throughout the lectures,
to eventually get to the most general function form arising from their combination, drawn
in Figure 1.6.

A collection of these principles naturally defines a Blueprint for Geometric Deep Learning
(Definition 3.64), which lays the foundations of many already known architectures. The

5The famous Weisfeiler-Lehman test, presented in Chapter 4

5

CHAPTER 1. INTRODUCTION

Figure 1.5: Shift Equivariant Function

Figure 1.6: Invariance and Equivariance combined

power of this line of reasoning will be noticed when those architectures will arise from
the first principles outlined in the Blueprint.

What we ultimately will show is that a wide range of structures (Figure 1.7) can be
treated equivalently if paired with a well specified group symmetry (Figure 1.8), part of
the five Gs of Geometric Deep Learning. An outline of the architectures that can
be derived by these fundamental principles is found in Figure 1.9.

1.5 Document Structure

The outline of the lectures can be found in Table 1.1, with references to the book chapters,
and lecture notes chapters.

For the foundational bricks, we instead suggest reading Chapters 2 and 3, toegether with
Chapters 2, 3 of the book [Bro+21]. For Manifolds and gauges, another interesting refer-
ence for symmetry topics is reported [Wei+21]. Lastly, Chapter 9 is a good introduction

Figure 1.7: Structures (Domains) in GDL

6

1.5. Document Structure

Figure 1.8: The five Gs of GDL

Figure 1.9: Architectures from Fundamental Principles of GDL

Architecture Domain Ω Symmetry Group G Lecture Notes Chapter Book [Bro+21] Chapters
CNN Grid Translation 5 4.2, 5.1

Spherical CNN Sphere SO(3) Rotation SO(3) 6, 6.1.3 4.3, 5.2

Intrinsic/Mesh CNN Manifold Isometry Iso(Ω)/ Gauge symmetry SO(2) 7 4.4, , 4.5, 4.6, 5.6

GNN Graph Permutation Σn 4 4.1, 5.3, 5.4

DeepSets Set Permutation Σn 4 4.1, 5.3, 5.4

Transformer Complete Graph Permutation Σn 4 4.1, 5.3, 5.4

LSTM 1D Grid Time Warping 10 5.7, 5.8

Table 1.1: Teaching Content Structure

7

CHAPTER 1. INTRODUCTION

to the field of Category Theory, that generalizes at the highest level all of the approaches
showed.

8

Chapter 2

High-Dimensional Learning

In this lecture, the topics addressed will be:

• Statistical Learning error decomposition
• the Curse of Dimensionality
• an approach to tackle the curse

2.1 Data and Error Decomposition

The ingredients for Statistical Learning are

• the data distribution
• an approximation model
• an error metric
• an estimation algorithm

Below, the notation and the basic concepts will be introduced.

Definition 2.1 (Data Domain). Data is assumed to be a set of pairs:

{(xi, yi)}ni=1 xi ∈ Ω, yi ∈ R ∀i (2.1)

Definition 2.2 (Data Distribution and space ν,X). Of these samples, it is assumed
that:

x ∼ ν x defined over X (2.2)

Definition 2.3 (Data Generating Process f∗). The relationship between xi and signals
yi is estabilished through f∗ as:

f∗ : X → R : f∗(xi) = yi∀i (2.3)

The aim of supervised learning is that of finding a good estimate of f∗, which is defined
over the distribution of observations over an observed space X , coming from a domain
space Ω.

Observation 2.4 (No free lunch). For the purpose of obtaining guarantees, assumptions
on both ν and f∗ must be established.

Most of the process is backed on the definition of a space of action, introduced below.

9

CHAPTER 2. HIGH-DIMENSIONAL LEARNING

Definition 2.5 (Model Hypothesis class F). For estimation, a set of feasible functions
to mimic f∗ is assumed.

F =

{
f : X → R

}
(2.4)

Definition 2.6 (Complexity measure γ(·)). Associated to a family of functions, an
indicator of their flexibility/complexity is considered to "rank" members.

γ : F → R+ (2.5)

Definition 2.7 (Sobolev Norm). The Sobolev Norm is a measure of wiggliness.∫
(1 + ω2)S |f(ω)|2dω (2.6)

Example 2.8 (Examples of F , γ pairs). Some of the most intuitive function spaces and
complexity measures are:

• F = {neuralnets}, γ(f) = #neurons

• F = Hs the Sobolev space, and the Sobolev Norm γ(f) =
∫

(1 + ω2)S |f(ω)|2dω

Definition 2.9 (Path norm for Neural Network). For a neural network:

f(x) =
∑
j≤m

ajρ(wTj x+ b) (2.7)

The path norm can be defined as:

‖f‖ =
∑
j≤m
|aj |(‖wj‖+ |bj |) (2.8)

Which is a weighted sum of the neurons’ contributions in the final prediction.

Error metrics are used to estimate the performance of the selected model f .

Definition 2.10 (Error measure `). The foundational brick is a pointwise convex error
measure1

` : X × X → R+ as `(f(x), f∗(x)) (2.9)

.

Definition 2.11 (Population Loss R(f)).

R(f) = Eν [`(f(x), f∗(x))]

Definition 2.12 (Empirical Loss R̂(f)). For a dataset {(xi, yi)}ni=1

R̂(f) =
1

n

∑
i

`(f(xi), f
∗(xi)) (2.10)

In principle, the population loss is not achievable and an ML practitioner works with the
population loss.

Lemma 2.13 (Facts about Error metrics). These pointwise identities are not useful as
f ∈ F depends on the training set. Later, more informative measures will be introduced.

1. E[R̂(f)] = R(f)

2. V [R̂(f)] = 1
nE[`(f(x), f∗(x))−R(f)]

1aka loss

10

2.1. Data and Error Decomposition

In terms of estimation algorithm, the implemented strategy is empirical risk minimiza-
tion, to achieve population loss minimization. In order to do this, a restriction on the
hypothesis space and a linked framework is introduced.

Definition 2.14 (Empirical Risk Minimization (ERM) Framework). Consider a convex
ball shaped constraint on the complexity:

Fδ = {f ∈ F : γ(f) ≤ δ}

Aim to find the best function, using as strategies:

• plain ERM
f̂δ = argmin

Fδ
{R̂(f)}

• penalized
f̂δ = argmin

Fδ
{R̂(f) + λγ(f)}

• interpolation
f̂δ = argmin

Fδ
{γ(f)} s.t. R̂(f) = 0 λ > 0

Observation 2.15 (On the interpolation form). The model chosen perfectly predicts on
available data and is the least complex among those belonging to this subset. In contexts
where noise is predominant, it is not advised as a choice, as the observed sample is not
a trustworthy representation of the X space. We can state characterize the interpolation
form as:

R̂(f) = 0 ⇐⇒ f̂δ(xi) = f∗(xi)∀i (2.11)

Using a lagrangian formulation, it is the "opposite" of the penalized form:

f̂δ = argmin
Fδ

{λR̂(f) + γ(f)}

The advantage of such approach is that the error can be analyzed through meaningful
decompositions. As a starting point, the best performance for the hypothesis class is
introduced to rank estimators [BB07].

Definition 2.16 (Baseline). The baseline2 for a family F is:

inf
f∈F
{R(f)} (2.12)

Theorem 2.17 (Error Decomposition). Denote f̂δ as f̂ . Then:

R(f̂) ≤ inf
f∈F
{R(f)}+ εopt + εstat + εappr (2.13)

Where:

εappr = inf
f∈Fδ
{R(f)} − inf

f∈F
{R(f)}

εopt = R̂(f̂)− inf
f∈Fδ
{R̂(f)}

εstat = 2 sup
f∈Fδ

{
|R(f̂)− R̂(f̂)|

} (2.14)

2In other references it is referred to as prophet

11

CHAPTER 2. HIGH-DIMENSIONAL LEARNING

Proof. Consider the population loss minus the baseline. The aim is to build known
quantities by adding and subtracting. Denote by E = R(f̂)− inf

f∈F
{R(f)} and work out

the new identity

E = R(f̂)− inf
f∈F
{R(f)}+ inf

f∈Fδ
{R(f)} − inf

f∈Fδ
{R(f)} add & subtract

(2.15)

= R(f̂)− inf
f∈Fδ
{R(f)}+ inf

f∈Fδ
{R(f)} − inf

f∈F
{R(f)}︸ ︷︷ ︸

εappr

reordering

(2.16)

= R(f̂)− inf
f∈Fδ
{R(f)}+ εappr first error

(2.17)

= R(f̂)− inf
f∈Fδ
{R(f)}+ εappr + R̂(f̂)− R̂(f̂) + inf

f∈Fδ
{R̂(f)} − inf

f∈Fδ
{R̂(f)} add & subtract

(2.18)

= R̂(f̂)− inf
f∈Fδ
{R̂(f)}︸ ︷︷ ︸

εopt

+R(f̂)− R̂(f̂) + inf
f∈Fδ
{R̂(f)} − inf

f∈Fδ
{R(f)}+ εappr reordering

(2.19)

= εopt +R(f̂)− inf
f∈Fδ
{R(f)} − R̂(f̂) + inf

f∈Fδ
{R(f)}+ εappr second error

(2.20)

≤ εopt + 2 sup
f∈Fδ

{
|R(f̂)− R̂(f̂)|

}
︸ ︷︷ ︸

εstat

+εappr third error

(2.21)

≤ εopt + εstat + εappr third error
(2.22)

Thus:
R(f̂) ≤ inf

f∈F
{R(f)}+ εopt + εstat + εappr (2.23)

Observation 2.18 (On Error Decomposition). The three ε can be interpreted as follows:

• εappr: the error dependent on the ball chosen with respect to the family specified. It
is big if the hypothesis space is too far from f∗

• εopt: the optimizable empirical loss error difference with respect to the best possible
in the ball. It is small if the algorithm can be efficiently solved in Fδ.

• εstat: the maximum population vs empirical distance within the ball chosen. Given
a finite dataset size n it grows as F grows in size.

2.2 The Curse of Dimensionality

This concept was introduced by Bellman in 1962. It is a formal analysis of interpolation
in a high dimensional regime, which shows its limitations. An example is used to break
guarantees.

12

2.2. The Curse of Dimensionality

Definition 2.19 (β−Lipschitz function). A (real) function f : X ⊆ Rd → R is
β−Lipschitz if:

∀x, x′ ∈ X |f(x)− f(x′)| ≤ β‖x− x′‖ (2.24)

It is a regularity condition which ensures at most β label distance with respect to feature
space distance. The bound induces a proximity in both spaces, with a β proportionality
limit.

Example 2.20 (Cursing a Lipschitz Function). Let f∗ be 1−Lipschitz, so that:

∀x, x′ ∈ X |f(x)− f(x′)| ≤ β‖x− x′‖

Assume also that:
xi ∼ N (0, Id)∀i (2.25)

The aim is to estimate how many samples are needed to bound the error by a pre-specified
constant ε.
First of all it can be observed that:

F = {f : Rd → R f 1−Lip f bounded} (2.26)

Is a Banach Space if endowed with the usual norm. Considering a set of Lipschitz
functions as estimators, the complexity measure will be the Lipschitz constant itself, and
the aim is to find the lowest complex interpolant function f̂ .

f̂ = argmin
f∈Fδ

{γ(f)} s.t. f(xi) = f∗(xi)∀i γ(f) = sup

{
|f(x)− f(x′)|
‖x− x′‖

}
(2.27)

Picking x ∼ ν the approach is similar to the proof of Theorem 2.17. Let xi0 be the
closest point to x in the training set. By construction, f̂ interpolating f∗ is at most
1−Lipschitz. Then:

|est− real| = |f̂(x)− f∗(x)| estimated vs real

= |f̂(x)− f∗(x) + f̂(xi0)− f̂(xi0) + f∗(xi0)− f∗(xi0)| add & subtract

≤ |f̂(x)− f̂(xi0)|+ |f̂(xi0)− f∗(xi0)|+ |f∗(xi0)− f∗(x)| triang ineq

≤ |f̂(x)− f̂(xi0)|+ |f∗(xi0)− f∗(x)| by interpolation

≤ 2β‖xi0 − x‖ by construction

≤ 2‖xi0 − x‖ as β = 1

The average variation from the prediction (squared) is then:

E = EX
[
|f̂(x)− f∗(x)|2

]
(2.28)

≤ 4EX
[
‖xi0 − x‖2

]
(2.29)

≤ 4W2
2 (ν, ν̂n) (2.30)

∼ n
−1
d (2.31)

Where the penultimate equality is obtained by recognizing that it is the well known
Wasserstrein distance between the true and the n dependent estimated distribution,
which is of order n

−1
d . Then:

E ∼ n
−1
d =⇒ n ∼ E−d →∞ (2.32)

Which tends to infinity with an exponential rate.

13

CHAPTER 2. HIGH-DIMENSIONAL LEARNING

The curse of dimensionality also pops up in approximation. Considering a family of
shallow Neural Networks:

F =

{
f(x) =

∑
j≤m

ajρ(wTj x+ b)

}
: m = #neurons (2.33)

The universal approximation Theorem by [HSW89],[Pin99],[Cyb89],[Bar93] ensures that
with one layer any function can be approximated. Since there are many versions, we
state it informally, and reroute to the different sources to have an idea of what theoretical
results ensure.

Theorem 2.21 (Universal Approximation Theorem (informal)). A neural network part
of the family:

F =

{
f(x) =

∑
j≥m

ajρ

(
wTj x+ bj

)}
(2.34)

where ρ is not a polynomial is dense3 in the class of continuous functions under uniform
compact topology4.

However, in practice, introducing complexity measures such as the number of neurons or
the path norm leads to the same problems.

A result by Maiorov[Mai99] finds that higher dimensions impact the approximation error
of the decomposition of Theorem 2.17.

Theorem 2.22 (Sobolev Curse). If f ∈ Hs where s is the number of finite derivatives
of f then:

=⇒ E = inf
g∈F

{
sup
x∈X
|f(x)− g(x)|

}
∈ Θ(m−

s
d) (2.35)

Which is again a tight exponential bound.

Similarly Barron proved that for a very limited class the curse on the approximation
error can be avoided [Bar93; Bar94]. The restriction is nevertheless too strong for
practical purposes.

Theorem 2.23 (Barron Class avoids the Curse). If f ∈ H1 is such that it belongs to the
Barron class where: ∫

|f̂(ω)|‖ω‖2dω ≤ ∞ (2.36)

Then:

=⇒ E = inf
g∈F

{
sup
x∈X
|f(x)− g(x)|

}
∈ O(m−1) ⊥⊥ d (2.37)

Which is not exponential in d.

A publication by Jin et. al proposes one important result, formalized in the next Theorem
[JNJ17].

Definition 2.24 (β−smooth functions). A function is β−smooth if its gradient is
β−Lipschitz. Namely:

∀x, x′ ∈ X ‖∇f(x′)−∇f(x)‖ ≤ β‖x− x′‖ (2.38)
3In practice, it can approximate with arbitrary error by increasing its depth
4Basically: overall uniformly.

14

2.2. The Curse of Dimensionality

Assumption 2.25 (Õ notation). The notation of a function f(n) ∈ Õ(n) means that:

f(n) ∈ O(nlog(n)) (2.39)

Theorem 2.26 (Perturbed GD quasi-dimension independence). noisy GD
Perturbed Gradient Descent finds an E approximate second order stationary points of a

β−smooth function in Õ
(
β

E2

)
⊥⊥ d iterations.

To summarize:

• Lipschitz Functions family is too large, impacting the statistical error
• Sobolev and Barron classes are too small, impacting the approximation error

In the next lectures, it will be shown that the geometric low dimensional substructure Ω

can be exploited to solve the high dimensionality of signals X (Ω).

15

https://arxiv.org/pdf/1703.00887.pdf

CHAPTER 2. HIGH-DIMENSIONAL LEARNING

16

Chapter 3

Geometric Priors

The contents of this chapter are mostly taken from two lectures.

In the first lecture the topics introduced will be:

• domains & signals
• symmetries of

– domain
– groups
– group actions and representations
– action of the group on the space of signals

• invariant & equivariant functions.

In the second lecture, we will dive into:

• more on invariance and equivariance
• scale separation
• the blueprint of GDL

3.1 Domains & Signals

In Geometric Deep Learning, data are signals on spaces. Exploiting this feature, learning
becomes tractable by symmetry and scale separation, two concepts that will be outlined.

In practice, the size and complexity of F is decreased without compromising the hypoth-
esis. The result is the same εappr and a reduction in εstat (defined in Theorem 2.17).

In Definition 2.1 it is declared that xi ∈ Ω. In the setting of GDL, Ω possibly has an
additional structure, part of the 5Gs:

• Grids
• Groups
• Graphs
• Geodesics & Gauges

As a key message, neural networks which process geometric data should make use of the
structure of Ω, and respect it.

Definition 3.1 (Space of signals X (Ω, C)). To be considered as the space X , but gen-
erated from Ω. In principle, the observations xi become functions from the domain to a
vector space, with dimensions called channels. Then, X (Ω, C) is the set of those signals.

17

CHAPTER 3. GEOMETRIC PRIORS

X (Ω, C) = {x : Ω→ C} : Ω domain, C v.s. (3.1)

Example 3.2 (Image as Signal). Let Ω = Zn × Zn be an image grid, and C = R3 =

RR × RG × RB the color assigned to a pixel in RGB quantization. Then:

X (Ω, C) = {x : Zn × Zn → R3} (3.2)

Example 3.3 (Molecular Graph). Let Ω = {1, . . . , n} be the vertices of a molecular
graph, and C = Rm be the possible atoms encoded as vectors. Then:

X (Ω, C) = {x : {1, . . . , n} → Rm} (3.3)

While Ω might not be a vector space, X (Ω, C) is a vector space, as functions mapping
to C satisfy the vector space axioms. The possible outcomes of additional structures are
included below:

Definition 3.4 (Operation on X (Ω, C)). Addition of x ∈ X (Ω, C) is defined as:

(αx+ βx′)(u) = αx(u) + βx′(u) ∀u ∈ Ω, ∀α, β ∈ R (3.4)

Definition 3.5 (Additional Hilbertian structure of X (Ω, C)). Given an inner product
〈·, ·〉C on C and a measure µ on Ω, an inner product on X (Ω, C) is obtained as1:

〈x, x′〉X (Ω,C) =

∫
Ω
〈x(u), x′(u)〉dµ(u) (3.5)

And the pair {X (Ω, C), 〈·, ·〉X (Ω,C)} forms a Hilbert space.

While a function maps element of the domain to elements of the channel space, it is
possible to consider more general structures known as fields. There, each element u ∈
Ω is mapped to a specific feature space Cu named fiber, which can be thought of as
tangent planes to the point u. The main requirement is that all {Cu}u∈Ω are isomorphic.
Furthermore, if a way to identify fibers is given, they can be formulated as functions.
For the purpose of this class, the analysis is restricted to function X (Ω, C) spaces. The
general case is analyzed in Chapter 8.

Observation 3.6 (Domain as Data). In some occasions, it could be the case that there is
no signal on Ω. In simple unweighted graphs nothing can be treated as such. Nevertheless,
it is possible to consider the adjacency matrix and define signals over the space:

X (Ω× Ω, C = Rn × Rn) (3.6)

3.2 Symmetries

Informally it is possible to assert that:

A symmetry of an object is a transformation that leaves some property unchanged
(invariant)

An example for a triangle is shown in Figure 3.1. It is also possible to form multiplication
tables which show all the possible combinations of moves.

Among the many types of symmetries, some are proposed below.
1A weighted (by the measure) integral of the inner products.

18

3.2. Symmetries

Figure 3.1: Symmetries of a triangle in a Cayley diagram

Figure 3.2: Symmetry of the Parametrization

Definition 3.7 (Symmetry of the Parametrization g). Let X and Y be the input and
label space. Consider W as the weight space. A symmetry of the parametrization of
f : X ×W → Y is a transformation g :W →W such that:

f(x, gw) = f(x,w) ∀x ∈ X w ∈ W (3.7)

Example 3.8 (Fully connected one layer Neural Network). For a fully connected one
layer NN, exchanging the weights of two nodes in the hidden layer does not change the
final output prediction. A graphical example is shown in Figure 3.2

Definition 3.9 (Symmetry of the Label Function). Let X and Y be the input and label
space, interacting through the ground truth label function L : X → Y. A transformation
g : X → X is a symmetry of the label when:

L(gx) = L(x) ∀x ∈ X ⇐⇒ L ◦ g = L (3.8)

Example 3.10 (Image Rotation). Considering a labeling function that recognizes dog
images, a transformation of the input g that rotates the image is not supposed to change
the labeling of a dog as a dog. In Figure 3.3, g is a 90 degrees rotation.

In some sense, learning classes for a labeling means learning its symmetries. Indeed, any
invertible map g which respects class bounds is a label symmetry. As a thought exercise,
any classification task can be devised as a distinction class, i.e. find the symmetries that
do not escape subsets corresponding to classes that partition Y. However, knowing all
the symmetries of a a set of objects is a priori infeasible.

Definition 3.11 (Symmetries on Ω domains g, Symmetry group). Let Ω be a domain
space with a structure. A transformation g : Ω → Ω is a symmetry if the structure is
preserved2. The set of those elements is the Symmetry Group.

2This concept will be expanded throughout the book

19

CHAPTER 3. GEOMETRIC PRIORS

Figure 3.3: Symmetry of the Label Function

Example 3.12 (Domain Symmetries). Among the easiest examples we find:

• an (unordered) set Ω = {1, . . . , n} and permutations
• a Euclidean spaceΩ = Rd, and any Euclidean Isometry such as rotations, transla-

tions or reflections, with an added metric (more about this later)
• a smooth manifold Ω and diffeomorphisms

The concept is highly dependent on what is Ω

A group of symmetries for an object must necessarily include:

• the identity transformation
• the inverse for each transformation
• the composition any series of transformations

These innate requirements are included in the much broader definition of algebraic group.

Definition 3.13 (Group G). A group is a pair made of a set and an operation defined on
it. The set is denoted as G, while the operation is shadowed gh : g, h ∈ G. Additionally,
the following conditions must hold:

• Associativity:
(gh)l = g(hl) ∀g, h, l ∈ G (3.9)

• Identity:
∃!e ∈ G | g = eg = ge ∀g ∈ G (3.10)

• Inverse:
∀g ∈ G ∃!g−1 ∈ G | gg−1 = g−1g = e (3.11)

• Closure:
gh ∈ G ∀g, h ∈ G (3.12)

Example 3.14 (Well known groups). Among the most intuitive groups we recognize:

• SO(2), the set of 2D rotations of an object
• U(1) = ({eiφ, φ ∈ [0, 2π]}, ·), the unitary group of (complex) roots of unity (with

usual multiplication)
• GL(d) = ({g ∈ Rd×d | det(g) 6= 0}, ·) the generalized linear group (non zero

determinant matrices, and usual matrix multiplication)

It is rather easy to check that these satisfy the axioms of Definition 3.13. On the contrary,
it is instructive to notice that slight modifications make the axioms collapse:

• {eiφ | φ ∈ [0, 2π]} is not closed under multiplication
• {g ∈ Rd×d | det(g) = 2} is not closed under matrix multiplication
• {g ∈ Rd×d} does not have an inverse for each element

20

3.2. Symmetries

Figure 3.4: Non Abelian O(2) group

Why do we need groups? Turns out that all geometric structures can be characterized
by groups.

Definition 3.15 (Abelian Groups). A commutative group G satisfying:

gh = hg∀g, h ∈ G (3.13)

Is Abelian.

Example 3.16 (Abelian and Non abelian groups). It is intuitive to notice that the group
of reflections and rotations O(2) is not abelian, for a trivial example, refer to Figure 3.4.

Similarly, SO(2) is abelian, while SO(3) is not.

Definition 3.17 (Group generators S). Let S ⊆ G where G is a group with some
operation. S is a generator of G if every element of the group can be expressed as a
finite composition of elements and inverses of the elements of S.

S : 〈S〉 =

{
g = s1s2 . . . sn | n <∞, si ∈ S ∨ s−1

i ∈ S, i ∈ {1, . . . , n}
}

= G (3.14)

The advantage of Definition 3.17 is that in some cases the infinite size of a group will be
reduced to its set of generators, easing the formalization process.

Example 3.18 (Back to triangle symmetries). The symmetries of a triangle of Figure
3.1 are generated by S : |S| = 2 where the two elements are:

• 60 degrees rotation
• Simple mirror reflection

Sometimes, it is even useful to consider substructures.

Definition 3.19 (Subgroup). Given a group G a subgroup is a subset H ⊆ G such that:

• it is closed ∀h1, h2 ∈ H h1h2 ∈ H

• for each element its inverse is in the subgroup ∀h ∈ H∃h−1 ∈ H

It is expressed as H ≤ G

Example 3.20 (Intuitive Subgroups). It is easy to check that the following are sub-
group/group pairs:

• (Zd,+) ≤ (Rd,+)

• SO(2) ≤ SO(3) (fix one axis)
• Trivial subgroups e ≤ G,G ≤ G ∀G

Group notions can be combined into composite groups as well.

21

CHAPTER 3. GEOMETRIC PRIORS

Figure 3.5: Group product SO(2)× (R,+)

Definition 3.21 (Product of groups). Given two groups (H,♠), (K,♦) define its com-
posite group G with the usual cartesian product:

G = H× K

(
(h̃, k̃), (h, k)

)
→ (h̃♠h, k̃♣k) (3.15)

Example 3.22 (Cylinder product group). Consider the cartesian product SO(2) ×
(R,+), it forms a group represented as a cylinder (see Figure 3.5

Observation 3.23 (Groups are more general than symmetries). Definition 3.13 does
not imply that the elements are necessarily symmetries. For example, considering again
the symmetries of a triangle of Figure 3.1, these can be interpreted as permutations over
the set Ω = {1, 2, 3} where each vertex is a number and a reference system is chosen. We
could however informally state that every group is a symmetry group for an appropriate
object.

Groups can be linked together by various forms of maps, each with its level of descriptivity
and properties.

Definition 3.24 (Homomorphism). Given two groups G,G′ with operations ♣,♠, a
homomorpshism is a map between the two which preserves the structure across its ap-
plication:

γ : G→ G′ : γ(g♣h) = γ(g)♠γ(h) ∀h, g ∈ G (3.16)

Proposition 3.25 (Basic properties of homomorphisms). For a homomorphism γ it
holds that:

1. γ(eG) = eG′

2. γ(g−1) = [γ(g)]−1∀g ∈ G

Proof. (Claim 1) Let eG and eG′ be the respective identity elements. Then by the
Definition of Homomorphism:

γ(eG) = γ(eG♣eG)

= γ(eG)♠γ(eG)

=⇒ γ(eG)♠eG′ = γ(eG)♠γ(eG)

=⇒ eG′ = γ(eG) cancellation rule

(Claim 2) Consider g, it has an inverse. By the definition of homomorphism:

γ(eG) = γ(g♣g−1)

= γ(g)♠γ(g−1)

= eG′

22

3.2. Symmetries

And also:

γ(eG) = γ(g−1♣g)

= γ(g−1)♠γ(g)

= eG′

Then γ(g−1) is the left and right inverse of γ(g). This means that it is its inverse in G′,
i.e. γ(g−1) = [γ(g)]−1 as claimed.

Definition 3.26 (Automorphism). An automorphism is a homomorphism of a group to
itself

While group homomorphisms are of great importance, information might be lost with
transformations. The next example gives an intuition behind this claim.

Example 3.27 (Group Homomorphism loses information). Consider the map

γ : (R,+)→ U(1) x→ eix (3.17)

It can be shown that it is a homomorphism with a simple computation graph

x, y x+ y

eix, eiy ei(x+y)

R

γ γ
U(1)

Yet, the 2π rotation in the complex plane for two vectors is equivalent to losing informa-
tion since in the R space this addition does not delete cyclically.

Motivated by the weakenesses pointed out in Example 3.27, it is possible to embed
stronger properties in the relations between groups.

Definition 3.28 (Isomorphism ∼=). Two groups G,G′ are isomorphic if there exists an
invertible homomorphism γ as in Definition 3.24 such that γ−1 is a homomorphism as
well. If such map exists we write:

G ∼= G′ (3.18)

Example 3.29 (Classical Isomorphisms). It can be proved that:

U(1) ∼= SO(2) ∼= SO(3)x ∼= SO(3)z (3.19)

Where the x, z pedix means with the axis fixed. A mixed graphical and matricial visu-
alization is proposed in Figure 3.6.

Homomorphisms are instantly useful to define another class of compound groups, through
the notion of semidirect product.

Definition 3.30 (Outer Semidirect Product o). Consider two groups G,H, and a ho-
momorphism γ : H → Aut(G), where Aut(G) is the group of automorphisms3 of G. A
semidirect product Goγ H is the group with:

• Elements in the cartesian product G× H

• operation • : Goγ H→ Goγ H defined as:(
(g1, h1) • (g2, h2)

)
→ (g1γ(h1)g2, h1h2) (3.20)

3it is rather easy to check that it is a group

23

CHAPTER 3. GEOMETRIC PRIORS

Figure 3.6: Isomorphism of different groups

Example 3.31 (Special Euclidean group as semidirect product). The group of transla-
tions and rotations SE(2) can be created by the semidirect product:

SE(2) := (R2,+)o SO(2) (3.21)

Which comes with well defined composition and inverses. The usual composition as of
Definition 3.21 would not be sufficient to satisfy the axioms of Definition 3.13

From Definition 3.11 the algebraic structure of the group is stated as the set of transfor-
mations:

g : Ω→ Ω (3.22)

The interest for these objects arises when they are applied to Ω and transferred in the
signal space X (Ω, C).

Definition 3.32 (Group Action). A group action is a map defined on G × Ω → Ω

denoted as (g, u) → g . u. It must be compatible with the group axioms of Definition
3.13 ∀g, h ∈ G∀u ∈ Ω.

(gh)l . u = g(hl . u)

∃!e ∈ G | g . u = eg . u = ge . u

∃!g−1 ∈ G | gg−1 . u = g−1g . u = e . u

gh . u∈ G

When applied multiple times, it might sometimes be the case that the . is used instead
of .

Lemma 3.33 (Sufficient conditions for Group Action). For a G to act on Ω it is sufficient
to check that the following holds:

g . (h . u) = (gh) . u (3.23)

Proof. If g.(h.u) = (gh).u, then any composition of elements counts as a group element
applied to that map. Closure is enough as it guarantees the existance of identities,
inverses and associative properties trivially by using the condition.

Example 3.34 (Euclidean group and images). Let G = E(2) the Euclidean group on
Ω = R2 consisting of translations on both axes and rotations. It is expressed as a matrix:

g = (θ, tx, ty) =

 cos θ sin θ tx
− sin θ cos θ ty

0 0 1

 (3.24)

24

3.2. Symmetries

Figure 3.7: Group action on signal space

The map from elements of the euclidean space R2 and this matrix is a group action:

(g, u) = ((θ, tx, ty), (x, y))→ g . u =

 cos θ sin θ tx
− sin θ cos θ ty

0 0 1

xy
1

 (3.25)

The same group action on a set can act on its signals X (Ω, C). Indeed, if the euclidean
space element is rotated, so is its image. The requirement for validity is stated in Propo-
sition 3.35.

Proposition 3.35 (Group Action on signal space). Let G act on Ω, then the action of
G on X (Ω, C) is:

(g . x)(u) = x(g−1u) (3.26)

Proof. By Lemma 3.33 it is sufficient to check the composition distribution ∀g, h ∈
G,∀x ∈ X (Ω, C).

(g . (h . x))(u) = outer composition (3.27)

= (h . x)(g−1u) assumption applied on g (3.28)

= x(h−1g−1u) assumption applied on h (3.29)

= ((gh) . x)(u) equivalent to the assumption (3.30)

Where the last passage comes from the composition of inverse group elements which is
of inversed order, i.e. (gh)−1 = h−1g−1. Thus, for the defined group action, composition
is verified, and disjoint group operations join together. Additionally, by Lemma 3.33 the
defined operation is sufficient to form a group action satisfying the axioms.

A graphical example from the slides is shown in Figure 3.7

Of this broad collection of group actions, an interesting kind that will be reminded often
is that of Group Representations, which add a linearity property to the map.

Definition 3.36 (Group Representation, with map ρ). A group representation is a linear
group action such that:

g.(αx+ βx′) = αg . x+ βg . x′ ∀α, β ∈ R, ∀x, x′ ∈ X (Ω, C) (3.31)

25

CHAPTER 3. GEOMETRIC PRIORS

It has an n dimensional representation4 denoted by a matrix ρ : G→ Rn×Rn which has
an inverse for each group element:

∃ρ−1 ∀g ∈ G (3.32)

And works with composition:

ρ(gh) = ρ(g)ρ(h) ∀g, h ∈ G (3.33)

Observation 3.37 (Representations as Homomorphisms). Notice that a group represen-
tation ρ as in Definition 3.36 maps to invertible matrices, which means that ρ establishes
a homomorphism as in Definition 3.24 of the form:

ρ : G→ GL(Rn) (3.34)

Where n is the dimension of the representation matrix and GL is the general linear group.

Proposition 3.38 (Group Representation map on signal space). As in Proposition 3.35
it can be verified that:

ρ(g)x(u) = x(g−1u) =⇒ (ρ(g))(ρ(hx)(u) = (ρ(gh)(x))(u) ∀g, h ∈ G,∀x ∈ X (Ω, C)
(3.35)

Proof. Use the same concepts of Proposition 3.35

Some examples below will clarify important concepts linked to representations.

Example 3.39 (Translating Pixels). Let G = (Z,+) the set of integer translations with
addition. Consider as domain Ω = Z5. An action is:

g = n on u ∈ Ω : (g, u)→ (n+ u)(mod5) (3.36)

Which is a 5-cyclic shift, represented in the signals space X (Ω, C) as a matrix such that
the single shift is repeated n times:

ρ(n) =

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

n

∀g = n ∈ G

Example 3.40 (Permuting Vertices). Let G = Sn the group of permutations on the
set {1, . . . , n} and Ω = V the set of vertices of a graph. Then, the elements of the
group are equivalent to permutations represented as Pindices. There are three kinds of
representations for Sn:

• For a classification task, the wish is that up to permutation the given label is the
same, namely a transformation ρ0 such that:

ρ0(P)s = 1 · s ∀P ∈ G (3.37)

• If a feature is associated to the nodes, the representation ρ1 should mimic a per-
mutation, as to preserve the assignment to each node:

ρ1(P)s = Ps ∀P ∈ G (3.38)
4Where n is in general arbitrary and not linked to the size of G or Ω, but will often coincide in the

use case of Neural Networks.

26

3.2. Symmetries

Figure 3.8: Symmetry of the description

• If a property is stored in a binary relation (such as edge connections with an
adjacency matrix, possibly weighted), the representation ρ2 should maintain the
feature up to transformations on both ends. Namely for an adjacency like matrix
M it will be the case that:

ρ2(P)M = PMP T ∀P ∈ G (3.39)

It is possible to check that all of the above satisfy the axioms of a representation.

While this approach is well defined in a mathematical framework, it is worth stressing that
sometimes the implementation at a computer level adds layers of potential representations
that are not proper to the object. For example, a graph is an unordered collection of
vertices and edges, but when coded, it is intrinsically assigned an order, which however
should not be considered when defining representations. It is important to consider
symmetries of the representation and not symmetries of the description.

Example 3.41 (Graphs and order). Given a graph, a number is assigned for each vertex
to denote it. The usual example is {1, . . . , n}. For this graph, many adjacency matrices
can be defined by swapping the order of the rows and columns, where the symmetry is
of the representation. On the contrary, assigning different numbers to different vertices
would give rise to the same graph, but from a symmetry of the description. Figure 3.8
shows the symmetry we are not interested in.

In the context of a symmetry of the label (Definition 3.9), it is possible to give a more
formal treatment of the subject through the concept of orbits and representations.

Definition 3.42 (Orbit Ox). For a given signal x ∈ X (Ω, C) an orbit Ox with respect
to a group G is the set of all possible representations of such signal.

Ox = {g . x ∈ X (Ω, C) | x ∈ X (Ω, C), g ∈ G} (3.40)

Example 3.43 (Rotations on the plane slice it into circles). The group action of 2D
rotations G = SO(2) on elements of the euclidean 2 dimensional space Ω = R2. Each
orbit is an equivalence relation, which partitions the signals space. In this case Ox ∼=
S1 ∀x ∈ X (Ω, C) (i.e. the circle).

For the purpose of distinguishing the transformations in action, we add a further notion
through a definition.

Definition 3.44 (Quotient Map q.). Given a group G acting on a set X the quotient
map is a map that sends points to their orbits:

q. : X → G\X x→ G . x (3.41)

27

CHAPTER 3. GEOMETRIC PRIORS

3.3 Invariance and Equivariance

The symmetry of signals trivially returns a structured function to learn, as symmetric
elements must map to the same output space. This characterization is that of invariant
representations.

Definition 3.45 (Invariant Representation). A function f : X (Ω, C)→ Y is G-invariant
if:

f(ρ(g)x) = f(x) ∀g ∈ G, x ∈ X (Ω, C) (3.42)

Namely, for each orbit of symmetry the function does not change its output.
In terms of group actions, we could equivalently state that:

f(g . x) = f(x) ∀g ∈ G, x ∈ X (Ω, C) (3.43)

Which is formalized in the computation map:

x y

x′

g.X

f

f

The above requirement gives rise to a nice property of the quotient map of Definition
3.44.

Proposition 3.46 (Invariant maps descend to quotient). For all G invariant functions
f there is a map f̃ mapping from the quotient space to the labels.

∀f | G invariant ∃f̃ : G \X → Y : f = f̃ ◦ q. (3.44)

Proof. We argue that the map works as follows:

X Y

G \ X

q.

f

f

And claim that such map must naturally exist since any element of the orbit, in case
of invariance, must map to the same element in the output space Y. Thus, there must
necessarily be a map f̃ which for any element of the orbit Ox∀x ∈ X goes to the desired
space in Y. The composition of the orbit sending map q. and this necessary function f̃
will return the desired original function f .

The importance of Proposition 3.46 is that the hypothesis space F(X (Ω, C)) can be
reduced to a less parametrized one since many signals are equivalent from a classification
point of view.

On the other hand, in the context of Convolutional Neural Networks, the microscopic to
macroscpic judgment process of the classifier would be damaged by invariant represen-
tations at intermediate levels. Consider as an example rotating only part of the image,
as shown in Figure 3.9

For this purpose, while invariant subparts are not good, equivariant subparts are what
is needed.

28

3.3. Invariance and Equivariance

Figure 3.9: Partial rotation damages learning

Definition 3.47 (Equivariant functions, aka intertwiners). A function f : X (Ω, C) →
X (Ω′, C′) is G-equivariant if:

f(ρin(g)x) = ρout(g)f(x) ∀g ∈ G (3.45)

Namely, input and output change accordingly in the same way for intermediate layers of
representation.
Again, in the fashion of group actions, the requirement becomes:

f(g . x) = g . f(x) ∀g ∈ G, x ∈ X (Ω, C) (3.46)

with computation graph:

x y

x′ y′

g.X

f

g.Y

f

Example 3.48 (Shift Invariance and equivariance in Computer Vision). Moving an
object across the space should not contaminate its classification as for example a cat or
a dog.
For a Convolutional Neural Network, intermediate layers are equivariant.

Observation 3.49 (Linking invariance and equivariance). Invariant maps can be seen as
a special case of equivariant maps, where the trivial action on the final output space Y is
applied. To understand this, consider a slightly adjusted computation graph for invariant
functions as in Definition 3.45:

x y

x′ y

g.X

f

Id=G

f

Notice that in this case the lower mapping f(x′) is y and not y′.
Similarly, we could argue that equivariant maps are invariant under group actions. Let
f be equivariant, then:

f(g .X x) = f ◦ (g .X x) (3.47)

= (g.Y) ◦ (f(x)) by Equivariance (3.48)

= g .Y f(x) (3.49)

⇐⇒ (g−1.Y) ◦ f ◦ (g .X x) = f(x) (3.50)

Where we just right multiply by the inverse of the group action on the output space .Y .
The last expression highlights an invariance as that of the third point of Example 3.40.

29

CHAPTER 3. GEOMETRIC PRIORS

In principle, there are multiple representations that a group can take. Below we remind
some notable ones:

Definition 3.50 (Other representations). Restricted Representation
A representation mapping elements of a subgroup H ≤ G into their representation:

ResGHρ : G→ GL(V) g→

{
ρ(g) if g ∈ H

ρ(e) if g /∈ H
(3.51)

Where V is a vector subspace, and we recognize that ResGHρ sends elements of the sub-
group to their representation and the others to the identity representation. Such a con-
struction can be used when we require a network to be equivariant to the whole group
up to some point in which we want to restrict the symmetries implemented (see Example
3.51).

Direct Sum representation
Given two groups with vector spaces let:

(ρ1 ⊕ ρ2)(g)(v1 ⊕ v2) (3.52)

Namely, a stacking of vertices (see Example 3.34, which stacks rotation and translation).

Tensor Product representation
Simultaneously permute the rows and columns of a matrix as g⊗ g.

Example 3.51 (G-CNN and H-CNN for flowers). Consider the task of classifying flowers.
In a CNN, the first layers would look at small sized sections of the image. Ideally we
wish that those captured both translation and rotation equivariance. On the contrary,
at the final layers, when the portions analyzed are bigger in size, it might be sufficient to
consider translation only. Recalling that (R2,+) ≤ SE(2) we could build a network that
is first an SE(2)-CNN and then through a restriction representation as in Definition 3.50
eventually restrict to (R2,+)-CNN

Definition 3.52 (Equivariant Networks). Build a general architecture where:

• i = 1, . . . , L are layers fo the network
• Xi are feature vector spaces
• fi are maps between layers
• G is a symmetry group with representations ρi ∀Xi such that:

fi ◦ ρi−1(g)(xi) = ρi(g) ◦ fi(xi) ∀xi ∈ Xi (3.53)

A graphical example is shown in Figure 3.10 It is also possible to show that if all layers
are equivariant then their composition is.

Equivariance provides consistency across orbits. Indeed it enforces that objects in the
input space that map to the same output also do so if the same representation is applied
to them. Formally, an equivariant network is such that:

x, y ∈ X (Ω, C) : f(x) = f(y) =⇒ f ◦ ρ1(g)x = f ◦ ρ1(g)y = ρ2(g) ◦ f(x) (3.54)

It was found that CNNs learn equivariant representations up to some degree [LV15].
Summarizing it is worth recalling that:

• equivariance is layerwise, not on data as a whole
• a symmetry on the domain acts linearly, with a group representation

30

3.3. Invariance and Equivariance

Figure 3.10: Equivariant Network

• often, this leads to label symmetry

Recalling previous steps we have that:

• The aim is to learn f∗ : X → R
• The input space is a signal on a geometric domain Ω denoted as X (Ω, C)
• Ω presents transformations through a group G

• The latter are seen as group representations on the signal space g : X (Ω, C) →
X (Ω, C) as in Proposition 3.35

Then, the aim is translated to learning an optimal candidate in the hypothesis class5

F(X (Ω, C),Ω). An additional assumption ensures that the curse of dimensionality can
be avoided.

Assumption 3.53 (Invariance of the target function). The target function f∗ is G-
invariant.

f∗(g . x) = f∗(x) ∀x ∈ X (Ω, C), g ∈ G (3.55)

A very natural and intuititive object is the group smoothing operator.

Definition 3.54 (Group Smoothing Operator SG). For a group G which is discrete and
finite define:

SGf =
1

|G|
∑
g∈G

f ◦ g =⇒ SGf(x) =
1

|G|
∑
g∈G

f(g . x) ∀x ∈ X (Ω, C) (3.56)

Which is the average over an orbit.
For the general case, the definition becomes:

f(x) =
1

µ(G)

∫
G
f(g . x)dµ(g) = f

(
1

µ(G)

∫
G
g . xdµ(g)

)
(3.57)

Where µ(·) is the Haar measure of a group.

Lemma 3.55 (Smoothing operator properties). Considering a smoothing operator the
following hold.

1. The smoothing does not affect the original function.

SGf
∗ = f∗ (3.58)

5For simplicity often denoted as F(X (Ω, C))

31

CHAPTER 3. GEOMETRIC PRIORS

2. it is possible to create an invariant function class as:

SGF = {SGf : f ∈ F} (3.59)

Proof. Consider the easy case of Equation 3.56 for simplicity. For point 1 observe that:

SGf
∗(x) =

1

|G|
∑
g∈G

f∗(g . x) =
1

|G|
∑
g∈G

f∗(x) =
1

|G|
|G|f∗(x) = f∗(x) ∀x ∈ X (Ω, C)

(3.60)
Where the first inequality is by definition and the second by assumption.
Considering point 2, it is also sufficient to apply the definition. Indeed, a smoothed
operator SGf is such that:

SGf(h . x) =
1

|G|
∑
g∈G

f(h.(g . x)) let g′ = hg

=
1

|G|
∑
g′∈G

f(g′ . x)

= SGf(x) ∀x ∈ X (Ω, C) invariance Def 3.45

Where we used the fact that hG = G in coset terms, making the sum over g′ run over all
elements of the group G.

Definition 3.56 (Invariant Function Class SGF). Using the objects introduced before
and the result of Lemma 3.55, the invariant function class is defined as:

{SGf : f ∈ F} (3.61)

For a family of functions F .

An example is proposed below.

Example 3.57 (Grids and invariance groups). Let Ω = {1, . . . , d} and G = Cd the
cyclic group of order d. Consider as Function class F = {f(x) = pk(x1, . . . , xd)} the set
of polynomials of degree k. Then, the invariant class is:

SGF = {SGf : f ∈ F} (3.62)

=⇒ SGf =
1

d

∑
g∈G

f ◦ g (3.63)

=⇒ SGf(x) =
1

d

∑
g∈G

pk(g.(x1, . . . , xd)) (3.64)

=
1

d

∑
g∈G

pk(g . x) (3.65)

The coefficients of the polynomial are fixed, while the xis are cyclically exchanged. This
means that the mean of all the d transformations is:

SGf(x) = pk(x . . . , x) : x =
1

d

d∑
i=1

xi ∀pk ∈ F , x ∈ X (Ω, C) (3.66)

Example 3.58 (Lipschitz smoothing). Let F be the class of β-Lipschitz functions. Its
smoothed version takes into account the group structure in the Lipschitzness as:

f ∈ SGF : |f(x)− f(x′)| ≤ β inf
g∈G

{
‖x− g . x′‖

}
(3.67)

32

3.4. Scale Separation

Theorem 3.59 (Approximation error and Smoothing). Implementing a smoothing op-
erator, the approximation error is not affected.

Proof. Applying the definition:

εappr = inf
f∈F

{
‖f − f∗‖2

}
Where the smoothing operator is an orthogonal projection such that:

‖f − f∗‖2 = ‖SGf − SGf∗‖2 + ‖(I − SG)f − (I − SG)f∗‖2 By orthogonalization

= ‖SGf − f∗‖2 + ‖(I − SG)f‖2 By Lemma 3.55

Where taking the infimum the result is the same in the restricted class:

inf
f∈F

{
‖f − f∗‖2

}
= inf

f∈SGF

{
‖f − f∗‖2

}
(3.68)

While the approximation error is not reduced, it can be shown that the statistical error
is. Making the hypothesis class smaller, this is guaranteed, a quantification of the error
for Lipschitz functions is proposed in the next example. Some notable works lead to this
result. [MMM21],[BVB21][LB03].

Theorem 3.60 (Kernel Ridge Regression). Using a G-invariant Kernel Ridge Regression
the generalization error of a Lipschitz G-invariant function f∗ as in example 3.58 is such
that:

E[R(f̃)] . (|G|n)−
1
d (3.69)

The above result is still exponential in the size of the Group, and proves that invariance
is not sufficient to avoid the curse of dimensionality, due to the exponential in d relation.
Some open problems in this direction give a degree of confidence for the tightness of this
degree, but are still to be explored. Summarizing, the two key conclusions are:

1. Group invariance through symmetries is not sufficient to break the curse of dimen-
sionality

2. It is still unclear how to derive the classes practically

3.4 Scale Separation

The methodology introduced by many researchers makes use of the compositionality
principle to break the curse of dimensionality. A hierarchical structure could be useful,
but a formalization in this framework is missing. Inferencing from the Physics field,
multiscale structures are considered. The applications include but are not limited to:

• turbulence
• percolation

In this document, the basics of Multi Resolution Analysis (MRA) will be outlined in the
context of a 2D grid as Ω. The treatment is informal.
A signal x ∈ L2(Ω) is decomposed into:

• a new signal x̃ ∈ L2(Ω̃) where Ω̃ is a coarser grid
• information to obtain x from x̃

33

CHAPTER 3. GEOMETRIC PRIORS

Figure 3.11: Mountain vs Beach

Figure 3.12: Mountain vs Beach coarsed

This tool goes far beyond ML and is based on concepts from Fourier Analysis. The link
with high dimensional learning is the use of a scale separating prior.
If the target function is such that f∗ ≈ f̃∗(x̃) so f∗ can be approximated in a coarser
domain, then it can be stated that:

since dim(X) ∝ |Ω|, |Ω̃| � |Ω| =⇒ X (Ω̃) avoids curse (3.70)

As the coarsed signal is enough. However, as shown in Example 3.61, this is not always
enough, and additional considerations must be made.

Example 3.61 (Mountains, Beaches, MNIST). The task of distinguishing mountains
from beaches is easy if the image is downgraded, while MNIST is not trivial if the
quality is reduced. See Figures 3.11, 3.12, 3.13, 3.14 for reference.

In another situation, assume that the target function is such that: f∗(x) ≈
∑

u g(xu)

where f∗ is approximated by a sum of patches. This case happens when the structure
has a spatial homogeneity underlining. The relevant dimension is that of the patch, and
the curse is avoided. More details can be found in [FCW21]. In Figures 3.15 and 3.16
it is possible to see a good and a bad approximation. In the latter, approximating with
local classification classifies an animal as the texture on the surface.

While these two cases present weaknesses, a combination of both presents high adapt-
ability and potential. Adding a coarse level function f̃ that captures information about
the transformed input it is possible to build a compositional chain. There, the signal is

Figure 3.13: MNIST

34

3.4. Scale Separation

Figure 3.14: MNIST coarsed

Figure 3.15: Patches are the image

Figure 3.16: Patches are not the image

35

CHAPTER 3. GEOMETRIC PRIORS

Figure 3.17: Compositional Model

coarsed to a different space through a non linear transformation and a non linear func-
tion is learnt. The hierarchical structure imposed will hopefully come with an improved
performance. Figure 3.17 provides a graphical example of the process.

So far, compositional models have not been completely understood. There are instances
in which the approach is guaranteed to come with a benefit such as Dynamic Program-
ming. Yet, the theoretical landscape is still nebulous. Partially ignoring the incomplete-
ness of the theoretical landscape, we will show in the next section that group invariance
and scale separation characterize Deep Learning models.

3.5 The Blueprint of Geometric Deep Learning

Considering the just reported notions of simmetry and scale separation, it is possible to
learn representations of high dimensional functions f on the space of signals X (Ω, C),
with an underlying structure Ω and a paired symmetry group G.

For this purpose, the group average and a composition property of maps are introduced.

Definition 3.62 (Group Average Operator A). For a signal and a group symmetry,
simply define the group average as the average over the orbit of such signal.

Ax =
1

µ(g)

∫
G
g . xdµ(g) (3.71)

Theorem 3.63 (Composition of Linear Equivariants and Local non Linear Maps). Let
B : X (Ω, C) → X (Ω, C′) be equivariant and σ : C′ → C′′ be a non linear (possibly local)
map. Assume further that σ is applied element wise, such that: (σ(x))(u) := σ(x(u)).
Then, the composition:

U := (σ ◦B) : X (Ω, C)→ X (Ω, C′′) (3.72)

Is G-equivariant.

Proof. Observe that U maps signals to different channel spaces, keeping the structure
fixed. The aim is to show that:

U(g . x) = g . u(x) ∀x ∈ X (Ω, C), g ∈ G (3.73)

36

3.5. The Blueprint of Geometric Deep Learning

Figure 3.18: Graph neural network GDL Blueprint

Working out the steps:

U(g . x) = σ ◦B(g . x) By definition (3.74)

= σ ◦ g . B(x) By B equivariant (3.75)

= (σ(x′))(u) Where x′ = g . B(x) (3.76)

= σ(x′(u)) By definition (3.77)

= g . σ(B(x)(u)) replacing x′ and by element wise σ (3.78)

= g . u(x) By definition (3.79)

Thus, the composed map is G-equivariant.

In the following Chapters, it will be shown that the combination of a linear G invariant
map through the average smoothing operator SGf and a series of equivariant maps U is
sufficient to build most of the currently known network architectures, and to adapt to
universal approximation theorems. This set of objects is referred to as the GDL blueprint,
summarized below.

Definition 3.64 (The GDL Blueprint). Consider the following building blocks:

• A linear G-equivariant layer B : X (Ω, C)→ X (Ω′, C′)
• A non linearity σ : C → C′ applied element wise as (σ(x))(u) = σ(x(u))

• A coarsening operator (local pooling) P : X (Ω, C)→ X (ω′, C) where Ω′ ⊆ Ω

• A G-invariant (global pooling) layer A : X (Ω, C)→ Y

By Lemma 3.55 and Theorem 3.63 a composition6 such as:

f = A ◦ σJ ◦BJ ◦ PJ−1 ◦ . . . P1 ◦ σ1 ◦B1 (3.80)

Makes f : X (Ω, C) → Y G-invariant. An example for a Neural Network on a Graph is
shown in Figure 3.18.

Observation 3.65 (On the Blueprint). It is worth clearing out that:

• B is non linear and G-Equivariant since the non linearity is provided by σ
• Global pooling aggregates information of the entire domain

6Where input and output dimensions of adjacent maps coincide

37

CHAPTER 3. GEOMETRIC PRIORS

In conclusion, the concepts of Geometrics Priors, invariance and equivariance provide
a principled construction of Neural Network architectures, through the introduction of
symmetries and scale separation. While the precise assumptions are still to be cleared
from a theoretical perspective, it is possible that the hypothesis spaces designed with
such method may break the curse of dimensionality. In the next Chapters, the building
blocks will be cleared further.
We will eventually show that popular architectures, with the right choice of the domain
Ω, perfectly align with the GDL Blueprint.

38

Chapter 4

Graphs & Sets

The image of the world around us, which we
carry in our head, is just a model. Nobody in
his head imagines all the world, government or
country. He has only selected concepts, and
relationships between them, and uses those to
represent the real system.

Jay Wright Forrester

In previous discussions, it was shown that there are guiding principles to synthesize and
steer the design of Deep Learning architectures. This framework allows to reason about
old approaches and propose new methods. From Definition 3.64 we recognize that we
will make use of:

• Symmetries
• G-Equivariance
• G-Invariance
• Locality (element wise σ
• Scale Separation

This Chapter is focused on Graphs and sets, and more precisely on implementations such
as:

• Graph Neural Networks (GNN)
• Deepsets [Zah+18]
• Transformers

The first lecture, from Section 4.1.1 to 4.1.3 is devolved to understanding:

• the blueprint on graphs & sets
• permutation invariance and equivariance notions
• Deepsets [Zah+18] as the blueprint for set neural networks
• permutation equivariant GNN layers

4.1 Foundational Bricks

Observation 4.1 (Why start with graphs?). Graphs are a convenient discrete domain
with minimal geometric assumptions, and great generalization power. Most of the struc-
tures proposed in later Chapters are up to some point graphs.

39

CHAPTER 4. GRAPHS & SETS

For general graphs and sets, symmetry is instantiated whenever two objects present the
same underlying structure but a different appearance.

Definition 4.2 (Permutation Group Σn). A permutation group Σn for a set of unordered
elements {1, . . . , n} is the set of bijections paired with the composition of permutations.
It is the symmetry group of Graphs and Sets, i.e. G = Σn.

4.1.1 Sets

Sets are unconnected graphs (i.e. vertices with not edges), with the peculiarity of a
simpler domain, and many conclusions carrying over well to the general setting.

Definition 4.3 (Setup for learning on a set). The domain is an unordered collection of
points Ω = V, where |V| = n. Each point has a feature xi ∈ Rk ∀i, which is the channel
of the signal1.
The features can be stacked in a node feature matrix:

X = (x1, . . . , xn)T ∈ R|V| × Rk (4.1)

While this is needed for processing purposes, it inherently specifies an order (row wise),
which is to be inhibited.
For n elements, there are n! ways to order them, unambiguously specified by permuta-
tions, which have as group representation of the group action (from Definition 3.36) the
set of permutation matrices:

∀g ∈ G ∃!ρ(g) = P ∈ R|V| × R|V| where

{
Pvu ∈ {0, 1} ∀v, u ∈ V∑

u Pvu = 1
∑

v Puv = 1
(4.2)

Following the Blueprint from Definition 3.64, invariance reads:

f(PX) = f(X) ∀P (4.3)

Where in this case f ≡ A the group average (Definition ??) and the role of g is expressed
by P .

The final invariant aggregation that f performs can be of many types. For the Deepsets
model, which will be analized further in other subsections, we have that[Zah+18]:

f(X) = φ

(∑
i∈V

ψ(xi)

)
(4.4)

Where the invariance is guaranteed by the operator
∑

. However, there are other aggre-
gators that are not affected by the order such as:

• avg

• max

• min

For this reason, a general notation is implemented.

Definition 4.4 (Permutation Invariant Operator
⊕

). Denote a general permutation
invariant operator over a set V as

⊕
v∈V

1Namely C = Rk

40

4.1. Foundational Bricks

At the intermediate layers, where the computations are performed at a node level, in-
variance destroys the diversity of the input. Permutation equivariance, again from the
Blueprint of Definition 3.64, is adapted as:

F (PX) = PF (X) ∀P (4.5)

Another important concept is preserving locality of operations to guarantee stability
under deformations. Indeed, locality ensures that errors do not propagate at a global
level. For a set, it is implemented by imposing that the transformation for each layer is
done node wise as:

hi = ψ(xi)∀i stacked as H = F (X) (4.6)

Without additional structure or assumptions, this approach is usually the most descrip-
tive possible.

The formalization, as before, is an aggregation of equivariant ψ(·) functions with an
invariant tail to aggregate if needed ψ(·), summarized as:

f(X) = φ

(⊕
i∈V

ψ(xi)

)
(4.7)

4.1.2 Graphs

Definition 4.5 (Graph G). A graph is a set with connections, denoted as G = (V, E)

where E ⊆ V × V. The easiest representation of a graph is its adjacency matrix A:

A =

{
aij = 1 (i, j) ∈ E
aij = 0 otherwise

(4.8)

Definition 4.6 (Setup for learning on a graph). The domain now includes the edges
Ω = (V, E). Each vertex has a feature xi ∈ Rk. While there are more general cases in
which also edges and instances of the graph have features, we first explain the easiest
model and then expand to the most general case.
In this setting, an unwanted order is set for the rows of X and rows and columns of A.

As before, permutation invariance and equivariance must hold in the respective cases. A
function on the space of signals takes two inputs: features X and connections A. The
two are permuted differently. X is permuted on the row order only, A is permuted on
both rows and columns.

f | f(X,A)→ R F | F (X,A)→ X (Ω′, C′) (4.9)

For this reason, the properties are expressed as:

Invariance f(PX,PAP T) = f(X,A) (4.10)

Equivariance F (PX,PAP T) = PF (X,A) (4.11)

For the second property, locality concepts are exploited. In the context of graphs, which
differently from sets present relationships, it is possible to make use of neighborhoods.

Definition 4.7 (Neighborhood functionN (·)). A neighborhood functionN : V → PowV

returns all vertices connected to a given input. The image is the power set of the vertex
set. By convention, a node u has itself as a neighbor.

Nu = {u, v1, . . .} : ∀vi∃(u, vi) ∈ E (4.12)

For a given graph G with features X, the multiset of features of neighbors of a given
node i ∈ V is denoted as XNi

41

CHAPTER 4. GRAPHS & SETS

A local function operates over the node itself and its neighbors as φ(xi, XNi). Aggregat-
ing, a function F (·, ·) takes the form:

F (X,A) =

— φ(x1, XN1) —
— . . . —
— φ(xn, XNn) —

 (4.13)

Again, nodes’ features have a custom order in the matrix, and so does the adjacency
matrix A, which itself induces an order in XNi∀i. Nevertheless, to build an equivariant
function, only one condition is needed, as stated below.

Proposition 4.8 (Graph permutation equivariance sufficient conditions). For F (·, ·) to
be Σn-Equivariant for a graph G it is sufficient that φ is independent of the order of the
nodes in XNi∀i ∈ V.

Proof. Assume φ is independent of order of the nodes in the neighbors multiset. Namely,
φ is invariant:

φ(xi, PXNiP
T) = φ(xi, XNi)∀i ∈ V, ∀P (4.14)

Then, for a general permutation P on F , the order of the rows will be swapped. At the
same time, the order of the multiset for each row will be swapped without impacting φ due
to its equivariance. Denoting as p(i) the vertex returned from the bijection permutation
for a given i ∈ V:

F (PX,PAP T) =

— φ(xp(1), PXNp(1)P
T) —

— . . . —
— φ(xp(n), PXNp(n)P

T) —

 (4.15)

=

— φ(xp(1), XNp(1)) —
— . . . —
— φ(xp(n), XNp(n)) —

 (4.16)

= P

— φ(x1, XN1) —
— . . . —
— φ(xn, XNn) —

 (4.17)

= PF (X,A) (4.18)

Where the first equality follows by the notation implemented, the second by assumption,
and the third by reordering the vertices at the original setup.

For a single vertex i ∈ V, a function φ(·, ·) of its features and those of its neighbors is used
to generate its latent form hi. A visualization of the update for a single returning the
latent hi = ψ(xi, XNi) is proposed in Figure 4.1. The resulting transformation is obtained
through stacking permutation invariant functions and is permutation equivariant.

4.1.3 The blueprint on graphs

For a general GNN it is common to refer to F as a GNN layer and φ as a local permutation
invariant diffusion / propagation / message passing function. These claims are justified
by the previous subsection. Analyzing a series of equivariant layers, a GNN can be
summarized as a transformation of features of a graph (X,A) into latent versions (H,A),
with the option of a final permutation invariant aggregation. Figure 4.2 again depicts
such a scenario. The most explored inference problems include:

42

4.1. Foundational Bricks

Figure 4.1: Latent node features generation

Figure 4.2: GNN equivariant transformation of features for a node i

• individual nodes: output a decision for each node i ∈ V, Figure 4.3:

zi = f(hi) ∀i ∈ V (4.19)

• aggregated nodes: return a permutation invariant result at a graph level, Figure
4.4:

zG = f(
⊕
i∈V

hi) (4.20)

• link prediction: estimate the probability that a connection of vertices i, j exists
at all, Figure 4.5

zij = f(hi, hj , eij) ∀(i, j) ∈ E (4.21)

Figure 4.3: GNN node classification

43

CHAPTER 4. GRAPHS & SETS

Figure 4.4: GNN graph classification

Figure 4.5: GNN link prediction

A very intense area of research is the choice of the φ(·, ·) function. Most of the im-
plementations fall under the umbrella of either of the three methods proposed below.

Definition 4.9 (Convolutional CNN φ). For each neighbor j of the vertex i ∈ V, fix the
weight to cij . Often the degree of j is used: cij = 1

deg(j) , or some measure depending on
the adjancency matrix A. Determine the latent features of the node as:

hi = φ

(
xi,
⊕
j∈Ni

cijψ(xj)

)
(4.22)

Convolutional GNNs are used for homophilous graphs2, where the edge weight is in-
tepreted as the likelihood of the two vertices having the same label. See Figure 4.6 for
a graphical instance of the computations. It is rather fast to implement and thus highly
scalable.
Computes one scalar for each edge to weight the ψ contribution.
There are many architectures using this technique [DBV17], [KW17], [Wu+19].

While this approach already comes with a wide applicability spectrum, consider the case
in which a user retweets 10 tweets of someone else, strongly disagreeing. In this scenario,
though the edge connection might be strong, the label of the opinion should be opposite.
Nevertheless, a fixed weight does not allow for granularity in the orientation choice. This
motivates a slight modification, which moves away from considering the graph topology
only.

Definition 4.10 (Attentional GNNs φ). Define an implicit weight attention function
as αij = a(xi, xj) that changes across different pairs (i, j). Determine latent features of

2i.e. graphs that present connections when the node features are similar

44

4.1. Foundational Bricks

Figure 4.6: Convolutional GNN

Figure 4.7: Attentional GNN

node i ∈ V as:

hi = φ

(
xi,
⊕
j∈Ni

αijψ(xj)

)
(4.23)

By construction, it does not encode strictly homophilous type connections, as it is com-
puted based on features xi, xj . Due to its formulation, it can be interpreted as a fair
tradeoff between interpretability, scale and capacity. In Figure 4.7 the reader can find a
pictorial representation of the operation. Attention networks are widely implemented in
literature [Mon+17], [Vel+18], [BAY22].

While providing more flexibility at a higher computational cost, it is possible to extend
further the design to incorporate a broader method.

Definition 4.11 (Message passing φ). Compute and aggregate arbitrary vectors (mes-
sages) mij = ψ(xi, xj) to be sent across neighboring edges to the candidate node i. The
new latent vectors will be quantified as:

hi = φ

(
xi,
⊕
j∈Ni

ψ(xi, xj)

)
(4.24)

Here, the edges give hints on how to communicate information, where the message func-
tion results’ mij decides what data to pass. Figure 4.8 shows a small sized example.
Though being the most general form known for a GNN layer level computation, it comes
at the cost of high implementation and intepretability costs.
Similarly to the previous methods, many architectures implement message passing [Bat+16],
[Gil+17], [Bat+18].

45

CHAPTER 4. GRAPHS & SETS

Figure 4.8: Message Passing GNN

Theorem 4.12 (Generalization power of φ specifications). From Definitions 4.9, 4.10
and 4.11 it is possible to infer that:

Convolutional ⊂ Attentional ⊂Message Passing (4.25)

Where a ⊂ b means "a is a special case of b"

Proof. To prove the claims, we go on by showing that the more general representation
can be adapted to the less general one.
(Attentional Message Passing) For each vertex i ∈ V set ψ(xi, xj)∀j to be such that:

ψ(xi, xj) = αijψ
′(xj) = a(xi, xj)ψ

′(xj) (4.26)

Where clearly the first inequality is a restriction on the possible function that ψ(xi, xj)

can represent as from having xi in the argument only a scalar αij is the result of its con-
tribution. Notably, xj makes both a scalar contribution in αij and a vector contribution
in ψ′.
(Convolutional is Attentional) For each vertex i ∈ V set αij = cij∀j to be constant
and only determined by j, ignoring the features of xi. This makes the coefficient in front
of ψ′(xj)∀j constant across different nodes i for the same fixed j.

a(xi, xj)ψ
′(xj) = cijψ

′(xj) (4.27)

Thus:

Attentional ⊂Message Passing ∧ Convolutional ⊂ Attentional
transitivity

=⇒ Convolutional ⊂ Attentional ⊂Message Passing

4.2 Graph Neural Networks (GNNs)

The second lecture, concluding the Chapter, will be an overview of:

• Implementing graph GNNs through GraphNets [Bat+18]
• Latent graph inference in absence of a graph instance
• Power of GNNs analysis through graph isomorphism testing

46

4.2. Graph Neural Networks (GNNs)

4.2.1 Maximally Potent GNNs Specifications

Previously, as underlined in Definition 4.5, some potential features of a graph instance
G were omitted. Having observed the easy case, we turn to a more general formulation.

Definition 4.13 (General Attributed Graphs). A very wide family of graphs G = (V, E)

has the following information sources:

• node features xu ∈ Rk
• edge features xuv ∈ Rl
• graph features xG ∈ Rm

Analogously, for each layer latents are indexed as hu, huv, hG .
While not being as general as possible, the framework is easily extendable to hypergraphs
with multiple edges between vertices.

Example 4.14 (General Attributed Graphs in Chemistry). Consider a model for molecules
where atoms are vertices and bonds are edges. For an atom u, xu could be the atom
type, for a bond uv, xuv could be the type of the bond, for graph level properties xG
could store the molecular weight.

Due to its highly adaptive power, Graph Network ’s3 research work will be used [Bat+18].

Definition 4.15 (Spatial GNN Blueprint). As a dataflow for each layer do the following
equivariant operations in order, where as in Definition 4.4 the aggregation is invariant:

• Update edge features with graph and relevant nodes information, Figure 4.9

huv = ψ(xu, xv, xuv, xG) (4.28)

• Update node features with new edge and graph information, Figure 4.10

hu = φ

(
xu,

⊕
v∈Nu

huv, xG

)
(4.29)

• Update graph features with new nodes and edges information, Figure 4.11

hG = ρ

(⊕
v∈V

hv,
⊕

(u,v)∈E

huv, xG

)
(4.30)

The just introduced layer formalization is the foundational brick of many architectures.

4.2.2 Latent Graph Inference

Until now, it was assumed that the structure of the problem, represented as a graph G
was given. In science, this is not always the case. The problem of latent graph inference
is currently a hot topic in graph representation learning.

To justify its importance, consider a connectivity query task, which is a decision problem
returning an answer to the question "Is node i connected to node j?". The data structure
implemented and graph shape can highly impact performance. For this reason, being
able to correctly infer whether edges and nodes exist is a game changer.

The discussion that follows draws from two extreme cases to give an idea of the achievable
spectrum of potential. For simplicity, edge and graph features are ignored, only node
features are present, and X ∈ R|V| × R|V|.

3by Deepmind

47

CHAPTER 4. GRAPHS & SETS

Figure 4.9: Edge update ψ

Figure 4.10: Node update φ

Figure 4.11: Graph update ρ

48

4.2. Graph Neural Networks (GNNs)

A pessimistic approach could be assuming G is completely disconnected, making V a set
and E = ∅. Then:

E = ∅ =⇒ A = 1 Nu = {u} ∀u ∈ V =⇒
⊕
v∈Nu

xv = xu (4.31)

And the node update of Equation 4.29 becomes that of Deepsets [Zah+18]:

hu = ψ(xu) (4.32)

On the opposite side, assume the graph G is fully connected. Then:

E = V × V =⇒ A = 11T Nu = V ∀u ∈ V (4.33)

Claim 4.16. Deepsets ≡ Conv GNNs with no edge information A node update with no
edge and no graph information is of the form:

hu = ψ(xu,
⊕
v∈V

)ψ(xv) ∀u ∈ V (4.34)

Where the second argument is equal for all node u ∈ V, and thus non influent in the
establishing differences across vertices. Clearly, Deepsets and Convolutional Neural Net-
works cannot be distinguished.

Claim 4.16 suggests enriching latent updates as to include features from connected nodes
Nu = V.

hu = φ

(
xu,
⊕
v∈V

a(xu, xv)ψ(xv)

)
(4.35)

Other than being the fully connected case of the Attentional flavour proposed in Defini-
tion 4.10, Equation 4.35 is a common Transformer.

Very popular in Natural Language Processing, a Transformer infers sequential structural
information by adding positional embdeddings.

In this intepretation, Attentional GNNs could be seen as a method to infer soft adjacency
matrices. There are good references to expand the topic [Jos20].

Definition 4.17 (Latent Graph Inference Problem Setup). For a latent graph, X the
feature matrix is given, while the adjacency matrix A is unknown.

Observation 4.18 (The truth is in between: Latent Graph Inference). The disconnected
case loses lots of potential information. On the other hand, the fully connected case may
be redundant and computationally expensive for large graphs. The problem of inferring
A is that inclusion/exclusion choices for edges are discrete4, non differentiable, and thus
hard to backpropagate.

For the purpose of having a glimpse of available options, 4 common methods will be
quickly outlined below.

4either in or out

49

CHAPTER 4. GRAPHS & SETS

Figure 4.12: Differentiable Graph Module layer

Variational [Kip+18]. Assume a prior distribution over edges is given p(auv = 1). Of
course, the choice determines how potentially connected or sparse the hypothesis is.

• Given a fully connected graph with node features xu run a GNN on it, obtaining
latent edge features estimates huv.

• Obtain a posterior q for the adjacency matrix as:

q(auv|X) = σ(ψ(huv)) (4.36)

Where σ is an activation function such as sigmoid or softmax.
• Sample new adjacency estimates from q as auv ∼ q(auv|X).
• Use the new edges in a second Graph Network for the desired final output.

These steps are one forward run. To backpropagate and train the network the Gumbel
trick from Variational Auto Encoders is used (quick tutorial [Ada13]).

Despite the nice bayesian probabilistic framework, the complexity of running over a fully
connected graph is still present. Other options allow to infer a sparse graph without ever
running on a dense GNN.

k-NN graphs Assume the graph is a k-NN graph, where each node has features hu, and
is connected to the k nearest in h nodes, according to some notion of distance/similarity.

• Dynamic Graph CNN [Wan+19] is an easy non parametric method. It can be
summarized as follows:
– Use as similarity the inner product hTuhv
– for every layer and every node evaluate the k nearest neighbors in h Nu =

topk
v∈V
{hTuhv}

– in the following layer use Nu as edges.
• Differentiable Graph Module [Kaz+22] is a technique from reinforcement learning.

A snapshot of the pipeline is shown in Figure 4.12. The key aspects are:
– Use of the inner product hTuhv as a similarity measure
– computation of the probabilities of the transformed node features at every

layer
p(auv = 1) ∝ σ(ψ(xu)Tφ(xv))

– an RL agent that chooses k neighbors for every node as a policy
– a reward downstream performance5

5for example, an accuracy measure

50

4.2. Graph Neural Networks (GNNs)

Figure 4.13: Bad leg layout semantics

Figure 4.14: Good leg layout semantics

– optimization via policy gradient methods6

Example 4.19 (Dynamic Graph CNN in action). Consider the task of recognizing parts
of a table from a dataset of point cloud objects. Using a purely euclidean distance alone,
the result is a smooth diffusion of latents. A point in a leg is not well linked with any
point in the other leg, as in Figure 4.13. On the contrary, a local GNN with the above
implementation allows to have a better result in terms of feature similarity. The outcome
is shown in Figure 4.14. Observe also that the legs are symmetric!

A final option is Pointer Graph Networks, a supervised method which makes use of
assumed ground truth edges [Vel+20].

4.2.3 GNN Power Assessment through Graph Isomorphism Tests

There is extensive knowledge about cases in which GNNs tend to fail. One such example
is deciding whether two graphs are isomorphic.

Definition 4.20 (Graph Isomorphism). Consider two graphs G = (V, E),G′ = (V ′, E ′).
Two graphs are isomorphic when there is a bijection between the two vertex sets that
preserves connections across the two.

∃f : V → V ′ bijective | (u, v) ∈ E ⇐⇒ (f(u), f(v)) ∈ E ′ (4.37)

6for example: REINFORCE

51

CHAPTER 4. GRAPHS & SETS

Figure 4.15: Example graph

Figure 4.16: First iteration

A graph isomorphism is denoted as G ∼= G′.
Consequently, the graph isomorphism problem is a decision problem asking whether two
graphs are isomorphic to each other.

In particular, the key aspect of a well working GNN is distinguishing two non isomorphic
graphs in the features, namely:

G1 � G2 =⇒ hG1 6= hG2 (4.38)

An easy and effective method for isomorphisms tests will be used as a benchmark for
assessing GNNs in this task. Formulated by Weisfeiler and Lehman in 1968, it consists
in passing hashes (labels) of sums along the edges until convergence. At the end, two
graphs are possibly isomorphic if the color histograms do not change. In this setting, with
possibly we mean that the condition is necessary but not sufficient, meaning that two
graphs with the same histogram are not necessarily isomorphic, while two graphs with
different histograms are not isomorphic. Algorithm 4.2.3 shows the steps in order.

Algorithm 1 Weisfeiler & Lehman Test (1-WL)

Input: initial node coloring (h
(0)
1 , . . . h

(0)
n)

Output: final node coloring (h
(T)
1 , . . . h

(T)
n)

1: t← 0

2: repeat
3: for vi ∈ V do

4: h
(t+1)
i ← hash

(∑
j∈Ni h

(t)
j

)
5: t← t+ 1

6: end for
7: until h(t) stable
8: return h(T) final coloring

Example 4.21 (1-WL in action). Consider the graph in Figure 4.15, and use Algorithm
4.2.3. Iterating, the steps can be explained as:

1. Each node has two or three connections, two colors are assigned (Figure 4.16)
2. Green nodes have either one or two neighbors, assign them two different colors.

Yellow nodes have the same number of neighbors, all of them are colored as red
(Figure 4.17)

3. the coloring is stable

Applying the same procedure to another graph, isomorphic to the former, it can be
noticed that the frequence of colors (labels) is the same (Figure 4.18).

A couple worthy remarks are:

52

4.2. Graph Neural Networks (GNNs)

Figure 4.17: Stable configuration

Figure 4.18: Isomorphic Graph (1-WL)

1. Untrained GNNs are basically random hashes
2. the 1-WL test can fail at times
3. over discrete features, GNNs can at best be as powerful as the 1-WL test.
4. GNNs can be strengthened by analyzing failure cases of Algorithm 4.2.3 by modi-

fying
• features
• message passing technique
• graph structure

Point 4 is an active research area. Any modification with improved performance leads
to higher-order GNNs. A very easy example of feature fix is inspired by the failure of
distinguishing a 6 cycle like Figure 4.19 from a double 3 cycle like Figure 4.20. The
issue lies in the hop vision of both 1-WL and GNNs, that view each node as always being
connected to two nodes (Figure 4.21).

A solution cleverly assigns a color (a randomized feature) to each node [SYK21], to count
how many hops are needed to encounter it again (Figure 4.22)

Continuous features present more difficulties. Some instances can be distinguished through
one (e.g. avg) and some through another (e.g. min). The publication that presents Prin-
cipal Neighborhood Aggregation contains a formal analysis of this problem for continuous
uncountable spaces [Cor+20].

Among other possibilities we mention:

• Graph Substructure Networks [Bou+21]
• Decoupling the computational graph from the input graph [HYL18; GWG22; AY21;

Fra+20a]
– for efficient optimization
– the update function takes the form:

φ

(
xi,
⊕
j∈N ′i

ψ(xi, xj)

)
N ′i new graph (4.39)

Figure 4.19: 6 cycle

53

CHAPTER 4. GRAPHS & SETS

Figure 4.20: 3 cycle

Figure 4.21: Rollout of exploration steps

Figure 4.22: Coloured vertices exploration steps

54

4.2. Graph Neural Networks (GNNs)

• Latent graph learning [Wan+19; Fra+20b; Kaz+22; Cra+20]
– Where a task specific graph (i.e. its edges E) are learnt

• Differentiable Graph Module [Kaz+22]
– where the graph is constructed from data and used for feature learning

• K-WL tests [Mar+20; Mor+21]
– with increased performance on graph isomorphism testing

• Positional and structural encoding [MOB18; SYK21; Dwi+22; Bou+21]
– meaning additional information embedded in the procedure to improve learn-

ing
• Subgraph GNNs [PW22; CMR21; Zha+20; Bev+22]

– perturbation in the graphs to distinguish non WL distinguishable instances
– analysis of the subgraphs collection for a given missing edge with Equivariant

Subgraph Attention Networks [Bev+22]
• Topological Message Passing [Bod+21]

– additional information about the topology encoded in the message passing
procedure

Some of the above methods go beyond graphs, and propose ideas from the other structures
that will be shown in this course. All of them contribute to the improved understanding
of the challenges of solving problems on non tabular data.

In the next Chapters, stronger assumptions on the structure Ω will be enforced, leading
to grids and groups. Additionally, remarks about spectral GNNs and the graph Fourier
transform will be touched.

55

CHAPTER 4. GRAPHS & SETS

56

Chapter 5

Grids

The knowledge of certain principles easily
compensates the lack of knowledge of certain
facts

Claude Adrien Helvétius

In the previous Chapter, it was shown that:

• the GDL blueprint can be formalized for sets and graphs
• as the metric and topologic structure change, a rich variety emerges

In this Chapter, we will see that:

• the mathematical structure of a grid is very powerful
• the spectral and multiscale formulations have some implementation details and

innate limitations
• the GDL blueprint arises even in this case

Contents will be carried out as follows:

1. the translation group and its link with grids will be presented, along with the
Fourier transform as the natural tool to implement it

2. limitations that suggest using wavelet transforms instead will be covered
3. to conclude, a gentle ride towards CNNs will be outlined

Due to the very heavy mathematical background of Fourier and Wavelet transforms,
some arguments may sound too informal, but hopefully they will allow to give an idea
of what happens.

5.1 Translation Group and Fourier Transform

Consider as structure a Grid Ω. There can be many such types, with different forms.
Some examples are shown below.

Example 5.1 (Simple Grid structures). The prototypical cases include:

• A one dimensional grid Ω = {1, . . . , d}
• A two dimensional grid Ω = {(i, j) : i, j = 1, . . . , d}

Remark (A disclaimer on dimension). When referring to a s− d dimensional Grid, it is
intended that the size of the underlying set is d and not the dimension of the grid, which

57

CHAPTER 5. GRIDS

Figure 5.1: 1−d grid

Figure 5.2: 1−d ring graph

is denoted as s. In the above example, d is the size of the side of the hypercube, while
s = 2 as the hypercube is a square. and we have a 2− d grid.

In the general case, what could be the group transformation g : Ω → Ω? Intuitively, it
would be a translation, which consists in moving one point in the space. Assuming one
direction of translation, a problem arises at the boundary, as there is no explicit move to
make. To deal with this structural flaw, a further assumption needs to be stated.

Assumption 5.2 (Periodic boundary condition holds). Given a grid Ω, treat it as a ring
graph, where the endpoints are linked by an additional edge. A graphical representation
of a Grid is in Figure 5.1, while its ring graph custom form is found in Figure 5.2.

With this setting, we further consider the easy case of a 1−d grid with 1−d translations.
Such instances suggest the following translation description. Define a (bijective) map:

g : Ω→ Ω (5.1)

u→ (u+ 1)(modd) (5.2)

Which is the generator of the cyclic group G = Zd =

(
{1, . . . , d},+(mod d)

)
paired

with addition modulo d, coming with nice properties such as:

• inverse existance

g−1 : Ω→ Ω

u→ (u− 1)(modd)

• composition as sum

gk : Ω→ Ω

u→ (u+ k)(modd)

The easiest case can be quickly generalized to any structure Ω.

Definition 5.3 (Grid flavours and Associated translation groups). We recognize two
approaches:

• The s-dimensional grid :
For an s − d grid of the form Ω = {1, . . . , d}⊗s define the translation group as:
G =×s

i=1 Z
(i)
d

• The continuous domain1:
wrap the grid around a Torus such that Ω = T = S1 × S1 and G = S1 × S1. For a
graphical idea, see Figure 5.3

58

5.1. Translation Group and Fourier Transform

Figure 5.3: Torus

For the s-dimensional grid, one must be careful. A very important result is that the
cartesian product of cyclic groups is cyclic if and only if {si} are coprime2. For s dimen-
sions of Zd this is not the case. What must be done in terms of maps is defining them
separately for each of the cyclic groups and using the tensor ⊗. More specifically, there
will be s generators.

An example for s = 2 and arbitrary d with two generators can be found below.

Example 5.4 (s−d Grid bijective maps). Consider Ω to be a 2−d grid. Then G =

Zd × Zd, and the map g will be:

g = h ◦ l where

{
h(u) = (u+ 1)(modd)

l(v) = (v + 1)(modd)
(5.3)

Observation 5.5 (Structure and Group). Observe that for a grid and its symmetry
group Ω ∼= G but this is not always the case. In the future, more discussion will be added.

Another important fact is that grids present a fixed neighborhood structure. Consider
the 1− d grid. Each index i always has neighbors i− 1, i+ 1, whichever it is. Then the
local update aggregation function will be of the form:

f(xi) = φ(xi, xi−1, xi+1) (5.4)

And a linear form of φ will coincide with what we will define in this Chapter as a
convolution arising from a circulant matrix:

f(xi) = axi−1 + bxi + cxi+1 (5.5)

Where the parameters a, b, c are shared ∀i, reducing the learning space from d2 elements
of a matrix to the number of neighbors (in this case 3).

Having in hand a group symmetry, recall that on the signal space g is lifted to linear
transformations in the form of a group representation matrix ρ(g) ∀g ∈ G. For the sake
of simplicity, we will again consider the 1−d case and focus on the main ideas.

When the map is lifted to the space of signals we have that X (Ω, C) = {x : Ω→ R} ∼= Rd

and:

g : X (Ω,R)→ X (Ω,R) (5.6)

x→ g . x : Ω→ R (5.7)

1Informal
2Chinese remainder theorem, namely if the greatest common divisor is 1.

59

CHAPTER 5. GRIDS

Whereas in terms of structure:

x→ g . x :Ω→ R (5.8)

u→ x(g−1u) (5.9)

With this characterization, the aim is to find a set of matrices that could represent
inequivocably each element of G. The following Proposition is the desired result.

Definition 5.6 (Shift Operator S). For d ∈ Zd let S be a square matrix of dimension d
representing the 1 position shift for each of the functions operated by it.

S =

0 1 0 0

0 0 1 0 0

0 0 0 1 0 . . . , 0

. .

. .

. .

1 0 0

(5.10)

Which is a matrix with zero entries apart from the those to the right of the diagonal
entries and the low left box Sd0.

Observation 5.7 (What does S represent). For a grid Ω, S can be seen as the adjacency
matrix of the directed ring graph, where the direction is defined by the transformation
convention (e.g. to the right).

Proposition 5.8 (Shift Operator represents Groups on X (Ω, C)). We claim that the
shift operator is such that there exists a power Sk : k ∈ N such that it represents any
translation.

∃k ∈ N | h . x = Skx∀h ∈ G (5.11)

Proof. Consider the Shift Operator S of Definition 5.6, clearly it is equivalent to trans-
lating to the right the points in a 1−d grid. As argued previously, the symmetry group
is G = Zd and the group element (the map) corresponding to it is:

g : Ω→ Ω

u→ (u+ 1)(modd)

By the definition of cyclic group, there is a generator3 〈g〉. Clearly, powers of g are
powers of S. Thus, Skx, k ∈ N cyclically recover all the elements in Ω, and the claim is
justified. The pairing between S and g is unique, and also the compositions, by simple
induction.

Proposition 5.9 (Cyclic Group is Abelian). The group of the one dimensional grid is
Abelian. Namely:

g ◦ h = h ◦ g ∀g, h ∈ G (5.12)

Proof. Even though there are other ways to prove it, we follow the exercise assigned by
the lecturer, and exploit Proposition 5.8.
By the matrix representation of group actions g, h ∈ G, assume that they are such that:

g . x = Skx ∧ h . x = Sqx k, q ∈ N (5.13)
3An element such that its powers are all the elements in the group, often denoted as 〈g〉.

60

5.1. Translation Group and Fourier Transform

Composing the operation one gets:

(h ◦ g) . x = h.(g . x)

= h.(Skx)

= SqSkx

= Sq+kx

= SkSqx = g.(Sqx) = g.(h.x) = (g ◦ h) . x

And the group is commutative (Abelian).

To remark even further the power of the shift operator, we report here a very important
result.

Definition 5.10 (Normal matrices). Denoting as † the complex conjugate of a matrix
A ∈ Rd×d is normal if it commutes with its conjugate transpose4:

AA† = A†A (5.14)

Theorem 5.11 (Shift operator is diagonalizable in complex space). Let S be the shift
operator, then it is:

1. normal
2. diagonalizable in the complex space

Proof. (Claim 1) Consider S as in Definition 5.6. S represents a shift to the (conven-
tional) right with boundary conditions of a ring graph. The shift to the left happens
to be exactly S†, where the indices are inverted, shifting all points to the (conventional
left). For any configuration x, a shift to the left and to the right is equivalent to a null
move. The same is true for the opposite order of shifts. Then:

SS† = I = S†S (5.15)

This fact emerges also from a combination of Propositions 5.8 and 5.9.
(Claim 2) We prove S normal ⇐⇒ S unitary diagonalizable

(=⇒ direction) Assume S is normal, use the Schur decomposition S = UTU † where
U is unitary and T is upper triangular. By the normality of S it holds that:

SS† = UTU †UT †U = UTT †U = S†S = UT †TU † =⇒ TT † = T †T = UD†DU † = S†S

And T is normal as well. By T being upper triangular and T † being lower triangular,
commutativity holds ⇐⇒ T diagonal, and S is unitary diagonalizable.
(⇐= direction) trivial, as:

SS† = UDU †UDU † = UDD†U †

Where we only use the fact that DD† = D†D for a diagonal matrix.
Thus by S normal then it is unitarily diagonalizable.

Observation 5.12 (On Theorem 5.11). It is clear that with such a diagonalization there
will be an eigenvalue eigenvector decomposition of the shift operator S. With some work,
it is possible to show that the eigenvalues of the shift operator are complex. This result
will be shown later when needed.

4Note that this does not necessarily mean it is Hermitian i.e. A = A†.

61

CHAPTER 5. GRIDS

Remark (Extendability to higher dimensions). For s−d grids the same reasonings can
be made. The key point is noticing that each of the s directions of the grid define
independent maps that compose together. From a physical perspective, the generators
could be seen as unitary vectors. In the higher dimensional case, the matrix will be a
tensor.

Sticking to the 1−d case, the GDL blueprint of Definition 3.64 suggests that it is sufficient
to manage local linear invariants and equivariants. For this purpose, an interpretation
in the grids context will be given.

Theorem 5.13 (Linear Invariants for Grids, Properties). If Ω = {1, . . . , d} then a linear
invariant map J : X (Ω, C)→ R satisfies:

1. J (x) = 〈x, v〉 for some v ∈ Rd
2. Sv = v where S is the shift operator
3. v = 1

Proof. (Claim 1) The signals space is X (Ω, C) = X (Ω,R) = {x : Ω → R} ∼= Rd when
we are in the 1−d case. Thus, J : Rd → R and for the map to be linear it must be a dot
product of the form:

J (x) = 〈x, v〉 for some v ∈ Rd

Where the vector v is applied to any x ∈ Rd. To impose invariance, as per Definition
3.45 it must be the case that:

J (g . x) = J (x) ∀x ∈ Rd, ∀g ∈ G

(Claim 2) By the invariance and basic operations on the dot product:

J (x) = J (g . x) invariance condition

=⇒ 〈x, v〉 = 〈g . x, v〉 invariance dot product form

= 〈Skx, v〉 by Proposition 5.8

= 〈x, (Sk)†v〉 Where † is the complex conjugate

Observe that the operator Sk has an inverse operator (Sk)† ∀k ∈ N. This holds by
Theorem 5.11.
Thus, we have that taking the second arguments in the dot product at the last two
equalities:

v = (Sk)†v

=⇒ Skv = Sk(Sk)†v left multiplication

= S · . . . · SS† · . . . · S†v expand product k times for both

= v ∀k ∈ N as SS† = I

From this fact, since it holds ∀k, it also holds for k = 1. Notice that given the nature of
the additive translation group we could have started from any translation to get all the
others.
(Claim 3) We require a shifted signal to be invariant, having the same dot product of a
base signal. This implies that at least all the entries of v have to be the same by Claims
1, 2. Given that a vector v = [k, . . . , k] is essentially the same as a vector v = 1 (up to
rescaling), we can normalize it and set v = 1.

62

5.1. Translation Group and Fourier Transform

Having established the requirements for a grid, it is worth noticing that the vector v for
the linear invariant map is an eigenvector of the shift operator. Below, the same is done
for equivariant maps.

Theorem 5.14 (Linear Equivariants for Grids, Properties). If Ω = {1, . . . , d} then a
linear equivariant map L : X (Ω, C)→ X (Ω, C′) satisfies:

1. L(x) = Cx for some C ∈ Rd×d
2. where C commutes with the shift operator S, namely C : CS = SC

Proof. (Claim 1) The signals space is X (Ω, C) = X (Ω,R) = {x : Ω → R} ∼= Rd when
we are in the 1−d case. Thus, L : Rd → Rd and for the map to be linear it must be a
matrix product of the form:

L(x) = Cx for some C ∈ Rd×d (5.16)

Where the matrix C is applied to any x ∈ Rd. To impose equivariance, as per Definition
3.47 it must be the case that:

L(g . x) = g.L(x)∀x ∈ Rd, ∀g ∈ G

(Claim 2) By the equivariance requirement and basic operations on the matrix product:

L(g . x) = g.L(x) equivariance condition

=⇒ C(g . x) = g.(Cx) equivariance matrix product form

⇐⇒ CSkx = SkCx by Proposition 5.8

⇐⇒ CSk = SkC which holds ∀k ∈ N

By similar arguments, we take k = 1 and conclude that:

CS = SC

Which is an equivalent condition as ∀k.

Coming back to the observation on the shift operator done in Theorem 5.11 it is possible
to characterize even further the equivariant map represented by C. In particular, the
eigenvalues of S will be complex. We have that:

Theorem 5.15 (Eigendecomposition of Shift Operator). For S ∈ Rd×d as in Definition
5.6 the eigenvectors vk and eigenvalues λk where k ∈ {1, . . . , d} are:

vk =
1√
d

1

ei2π
k
d

ei2π
2k
d

. . .

ei2π
k(d−1)
d

 ∈ C
d (5.17)

λk = ei2π
k
d (5.18)

Proof. We only check that the values claimed are correct. Consider {vk, λk}dk=1. Let sj·
be the jth row of S. In practice, sj maps an element of a vector to its neighbor to the

63

CHAPTER 5. GRIDS

Figure 5.4: Some sinusoidal functions

right. Then:

〈vk, sj〉 = vk[j + 1] as sj shifts vk in its j + 1 index

=
1√
d
ei2π

k(j+1)
d by definition of vk[j + 1]

= ei2π
k
d

1√
d
ei2π

kj
d

= ei2π
k
d vk[j] by definition of vk[j]

Stacking the rows j = 1, . . . , d with a vector vk we get that:

Svk =

– s1vk –
– s2vk –
– . . . –
– sdvk –

 =

– ei2π

k
d vk[1] –

– ei2π
k
d vk[2] –

– . . . –
– ei2π

k
d vk[d] –

 = ei2π
k
d vk = λkvk (5.19)

And the eigendecomposition is of the claimed form.

Going further into this topic, it is possible to argue that these are deeply related to the
Fourier transform, which will be informally discussed.

Definition 5.16 (Discrete Fourier Transformed (DFT) vector x̂). For a vector x and a
stacked matrix of eigenvectors of S denoted as V =

[
v1, . . . , vd

]T , we define its Fourier
transformed version x̂ as:

x̂ = V x where x̂[k] = 〈x, vk〉 =
1√
d

d−1∑
j=0

xje
−i2π kj

d (5.20)

Which can be seen as a decomposition of x into a sum of sinusoidal functions (see Figure
5.4 for an idea of such functions).

Parceval’s identity establishes a similarity of original and spectral domain, while the
second result is useful to revert the transformation.

Theorem 5.17 (Parceval’s Identity). For vectors x, y ∈ Rd the Fourier transform is an
isometry5.

〈x̂, ŷ〉 = 〈x, y〉∀x, y ∈ Rd (5.21)
5i.e. dot products are preserved in the transformed version of the vectors.

64

5.1. Translation Group and Fourier Transform

Proof. Step by step:

〈x̂, ŷ〉 = 〈V x, V y〉 by Definition of DFT

= (V y)†(V x) by definition of dot product

= y†V †V x by Theorem 5.11 (see comment below)

= y†x = 〈x, y〉 again by Definition of dot product

Where the implication from Theorem 5.11 ensures that V is unitary, so that: V †V =

I.

Proposition 5.18 (Inverse Discrete Fourier Transform (IDFT)). For a DFT where x̂ =

V x and x ∈ Rd we have that the inverse transformation is:

xj =
1√
d

d∑
k=1

x̂[k]ei2π
kj
d (5.22)

Proof. Again by Theorem 5.11 if x̂ = V x then V is orthonormal with norm 1 and:

x̂ = V x =⇒ V −1x̂ = V †x̂ = x =⇒ xj = V †j•x̂ (5.23)

Where V †j• denotes the jth row of the conjugate transpose of V . By simply conjugate
transposing the matrix V one gets that:

V †j• = V•j =
1√
d

[
1 ei2π

kj
d ei2π

(k+1)j
d . . . ei2π

(k+d)j
d

]
And the claim is satisfied.

Such a framework extends naturally to the continuous domain T of the torus we saw ear-
lier through the concept of windowed Fourier transform, and even in unbounded/multidimensional
regions through the general Fourier transform[Bro+21].

Presenting the DFT and highlighting its properties is useful for our task of understanding
how the equivariant C is. Only the final steps are missing:

Lemma 5.19 (Commutative diagonalizable matrices and eigenvectors). Two diagonal-
izable matrices commute if and only if they share the same eigenvectors.

AB = BA ⇐⇒ ∀(x, λ) ∈ Eig(A) Bx = λ′x & opposite (5.24)

Proof. (=⇒ direction) Consider A and one of its eigenpairs:

A(Bx) = B(Ax) commutativity (5.25)

= B(λx) eigenpair of A (5.26)

= λ(Bx) reordering (5.27)

⇐⇒ (Bx, λ) ∈ Eig(A) (5.28)

If we let Bx 6= 0 ⇐⇒ B 6= 0 which is the trivial case, one can assert that the vectors
Bx and x share the same eigenvalue λ. If for simplicity we assume that the eigenvalues
are distinct, then Bx is a multiple of x for some λ′ ∈ R (namely Bx = λ′x) and x is an
eigenvector of both A and B.
(⇐= direction) If two matrices share the same eigenvectors, and are diagonalizable,
then they are simultaneously diagonalizable i.e. there exists an invertible matrix P such
that:

P−1AP = DA ∧ P−1BP = DB (5.29)

65

CHAPTER 5. GRIDS

Where DA and DB are diagonal. Checking commutativity:

AB = PDAP
−1PDBP

−1 inverting the Equations above

= PDADBP
−1 as P−1P = I

= PDBDAP
−1 diagonal matrices commute

= PDBP
−1PDAP

−1 expanding I

= BA by assumption

And AB = BA ⇐⇒ simultaneously diagonalizable, where simultaneous diagonal-
ization is equivalent to diagonalizability and same eigenvectors as P is the matrix of
eigenvectors.

The just proved result is exploited in many fields. In Lie algebra, a set of simultaneously
diagonalizable matrices generates a Toral Lie Algebra, which should ring a bell.

Lastly, we are able to characterize operators C with an almost formal justification.

Definition 5.20 (Convolutional Operation ?). For two functions f, g a convolution is
defined as:

(f ? g)(t) =

∫ ∞
−∞

f(τ)g(t− τ)dτ (5.30)

Which can be adapted to the discrete countable domain easily.

Theorem 5.21 (Characterization of Equivariant linear map for Grids). If C is the matrix
representing an equivariant linear map on a 1−d grid Ω = {1, . . . , d} then it holds that:

1. C is diagonal in the Fourier domain.

C = V †diag(α̂)V α ∈ Cd (5.31)

2. C is a convolutional operation with the resulting rows being convolutions of x and
the complex diagonal.

(Cx)j = (x ? α)j (5.32)

Proof. (Claim 1) From Theorem 5.14 we have SC = CS. Using Lemma 5.19 if we
assume for simplicity both are diagonalizable (S is diagonalizable) it is possible to state
that they share the same eigenvectors and that they are simultaneously diagonalizable.
Then, since V is the eigenmatrix of S:

V SV † = DS =⇒
sim diag

V CV † = DC =⇒
isolating C

C = V †DCV (5.33)

Where we set DC = diag(α̂) as notation for the diagonal matrix with α ∈ Cd.
(Claim 2) Following the lecture, we verify that:

Cx = C

(∑
k

x̂[k]v†k

)
IDFT, Theorem 5.18

=
∑
k

x̂[k]Cv†k as x̂[k] ∈ C and C is a linear operator

=
∑
k

x̂[k]α̂kv
†
k by Claim 1, C diagonalizes in the Fourier domain

66

5.1. Translation Group and Fourier Transform

Considering a row then:

(Cx)j =
∑
k

[
x̂†[k]e−i2π

jk
d

]†
α̂k reordering for a row the last result

=
∑
k

[
(〈x, vk〉)†e−i2π

jk
d

]†
α̂k by DFT definition 5.16

=
∑
k

[
(v†kx)†e−i2π

jk
d

]†
α̂k by Definition of dot product

=
∑
k

[
x†vke

−i2π jk
d

]†
α̂k reordering

=
∑
k

[
S−jvkx

†
]†
α̂k Theorem 5.15 applied −j times eigendecomposition

=
∑
k

[
Ŝ−jx†

]†
α̂k recognize Fourier transf of −j shifted transposed signal

= 〈Ŝ−jx†, α̂k〉 by Definition of dot

= 〈S−jx†, αk〉 Parceval’s Identity 5.17

=
∑
l

xj−lαl expanding the dot product

= (x ? α)j by Definition of convolution

Having shown that:

• any convolution is diagonal in the Fourier space
• any linear operator commuting with S is a convolution

We now sketch the opposite implication, namely that any convolution commutes with S

(Cx)j =
∑
l

xj−lαl =
∑
l

αlS
−lxj (5.34)

Where we have just set xj−l = S−lxj . We can check that this implies that any discrete
convolution commutes with S as per the last equation it is equivalent to applying first S−j

and then multiplying by α̂l. Given that SS−l = S−lS and α̂l is a coefficient, convolving
and translating commute as operations.

The connection between convolutions and Fourier transforms is visualized in Figure 5.5

5.1.1 The Fast Fourier Transform Algorithm

While computing such transformations might look computationally expensive, an um-
brella of procedures falling under the name of Fast Fourier Transform can perform it
efficiently. From now on, we will refer to them as FFT. The idea is based on simplyfing
the calculation with a divide and conquer approach. In this short subsection, the
main result leading to the foundational approach of the method will be outlined.

A historical note It is mentioned that Gauss had worked on a similar problem in his
research activities, but the modern origin is attributed to Cooley & Turkey [CT65]. The
two authors were the first to propose a method that worked for any size d, and not only
for powers of two.

67

CHAPTER 5. GRIDS

Figure 5.5: Convolutions and Shifts

A glimpse of the problem Recall from Definition 5.16 that the discrete Fourier
Transform is seen as:

x̂ = V x where x̂[k] = 〈x, vk〉 =
1√
d

d−1∑
j=0

xje
−i2π kj

d (5.35)

The baseline for evaluating the DFT is polynomial, but can be improved.

Proposition 5.22 (DFT Naive Computational complexity). A direct computation of
the DFT for a vector x ∈ Rd requires a computational time T (d) ∈ O(d2).

Proof. Consider Equation 5.35, for each entry k, we need to sum d items. Having d

entries, the final result is obtained in O(d2) steps.

For a large size vector, though not intractable in size, computations become cumbersome.

Radix-2 DIT As announced, we will focus on the underlying properties, and not
much on the implementations. For this reason, the problem is simplified in its most
approachable form, often referred to as Radix-2 DIT.

Assumption 5.23 (Powers of two size). Let d be a power of 2.

To resort to the general case, factorization techniques are implemented and the size of
the problem is sequentially divided into smaller sizes as d = d1d2.

A different view of DFT We begin by observing that apparently (ndr, this is
explained later in Observation 5.24) the Fourier transform can be split into an odd

68

5.1. Translation Group and Fourier Transform

and even part as:

x̂[k] =
1√
d

d−1∑
j=0

xje
−i2π kj

d (5.36)

=
1√
d

[d
2
−1∑
j=0

x2je
−i2π k

d
2j +

d
2
−1∑
j=0

x2j+1e
−i2π k

d
(2j+1)

]
even and odd indexes

(5.37)

=
1√
d

[d
2
−1∑
j=0

x2jexp

{
− i2π k

d
2

j

}
+

d
2
−1∑
j=0

x2j+1exp

{
− i2πk

d
(2j)−i2πk

d
(1)︸ ︷︷ ︸

⊥⊥j

}]
reordering

(5.38)

=
1√
d

[d
2
−1∑
j=0

x2jexp

{
− i2π k

d
2

j

}
+ e−i2π

k
d

(1)︸ ︷︷ ︸
⊥⊥j

d
2
−1∑
j=0

x2j+1exp

{
− i2πk

d
(2j)

}]
factor out coefficient

(5.39)

=
1√
d

[d
2
−1∑
j=0

x2jexp

{
− i2π k

d
2

j

}
+ e−i2π

k
d

(1)︸ ︷︷ ︸
⊥⊥j

d
2
−1∑
j=0

x2j+1exp

{
− i2π k

d
2

(j)

}]
reorder

(5.40)

Notice that the two summands inside are very much similar. This form of the DFT can
takes a much lighter notation through the notions of odd and even part of the transform.

Observation 5.24 (Odd and even part are limited, explaining the apparently). Notice
that while the identity holds for all k ∈ [0, d−1] in terms of x̂[k], the two inner definitions
work for half the vector only, as they run over j ∈ [0, d2], making x̂[k] well defined for
only the first half of its length.

Definition 5.25 (Odd and Even Part of DFT Ek, Ok). For a DFT as in Definition 5.16
define the Odd (Even) part as the DFT of its odd (respectively, even) entries.

x̂[k] =
1√
d

[d
2
−1∑
j=0

x2jexp

{
− i2π k

d
2

j

}
︸ ︷︷ ︸

:=Ek

+e−i2π
k
d

(1)

d
2
−1∑
j=0

x2j+1exp

{
− i2π k

d
2

(j)

}
︸ ︷︷ ︸

:=Ok

]
(5.41)

=
1√
d

[
Ek + e−i2π

k
dOk

]
∀k ∈

[
0,
d

2

]
(5.42)

We quickly recall an important mathematical fact that will serve us in Proposition 5.27.

Lemma 5.26 (Periodicity of Complex exponential). It holds that:

ei(θ+2jπ) = eiθ ∀j ∈ Z (5.43)

Proof. By the definition of complex exponential via Euler’s formula:

ei(θ+2jπ) = cos(θ + 2jπ) + i sin(θ + 2jπ) Euler’s formula

= cos(θ) + i sin(θ) trigonometric functions are periodic

= eiθ Euler’s formula

69

CHAPTER 5. GRIDS

Proposition 5.27 (Second half of DFT symmetric view). The second half of the DFT
transform of a vector x ∈ Rd is obtained as:

x̂

[
k +

d

2

]
= Ek − e−i2π

k
dOk ∀k ∈

[
0,
d

2

]
(5.44)

Proof. Reason as it was done for the first half from Equation 5.36 highlighting the entry
of the vector in green where the equation changes:

x̂

[
k +

d

2

]
=

1√
d

[d
2
−1∑
j=0

x2jexp

{
− i2π

k + d
2

d
2

j

}
(5.45)

+ e−i2π
k+ d2
d

(1)

d
2
−1∑
j=0

x2j+1exp

{
− i2π

k + d
2

d
2

(j)

}]
Eqn. 5.40

=
1√
d

[d
2
−1∑
j=0

x2jexp

{
− i2π

k + d
2

d
2

j

}
(5.46)

+ e−i2π
k+ d2
d

d
2
−1∑
j=0

x2j+1exp

{
− i2π

k + d
2

d
2

(j)

}]

=
1√
d

[d
2
−1∑
j=0

x2jexp

{
− i2π k

d
2

j − i2π
d
2
d
2

j

}
(5.47)

+ e−i2π
k
d e−i2π

d
2
d

d
2
−1∑
j=0

x2j+1exp

{
− i2π k

d
2

(j)− i2π
d
2
d
2

(j)

}]
expand green

=
1√
d

[d
2
−1∑
j=0

x2jexp

{
− i2π k

d
2

j

}
e−i2πj (5.48)

+ e−i2π
k
d e−iπ

d
2
−1∑
j=0

x2j+1exp

{
− i2π k

d
2

(j)

}
e−i2π(j)

]
simplifying

=
1√
d

[d
2
−1∑
j=0

x2jexp

{
− i2π k

d
2

j

}
e−i2πj (5.49)

(−1)e−i2π
k
d

d
2
−1∑
j=0

x2j+1exp

{
− i2π k

d
2

(j)

}
e−i2π(j)

]
Euler’s identity e−iπ = −1

=
1√
d

[d
2
−1∑
j=0

x2jexp

{
− i2π k

d
2

j

}
(5.50)

− e−i2π
k
d

d
2
−1∑
j=0

x2j+1exp

{
− i2π k

d
2

(j)

}]
Lem 5.26, see below

=
1√
d

[
Ek − e−i2π

k
dOk

]
Def. 5.25 (5.51)

Precisely, in Equation 5.50, we mean that:

e−i2πj = e−i(2πj+0) = ei·0 = 1∀j ∈ Z (5.52)

Which is a trivial application of Lemma 5.26 for θ = 0. The claim is proved.

70

5.1. Translation Group and Fourier Transform

Having in hand the second part of the vector in terms of the odd and even part, we
eventually state a full representation of the DFT transform.

Definition 5.28 (DFT transform recursive representation). For a DFT transform of a
vector x ∈ Rd it holds that:

x̂[k] =
1√
d

[
Ek + e−i2π

k
dOk

]
∀k ∈

[
0,
d

2

]
(5.53)

x̂

[
k +

d

2

]
=

1√
d

[
Ek − e−i2π

k
dOk

]
∀k ∈

[
0,
d

2

]
(5.54)

Where Ek and Ok are DFT transforms of size d
2 from Definition 5.25.

With the help of Definition 5.28 it is also possible to devise a procedure based on the
divide and conquer fashion to break down the computation into simple steps. We
report the procedure in Algorithms 2 and 3.

Assumption 5.29 (Algorithm Notation). For simplicity, interpret the function call as:

R2DIT(x, d, p) = DFT(x0, xp, x2p, . . . , xp(d−1)) (5.55)

Which is the Discrete Fourier Transform of the indexed by p subset of the original vector.
In accordance with this, the recursive calls take the form:

• R2DIT(x, d2 , 2p) = DFT(x0, x2p, x4p, . . . , xp(d−2))

• R2DIT(x[p, . . .], d2 , 2p) = DFT(xp, xp+2p, xp+4p, . . . , xp(d−1))

Where the term x[p, . . .] is a shortcut for the vector x from the pth entry onwards.

Algorithm 2 Radix-2 DIT Recursion R2DIT(·, ·, ·)
Input: vector x, size d, pointer p
Output: Recursion of inner sum
1: if d = 1 then
2: return x . base case
3: end if
4: x[0, d2 − 1]←R2DIT(x, d2 , 2p) . recursive call, see Assumption 5.29
5: x[d2 , d− 1]←R2DIT(x[p, . . .], d2 , 2p) . recursive call, see Assumption 5.29
6: for k = 0, . . . , d2 − 1 do . iterative construction of Def. 5.28
7: h1 ← x[k]

8: h2 ← e
−i2π
d

kx

[
k + d

2

]
9: x[k]← h1 + h2

10: x

[
k + d

2

]
← h1 − h2

11: end for

Algorithm 3 Fast Fourier Transform Algorithm FFT(·)
Input: vector x
Output: DFT of x̂
1: d← size(x)

2: x̂←R2DIT(x, d, 1) . call Algorithm 2

3: x̂← 1√
d
x̂ . adjust size

4: return x̂

We provide below a statement regarding the improvement in performance.

71

CHAPTER 5. GRIDS

d

d
2

d
4

.

d
4

.

d
2

d
4

.

d
4

.

Figure 5.6: Computation graph of Theorem 5.30

Theorem 5.30 (FFT Algorithm Computational Complexity). The procedure of Algo-
rithm 3 for a vector x ∈ Rd requires a computational time T (d) ∈ O(d log[d])

Proof. The skeleton of the procedure resembles that of classic divide and conquer algo-
rithms such as BFS or mergesort. For clarity, given a starting size d, which is a power of
two (Assumption 5.23), the number of times in which it can be halved is finite and equal
to:

h | 2h = d ⇐⇒ h = log2[d]

At each of these halvings, the number of computations will depend on the size and the
number of the resulting subvectors, following the sequence:

d · 1, d
2
· 2, d

4
· 4, . . .

Thus, at each height the computations are bounded by the initial size. The result is an
algorithm that runs in T (d) ∈ O(d log(d)). We can visualize the structure in Figure 5.6,
where the depth of the binary tree is exactly h.

The application areas flourished thanks to the FFT Algorithm include:

• Signal Processing
• Number Theory
• Partial Differential Equations
• Mathematical Physics
• Geometry
• Graph Theory

5.1.2 Limitations

While Fourier transforms are great tools, there are drawbacks, especially when con-
straining the transformations to be local. To justify this claim, we will rather provide an
example.

Example 5.31 (Fourier invariant Modulus). Assume a very local Fourier transformation
is carried out, where:

α̂[k̃] = 1 ∧ α̂[k] = 0 ∀k 6= k̃ (5.56)

Considering the operator Φ(x) = ρ(x̂) = |x̂| we check that it is translation invariant:

Φ(Snx) = |e−i2π
nk
d x̂| = |(ei(−2π))

nk
d x̂|

= |(cos(−2π) + i sin(−2π))
nk
d x̂| = |(1)

nk
d x̂| = |x̂| = Φ(x)

72

5.1. Translation Group and Fourier Transform

Figure 5.7: Loss of information of Newton vs Fourier portraits

While this might look sufficient, as we exploit the translation properties, and the modulus
kills the imaginary phase, most of semantic information is conserved in the phase and
the transformed value will lose information. A graphical example of the outcome of a
Fourier invariant operation is proposed in Figure 5.7

Using as a reference the continuous domain where Ω = T , translations are a subgroup
of Automorphisms Aut(Ω) of the form τ : Ω → Ω. In some cases, to relax the daunting
invariance restriction, it is possible to consider slightly relaxed functions and impose
deformation stability requirements such as:

|f(x)− f(τ . x)| ≤ c(τ) (5.57)

Where c(·) is a smoothness measure that controls the distance from the symmetry group:

c(τ) = sup{‖∇τ(u))‖} (5.58)

To check that these conditions include invariant transformations it is enough to see that:

c(τ) = 0∀g ∈ G =⇒ |f(x)− f(τ . x)| ≤ 0 =⇒ f(x) = f(τ . x)∀x,∀τ (5.59)

Doing so, the allowed transformations would be part of a set of functions that is controlled
in the deformation effect but stores more information.

However, in the enlarged space, Fourier invariants prove to be unstable to deformations,
as the following argument will (informally) show. Assume we are in the continuous
domain. There, a signal x(u) = h(u)eiξu is controlled by a window h(u) of bandwidth
σu, and a deformation (τ .x)(u) = x((1 + s)u) : s� 1. Then the translated vector xτ is:

xτ (u) = h((1 + s)u)eiξ(1+s)u

We claim that if the frequence ξ and a small translation s are much bigger than the
bandwidth, then the Fourier space distance of the modulus is equivalent to the norm of
the original vector. Namely:

(1 + s)ξ − ξ = sξ � σh(2 + s) =⇒ ‖|x̂| − |τ̂ . x|‖ ∼ ‖x‖ (5.60)

73

CHAPTER 5. GRIDS

Figure 5.8: In order: original, Fourier, Scale

Making such invariant operations highly dependent on the size of the input, and not
reliable in terms of stability.

Thus, even though there is an idea of how to avoid information loss, it does not generalize
well. A representation by spectral properties of the domain is unstable as soon as we
deviate from strict translations. We must resort to different techniques, and will in
particular focus on scale separation with wavelets.

5.2 Wavelet Scattering Representations

Due to the difficulty of the topic, this section will be presented in a very informal manner.

As an alternative to frequency extraction we consider information at different scales. For
an idea of how this is practically carried out, see a comparison with Fourier transforms
in Figure 5.8.

To achieve such decomposition, we will implement filter banks of the form:

Wx = (x ? ψα) (5.61)

Where:

• ψ is the mother wavelet, an wave localized in space
• ψα(u) = 2−jψ(2−jRθu) where α = (j, θ) are polar indicators for dilation and

rotation

A visualization of the forms wavelets can take is found on Figure 5.9.

In this context, if they are designed through the Littlewood-Paley transform:

(1− ε)‖x‖ ≤ ‖Wx‖ ≤ ‖x‖ (5.62)

Then some theoretical guarantees about deformation stability and linear equivariance
can be made. The first is by Mallat [Mal09], the second by Mallat and Waldspurger
[Mal12; Wal17], the third by Mallat [Mal12].

Theorem 5.32 (Wavelet Linear Equivariance). For such a setting, we have that:

‖W (τ . x)− τ.(Wx)‖ ≤ ‖∇τ‖‖x‖ (5.63)

Where the norm of the transformation controls closeness to equivariant transformations.

74

5.2. Wavelet Scattering Representations

Figure 5.9: Wavelet filters example

Theorem 5.33 (Wavelet Deformation Stability). For appropriate choice of mother wavelets:

‖Φ(x)‖ = ‖x‖ (5.64)

Moreover, energy convergence is exponential in depth, making the overall representation
stable to deformations.

Theorem 5.34 (Wavelet Linear Invariance). For x ∈ L2(Ω) compactly supported and
c(τ) = g(‖∇τ‖, ‖∇2τ‖) with g and appropriate function as a smoothness measure:

‖Φ(τ . x)− Φ(x)‖ ≤ c(τ)‖x‖ (5.65)

Where the norm and the smoothness measure control closeness to invariant transforma-
tions

Theorems 5.32, 5.33 and 5.34 together justify the design of a specific Wavelet Geometric
Deep Learning blueprint, through what are commonly referred to as scattering represen-
tations.

Definition 5.35 (Wavelet GDL Blueprint). Adapt the building blocks of Definition 3.64
to Wavelets as:

• Linear local invariant filters A,
• linear local equivariant wavelet filter bank W
• a pointwise non linear function ρ, applied after each wavelet

To better visualize the effects of such maps, the correpondence with graphical effects for
an image is established below.

Example 5.36 (Wavelet GDL Blueprint on a hermit crab). The final invariant filter
alone acts as in Figure 5.10. The combination of a single layer {A,AρW} produces the
scale separation of Figure 5.11. As soon as more layers are introduced, deeper separations
are obtained. In Figure 5.12, we have {A,AρW,AρWρW}.

75

CHAPTER 5. GRIDS

Figure 5.10: Invariant filter alone

Figure 5.11: One layer scale separation {A,AρW}

Figure 5.12: Two layers scale separation {A,AρW,AρWρW}

76

5.3. Convolutional Neural Networks

Figure 5.13: Performance comparison Wavelet Scattering vs DeepNets

While the representation power of the Wavelet blueprint can be implemented in Com-
puter Vision tasks6, experimental evidence shows that it is not enough to obtain good
performances on hard to solve benchmarks. Figure 5.13 is a comparison between Deep-
Nets and Wavelet scattering combined with a linear classifier.
The problem lies in the absence of interactions between feature maps. In the next section
a brief exaplanation of why CNNs overcome this issue and maintain the requirements
will be outlined.

5.3 Convolutional Neural Networks

Convolutional Neural Networks combine wavelet spatial filters and cross channel train-
able coefficients θ. These θ coefficients capture connections across wavelet coefficients,
providing more flexibility [Oya+19], [Zar+20]. From one layer to the other, the trans-
formation is of the form:

xm+1 = ρ

(∑
k

(Ψkxm)θk

)
θk ∈ RCm×Cm+1 (5.66)

Where:

• m indexes layers
• Ψk are the wavelet transformations of xm, in the form Ψkx = x ? ψk
• θk captures interactions across layers and is indeed dimension compatible with both

The above architecture almost closes the gap with state of the art models, that contain
lots of heuristics to improve the performance such as:

• residual layers
• normalization layers

On the theory side, some still open questions are:

• identifying the functional space of CNNs
• quantitative assessment of the role of depth and width of filters

6N.B.: Being just a representation, it requires no training and needs to be combined with a classifier.

77

CHAPTER 5. GRIDS

• understanding the interaction between the architecture and the optimization pro-
cess

To conclude the analysis, we briefly draw the most important conclusions:

• Grids have a rich theoretical structure, with geometric and analytic properties.
Thanks to this, we are able to characterize clearly the GDL blueprint.

• Wavelet Scattering is the simplest instance that respects all the requirements, ex-
ploiting the concept of multiscale prior. It requires no training.

• CNNs are the result of a mix of theory and heuristics. Currently, they seem to
achieve the best known tradeoff between geometric priors and representational
power.

• there are a lot of research questions yet to be solved

For Scattering Representation applications, we reroute the reader to some interesting
sources [BM19], [Che+20], [Eic+18].

In the next chapters, we will explore non Euclidean domains, tackling them with groups,
meshes and gauges.

78

Chapter 6

Groups

In this chapter we will dive deeper into the Group theoretic foundations of GDL. The
concepts covered are:

• Group convolution:
– The intuitive roto-translation discrete case
– how to generalize to continuous 3D rotations

• General theory of groups and Homogeneous Spaces:
– how to define a convolution
– a theory that works for any Homogeneous space

• The naive convolution on Homogeneous Spaces:
– why is it limited
– the problem of isotropic filters

• Induced representations and Steerable CNNs:
– final version of the Convolution is all you need Theorem

6.1 Group Convolution

6.1.1 A taste of the problem

Consider the simplest case of group convolutions, with discrete integer translations and
rotations of π

2 radiants. Many image recognition problems wish to be equivariant to
those two. Our discussion can be seen applied to the case of Figure 6.1. There, ρθ is a θ
rotation on the signal, while Rθ is a rotation on the channel space. The filter is rotated
through ρθΨ instead.

In a convolution, a filter is slided over the image, and gets a strong response up to
matching with the portion of the signal x ∈ X (Ω, C). For the rotated filter, there is no
match with the eye or mouth filter, unless the channel itself is oriented as the image.
For each element in a roto translation group we apply a 2D filter and compute the
inner product with the filter to evaluate the response. The filter is indeed equivariant
to translations but not to rotations. The feature maps (the channels) rotate, and the
match is found with the second filter orientation.

The transformation between the feature maps makes the identification appear through
a rotation and a cyclic shift of the filters involved. In an RGB image as an input, there
is only one way of transforming, but in the feature space, since there is an additional
action on the channel, even though the group is the same, the way that it acts on data
is different.

79

CHAPTER 6. GROUPS

Figure 6.1: A discrete roto-translation map

Example 6.1 (Discrete roto-translations on a letter). Consider another example. In
Figure 6.2 we have an input image, and doing the convolution we obtain 4 feature maps.
There, the filter is rotated 4 times, and the feature map is the same above and below but
rotated (blue arrow). In the rotated layer, the input has now 4 different input channels
(feature maps). Convolving it, we get one output channel and get to rotate the filter
4 times. There is a different transformation law. One can show that the output of the
operation below has the same transformation law up to rotation.

As a last operation, what one could do is a pooling of channels through some invariant
operation, with the resulting image having the same transformation behavior of the
input, as in Figure 6.4. In the input Ω = Z2 is transformed as a scalar field (we will
see this later). In the first layer, the structure is Ω = p4, where each pixel has spatial
coordinates (translations) and channel coordinates (rotations). Another way to think of
the 4 channels is as a single function on the group p4, this is a regular representation (we
will see later what it means). The other hidden layer has the same properties. The final
layer is the same as the input space.

6.1.2 Formal approach for tackling it

To understand what a group convolution is, we proceed by analogy with the usual con-
volution in Table 6.1.

We recognize that a group convolution acts on the orbit of a signal’s transformations.
The inner product is weigthed by the Haar measure dµ(u) and the convolution resembles
that of an inner product between the signal and a transformed filter across the various
channels. Similarly to the normal convolution case, equivariance is verified when a trans-
formed signal convolved with a filter is equal to the transformation of the convolution

80

6.1. Group Convolution

Figure 6.2: Discrete input roto-translation

Figure 6.3: Discrete rotated layer roto-translation

Figure 6.4: Discrete output roto-translation

81

CHAPTER 6. GROUPS

signal & translated filter signal & transformed filter
translated signal as ρ(v)x(u) transformed signal as ρ(g)x(u) = x(g−1u)

Inner product 〈x, y〉 =∑N
u=1

∑C
c=1 xc(u)yc(u)

Inner product 〈x, y〉 =
∫

Ω〈x(u), y(u)〉Cdµ(u)

Convolution
x ? ψ(v) = 〈x, ρ(v)ψ〉 =∑N

u=1

∑C
c=1 xc(u)ψc(u− v)

Group Convolution
x ? ψ(g) = 〈x, ρ(g)ψ〉 =∫

Ω〈x(u), ψ(g−1u)〉Cdµ(u)

Equivariance (ρ(v)x) ? ψ = ρ(v)(x ? ψ) Equivariance (ρ(g)x) ? ψ = ρ(g)(x ? ψ)

Table 6.1: Convolutions Analogies

of the signal and the filter itself (i.e. the representation slides out of the convolution).
Putting all the concepts together into a Definition:

Definition 6.2 (Group Convolution). Given a signal x ∈ X (Ω, C) and a filter ψ : G →
X (Ω, C) we define a group convolution, denoted by ? as:

x ? ψ(g) = 〈x, ρ(g)ψ〉 =

∫
Ω
〈x(u), ψ(g−1u)〉Cdµ(u) (6.1)

Where ρ is the representation of the group G. Moreover, ? is equivariant if:

(ρ(g)x) ? ψ = ρ(g)(x ? ψ) ∀g ∈ G, ∀ρ, ∀x ∈ X (Ω, C) (6.2)

Recall that signals are maps from the structure Ω to the channel vector space C seen as:
x : Ω→ C. A valid transformation of a group action G×Ω→ Ω, by Proposition 3.35, is
of the form:

ρ(g)x(u) = x(g−1u) (6.3)

When G = Ω, so that the structure is the group itself.

Proposition 6.3 (Group Action on Group (left version)).

Ω = G =⇒ valid group action (g, h)→ gh (6.4)

Proof. If Ω = G then a group action is a map G×G → G. The function (g, h)→ gh is
of this form. Moreover, by Lem 3.33 a sufficient condition is closure under composition,
namely g(h(l)) = (gh)(l), which is verified by Definition of Group.

With this result in mind, we recognize that the left action of G on itself, which is a
translation, can characterize signals mapping from the group to channels.

Definition 6.4 (Regular Representation ρ of G on X (G, C)). For a group G with signals
X (G, C) a regular representation is a map:

ρ : G→ C (6.5)

Where:
ρ(g)x(h) = x(g−1h) ∀g, h ∈ G,∀x ∈ X (G, C) (6.6)

Hopefully, the example below will clear out doubts regarding this Definition.

Example 6.5 (Regular representation of discrete roto-translation group). Consider the
group that arises from π

2 rotations of a signal as in Figure 6.5.

82

6.1. Group Convolution

Figure 6.5: Discrete roto translation group

Group elements g ∈ G can be encoded in a matrix:

g =

cos(r π2) − sin(r π2) tx
sin(r π2) cos(r π2) ty

0 0 1

 =

[
R(r) t

0 1

]
(6.7)

Where r ∈ {0, 1, 2, 3} are the π
2 multiples rotations forming a rotation matrixR(r) ∈ R2×2

and t ∈ Z2 is the discrete translation vector in a plane.

We check composition and inverse to apple the definition of regular representation. Com-
position of two group elements is such that:

gh =

[
R(r) t

0 1

] [
R(r′) t′

0 1

]
=

[
R(r)R(r′) R(r)t′ + t

0 1

]

=

cos(r π2) cos(r′ π2)− sin(r π2) sin(r′ π2) − cos(r π2) sin(r′ π2)− sin(r π2) cos(r′ π2) cos(r π2)t′x − sin(r π2)t′y + tx
sin(r π2) cos(r′ π2) + cos(r π2) sin(r′ π2) − sin(r π2) sin(r′ π2) + cos(r π2) cos(r′ π2) sin(r π2)t′x+ cos(r π2)t′y + ty

0 0 1

=

 cos((r + r′)π2 − sin((r + r′)π2) cos(r π2)t′x − sin(r π2)t′y + tx
sin((r + r′)π2) cos((r + r′)π2) cos(r π2)t′x − sin(r π2)t′y + tx

0 0 1

=

[
R(r + r′) R(r)t′ + t

0 1

]
∈ G

Where we just used trigonometric identities.
For the inverse, we instead check that the candidate:

[
R(−r) −R(−r)t
0 1

]
(6.8)

83

CHAPTER 6. GROUPS

is valid (i.e. returns identity and commutes) Then:

g

[
R(−r) −R(−r)t
0 1

]
=

[
R(r) t

0 1

] [
R(−r) −R(−r)t
0 1

]
=

[
R(−r + r) R(r)(−R(−r)t) + t

0 1

]
applying composition found above

=

[
R(0) −R(0)t+ t

01

]
previous calculations on R matrices

=

1 0 0

0 1 0

0 0 1

 trigonometric identities

= I

Which is the identity of the roto translation group. Checking the opposite order g−1g = I

follows the same steps.

Now that we know how to compute the basic operations in the roto-translation group,
we aim to recover a formula for its regular representation. Denoting a group element as
(r, t) and letting for simplicity t′ = 0 (no translation in the group operation applied), we
have that:

ρ(g)x(h) = x(g−1h) (6.9)

⇐⇒ ρ(r′, 0)x(r, t) = x((r′, t)−1(r, t)) (6.10)

= x

[[
R(−r′) 0

0 1

] [
R(r) t

0 1

]]
inverse operation (6.11)

= x

[[
R(r − r′) R(−r′)t

0 1

]]
composition operation (6.12)

= x

[[
R(r − r′) R(−r′)(t)

0 1

]]
(6.13)

= x

[
(r − r′)(mod 4), R(−r′)t

]
(6.14)

Where we use (mod 4) to make the translation cyclic and valid for t ∈ {0, 1, 2, 3} as
previously argued. This is where the channel cycling + rotation comes out.

As dimensions increase, channel cycling becomes more and more difficult to evaluate. In
Figure 6.6, we propose the same concept for a 3D cube with filters on sections of the
volume.

While we showed that there exists a regular representation of a group translation over or-
bits, we did not yet prove that such an object is convolution equivariant as per Definition
6.2.

Theorem 6.6 (Regular Representation induces Equivariant group Convolution). As-
sume a signal is transformed through a group symmetry via a group representation ρ1 as:

X (Ω1) : ρ1(g)x(u) = x(g−1 . u) (6.15)

There, the first convolution ψ applies a filter to an element of the signal into its orbit of
signals as:

· ? ψ : X (Ω1)→ X (Ω2) Ω2 = G (6.16)

After this first layer, a second moves around the orbit of signals with a regular represen-
tation ρ2 as:

X (G) : ρ2(g)x(h) = x(g−1h) (6.17)

84

6.1. Group Convolution

Figure 6.6: 3D cube filters and convolutions

Figure 6.7: Equivariant layers with group convolutions

And is convolved with a filter ψ and a map:

· ? ψ : X (G)→ X (G) (6.18)

Then:

1.
=⇒ 〈x, ρ1(g)ψ〉 = 〈ρ1(g−1)x, ψ〉 (6.19)

2. The a architecture for any number of second type layers, is equivariant, and can be
represented with a diagram like that of Figure 6.7.

=⇒
(

(ρ1(h)x) ? ψ

)
(g) = ρ2(h)(ψ ? x)(g) (6.20)

Proof. (Claim 1) The formula can be interpreted as asserting that a signal matched
with a transformed filter is equal to matching the inverse transformed signal with un-
transformed filter. An example can be seen in Figure 6.8. To prove it, we go on as

85

CHAPTER 6. GROUPS

Figure 6.8: Claim 1 Theorem 6.6 visualized

follows:

〈x, ρ1(g)ψ〉 =

∫
Ω
〈x(u), ψ(g−1 . u)〉Cdµ(u)

=

∫
Ω

C∑
c=1

xc(u)ψc(g
−1 . u)dµ(u)

=

∫
Ω

C∑
c=1

ρ1(g−1)xcψ(u)dµ(u)

=

∫
Ω
〈ρ1(g−1)x, ψ〉Cdµ(u)

= 〈ρ1(g−1)x, ψ〉

Where we just notice that this is verified by the properties of inner product, namely:

〈x, βy〉 = β〈x, y〉 = 〈βx, y〉

(Claim 2) With the result of Claim 1 in mind, the second follows directly:(
(ρ1(h)x) ? ψ

)
(g) = 〈ρ1(h)x, ρ1(g)ψ〉 group convolution Definition 6.2

= 〈x, ρ1(h−1)ρ1(g)ψ〉 Claim 1 on ρ1(h)

= 〈x, ρ1(h−1g)ψ〉
= 〈ρ1(g−1h)x, ψ〉 Claim 1 on ρ1(h−1g)

= 〈ψ, ρ1(g−1h)x〉 symmetry of product

= 〈ψ, x(h−1g)〉 group representation Definition 3.36

= ψ ? x(h−1g) group convolution Definition 6.2

= ρ2(h)(ψ ? x)(g) group regular representation Definition 6.4

Where stacking second type layers the answer does not change.

While we have proved that a group convolution is a linear equivariant map, it is also
possible to assert a stronger (opposite) property of convolutions, inspected in refereces
such as [KT18; CGW19; Coh21; Aro21]. In later sections, we will dive deeper into this
concept.

Theorem 6.7 (Convolution is all you need, informal). Any linear equivariant map be-
tween regular representations is a group convolution

86

6.1. Group Convolution

Figure 6.9: Efficient Implementation of Group convolution

Figure 6.10: Group Convolution letter F example

From the first few slides the idea is simple: we consider a filter ψ, rotate them, and do
a translation of convolution. To implement this, two steps are taken into consideration.
Weights of filters are combined with indices that define the orientation. This gives a
bigger filter bank, which stacked with Conv2D on the input feature map returns the
output feature maps. A diagram of the workflow is shown in Figure 6.9. Once trained,
it is not heavy computationally.

Example 6.8 (Group Convolution on the letter F). As an example, consider Applying
discrete roto-translations to a channel with 4 dimensions for the digital image of an F.
The output will be a filter bank with 4× 4 channels, shown in Figure 6.10.

Among other approaches it is worth mentioning:

• Steerable CNNs [CW16; Wei+18; WC21]
– generalizes group convolution to handle arbitrary fields
– computational cost does not grow as G does

• B-Spline CNNs [Bek21]
• LieConv [Fin+20]

– continuous filters parametrized by an MLP
– live on tangent space (Lie Algebra)

6.1.3 Spherical CNNs

In the context of spherical data, CNNs are largely distorted when the image is embedded
in R2. A solution to this problem exploits the structure of the datapoints.

This subsection is devolved to showing an example of an application of the just introduced
concepts.

We assume that the input and the filter are localized on a sphere S2.

x : S2 → RC ψ : S2 → RC (6.21)

In such a setting, the symmetry group is SO(3), that of 3D rotations. We then define
a Group convolution from a sphere with domain Ω = S2 to its symmetry group as in

87

CHAPTER 6. GROUPS

Definition 6.2:

x ? ψ(g) = 〈x, ρ(g)ψ〉 =

∫
S2

〈x(u), ψ(g−1 . u)〉Cdµ(u) (6.22)

Where the group convolution outputs a signal on SO(3).
Similarly, for subsequent layers the operation will convolve signals of the group to signals
in the group space. The input and filters change to:

x : SO(3)→ RC ψ : SO(3)→ RC (6.23)

The domain of such operation is Ω = SO(3), and a convolution appears as:

x ? ψ(g) = 〈x, ρ(g)ψ〉 =

∫
SO(3)

〈x(h), ψ(g−1h)〉Cdµ(h) (6.24)

To explore further these concepts, it is possible to take up spectral convolutions [CGW19;
Est+18]. Among other types of spherical CNNs, there are many that ignore the current
approach [Est+18; Per+19; KLT18].

• Spherical CNNs with isotropic filters
– works on 2D sphere instead of 3D rotation group
– requires isotropic filters

• Deepsphere
– uses HEALpic grid, with much more evenly spaced sampling of points
– connect nearby pixels to form a graph and apply a graph convolution (some-

how similar of isotropic filters
– in the limit of dense sampling it is rotation equivariant

• Spectral Spherical CNNs
– work entirely on spectral (Fourier) domain

It is important to point out that the isotropic filters requirement imposes rotation invari-
ance to satisfy equivariance. This is a limitation that will be touched upon frequently in
the next discussions.

6.2 General Theory of Homogeneous Group-CNNs

From the GDL blueprint of Definition 3.64 the domain of work is a possibly structured
set Ω, with group actions acting as G×Ω→ Ω. This framework can be enriched with a
useful property.

Definition 6.9 (Homogeneous Space). Given a set Ω and a symmetry group G the set
is a homogeneous space with respect to the group if the group action is transitive on it.
Namely:

∀u, v ∈ Ω ∃g ∈ G | g . u = v ⇐⇒ Ω Homogeneous (6.25)

Example 6.10 (Homogeneous Spaces in practice). We propose the following intuitive
examples:

• A plane Ω = R2 together with the translation group G is a homogeneous space. A
general translation for a pair of elements is shown in Figure 6.11

• A sphere Ω = S2 paired with the 3D rotation group SO(3) is a homogeneous space.
See Figure 6.12 for an example.

• A plane Ω = R2 and the 2D rotation group SO(2) do not form a homogeneous
space as we can take elements belonging to two different orbits like those of Figure
6.13. However, SO(2) splits R2 into different homogeneous spaces.

88

6.2. General Theory of Homogeneous Group-CNNs

Figure 6.11: Plane and Translation form a Homogeneous Space

Figure 6.12: Sphere and 3D rotations form a Homogeneous Space

The guaranteed existance of a transformation for each pair of elements of the structure
suggests distinguishing further between pairs that only transform and those that preserve
some regularity. A stabilizer subgroup collects transformations that do not effectively
change the elements considered.

Definition 6.11 (Stabilizer Subgroup H). For a group G and a set Ω homogeneous with
respect to the group, a stabilizer subgroup of an element of the domain u is the set of
transformations that preserve the element. Namely:

Hu :=

{
g ∈ G | g . u = u

}
u ∈ Ω (6.26)

Theorem 6.12 (Stabilizer Subgroup Properties). For a Stabilizer subgroup it holds that:

1. Hu is a subgroup
2. Hu is the same abstract group ∀u ∈ Ω

Proof. (Claim 1) Having established by construction that Hu ⊆ G∀u ∈ Ω, since it is
the subset of a group, by Lemma 3.33 it suffices to show that

g−1h ∈ Hu∀g, h ∈ Hu

We solve the claim by checking that g−1h satisfies Definition 6.11. It holds that:

(g−1h)(u) = g−1(h . (u)) = g−1 . u = u =⇒ g−1h ∈ Hu∀u ∈ Ω

Where the last passage follows by multiplying the equation of Definition 6.11 by g−1.
(Claim 2) we leave this concept blank to implicitly explain it when dealing with Cosets
(Definition 6.13) and the Orbit Stabilizer Theorem (Theorem 6.21).

Figure 6.13: Plane and 2D rotations do not form a Homogeneous Space

89

CHAPTER 6. GROUPS

A further characterization of groups is carried out by introducing Cosets.

Definition 6.13 (Left Coset gH). Given a group G and a subgroup H a coset of an
element g ∈ G is the set of possible left combinations of g and any element in the
subgroup.

gH =

{
gh | h ∈ H

}
(6.27)

Where g is a coset representative

Theorem 6.14 (Coset Properties). For a coset gH:

1.
ghH = gH ∀h ∈ H,∀g ∈ G (6.28)

2.
gH ≡ g′H =⇒ ∃h ∈ H : gh = g′ (6.29)

3. Two cosets are either identical or disjoint, and they form a partition of G.

gH ≡ g′H ∨ gH ∩ g′H = ∅ (6.30)

Proof. (Claim 1) By Definition 6.13 a requirement is H being a subgroup. This implies
that H is closed under the group operation and:

hh′ = h′′ ∈ H ∀h, h′ ∈ H =⇒ ghH =

{
ghh′ | h′ ∈ H

}
=

{
gh′′ | h′′ ∈ H

}
Which is equal to Definition 6.13 up to the dummy index on h′′.
(Claim 2) We start from unravelling the assumption as:

gH =

{
gh | h ∈ H

}
≡
{
g′h | h ∈ H

}
= g′H (6.31)

Then =⇒ ∀q = gh ∈ gH ∃h′ ∈ H : g′h′ = q and viceversa. So:

gh = q = g′h′ =⇒ ghh′−1 = gh′′ = g′ for hh′ = h′′ ∈ H

Where it was sufficient to left transform by h′−1 and recognize that hh′−1 ∈ H. Again,
up to the dummy index, the claim is verified.
(Claim 3) First observe that ∀g ∈ G∃gH, so each element of the group belong to a coset
and we have that: ⋃

g∈G
gH = G

To prove that cosets are disjoint, we assume by contradiction that two sets are distinct
but not disjoint, namely:

gH 6≡ g′H ∧ gH ∩ g′H 6= ∅ (6.32)

Then ∃q∗ ∈ gH ∩ g′H and we have that:

=⇒ q∗ = gh = g′h′ =⇒ g′ = ghh′−1 = gh′′ h′′ ∈ H

However, by Claim 2 we also have that:

g′ ∈ gH =⇒ g′H ≡ gH (6.33)

Which contradicts the distinction assumption gH 6≡ g′H and certifies the second partition
requirement. All cosets are distinct and they cover the whole group.

90

6.2. General Theory of Homogeneous Group-CNNs

Figure 6.14: Cosets for H = {e, r, r2, r3}

Figure 6.15: Quotients for H = {e, r, r2, r3}

Definition 6.15 (Quotient of subgroup G/H). For a group G and a subgroup H the
quotient G/H is the set of cosets that partition G.

Example 6.16 (Cosets Visualized for discrete roto-translations). Consider the rotation
subgroup, using Definition 6.13 and Theorem 6.14 we can analyze its cosets. Inspecting
Definition 6.15 it is possible to visualize how the space is split into Quotients.

• Let H = {e, r, r2, r3} be a subgroup, the cosets are denoted in Figure 6.14. Fur-
thermore we have that:
– The coset eH is yellow
– The coset rH is brown
– The coset mH is brown
– The quotient is G/H ={eH, rH} shown in Figure 6.15

• If we instead consider as subgroup H = {e,m} we can visualize the partition in
Figure 6.16. In this case, the quotient space G/H = {eH, rH, r2H, r3H} is that of
Figure 6.17

Example 6.17 (Cosets visualized for a Sphere and surface rotations). Consider a group
G = SO(3) of triple axis rotations, and its subgroup SO(2) = H = {Z(γ) | γ ∈ [0, 2π]}
of Z axis rotations. The quotient SO(3)/SO(2) = S2 a sphere parametrized by α ∈
[0, 2π], β ∈ [0, π]. A figure of such kind is Figure 6.18.

The final object to introduce to trace back our reasoning to Homogeneous spaces relates
quotients and group elements in a specific manner.

Definition 6.18 (Action ofG onG/H). For g ∈ G, H a subgroup ofG and u = aH ∈ G/H

(i.e. a coset), define an action of the group on the coset as:

(g, u)→ g(aH) = (ga)H (6.34)

91

CHAPTER 6. GROUPS

Figure 6.16: Cosets for H = {e,m}

Figure 6.17: Quotient for H = {e,m}

Figure 6.18: SO(3)/SO(2) quotient is a sphere

92

6.2. General Theory of Homogeneous Group-CNNs

Proposition 6.19 (Action on Quotient is well defined).

aH = a′H =⇒ g(aH) = g(a′H) ∀g ∈ G, aH, a′H ∈ G/H (6.35)

Proof. By Theorem 6.14 cosets partition G. Then, if two cosets are equal, the map
g . u = g . v is the same for u = aH = a′H = v.

As it turns out, Homogeneous spaces are nothing but Quotient spaces. They partition
the space into orbits that are disjoint and cover the whole group. The proof is carried
out thanks to the next Lemma.

Lemma 6.20 (Quotient space is Homogeneous and its stabilizer group). Consider a
group G with a subgroup H. Its Quotient space G/H is homogeneous with a stabilizer
H ∀gH ∈ G/H .

Proof. To show this, consider u = aH, v = bH ∈ G/H. Using Definition 6.9, it suffices to
find a group element ∈ G that connects the two. This is easily found to be:

l = ba−1 =⇒ l . u = ba−1aH = bH = v =⇒ G/H Homogeneous

To find its stabilizer subgroup, following Definition 6.11, we aim to identify a set of
transformations that keeps the element unchanged:

find Hu = {l ∈ G | l4u = u}

When u = aH, this condition is found to be:

l . u = laH =

{
lah | h ∈ H

}
=

{
ah | h ∈ H

}
= aH = u (6.36)

If u = eH then the stabilizer condition is trivially satisfied by:

h ∈ H =⇒ h(eH) = hH = H =eH

And H is its stabilizer group.
For u 6= eH we have that:

laH = aH ⇐⇒ l ∈ aH

=⇒ Hu = aH

Since we have to make it compose with itself to keep it closed under composition.

Theorem 6.21 (Orbit Stabilizer Theorem). For a group G and subgroup H there is a
bijection between the cosets of the stabilizer subgroup for cosets of the quoteient and the
orbits of Ou as per Definition 3.42, which are the elements in which u can be transformed
into through G. Namely, there exists a bijection τ such that:

∃τu : G/H→ Ou τu(aH) = a . u where

{
u = aH

Ou = {a . u, a ∈ G}
(6.37)

=⇒ G/H ∼=Ou (6.38)

Proof. Consider for a fixed u the function

f : G→ X (Ω, C) a→ a . u

93

CHAPTER 6. GROUPS

Then the image of f is the orbit of u, denoted as Im(f) = Ou. Two group elements map
to the same output when:

f(a) = f(h) ⇐⇒ a . u = h . u ⇐⇒ a−1h . u = u ⇐⇒ a−1h ∈ Hu ⇐⇒ h ∈ aH

Which means that this happens if and only if h is in the coset of the stabilizer subgroup
of u. The ⇐⇒ relation implies that f induces a bijection between the set of cosets G/H
and the orbits of the u elements which are the image of f . Thus:

=⇒ G/H ∼= Ou (6.39)

Example 6.22 (Sets & Sequences). Let Ω = {1, . . . , n} and G = Sn the permutation
group.
The pair (Ω, Sn) is homogeneous since for each u, v ∈ Ω there is a group transformation
(more than one actually) such that g . u = v, just consider a bijection that sends u→ v.
By Theorem 6.21 it is equivalent to a quotient space. The stabilizer subgroup for 1 ∈ Ω

denoted as H1 is such that:

H1 = {g ∈ Sn | g . 1 = 1} = {g ∈ Sn | 1 fixed}

And it is the set of permutations that do not impact 1 and permute the others:

g : 1→ 1 i→ j, i, j 6= 1 (6.40)

The isomoprhism Sn/H1
∼= O1 = Ω implies that:

• |Sn/H1| = |Ω| = n

• The action Sn× Sn/H1 is equivalent to the action Sn×Ω so they are both permu-
tations!

Another useful bijection following Theorem 6.21 is between functions. Let f : G→ C be
a function which is right H invariant, where H is a subgroup of G meaning:

f(gh) = f(g) ∀g ∈ G,∀h ∈ H (6.41)

Then, by the isomorphism property, the function f is essentially equivalent to another
function f on the quotient space:

f : G/H→ C f(g) = f(gH) (6.42)

Example 6.23 (Functions on rotation groups, functions on spheres). Coming back to
figure 6.18, we notice that a function on SO(3) which is right SO(2) invariant means
that it is constant across 2D rotations. By the above argument, it will be equivalent to
a function on the sphere S2 = SO(3)/SO(2), which is the quotient.

We now want to analyze spherical convolutions of the form:

? : X (S2)×X (S2)→ X (S2) (6.43)

Which again, by Theorem 6.21 is equivalent to convolutions of the form:

? : X (S2)×X (S2)→ X (SO(3)) : SO(2) invariant (6.44)

94

6.2. General Theory of Homogeneous Group-CNNs

Figure 6.19: Isotropic SO(2) invariant filter

Figure 6.20: Unconstrained filters

Since an SO(2) invariant function on SO(3) is equivalent to a sphere. The same concept
generalizes to any homogeneous space. To achieve this, it turns out that the filter needs
to be SO(2) symmetric (isotropic), like those of Figure 6.19. An isotropic filter is
equivalent to a scalar field on G/H On the contrary, it is possible to work with Regular
fields on G/H, which are scalar on G as unconstrained filters. To have an idea of what
these look like, it is possible to glance at Figure 6.20. These however come at the price
of increased computing overhead, resulting in potential inefficiencies. Between these two
types of filters, we consider constrained filters as fields on G/H which transform according
to induced representations (not the regular one!).

Observation 6.24 (From regular to induced representation). For a regular represen-
tation of C4 cyclic shifts of 4 elements, it is possible to visualize an example in Figure
6.21. To go from this representation of C4, the subgroup H which is a stabilizer, to a
representation of the whole roto-translation group, it is possible to combine the rotation
and translation action on the quotient space G/H with the cyclic shift as in Figure 6.22.

For an RGB image, each pixel transforms trivially, but the specific channels do not. For
the induced representation there will be a spatial action (e.g. rotation) and a trivial
action on the channels. See Figure 6.23 for an intuition.

For an RGB image where we wish to compute the gradient, the transformation is not
scalar anymore and can be seen as an operation on a vector field. The channels will
undergo a rotation to compensate for the change in orientation. Figure 6.24 is an example
of such situation. To visualize this, consider a vector field of the form f(x) and a 90 degree
rotation with g. If we wish to apply it, it is not enough to move each vector to the rotated

Figure 6.21: Regular representation of C4

95

CHAPTER 6. GROUPS

Figure 6.22: Cyclic and roto translation representation

Figure 6.23: Scalar field RGB induced representation

Figure 6.24: Vector Field RGB induced representation

96

6.3. Steerable CNNs

Figure 6.25: Vector Field and transformations

position while leaving the direction of the vectors unchanged as f(g−1 .x). We also need
to modify the direction, and do the following:

ρ(g)f(g−1 . x)

An visualization of the three functions f(x), f(g−1 . x), ρ(g)f(g−1 . x) is proposed in
Figure 6.25.

Informally, we could describe Induced representations in general considering:

• G a group and H a subgroup, both sufficiently nice
• ρ a representation of H

Which are enough to build an induced by ρ representation of g ∈ G. This object describes
how a field of ρ features transforms on G/H. An outline of the steps could be:

• move features in G/H using the action on G

• transform them with ρ

6.3 Steerable CNNs

Steerable CNNs are Neural networks that take as input feature maps that transform
according to an induced representation (fields) and output the same. Also in this context,
we find a Universality Theorem, now stated layerwise. For a more formal treatment, there
are many references [KT18; CGW19; Coh21; Aro21].

Theorem 6.25 (Convolution is all you need II, informal). Any linear equivariant map
between induced representations is a convolution with steerable kernels.

Example 6.26 (Steerable Kernel and convolutions). Let G = SE(2),H1 = H2 = H =

SO(2) such that: G/H = R2 and consider the feature field f and filter ψ:

f : R2 → RC ψ : R2 → RK×C

Then a convolution will be:

(f ? ψ)(u) =

∫
R2

∑
c

fc(v)ψkc(v − u)dv

Where the kernel satisfies:

ψ(r−1u) = ρ2(r)−1ψ(u)ρ1(r)

Which enforces that if we rotate the filter it must be the same as outer rotating the
representations for the input and output layers.

97

CHAPTER 6. GROUPS

Figure 6.26: Homogeneous G-CNNs characterization

This framework can be used to classify different G-CNNs by the group G, the subgroup
H which determines the space we are working, and what type of features ρ we are using
(i.e. how they transform). A summary of methods interpretable in this uniform approach
of Homogeneous G-CNNs is proposed in Figure 6.26.

To explore Tensor Field Nets, we reroute the reader to interesting sources [CW16;
Wor+17; Wei+18; Tho+18; Kon18; Hy+18].

98

Chapter 7

Geodesics & Manifolds

This Chapter is devoted to analyzing another G of the GDL blueprint that is missing:
Geodesics. The domain Ω will be a Manifold, a nice mathematical object, not well
explored in Computer Science.

We will see that manifolds represent Intrinsic/Mesh CNNs and have 2 symmetry groups,
Isometries Iso(Ω) and gauge symmetries SO(s).

Why such a choice of domain? Manifolds are clever ways to represent 3D objects for two
main reasons:

1. efficiency: they can be used to model the 2D surface ignoring the third dimension
of volume. This is useful especially when what happens in the interior of the object
is not important for the model. Figure 7.1 is an example of surface vs volume
complexity.

2. they are a natural representation of deformable shapes, widely implemented in 3D

graphics and protein modelling. In these two fields, it is noticeable that the internal
structure can be ignored.

As an outline of the lecture, we will explore:

• Convolutions on manifolds
• Deformation invariance
• Manifold Fourier transform
• Discretization

The concepts touched will make the reader able to

• define local stuff on manifolds
• move local stuff around
• understand global symmetry and deformation invariance as an isometry
• perform spectral analysis on manifolds

In the next Chapter, the local symmetry of manifolds, formalized by gauges, will be
explored.

7.1 A primer on Manifolds

When talking about Groups in Chapter 6, most of the analysis was based on the homo-
geneity property of some structures. Manifolds instead have no global symmetry, and

99

CHAPTER 7. GEODESICS & MANIFOLDS

Figure 7.1: Rabbit as a volume and as a (mesh) surface

Figure 7.2: Global Symmetry group exists

can only be locally symmetric. For this reason, concepts related to paths are introduced.

Example 7.1 (Groups vs Manifolds). In Figure 7.2 we have a global symmetry group
that ensures homogeneity. In Figure 7.3 there is no global symmetry, and many types of
different paths can be found for a pair of points of the domain.

Thinking about Euclidean convolutions (an example is Figure 7.4), the filter is trans-
ported around the domain with no path dependence.

On the contrary, if a filter is moved across a non Euclidean domain, the path impacts
how the filter is transformed. For an S2 sphere, rotation changes the filter orientation
(the arrow) as in Figure 7.5. The ambiguity is reflection. For a non orientable manifold
as that of Figure 7.6, the situation becomes even more complicated.

There are many ways to tackle non Euclidean convolutions, among those we will avoid
the fixed path approach and focus on:

• fixed gauge
• group pooling
• isotropic spectral filter
• gauge equivariant filter

For the types of symmetry, we can interpret how they act on the structure through visual
examples:

100

7.1. A primer on Manifolds

Figure 7.3: No Global Symmetry group

Figure 7.4: Euclidean Convolution

Figure 7.5: Non-Euclidean Convolution

Figure 7.6: Non-Euclidean Convolution II

101

CHAPTER 7. GEODESICS & MANIFOLDS

Figure 7.7: Local gauge transformation

Figure 7.8: Global deformation

• Local gauge transformation SO(s) (Chapter 8), Figure 7.7
• global isometric deformation through invariance Iso(Ω), Figure 7.8

For the purpose of understanding better the requirements of a Manifold, we report the
bare minimum of theoretical statements.

Definition 7.2 (Topological Space via Neighborhoods). Let Ω be a set. Ω is a topological
space if it is paired with a valid collection of subsets N , often denoted as open sets. These
can be interpreted as neighbors of the points they contain. The axioms to satisfy are:

1. Empty set and the whole set belong to the open sets

∅,Ω ∈ N (7.1)

2. Finite intersection of open sets is open

n⋂
i=1

Ni ∈ N (7.2)

3. Arbitrary union of open sets is open

∞⋃
i=1

Ni ∈ N (7.3)

See a visualization in Figure 7.9. The interpretation is that for a set of elements, one

102

7.1. A primer on Manifolds

Figure 7.9: Topological Space

Figure 7.10: Topological Spaces on Ω = {1, 2, 3}

could consider any union and still get closeness with respect to the space (i.e. still fall
inside Ω) and up to countable intersection, since intersecting too many spaces would not
make sense (i.e. getting the empty set). Given that the empty set is required, it is not
necessary to enforce it with an arbitrary intersection.
It is also possible to interpret such a difference in the requirements from a neighborhood
perspective. Establish a neighborhood (i.e. an open set) of a point as a collection of
elements satisfying a certain degree of vicinity. Then:

• unions are arbitrary since unions of degree of closeness do not exclude any
neighborhood. We just require either of them to be satisfied.

• intersections must be finite since crossing (intersecting) rules for closeness gives
as result a joint closeness criterion, which if brought to the extreme might return
an empty set. This is clearly a result that would clash with the structure we are
providing. The neighborhood construction collapses and we cannot exploit anymore
the universality of Topology.

Example 7.3 (Toy Topological Spaces). Consider the finite set Ω = {1, 2, 3}, up to a
choice of open sets, one could build:

1. N with all the possible subsets and intersections of them. By convention, this is
called a discrete topology

2. N = {∅,Ω}, which is valid, and the simplest possible. This is called a trivial
topology

3. N = {{1}, {1, 2}, ∅,Ω}}, which satisfies all axioms
4. N = {{1, 2}, {1, 3}, ∅,Ω}} which violates axiom 3 and is not a topological space,

missing {1} = {1, 2} ∩ {1, 3}

Points 1, 2, 3, 4 are drawn in Figure 7.10.

Example 7.4 (The Euclidean Topology). Conside ra Euclidean Space and its metric.
Together with the collection of open sets induced by the metric, [Ω,N (dist)] satisfies all
the axioms and is a topological space. This reduces to the collection of open balls with
arbitrary radius of points B(x, r) and their arbitrary unions (see Figure 7.11 for a view
in R2).

103

CHAPTER 7. GEODESICS & MANIFOLDS

Figure 7.11: Euclidean Topological Space

Figure 7.12: Continuity in a Topological Space

A topological space is one the the lightest structures that allows to define a concept of
continuity.

Definition 7.5 (Continuity in a Topological Space). Given two topological Spaces Ξ,Ω

a function f : Ξ→ Ω is continuous if for every open subset of the codomain its preimage
in the domain is open.

f continuous ⇐⇒ ∀U ⊆ Ω open f−1(U) ⊆ Ξ open (7.4)

Note that the notation f−1 does not require invertibility of f and is just used to denote
the preimage, as all the elements in Ξ that map to U ⊆ Ω. For a graphical representation,
see Figure 7.12.

Definition 7.6 (Homeomorphism). A function f : Ξ → Ω where Ω,Ξ are topological
spaces is a homeomorphism if:

• f is a bijection
• f is continuous
• f−1 is continuous

Homeomorphisms relate topological spaces through transformations that do not impact
the structure. This fact is clear since we require to map open sets to open sets (neighbor-
hoods to neighborhoods) and to have complete freedom of going back & forth. However,
some nice non-axiomatic properties are lost across the transformations.

Observation 7.7 (Why Topology 6=⇒ smoothness). Consider a 3D cube C with de-
scription:

C = {(x, y, z) | max{|x|, |y|, |z|} = 1} (7.5)

and its inscribed sphere S2. The map:

f : C → S2 f(x, y, z) =

(
x√

x2 + y2 + z2
,

y√
x2 + y2 + z2

,
z√

x2 + y2 + z2

)

104

7.1. A primer on Manifolds

Figure 7.13: Map f for Observation 7.7

Figure 7.14: Hausdorff Space condition for two points

represented in Figure 7.13 satisfies the requirements of Definition 7.6 and is a homeo-
morphism. In particular, the inverse is:

f−1(x, y, z) =

(
x

max{|x|, |y|, |z|}
,

y

max{|x|, |y|, |z|}
,

z

max{|x|, |y|, |z|}

)
Yet, a cube is not smooth and a sphere is, so smoothness is not an intrinsic property of
topological spaces.

As mentioned in earlier paragraphs, manifolds are general objects used to model surfaces.
Informally, an s dimensional manifold is a Topological Space (Definition 7.2) with a
neighborhood and no distance notion, which locally resembles Rs. This resemblance is
translated into being locally homeomorphic (Definition 7.6) to Rs. Additionally, if it is
smooth, then its transition function between the intersection of two local maps is smooth.

To understand these concepts further we need to provide a more strucutred formalization.
Concerning the open sets, more specifications are required to make them tractable.

Definition 7.8 (Hausdorff Space). A topological space Ω is a Hausdorff space if any two
points have disjoint neighborhoods.

∀p1, p2 ∈ Ω ∃U1, U2 ∈ N : p1 ∈ U1, p2 ∈ U2, U1 ∩ U2 = ∅ (7.6)

See Figure 7.14 for an idea.

A Hausdorff space could be seen as a topological space Ω which avoids having too few
subsets, meaning that for each element there is at least one neighborhood that is proper
to it and to none of the others. Similarly, it is possible to specify a notion of not too
many.

Definition 7.9 (Basis of subsets of Topological Space B). Given a topological space Ω

with neighborhoods N , a basis B is a collection of subsets such that any neighborhood

105

CHAPTER 7. GEODESICS & MANIFOLDS

Figure 7.15: Manifold with s = 2

is obtained by the union of some elements of B.

B ⊆ N | U =
⋃
Bi ∀U ∈ N (7.7)

Whenever a topological space admits a countable basis, we say that the space is second
countable1.

Example 7.10 (Basis for discrete topology and Euclidean Topology). Given Ω = {1, 2, 3},
the collection of singletons B = {{1}, {2}, {3}} is a basis for the discrete topology.
For the Euclidean Topology, presented in Example 7.4, one could select all balls with
rational coordinates and rational radius. Indeed, it holds that the rationals are dense
in the reals, and the arising countable basis will cover all of Ω = Rd.
Both of these basis are countable. The former is finite. The latter is countably infinite,
as it is completely defined over rational point-radius pairs (ω, r) ∈ Q × Q for which a
bijection with N can be established.

Clearly a second countable space is a notion of a space with not too many objects, in the
sense that it can be generated by a constrained collection of open sets. Definitions 7.8
and 7.9 motivate the union of the two to give rise to a space that is somehow tractable
enough.

Definition 7.11 (Topological Manifold). A s dimensional topological manifold Ω is a
second countable Hausdorff space such that every neighborhood of a point is homeomor-
phic to a subset2 of Rs. Namely, given a point p ∈ Ω, and a neighborhood of p denoted
as U we can find a map φ that satisfies the requirements of Definition 7.6.

∀p ∈ Ω ∃U ⊆ Ω,∃φ : U → φ(U) hom V ⊆ Rd (7.8)

The pair (U, φ) is a chart and U is a coordinate domain. A visual Example for s = 2

is found in Figure 7.15.

Example 7.12 (Manifolds 101). Among the easiest possible manifold structures we find:

• The Euclidean space Rd

• A 2 dimensional sphere S2

• Meshes, which will be introduced later in Section 7.4
• Spacetime in Physics
• the lie group of rotations, topologically equivalent to a one dimensional sphere, a

circle S1, i.e. SO(2) ∼=top S
1

1Note that countable 6=⇒ finite. We could as well have a countably infinite basis, which would
satisfy having an existing bijection with the set of natural numbers N.

2sometimes, they are globally homeomorphic to it, and we refer to those cases as trivial topologies.

106

7.1. A primer on Manifolds

Figure 7.16: Transition maps

Figure 7.17: Mug donut Homeomorphism

• the direct product of two rotation groups, namely, a torus SO(2) × SO(2) ∼=top T

from Chapter 6.

Manifolds as in Definition 7.11 are frequently implemented in Machine Learning. Thanks
t their flexibility, notions of convolution, optimization, data embedding and probability
can be paired with such structures.

Definition 7.13 (Connected manifold). A manifold Ω is connected when it cannot be
described as a disjoint union of two non empty open sets.
In practical terms, it is a single object in the space where it lives.

Definition 7.14 (Atlas of charts A). For a manifold Ω, an atlas A is a set of charts
covering the manifold, namely:

A =

{
(U I , xI)

}
I∈I
|
⋃
I∈I

U I = Ω (7.9)

Here, we use x instead of φ to be consistent with the image we will present.
Trivially, for two given indexes A,B ∈ I, a composition of homeomorphisms xA, xB is a
homeomorphism itself. We call these transition functions, when well defined over the
intersection of the coordinate domains UA, UB. Implementing the notation, we would
have that:

xB ◦ (xA)−1 : xA(UA ∩ UB)→ xB(UA ∩ UB)

Looking at Figure 7.16, the transition maps are in blue, while the homeomorphisms are
either green or red.

A very interesting fact, often presented as a joke, is that a mug is isomorphic to a donut.
Both are then the same manifold, with just different 3D representations (see Figure 7.17).
Topology is indeed very flexible and we may need some additional structure to exploit
its potential. First of all, local notions need to be attached to Ω.

In some sense,we are allowed to study topological invariants, namely those features that
are not influenced by drastic changes in the shape of the domain. Adding further struc-
turizations, we could make the domain more rigid, obtaining:

107

CHAPTER 7. GEODESICS & MANIFOLDS

Figure 7.18: Charts and function over manifold

• smooth manifolds up to the requirement of a smooth strucutre
• Riemaniann manifolds up to the requirement of a metric structure

Both of these will be presented in the next arguments.

The former is motivated by the need to be able to differentiate functions over manifolds
of the simple form:

f : Ω→ R (7.10)

Though the global structure is rather complex, thanks to Definition 7.11 it is possible to
resort to local euclidean homeomophisms, and one can define differentiation by operating
a pullback operation, which transfers points on the manifold to the euclidean space
through the chart xA to Rd, which arises naturally from the composition of the function
and the inverse homeomophism as:

f ◦ (xA)−1 : V A → R | V A ⊆ Rd (7.11)

While these compositions are always defined, an additional requirement ensures a satis-
factory level of smoothness.

Definition 7.15 (Smooth Atlas). An atlas A is smooth if the transition maps of two
overlapping charts are smooth, meaning that for any two indexes of the atlas denoted as
A,B ∈ I we have that the compositions f ◦ (xA)−1, f ◦ (xB)−1 are smoothly compatible.
In other terms they have to agree when mapped to the function in overlapping sections.
This translates into requiring transition maps to be smooth:

∀A,B ∈ J | UA ∩ UB 6= ∅ xB ◦ (xA)−1 smooth (7.12)

A schematic view is proposed in Figure 7.18.

Definition 7.16 (Smooth Manifold). A manifold Ω is smooth if it is equipped with an
Atlas A which is smooth.

Example 7.17 (Smooth Manifold). In Figure 7.19 it is possible to notice that the
smoothness requirement reduces to having a smooth transition (mapping, i.e. the arrows)
between the intersection of the two locally homeomorphic spaces is smooth.

Definition 7.16 inherently presents a parallelism with the notion of R smoothness, making
many operations possible and easy to interpret.

Definition 7.18 (Smooth Map). Consider two manifolds M,N , and a map φ : M → N .
Then, φ is smooth at p ∈M if for some smooth charts (UM , xM), (UN , xN) around p, φ(p)

the composite map is smooth (differentiable) on Rd, meaning:

xN ◦ φ ◦ x−1
M : Rd → Rd smooth (7.13)

An easy smooth map is found on Figure 7.20

108

7.1. A primer on Manifolds

Figure 7.19: A smooth manifold

Figure 7.20: Smooth map for two manifolds

Recalling that R is a manifold, it is possible to establish a correspondence of parametrized
functions between the easy space R and any manifold. Drawing from Definition 7.18, we
have:

Definition 7.19 (Smooth Curve). For a manifold M a smooth curve is a smooth map
of the form:

γ : R→M (7.14)

Such depth of formalization allows us to informally define a tangent space for any point
of a manifold, as follows.

Definition 7.20 (Informal! Tangent Space TpM). Let M be a smooth manifold as in
Definition 7.16 with smooth curves γ as in Definition 7.19 with a time parametrization
t as argument. For a point p ∈ M the tangent space TpM is the vector space of the
tangent vectors γ′(0) where γ(t = 0) = p:

TpM :=

{
γ′(0) | γ : R→M smooth, γ(0) = p

}
(7.15)

Intuitively, we consider the space of slopes of the smooth curves passing at a dummy t
live on the tangent plane by definition. A visualization is found on Figure 7.21

Despite the absence of constraints, many highly general objects can be analyzed when
dealing with manifolds. Those that will be useful for our purpose are introduced in the
next pages.

Definition 7.21 (Local Isomorphism of Manifolds, tangent spaces TuΩ, tangent bundle
TΩ). For a smooth s-manifold Ω, it holds:

TuΩ ∼= Rs ∀u ∈ Ω (7.16)

109

CHAPTER 7. GEODESICS & MANIFOLDS

Figure 7.21: Tangent space view

Figure 7.22: Some planes part of a Tangent Bundle

Indeed, a smooth manifold is a topological manifold, satisfying the requirements of Def-
inition 7.11.
We additionally denote the collection of all tangent spaces (the tangent bundle, Figure
7.22) as

TΩ = qu∈ΩTuΩ (7.17)

Vectors in the tangent plane X ∈ TuΩ define local displacements. Observe though that
they are abstract vectors, without coordinates, given that direction and length arise
when an additional inner product (distance notion) is provided.

Even though tangent planes are vector spaces, a canonical reference frame for representing
them is usually absent. To understand the claim, give a look at Figure 7.23. Denoting
the set of possible choices as the frame bundle:

FΩ = qu∈ΩFuΩ (7.18)

it is possible to express more objects over the manifold. Following the approach of simpler
vector spaces, this becomes rather intuitive.

The addition of a basis {X1, . . . , Xs} ⊆ TuΩ allows to attach coordinates to X. A
coordinatisation can be constructed by defining a gauge ωu. Which is an invertible

Figure 7.23: Different frames over a manifold

110

7.1. A primer on Manifolds

Figure 7.24: Manifold Ω, tangent plane TuΩ , tangent abstract vector X

linear map smooth w.r.t. u such that:

ωu : Rs → TuΩ (7.19)

Which induces coordinates x = ω−1
u (X) for an abstract vector X.

A visualization of a manifold in 2 or 3 dimensions is to be taken carefully. Having no
notion of distance, any embedding is purely indicative, nor it should not be intended as
an any dimensional object. In Figure 7.24 an example of s dimensional manifold, with a
tangent space at u, and vector is proposed.

Definition 7.22 (Diffeomorphism). Given two smooth manifolds Ω,Ξ a function f :

Ξ→ Ω is a diffeomorphism if:

• f is bijective
• f is differentiable
• f−1 is bijective and differentiable as well

Proposition 7.23 (Diffeomophisms≺Homeomorphism). Every diffeomorphism is a home-
omorphism.

Proof. Smooth Manifolds are topological spaces as in Definition 7.2. A Diffeomorphism
requires that f is differentiable, which necessarily implies that f is continuous. Thus,
every diffeomorphism is also a homeomorphism.

Definition 7.24 (Diffeomorphism Group Diff(·)). For a smooth manifoldM , the set of
self-diffeomorphisms paired with function composition ◦ forms the diffeomorphism group
of M .

Diff(M) :=

{
{φ : M →M | φ diffeomorphism}, ◦

}
(7.20)

Diff(M) collects the symmetries of a smooth manifold M of the form of Figure 7.25.

In the event that also a notion of distance preservation was required, we would resort to
isometries. Yet, manifolds do not naturally come with a metric structure and this has to
be added on top of the already introduced features.

The local homeomorphism with Rs suggests exploiting the regularity of such space.

111

CHAPTER 7. GEODESICS & MANIFOLDS

Figure 7.25: A diffeomorphism/symmetry for the manifold M

Definition 7.25 (Riemaniann Metric ??). A Riemaniann metric gu(·, ·) is a local inner
product smooth w.r.t. u:

gu(·, ·) = 〈·, ·〉u : TuΩ× TuΩ→ R (7.21)

Attaching a local frame to TuΩ it can be expressed as a positive definite matrix G(u)

storing inner products of elements of a gauge induced basis {X1, . . . , Xs} ⊆ TuΩ as:

G(u) =

(
〈Xi, Xj〉u

)
� 0 (7.22)

A property which solely arises from the Riemaniann Metric is said to be intrinsic.

Definition 7.26 (Riemaniann Manifold). A Space endowed with a Riemaniann metric
(Definition 7.25) is a Riemaniann manifold. The neighborhood structure N is induced
by the metric gu.

Example 7.27 (Intrinsic quantities). The attachment of a Riemaniann metric gives rise
to the following local quantities:

• angle of vectors cos−1(〈X,Y 〉u) X,Y ∈ TuΩ

• lengths ‖Xu‖ = 〈X,X〉
1
2
u

• areas g = det(G)

It can be shown that a deformation that does not impact the metric (an isometry) will
come with some properties preserved. The donut-mug case of Figure 7.17 is not of this
kind, as it clearly does not satisfy the isometry requirement.

A Riemaniann metric allows us to obtain distances, up to fixation of a constraint on their
shape.

Definition 7.28 (Geodesic γ). A manifold Ω with a Riemaniann metric gu ∀u ∈ Ω

allows to define parametrized curves between points u, v ∈ Ω. A geodesic for two points
is the minimum length curve among all the possible ones, where length is computed as
the integral of the velocities modules γ′(t) defined in the tangent spaces:

γ : [0, T]→ Ω γ(0) = u γ(T) = v (7.23)

γ(t) = argmin{`(γ)} (7.24)

`(γ) =

∫ T

0
‖γ′(t)‖γ(t)dt =

∫ T

0
〈γ′(t), γ′(t)〉

1
2

γ(t)dt γ′(t) ∈ Tγ(t)Ω (7.25)

A breakdown of the creation of a geodesic is outlined in Figure 7.26, while the resulting
curve alone is in Figure 7.27. Note that geodesics are intrinsic.

These objects motivate the introduction of the concepts of geodesic distance and some
related results.

112

7.1. A primer on Manifolds

Figure 7.26: A geodesic with tangent planes

Figure 7.27: A geodesic

Lemma 7.29 (Geodesic existance for connected Riemaniann manifolds). In a connected
manifold with a Riemaniann metric for any pair of points u, v ∈ Ω the geodesic exists.

Proof.

Definition 7.30 (Geodesically Complete Manifold). If ∃γ′X(t)∀t ≥ 0, X ∈ TuΩ, u ∈ Ω

then the manifold is geodesically complete.

Definition 7.31 (Complete metric space induced by geodesic distance). Let

dg(u, v) = min{`(γ)} s.t. γ(0) = u, γ(T) = v∀u, v ∈ Ω (7.26)

Then (dg,Ω) is a complete metric space, again intrinsic.

Theorem 7.32 (Hopf-Rinov Theorem). Let Ω be connected (Definition 7.13 and smooth
(Definition 7.16), then the following are equivalent:

1. closed and bounded subsets of Ω are compact
2. Ω is a complete metric space (Definition 7.31)
3. Ω is geodesically complete (Definition 7.30)

Proof.

Good manifolds satisfy Theorem 7.32 and make the use of the words geodesic and metric
equivalent.

Going further into the topic, a geodesic as in Definition 7.28 allows to move vectors
X ∈ TuΩ to TvΩ.

Definition 7.33 (Parallel (unambiguous) transport Γu→v). Given X ∈ TuΩ use the
geodesic:

γ : [0, T]→ Ω γ(0) = u, γ(T) = v (7.27)

113

CHAPTER 7. GEODESICS & MANIFOLDS

Figure 7.28: Exponential map expu

To transport X. To keep it constant across the orbit restrict X(t) ∈ Tγ(t)Ω∀t to be such
that:

‖X(t)‖γ(t) = ‖Xu‖ = kost (7.28)

〈X(t), γ′(t)〉
1
2

γ(t) = 〈Xu, γ
′(0)〉 = kost (7.29)

Namely constrainint the modulus and direction with respect to the geodesic to constants
across the translation.
It defines a map

Γu→v : TuΩ→ TvΩ Γ(X) = X(T) T torsion (7.30)

Which amounts to a rotation of the vector and therefore is a representation of SO(s).

Definition 7.33 can be recovered abstractly without assuming a Riemaniann metric
through the concept of covariant derivative and a special torsion free metric compat-
ible metric called Levi-Civita connection.

Coming back to Theorem 7.32, we give a clearer treatment of the topic.

Consider a manifold Ω where u ∈ Ω and X ∈ TuΩ, then for the local tangent space there
exists a geodesic γX starting from u in the X direction γ′X(0) = X.

Definition 7.34 (Exponential Map expu(·)). An exponential map is the result of a unit
time step from u in the direction X. While it may not be good globally, it can be
localized to a radius r, where the injectivity radius is the largest radius r making the
map diffeomorphic.

expu : Br(0) ⊂ TuΩ→ Ω expu(X) = γX(1) (7.31)

It is an intrinsic object, which naturally maps form the tangent space to the manifold.
Yet geodesic completeness from Definition 7.30 does not guarantee that it is a global
diffeomorphism.
In general, it is only locally injective.
Again in our canonical example, we can view an exponential map in Figure 7.28.

By the result of Theorem 7.32, we have that an exponential map as in Definition 7.34 is
always defined on the tangent space by the metric completeness property over a smooth
manifold Ω.

Definition 7.35 (Logarithmic Map logu(·)). From Definition 7.34, we can also explicitly
define its local inverse as:

logu = exp−1
u : Ω ⊇ Uu,injective → TuΩ (7.32)

Which takes a point on the manifold and returns a point on the tangent plane.

114

7.1. A primer on Manifolds

Figure 7.29: Topological space, Manifold, Riemaniann Manifold transition

Figure 7.30: Convolution with ωu

Summarizing, we have proposed three different layers of requirements on a manifold:

• Topological, Def. 7.11
• Smooth, Def. 7.16
• Riemaniann, Def. 7.26

A visualization of the transition is proposed in Figure 7.29.

To understand how a convolution has to be carefully defined for a manifold, we will
justify why the naive approach does not have satisfying results.
Assume there is signal on the manifold x ∈ X (Ω, C) and a local filter on the tangent space
ψ. By construction, the filter can only be defined on the tangent space which resembles
Rs, and the only way to convolve the two naively is using its exponential map:

(x ? ψ)(u) =

∫
TuΩ

ψ(Y)x(expu(Y))dY (7.33)

Where the vector Y = v lives in Rs and can be mapped to the tangent space through
a gauge, which allows x to take up an exponentially mapped signal expu(ωu(v)). The
convolution then becomes:

(x ? ψ)(u) =

∫
TuΩ

ψ(v)x[expu(ωu(v))]dv (7.34)

However, there are many gauges, and the result is dependent on which one is used.
For two differently oriented gauges ωu, ω̃u the output of the convolution (x ? ψ)ω(u) 6=
(x ? ψ)ω̃(u) will be different in Figures 7.30, 7.31. We stress that the red circle is the
injectivity radius, the blue square is the exponential map and the grey arrows are the
gauge orientation.

This problem was formally treated in the literature [Wei+21]. In simple words, a gauge is
defined up to a gauge transformation g : Ω→ G and depends on the assumable structure.

115

CHAPTER 7. GEODESICS & MANIFOLDS

Figure 7.31: Convolution with ω̃u

Figure 7.32: Structure groups

This transformation is thought of as the structure group of the manifold or the tangent
bundle.

Example 7.36 (Gauge transormations). Consider Figure 7.32. In a general oriented
manifold the ambiguity is rotations SO(2) (1st image). For a non orientable surface
reflection is added (2nd image). For a fixed gauge it is possible to create a canonical
parametrization and have no ambiguity (3rd image, where the poles of the sphere do not
have this property).

In practice, it is useful to assign local frames and fixed gauges. The canonical way to do
this is by using an intrinsic function and taking the intrinsic gradient [Mel+19; Mon+17].
Both are concepts that will be presented. This does not guarantee a complete gauge
(there are undefined points) but is sufficient for practical purposes. Indeed, theoretical
conclusions assert this, but will not be covered. Some graphical results are shown in
Figures 7.33, 7.34.

Another procedure named angular pooling, which dates back to one of the first solutions to
this problem, makes use of local polar coordinates in 2 dimensional manifolds [Mas+18].
Given a filter ψ expressed in polar coordinates, a rotating filter is applied as a convolution,
and the maximum result is taken. The convolution will then be of the form:

(x ? ψ)(u) = max
ϑ0∈[0,2π]

{∫ R

0

∫ 2π

0
ψ(r, ϑ)x(u, r, ϑ+ ϑ0)dϑdr

}
(7.35)

See Figure 7.35 for a graphical intuition.

A final option is implementing isotropic filters, that depend on the radius only and have
no sense of direction (e.g. in 2D, concentric circles). Figure 7.36 is an example of such
filter. The convolution will again be implemented in polar coordinates and will look like:

(x ? ψ)(u) =

∫ R

0

∫ 2π

0
ψ(r)x(u, rϑ)dϑdr (7.36)

116

7.1. A primer on Manifolds

Figure 7.33: Gradient of intrinsic function

Figure 7.34: Deformation-invariant stable gauge

Figure 7.35: Angular Pooling technique

Figure 7.36: Isotropic filter on a manifold

117

CHAPTER 7. GEODESICS & MANIFOLDS

Figure 7.37: Domain deformation

Where it is important to notice that now ψ is independent from the orientation and only
has the radius r as argument. However, local rotation invariance which avoids ambiguity
comes with a loss of discriminative power.

7.2 Deformation Invariance

As argued before, deformation invariance is a symmetry for manifolds. Given an instrinsic
filter the aim is to have the same result for a certain class of deformations. In this section,
properties and objects will be formalized better.

Definition 7.37 (Domain deformation η(·)). A domain deformation as in Figure 7.37
for a manifold Ω can be seen as a map to another manifold:

η : Ω→ Ω̃ (7.37)

A local characterization of the map η is pivotal to understand which will be the require-
ments. For this purpose, we resort to the easy Euclidean case. There, a function η can
be linearized through the Jacobian with a Taylor series as:

η(u+ x) = η(u) +∇(η(u))x+O(x2) (7.38)

While on a general manifold this is not possible, as it is not even allowed to add two
points.

The approach will rather be local, and needs some custom objects to be presented.

Definition 7.38 (Linearization Differential dηu(x)). For a linearization of a domain
deformation we define the differential as:

dηu(x) := η(u+ x)− η(u) = ∇(η(u))x+O(x2) (7.39)

Where ∇(u)x = y. The differential is an operator that acts on the displacement.

While we cannot say something as naive as u+ x, there are tangent spaces and this can
be exploited in our favour.

Definition 7.39 (Riemaniann Isometry). Assume η : (Ω, g) → (Ω̃, h) is a diffeomor-
phism as in Definition 7.22 between Riemaniann manifolds with metrics g·(·, ·), h·(·, ·)
from Definition 7.25. Define a Pushforward map between tangent bundles of the two
manifolds3

dη : TΩ→ T Ω̃ dηu(X ∈ TuΩ) = X̃ ∈ Tη(u)Ω̃ (7.40)

3Observe that a small displacement X ∈ TuΩ for u ∈ Ω, causes a displacement dηu(X) ∈ Tη(u)Ω̃

from the original point η(u), along its tangent space. See Figure 7.38 for a visualization.

118

7.2. Deformation Invariance

Figure 7.38: Pushforward operation

Figure 7.39: Pullback operation

Define a Pullback (η∗h) for the Riemaniann metric h on Ω̃ going back to Ω as:

(η∗h)(X,Y) = hη(u)(dηu(X), dηu(Y)) ∀X,Y ∈ TuΩ (7.41)

Where η is a Riemaniann isometry if (η∗h) = g. Refer to Figure 7.39 for a schematic
view.

Definition 7.40 (Metric Isometry). For a map η : (Ω, g)→ (Ω̃, h) between metric spaces
is a metric isometry if:

dg = min{`(γ)} = dh ◦ (η × η) (7.42)

Where dh ◦ (η × η) for u, v ∈ Ω is {min(`(η(u), η(v))}

A Riemaniann metric brings guarantees for geodesics, as the next claims state. For a
graphical intuition, refer to Figure 7.40

Proposition 7.41 (Riemaniann Isometry is a metric isometry). For a map η it holds
that:

Riemaniann isometry =⇒ Metric isometry (7.43)

Proof. Geodesics are intrinsic, thus they are completely defined by a Riemaniann metric.
Thus, a Riemaniann isometry preserves the induced complete metric space.

Theorem 7.42 (Myers Steenrod Theorem). For a map η and a connected manifold Ω

the opposite of Proposition 7.41 holds. Namely:

Metric isometry =⇒ Riemaniann smooth isometry (7.44)

119

CHAPTER 7. GEODESICS & MANIFOLDS

Figure 7.40: Domain deformation with tangent planes

Proof.

Thanks to Theorem 7.42 complete metric spaces and Riemaniann metrics are equivalent.
It is also possible to define instrinsic symmetries with structure preserving automorphisms
from the manifold to itself. Even though there is a whole theory on this, we will not
cover it.

Recall that a deformation invariant signal is of the form:

f(x ∈ X (Ω)) = f(Ax ∈ X (Ω) A = ρ(g), g ∈ G (7.45)

Where A is the group representation. For domain deformation, we instead have some-
thing that looks like:

f(x ∈ X (Ω)) = f(x̃ ∈ X (Ω̃)) (7.46)

Where Ω̃ is an isometric deformation. Up to approximation, it is also possible to slightly
enlarge the class of functions by including a distortion measure. In signal deformation,
this will look like:

|f(x ∈ X (Ω)− f(Ax ∈ X (Ω))| ≤ Cσ(A)‖x‖ (7.47)

Where σ(A) is a measure of dissimilarity from a group for the operator A.
In domain deformation, the condition will look similar:

|f(x ∈ X (Ω))− f(x ∈ X (Ω̃)| ≤ Cdis(η)‖x‖ (7.48)

Where dis(η) is a measure of distortion from a isometry. The specifications of such
functions are many, and will not be discussed.

Intrinsic filters are invariant under isometric deformations and it is possible to show that
they are approximately invariant with approximate isometries. For the former, a good
model is an unstretchable piece of paper. For the latter, rubber like elastic surface is
more adequate4.

7.3 Manifold Fourier Transform

In the Euclidean case, we showed that:

• convolutions commute (Theorem 5.14)
4There are many applications in computer graphics

120

7.3. Manifold Fourier Transform

• convolutions are jointly diagonalizable (and thus have the same eigenvectors) by
Lemma 5.19

• the shift operator is a convolution and its eigenvectors identify the Fourier transform
(combine Theorem 5.14 and Lemma 5.19) . Thus, convolutions are diagonalized by
the Fourier transform

In this section, we will extend the Fourier Transform to the general case.

7.3.1 Laplacians 101

A fundamental object in the treatment of geometric structures is the Laplacian. The
theory behind such object is huge. Here, we will report some results without much
discussion.

Definition 7.43 (Laplacian operator ∆). The Laplacian operator for a function f is
defined as:

∆f = tr(∇2f) = ∇ · ∇f =

n∑
i=1

∂2f

∂x2
i

(7.49)

Which is the trace of the Hessian matrix.

Definition 7.44 (Laplacian Matrix ∆). In the discrete Ω case (a graph G = (V, E)), the
Laplace operator can be seen as a matrix such that:

∆ =

{
−deg(vi) if i = j

1 if ∃e = (i, j) ∈ E
(7.50)

Definition 7.45 (Circulant Matrix C(θ)). A circulant matrix C(θ) ∈ Rd×d is a matrix
completely identified by a vector θ ∈ Rd, where each row is a cyclic permutation of the
preceding row with the entries moved by one position. Given a vector θ = (θ1, . . . , θd)

we have:

C(θ) =

θ1 θ2 θn
θn θ1 θ2 . . . θn−1

θn−1 θn θ1 . . . θn−2
...

...
...

...
...

θ2 θ3 . . . θn θ1

 (7.51)

Observation 7.46 (Circulant matrices as generalized shift matrices). Recalling the shift
operator (Definition 5.6), it can be proved that it is circulant, and that its properties
(outlined in Chapter 5) carry over to this larger collection.

Since the Laplacian is a circulant matrix, we can easily state by Observation 7.46 that:

∆eiωu =
∂2

∂u2
eiωu = −ω2eiωu (7.52)

Informally speaking, we could also obtain the Fourier basis as the orthogonal basis min-
imizing the Dirichlet Energy5:

ϕk+1 = argmin
ϕ

{∫
R
‖∇(ϕk(u))‖2du s.t. ‖ϕ‖ = 1 〈ϕ,ϕj〉 = 0 j = 1, . . . k

}
(7.53)

Where we interpret {ϕk} as the smoothest (integral condition) orthogonal basis (inner
product constraint), or the local difference from neighbors in the discrete case.

5especially when computing the vectors sequentially!

121

CHAPTER 7. GEODESICS & MANIFOLDS

Figure 7.41: Scalar field on Ω

Figure 7.42: Vector field on Ω

7.3.2 Laplacians analog for manifolds

Following a constructive approach, we introduce additional objects.

Definition 7.47 (Scalar field). A scalar field on Ω as in Figure 7.41 is a real valued
function on the manifold.

x : Ω→ R x ∈ X (Ω,R) (7.54)

With inner product:

〈x, y〉 =

∫
Ω
x(u)y(u)du (7.55)

Definition 7.48 (Vector field). A vector field on Ω as in Figure 7.42 is a vector valued
function on the manifold assigning for each point u a vector X in its tangent plane.

X : Ω→ TΩ X ∈ X (Ω, TΩ) (7.56)

Where u→ X(u) ∈ TuΩ, which can be interpreted as a local flow. The inner product is
the integral of the Riemaniann metric:

〈X,Y 〉 =

∫
Ω
〈X(u), Y (u)〉udu (7.57)

If equipped with inner products, both a scalar field and a vector field become Hilbert
Spaces. Observe that scalar fields are lowercase and vector fields are UPPERCASE.

We can now define the intrinsic gradient as the direction of steepest increase of a scalar
field x at a point u ∈ Ω.

Definition 7.49 (Intrinsic gradient). Consider for a scalar field x a differential:

dxu : TuΩ→ R (7.58)

Which is a linear functional acting on tangent vectors, often named dual vector. By
the Riesz Frechet representation Theorem, any differential can be expressed as the inner

122

7.3. Manifold Fourier Transform

product of the argument Y with the representation of the differential, the gradient ∇x.
Namely:

dxu(Y) = 〈∇x(u), Y (u)〉u (7.59)

Where ∇x is the intrinsic gradient function, mapping scalar fields into vector fields:

∇ : X (Ω,R)→ X (Ω, TΩ) (7.60)

The intrinsic gradient is thus a vector field of the steepest increase of a scalar field x.
We can define another operator that does the opposite.

Definition 7.50 (Divergence operator div,∇∗). Consider a vector field X. The flow of
X for an infinitesimal ball centered at u ∈ Ω will be a function denoted as div or ∇∗
such that:

∇∗ : X (Ω, TΩ)→ X (Ω,R) (7.61)

Which maps vector fields to scalar fields.

Proposition 7.51 (Gradient and Divergence are adjoint).

〈X,∇x〉 = 〈∇∗(X), x〉 (7.62)

Where the former is an inner product on vector fields and the latter is on scalar fields.

Proof.

We can eventually define a new operator.

Definition 7.52 (Laplace Beltrami Operator ∆). Given Definitions 7.47, 7.48, 7.49,
7.50, the Laplace Beltrami operator is a map from scalar fields to scalar fields:

∆ : X (Ω,R)→ X (Ω,R) (7.63)

Which is the divergence of the gradient of the scalar field for a point u ∈ Ω.

∆(u) := ∇∗(∇(x(u))) (7.64)

Observe that it is intrinsic.

Definition 7.53 (Self-Adjoint Operator). A map S : (Ω, 〈·, ·〉) → (Ω, 〈·, ·〉) so that Ω is
equipped with an inner product is self adjoint if:

〈Su, v〉 = v†Su = v†S†u = 〈u, Sv〉 ∀u, v ∈ Ω (7.65)

Which is a generalization of symmetry.

Lemma 7.54 (Self Adjoint operator eigenvalues). A self adjoint operator S : Ω → Ω

has real eigenvalues:

〈Su, v〉 = 〈u, Sv〉 ∀u, v ∈ Ω =⇒
(
Sw = λw =⇒ λ ∈ R

)
(7.66)

Proof. Assume (λ,w) is an eigenpair with normalized eigenvector ‖w‖ = 1. Then:

λ = λ〈w,w〉
= 〈λw,w〉 inner product property

= 〈Sw,w〉 eigenpair

= 〈w, Sw〉 self adjointness

= 〈w, λw〉 eigenpair

= λ†〈w,w〉 inner product property

= λ†

And by λ = λ† ⇐⇒ λ ∈ R we conclude that eigenvalues are real.

123

CHAPTER 7. GEODESICS & MANIFOLDS

Theorem 7.55 (Self-Adjointness of ∆). The Laplace Beltrami operator is self adjoint
and by Lemma 7.54 has real eigenvalues.

〈∆x, x〉 = 〈x,∆x〉 =⇒
Lem7.54

eigenvalues λ ∈ R (7.67)

Proof.

Example 7.56 (Cartesian R2 Laplace Beltrami). In R2 the Laplace Beltrami operator
is the difference between a function at a point and its average neighbor value. and it is
rotation invariant.

The Laplace Beltrami operator, found everywhere in Physics, is fundamental for equa-
tions such as the Newton Law of cooling and waves.

Example 7.57 (Waves, standing waves, Laplace Beltrami). Denote with a pedix deriva-
tives with respect to a variable. A wave equation, by Newton’s Law is of the form:

xtt =
∂2x

∂t2
= c∆x (7.68)

Where the extension, when local, is given by the Laplacian. Chadni, a German Physicist,
noticed that at certain frequencies patterns in waves arised. In a toy example, let c = 1.
Then xtt = ∆x and if we separate variables in the differential equation we enforce a
solution of the form:

x(u, t) = ϕ(u)τ(t) =⇒ xtt = ϕ(u)τtt(t) = ∆x = ∆ϕ(u)τ(t) =⇒ τtt(t)

τ(t)
=

∆ϕ(u)

ϕ(u)
= λ∀t, u

This newly defined constant implies that the spatial part of the equation ∆ϕ(u)
ϕ(u) is such

that:
∆ϕ(u)

ϕ(u)
∀u ⇐⇒ ∆(ϕ(u)) = λϕ(u) (7.69)

Which is a Laplacian Eigenfunction. From a physical wave perspective, a standing
wave identifies for ϕ the vibration modes and λ the vibration frequencies. The standing
patterns coincide when the particles are in resonance with the oscillation.

We state informally with no proof the following claim:

Proposition 7.58 (Compact Manifolds Laplace Beltrami). If a manifold is compact
it has a discrete (countable) eigendecomposition for the Laplace Beltrami Operator.

Clearly, the eigenfunctions are intrinsic and are isometry invariant, at least in a theo-
retical framework where we can establish a perfect isometry (up to potentially ambiguous
sign flips).
An example of such behavior is outlined in Figures 7.43, 7.44, where a pose modifica-
tion does not impact the Eigenvectors (i.e. the colors) of the human surface (i.e. the
manifold).

Remark. In practice, isometries are very difficult to establish, and still look very unsta-
ble.

As we had a Fourier transform in Definition 5.16, we can now extend it to the continous
case.

124

7.3. Manifold Fourier Transform

Figure 7.43: Laplacian Eigenfunctions

Figure 7.44: Laplacian Eigenfunctions II

Definition 7.59 (Continuous Fourier Transform via Laplacian). Define the forward
Fourier transform as:

x̂k = 〈x, ϕk〉 =

∫
Ω
x(u)ϕk(u)du (7.70)

With inverse:
x(u) =

∑
k≥0

〈x, ϕk〉ϕk(u) =
∑
k≥0

x̂kϕk(u) (7.71)

Thanks to the transformation of Definition 7.59 it is possible to decompose a scalar field
into orthogonal basis and completely ignore the manifold structure. However, this comes
at a cost. Few time is needed to notice that, first of all, frequencies of the Laplacian λ
have no direction.

Drawing from Chapter 6, same way as we have this property that Fourier transforms map
a convolution to pointwise products, we can define a convolution as pointwise products
of Fourier transforms. This suggests the following definition for a Spectral Convolution.

(x ? ψ)(u) =
∑
k≥0

(x̂k · ϕ̂k)ϕk(u) (7.72)

Equation 7.72 has many drawbacks, which we will list and discuss informally.

• there is no FFT (Fast Fourier Transform), computational time is O(n2) when we
discretize it into a grid of n sample points.

• typically we cannot guarantee that filters are localized
• filters are isotropic (radial symmetry)
• it is unstable under domain deformations

The last point is crucial since it is never guaranteed that we will have an isometry. To
better understand the magnitude of the potential damage, an example is presented.

125

CHAPTER 7. GEODESICS & MANIFOLDS

Figure 7.45: Manifold Ω with signals

Figure 7.46: Edge detection filter α applied

Example 7.60 (Spectral Convolution (in)stability). Assume we have a horse (i.e. a
manifold) Ω, pictured in Figure 7.45 and a filter α which filters signals as in Equation
7.72: ∑

k≥0

αk〈x, ϕk〉ϕk(u) (7.73)

If we define the coefficients αk of this filter such that we perform edge detection, the
result will likely resemble Figure 7.46. If the domain is deformed to Ω̃ (i.e. the horse
runs), and we filter the manifold with the same coefficients and transformed laplacian &
eigenvectors as: ∑

k≥0

αk〈x, ϕ̃k〉ϕ̃k(u) (7.74)

The result of the filter is different, even if the deformation is almost an isometry. An
example is Figure 7.47.

Figure 7.47: α applied on deformed manifold Ω̃

126

7.3. Manifold Fourier Transform

Figure 7.48: Spectral transfer function

Figure 7.49: horse5

The transformed high frequencies instability problem makes Fourier transformed rarely
used in practice. What we is implemented instead is a spectral transfer function p̂(∆)

applied to the Laplacian (to its eigenvalues):

p̂(∆)(u) =
∑
k≥0

p̂(λk)︸ ︷︷ ︸
ψ̂k

〈x, ϕk〉︸ ︷︷ ︸
x̂k

ϕk(u) (7.75)

An example of its rendering is Figure 7.48, where the graph is the spectral transfer func-
tion, customly decreasing as the frequency λ increases to avoid instabilities. It can be
seen as an equalizer on the filter that enhances certain frequencies. Another interpreta-
tion is as a prescription of the filters. It can be checked that it is deformation invariant.
Yet another interpretation can be extracted by developing the inner product and ex-
changing the sum with the integral as:

p̂(∆)(u) =
∑
k≥0

p̂(λk)〈x, ϕk〉ϕk(u) (7.76)

=

∫
Ω
x(v)

∑
k≥0

p̂(λk)ϕk(v)ϕk(u)

︸ ︷︷ ︸
ψ(u,v)

dv (7.77)

Where ψ(u, ·) is a position dependent spatial kernel, which is not a convolution but is
position dependent (see Figure 7.49).

The generality and overall weakenss of such method can be seen from two perspectives.
On one hand, in the Euclidean case, it will be that ϕk(u) = eiku and ϕk(v) = e−ikv and
the kernel will look like:

p̂(∆)(u) =

∫ π

−π
x(v)

∑
k≥0

p̂(λk)e
−ikveiku

︸ ︷︷ ︸
ψ(u−v)

dv (7.78)

=

∫ π

−π
x(v)ψ(u− v)dv = (x ? ψ)(u) (7.79)

127

CHAPTER 7. GEODESICS & MANIFOLDS

Figure 7.50: Horse mesh

Coming back to the classical convolution!
On the other hand, the procedure is not far from previous methods and can borrow ideas
from Chapter 5.

7.4 Discretization

In real applications and models manifolds are replaced by discretizations. The standard
way to do this operation is based on meshes, which are ways to mimic (up to approxi-
mation) the surface by meshing together geometric surfaces.

Definition 7.61 (Triangular Mesh T). A triangular mesh is a graph T = {V, E ,F}
where V are the nodes, E are the edges and F are the faces. In particular, it is enforced
that:

F = {triangles(u, v, q) | u, v, q ∈ V, (u, v), (v, q), (q, u) ∈ E} (7.80)

Where the order of nodes in a face defines its orientation.

We recognize that a triangular mesh is a graph with extra structure. Yet, to guarantee
manifoldness properties, an additional requirement must be attached.

Definition 7.62 (Manifold Mesh). A triangular mesh is a manifold mesh if and only if:

1. each edge e ∈ E if shared, has two incident faces F1, F2 ∈ F
2. the boundary of triangles F ∈ F incident to a node v ∈ V forms a single loop

For valid examples, refer to Figure 7.51. For not valid examples, see Figure 7.52. In
particular, on the right condition 1 is violated and on the left condition 2 is violated.

Thanks to the above structure, a metric can be defined on manifold meshes. The most
intuitive one is based on the Euclidean distance between nodes `uv = ‖xu − xv‖. The
euclidean distance naturally comes with the triangular inequality and other geometric
conclusions that might end up being useful. Just like in Definition 7.25, given such
a metric, any property arising solely from ` is intrinsic, and ` preserving mappings
(deformations) are considered isometries.

128

7.4. Discretization

Figure 7.51: Manifold meshes

Figure 7.52: Non manifold meshes (left violates 1, right violates 2)

Except some unique pathological examples, meshes are rigid, and hardly have non trivial
isometries. Deformation stability is thus crucial for the success of such objects.

Having discretized the domain Ω, the Laplacian has to be adapted to the context.

Definition 7.63 (A Discrete Laplacian). For a mesh T , define its (discrete) Laplacian
as:

(∆x)u =
∑
v∈Nu

wuv(xu − xv) (7.81)

= xu
∑
v∈Nu

wuv︸ ︷︷ ︸
∝value at u

−
∑
v∈Nu

wuvxv︸ ︷︷ ︸
∝average value neighbors

(7.82)

Where wuv is the weight of the (u, v) edge connection and x· is the feature of the node.
The second interpretation comes with a ∝ sign since they are not exactly equal but have
the same magnitude with a sum over neighbors.
Depending on how the weight is defined, a specific type of Laplacian will arise6.
Figure 7.53 shows one of the pairs involved in the computation. Given the discretization,
it can also be expressed as a matrix ∆ ∈ Rn×n where |V| = n and:

∆ = D −W D = Id : ∀u du =
∑
v∈Nu

wuv W weights (7.83)

Where W is a yet to specify weight matrix.
6It can actually be proved that in no discrete characterization the resulting Laplacian will satisfy all

the properties of the continuous one.

Figure 7.53: Discrete Laplacian elements

129

CHAPTER 7. GEODESICS & MANIFOLDS

Figure 7.54: Mesh (cotangent) Laplacian

Figure 7.55: Elements required in intrinsic cotangent Laplacian

Out of the different types of Laplacian, one comes with theoretical guarantees at the
limit [PP93; War+08; Mey+03; Mac04].

Definition 7.64 (Mesh (cotangent) Laplacian). Let the weights wuv for Definition 7.63
be:

wuv =
cot(∠uqv) + cot(∠upv)

2au
(7.84)

As in Figure 7.54, where ∠··· indicates the angle inscribed by three specified points and au
is a local area element such as "the area of the polygon constructed upon the barycenters
of the triangles (u, p, q) sharing the node u and given by au =

∑
(v,q):(v,q,u)∈F avqu".

While the intrinsicness of the cotangent Laplacian does not look obvious, with some
computations it is possible to work out a completely induced by ` formula.

Proposition 7.65 (Cotangent Laplacian is intrinsic). See Figure 7.55 for the context of
the objects.

wuv =
−`2uv + `2vq + `2uq

8auvq
+
−`2uv + `2vp + `2up

8auvp
(7.85)

auvq =
√
suvq(suvq − `uv)(suvq − `vq)(suvq − `uq) by Heron’s semiperimeter s··· formula

(7.86)

Up to now, there is nothing specific to the mesh. To get to the point, for a Laplacian we
usually use the adjacency matrix (Figure 7.56) for weights and write it as:

(∆x)u =
∑
v∈Nu

auw(xu − xv) = duxu −
∑
v∈Nu

auvxv = φ(xu, XNu) (7.87)

130

7.4. Discretization

Figure 7.56: Laplacian6

Where φ(·, ·) is a permutation invariant aggregator as in Definition 3.45, which guarantees
that the function F (X) = ∆X will be permutation equivariant as in Definition 3.47 by
Theorem 3.63.

In the much older field of Spectral analysis on graphs some of these representations were
already studied years ago. A meeting point with the past could be GNNs. For this
reason, we will briefly touch on the ChebNet architecture [DBV17].

Definition 7.66 (Graph Fourier Transform). Given an undirected graph G, and its
Laplacian ∆, which is symmetric7, let ∆ = ΦΛΦT where ΦΦT = I be its decomposition.
Then:

• Graph Fourier transform x̂ = ΦTx

• inverse transform x = Φx̂

• spectral convolutions:

x ?Ψ = Φ

(
(ΦTx) · (ΦTΨ)

)
= Φdiag(Ψ̂)x̂ (7.88)

Where their computation has O(n2) complexity (no FFT).

ChebNet implements a polynomial spectral filter, of convenient form. The polynomial is
applied to the eigenvalues as before:

p̂(λ) =
r∑
l=0

αlλ
l (7.89)

Which is applied to the graph Laplacian as:

p̂(∆) = Φp̂(∆)ΦT =
r∑
l=0

αlΦΛlΦT =
r∑
l=0

αl∆l (7.90)

Where:

• there is no need for an explicit eigendecomposition
• simply amounts to applying powers of the graph Laplacian, which is likely sparse

and thus requires O(r|E|) ∼ O(n) computations.
7and thus has an orthogonal decomposition

131

CHAPTER 7. GEODESICS & MANIFOLDS

Figure 7.57: Convolution revisited

• p̂(∆) is stable under deformations
• since the Laplacian is local, then the filters are
• ”Spectral” filter boils down to simple local averaging, i.e. the convolutional flavor

of GNN

Another extension of this framework is a side interpretation of convolution [SM13]. As
we saw before, the shift operator can be seen as the adjacency matrix of the ring (di-
rected graph) of a set Ω. It is then possible to state that a convolution p(A) is a linear
combination of the powers of the adjacency matrix.

Example 7.67 (Convolutions and Adjacency matrix powers). For Figure 7.57 the poly-
nomial is:

p(A) = w0I + w1A
1 + w2A

2 (7.91)

Graph Convolution Network (GCN) are the simplest method of convolution [KW17]. If
we arrange the node-wise features into a matrix X, we could transform each node by
a shared matrix of weights W , and diffuse the operation with a matrix A, either the
Laplacian or the adjacency matrix. Eventually, concatenating with a non linear function
gives rise to a GCN. Our first consideration is a simple one-layer GCN.

Y = softmax(AXW) (7.92)

Adding more nonlinearities a multi-layer version is easily obtained as:

Y = softmax(AReLu(AXW1)W2) (7.93)

GCN is often seen as the baseline for comparison of performance of candidate SOTA
architectures.

132

Chapter 8

Gauges

As briefly mentioned before in Chapter 7, gauge theory is fundamental to understand
vector fields. This Chapter is devoted to giving an intuitive introduction, with some
mathematical flavour. Given the highly complex field of study, it will be presented in
narrative form rather than logical.

The outline of the Chapter is as follows:

• Motivations, why gauge theory?
– feature fields in real data
– the problem of oritenting the kernel for manifolds’ convolution

• gauge equivariant convolution on manifolds & meshes
• theoretical background

– bundles and fibers
– gauges and gauge transformations (internal vs external)
– gauge symmetry and equivariance

Before going to the motivation, the concepts will be restated for the sake of clearness.
For a manifold M , some vector spaces are attached (e.g. tangent space). For each of
these there is a large number of frames (bases of ordered vectors). A gauge is essentially
a choice of frame for each region Ui of the manifold. Tipycally, they are local. Any vector
can be represented by a gauge, where different gauges give different representations for
the same object.

A change of gauge reference is a gauge transformation.

Observation 8.1 (Coordinates vs Gauges). While coordinates provide a position of
points, gauges are orientations and do not necessarily align with the coordinate axes.
See Figure 8.1

8.1 Why Gauges?

In many scientific domains data as a vector field is studied. As an example, consider
methereology (e.g. wind direction), or tensor fields diffusion in a brain model, where
at each of the 3 dimensional points the diffusion in every direction is stored in a 3 × 3

matrix.

In principle, gauges provide increased representation power with respect to the consistent
xyz reference axes for local properties of a manifold.

133

CHAPTER 8. GAUGES

Figure 8.1: Two Gauges, one Manifold

Figure 8.2: Tangent plane fiber Cu = TuΩ

Another reason for feature fields as in Definition 7.48 comes by the necessity to analyze
scalar fields of Definition 7.47. Consider the Spherical CNN case of Section 6.1.3. With a
scalar field, convolution is expensive in the SO(3) group. On the other hand, if we wish
to stay in the homogeneous space it is necessary to resort to isotropic filters, which are
agnostic to orientation and lose representative power. Feature fields are a middle ground
between the two.

Recall that a signal is a mapping of the form:

u ∈ Ω→ x(u) ∈ C (8.1)

Similarly, but not equivalently, a field (a section of a bundle) maps domain elements to
element specific sets (fibers) as:

u ∈ Ω→ x(u) ∈ Cu (8.2)

Where the different Cu are isomorphic but not canonically isomorphic1. This difference
implies that to make feature fields into functions we need a canonical fiber, as an align-
ment. This alignment is guaranteed by the choice of a linear invertible map (gauge):

ωu : RC → Cu (8.3)

Where C = RC is the canonical fiber.

Example 8.2 (Fibers and Vector Fields). A fiber Cu could be a tangent plane TuΩ for
a point u ∈ Ω, as in Figure 8.2.
A vector field could be the collection of vectors in tangent planes x(u) ∈ TuΩ assigned
for each point of the domain u ∈ Ω, as in Figure 8.3

Example 8.3 (Easy and hard to find Gauges). In some instances, defining a gauge is
natural. See for example the classic cartesian reference system for an R2 plane of Figure
8.4. In other cases, as for the sphere S2 of Figure 8.5, it needs more thought.

1The intuitive difference is that those fibers will be isomorphic up to the choice of a basis, but
canonically is sometimes judged as a colloquial term.

134

8.1. Why Gauges?

Figure 8.3: Vector Field of tangent vectors

Figure 8.4: Cartesian Gauge, easy

Figure 8.5: Spherical Gauge, hard

135

CHAPTER 8. GAUGES

Figure 8.6: Toroid, smooth gauge, parallelizable

Figure 8.7: Spin, non-smooth gauge, non parallelizable

Since gauges impose a representation of information, gauge equivariance is crucial to avoid
differences in equivalent depictions of the same data. In addition to this requirement,
as briefly mentioned in Chapter 7, we remind that in some instances a smooth (globally
continuous) gauge may also not exist.

Example 8.4 (A toroid and a spin). For the case of the toroid, it is possible to construct
a gauge that does not present singularities (non-smooth points). An example is Figure
8.6. For a spin it is not feasible. In Figure 8.7, singularities arise at the top and at the
bottom. A famous result concerning this fact is the Hairy Ball Theorem.

Given the previous arguments, it can be concluded that:

• geometric data can only be represented relative to a gauge
• there is no preferred choice for this orientation, all are equivalent
• for a continuous field, gauges in multiple charts are able to represent a field as a

continuous function

The need for equivariance suggests attaching to gauges a stable transformation property.

Definition 8.5 (Gauge Transformation). A gauge transformation is a function g defined
on a subset of the domain that has an action on signals:

g : U ⊂ Ω→ G (8.4)

x(u)→ ρ(g . u)x(u) (8.5)

Where G is the structure group of what we wish to preserve across transformations. In
Figure 8.8, we notice a simple change of axes through g.

Example 8.6 (Diffusion Tensor Images of the brain). A Diffusion Tensor Image (DTI)
signal is a function x : R3 → R3×3, with representation:

ρ(R)M = RMRT (8.6)

136

8.1. Why Gauges?

Figure 8.8: R2 domain Gauge Transformation

Figure 8.9: Brain MRI and Diffusion Tensor

Where R is a rotation. Since the brain has no evident rotation symmetry, we wish to keep
this only for local directions. The derived assumption is that orthogonal frames are all
equivalent, and thus the symmetry group becomesG = O(3). The gauge transformations,
following Definition 8.5, and the action on the signal will then be:

g : R3 → O(3) (8.7)

x(u)→ ρ(gu)x(u) (8.8)

For an example of Tensor and brain MRI, refer to Figure 8.9.

It is useful to stress that by gauge equivariance we mean that the underlying vector field
does not change up to a g transformation. This idea is perfectly represented in Figure
8.10, which is similar to diagrams seen in previous Chapters.

Example 8.7 (Internal Gauge). For an RGB image, signals are maps form a grid to the
three color channels x : R2 → R3. Two kinds of symmetries arise in such objects:

• if the channels (R, G, B) are equivalent then G = S3 permutations are the structure
group

• if hue values are equivalent then G = SO(2) hue rotations are the structure group

137

CHAPTER 8. GAUGES

Figure 8.10: Gauge Equivariant function f

Figure 8.11: Icosahedron, not homogeneous

Notice that a gauge transformation will change every pixel u ∈ Ω independently. Thus,
if we assume the gauge is a symmetry g ∈ G, a constraint on the convolution (i.e. every
color is equivalent, or every hue value is equivalent) will arise.

Another reason why Gauges are powerful objects is their deep link with convolution
on manifolds. Convolutions on manifolds cannot be implemented from homogeneous
group convolutions, where a kernel is moved around the manifold by global symmetries
(e.g. rotations over the sphere). This is well defined for a homogeneous space. For a
Icosahedron as in Figure 8.11 symmetry will not guarantee weight sharing between non
homogeneous regions (colored in Figure 8.11).
Another option could be parallel transport, but we saw in Chapter 7 that it ends up
being path dependent, with filters’ orientation being impacted by how they were moved.
The arbitrariness of choice (see Figure 8.12) is not even solved by flattening a curved
space, as it leads to discountinuities over not crossing edges in the flattened manifold
with a fixed gauge. In the 3rd image, adjacent faces of the cube have π

2 rotated filters
when the flattened cube is closed again.
Another option could be using spectral and graph convolutions. The former makes use of
the eigenfunctions of the Laplacian, which are rotation invariant. The latter, as already
discussed, uses isotropic filters (kernels). Both present decreased representative power.

138

8.1. Why Gauges?

Figure 8.12: Filters on flat and curved shape

Lastly, we briefly discuss geodesic convolution. The method aims to find the best ori-
entation across possible inner products of rotated copies of a filter (scalar to regular
layer), and finds the maximum over ϑ0 orientations (regular to scalar layer). It is the
Angular Pooling method discussed in Chapter 7, Equation 7.35. After max pooling, no
orientation will be kept as well, losing the potential of such information. Yet, for some
problems, this is crucial.

All of these rather suboptimal methods suggest proposing Gauge Equivariant Networks:

• For each layer, define a feature space
– ∀u ∈ Ω attach a fiber Cu
– Cu has a ρ group representation, which chooses how to transform
– the feature space becomes a space of ρ-fields over Ω (sections of the associated

bundle)
• seek a convolution layer that is gauge equivariant

– up to a gauge transformation the input and output coefficients of the layer
must equivariantly change across group elements.

Definition 8.8 (Gauge Convolution on scalars). Let Ω be a manifold with dimension s.
Then, signals are of the form x : Ω → R, and filters ψ : Rs → R. A gauge will link the
canonical fiber C = Rs to different tangent spaces. For a point p ∈ Ω the gauge is:

ωp : Rs → TpΩ (8.9)

We require ωp to map to isomorphisms (not canonical) and possibly to be smooth in p.
If it is not smooth, which as we saw is very likely, the operations will be localized.
Additionally, recover the exponential map of Definition 7.34, which in this case for a
point p ∈ Ω is:

expp : TpΩ→ Ω (8.10)

Then a scalar to scalar gauge convolution can be constructed as:

f = (ψ ? x)(p) =

∫
Rs
ψ(v)x(expu(ωu(v)))dv (8.11)

Where we can check that all the mappings have valid argument and v ∈ Rs is denoted
in bold for clearness.

Observation 8.9 (A gauge transformation acting on the tangent space). A gauge trans-
formation is position dependent and transforms the gauge as ωu → gu . ωu. With this
change of reference, necessarily the vector to which the gauge is applied changes accord-
ingly as v→ g−1

u . v. Then, the map ωu(v) is innately invariant.

139

CHAPTER 8. GAUGES

Figure 8.13: Vector Gauge Transformation

Proposition 8.10 (Equivariance for scalar Gauge convolution). Consider the operation
f = (ψ ? x)(p) of Definition 8.8, then:

f equiv ⇐⇒ ψ(g . v) = ψ(v) ∀g ∈ G,∀v ∈ Rs (8.12)

Proof. A function f : X (Ω,R) → X (Ω,R) is equivariant iff a transformation on the
input is the same as a transformation on the output. Making use of Observation 8.9, we
can safely say that the transformation on the signal part of the integral is ineffective.
Concentrating on the kernel part instead, we conclude:

f equiv ⇐⇒ ψ(g . v) = ψ(v) (8.13)

Definition 8.11 (Gauge Convolution on fields). Let Ω be a manifold with dimension s.
Then, signals are of the form x : Ω→ RCin for the input, and filters ψ : Rs → RCin×Cout .
A gauge will link the canonical fiber C = Rs to different tangent spaces. For a point
p ∈ Ω the gauge is:

ωp : Rs → TpΩ (8.14)

We require ωp to map to isomorphisms (not canonical) and possibly to be smooth in p.
If it is not smooth, which as we saw is very likely, the operations will be localized.
Let G be the structure group, where ω−1

p ω′p ∈ G, and ρin, ρout be the representations of
dimensions Cin, Cout Additionally, recover the exponential map of Definition 7.34, which
in this case for a point p ∈ Ω is:

expp : TpΩ→ Ω (8.15)

Denote as gv→p ∈ G the parallel transport from expu(ωu(v)) to p Then a global gauge
convolution (ρin → ρout) can be constructed as:

f = (ψ ? x)(p) =

∫
Rs
ψ(v)ρin(gv→p)x(expu(ωu(v))dv (8.16)

Where we can check that all the mappings have valid argument and v ∈ Rs is denoted
in bold for clearness. The parallel transport requirement is implemented since the two
objects now live in different fibers. For an example of such vector gauge, see Figure 8.13.

Proposition 8.12 (Equivariance for field Gauge convolution). Consider the operation
f = (ψ ? x)(p) of Definition 8.11. Then:

f equiv ⇐⇒ ψ(g . v) = ρout(g)ψ(v)ρin(g)−1 (8.17)

Proposition 8.12 highlights a parallelism with group convolution nets (with steerable
kernel) of Example 6.26, Equation 6.26. It is also possible to use a local gauge right
away, but this method is not covered.

We now move to an informal example of how this procedure can be carried out.

140

8.1. Why Gauges?

Figure 8.14: Charts and

Figure 8.15: G-padding

Example 8.13 (Icosahedron). An icosahedron as in Figure 8.11 is a good approximation
of a spherical signals. For the purpose of the analysis, it is cut in charts of square pixel
grids as in the left drawing of Figure 8.14. By construction, some pixels appear in multiple
charts, and this will be crucial to define a gauge equivariant convolution. For each pixel,
a canonical chart is chosen. From this canonical chart, their value will be copied before
convolving. This method is often called G-padding. In particular, as shown in Figure
8.15 there are k = 6 rotations of angle 2π

6 which make the structure group G = C6 that
of rotations. If a standard Conv2D was applied to the various faces, some blacked out
neighbors would impact it. To alleviate this problem, some of those values are copied
over (Figure 8.15, left).
Another problem is the kernel constraint, but this is not covered in the lecture and we
reroute the reader to another source [Hoo+18].

While we have quickly presented one method, we stress that this is not the only path
available. Another interesting approach is that of Gauge Equivariant Mesh CNNs, where
the gauge is essentially interpreted as a reference neighbor with enforced equivariance
[Haa+21]. On the theoretical side, some worthful mentions are also present [Wei+21;
Ger+21; Aro21; Coh21].

141

CHAPTER 8. GAUGES

Figure 8.16: Base, Fibers, Total Space

8.2 General Theory of Equivariant CNNs Sketch

In this section, quick theory facts for Equivariant CNNs are proposed. The theory of
Fiber Bundles is vast and much more complicated than what is reported in this document.

The main goal of such field has been that of being able to deal with convolutional networks
on many domains and symmetries, to obtain a generic theorem with universality results
for linear equivariant layers.

Definition 8.14 (Fiber Bundles, terminology). Let Ω = B be the base space. Fibers
are denoted as F , and are typically isomorphic. The base space and fibers together form
the total space E. See Figure 8.16 for a graphical example.

Definition 8.15 (Bundles π). A bundle is a continuous/smooth map between topolog-
ical/smooth spaces:

π : E → Ω (8.18)

It essentially projects elements of the total space to their belonging origin on the base
space.

Definition 8.16 (Fiber F). For a given element u ∈ Ω and a Bundle as in Definition
8.15, a Fiber is a the inverse image of the bundle:

Fu = Eu = π−1(u) u ∈ Ω (8.19)

For Fiber bundles the assumptions provide clarity and structure for further results.

Assumption 8.17 (On Fiber Bundles). It is required that:

• fibers are isomorphic
• bundles π are locally trivial, so locally E ∼= Ω× F . Not necessarily globally.

When global triviality holds, then naturally it also holds locally, thus, for neighborhoods
of the manifold, the same product can be used to represent the fiber bundle.

Example 8.18 (Globally and locally trivial bundles). Consider the cylinder expressed
as S1 × [−1, 1], i.e. the direct product of a circle as base space and unit fibers. Consider
two semicircles, or any set of subsets of the circle, we can see that the bundle is globally
trivial. An example is Figure 8.17.
Consider instead the For an example of a non globally trivial bundle, draw as base space

142

8.2. General Theory of Equivariant CNNs Sketch

Figure 8.17: A cylinder is globally trivial

Figure 8.18: Non trivial bundle, the Möbius strip

Figure 8.19: Möebius non-global trivialization

143

CHAPTER 8. GAUGES

a circle and as fibers line segments. A globally trivial bundle would be a cylinder. On the
contrary, a non trivial bundle would be Figure 8.18. To understand the claim, consider
the same approach of the cylinder with two semicircles, then observe Figure 8.19.

We can formalize all the concepts together in the notion of a fiber bundle.

Definition 8.19 (Fiber Bundle). Fiber bundles are quadruplets (E,Ω, π, F) where:

• E,Ω, F , respectively the total space, the base space and the fiber, three topological
spaces

• π : E → Ω a continuous, surjective, projection map

Where it holds that:

• ∀u ∈ Ω∃U ⊆ Ω a trivializing neighborhood
• a homeomorphism (representation of the local trivialization) of the form:

ψ : π−1(U)→ U × F satisfying proj1 ◦ ψ = π (8.20)

where proj1 is the projection of ψ from the fiber bundle to the base space

To better understand how all objects glue together, consider the computation map below:

E ⊇ π−1(U) U × F

Ω ⊇ U

π

ψ

proj1

Similarly to the treatment for manifolds, we can further use an atlas of local trivializa-
tions:

A :=

{
(U I , ψI)

}
I∈I

(8.21)

Glued together with transition maps of the form:

id× gBA. := ψB ◦ (ψA)−1 : (UA ∩ UB)× F → (UA ∩ UB)× F (8.22)

Definition 8.20 (Structure group of the bundle). Equation 8.22 implicitly defines a
structure group for a bundle of the form E = Ω × F . For any two indexes A,B ∈ I, it
obeys the computation map:

(UA ∩ UB)× F π−1(UA ∩ UB) (UA ∩ UB)× F

UA ∩ UB

id×gBA.:=ψB◦(ψA)−1

proj1
ψA

ψB

proj1

Example 8.21 (Structure groups for easy bundles). For the cylinder, the structure group
is the identity group, as shown in Figure 8.20. For the Möebius strip, the structure group
is identified by reflections, as seen in Figure 8.21.

Thanks to its higher generality, theory of fiber bundles can be applied to Manifold theory,
explored in Chapter 7.

144

8.2. General Theory of Equivariant CNNs Sketch

Figure 8.20: Structure group G = {e} for a cylinder

Figure 8.21: Structure group for the Möebius strip

Example 8.22 (Tangent bundle in Fiber bundles theory). Consider a smooth manifold
M , its tangent spaces form the tangent bundle:

(TM,M, πTM ,Rd) (8.23)

Where:

• the total space is TM , the tangent bundle
• the base space is the manifold M
• the map is of the form πTM : TM →M

• the fibers are Rd ∼= TpM which are isomorphic, as claimed in Chapter 7

Further, we have that for indexes of the atlas collection A,B ∈ I there are local neigh-
borhoods UA, UB and local trivializations ψA, ψB. The latter objects are used to recover
tangent spaces in the Rd space of the fibers, linearly inducing a reference frame on TpM .
If the neighborhoods are overlapping, then we can consider transition maps ψB ◦ (ψA)−1

of the form of Equation 8.22 which glue the fibers Rd over the intersection of the neigh-
borhoods. These are equivalent to changes in the reference frame and can be expressed
as members of the general linear group gBA ∈ GL(d) ∀A,B ∈ I.
For a 3 dimensional manifold, consider Figure 8.22 with a visualization of the computation
map just shown. It is possible to notice that the structure group has the role of governing
a change of reference frame across intersections of neighborhoods of the manifold. Thus,
it is the key concept to establish symmetries between different representations.

Figure 8.22: Tangent Bundle and its structure group functioning

145

CHAPTER 8. GAUGES

structure on M fiber trivialization distinguished frames structure group G ≤ GL(d)

smooth linear all frames GL(d)

orientation orientation preserving positively oriented frames GL+(d)

volume volume preserving unit volume frames special linear SL(d)

riemaniann isometries orthonormal frames orthogonal O(d)

global trivialization unique global frame field {e}

Table 8.1: Structure group reductions up to added requirements

Figure 8.23: Klein bottle

As before, additional structure makes the manifold specification more rigid, but also
more expressive in some sense. For structure groups, additional structure entails falling
into subgroups of GL(d). For reference, consider Table 8.1.

What are commonly referred to as topological obstructions may be the cause of
impossibility to establish a G-structure on the manifold. As a quick example, consider
the Klein bottle of Figure 8.23, which is non orientable, and admits no reference frames
for this reason.

Definition 8.23 (Section σ). A section is a function from the base space to the fiber,
where the codomain E depends on the input Ω. Namely:

σ : Ω→ E s.t. π ◦ σ = idΩ (8.24)

It is an important notion, which for each fiber returns any input arising from u, con-
strained to getting the identity in the base space once composed with the bundle π.
Consider as an example the σ map returning the base of each of the yellow point in the
fibers of Figure 8.24.

Two kinds of bundles are informally considered:

• Principal Bundle, a bundle of frames where:
– frames (references) are related by !g ∈ G where G is the structure group

Figure 8.24: Sections σ, yellow to base

146

8.2. General Theory of Equivariant CNNs Sketch

– sections are gauges, as choosing a section (a map element→ element of the
fiber) is equivalent to choosing a gauge.

• Associated Bundle, a vector bundle where there are vector spaces replacing fibers
and:
– fibers transform according to ρ the representation of G
– correspondence at a vector space level is a change of frame (reference) of the

vector space
– sections are fields.

Definition 8.24 (Principal Bundle). A principal bundle (bundle of frames) is a bundle
P as in Definition 8.15 where additionally:

• fibers are preserved up to transformation

π(g . p) = π(p) (8.25)

• transitivity across fibers

∀p, p′ ∈ Pu fiber ∃g | g . p = p′ (8.26)

• fixed point free
p = g . p =⇒ g = e (8.27)

Where the fibers of P are such that Pu ∼= G, except that there is no preferred origin on
the fibers.

Example 8.25 (Principal Bundles in practice). The easiest possible examples could be:

• Consider the frame bundle of a manifold as its tangent spaces
• See H as the principal G-bundle over G/H (e.g. SO(2) as a principal SO(3) bundle

over S2) of Figure 6.18.

All of the discussed notions of symmetry, from global to gauge to manifold can be de-
scribed as principal bundle automorphisms, through some symmetry. Thanks to this a
universality result for generalized CNNs can be proved, which guarantees that equiv-
ariant linear maps can be expressed as convolution-like integrals with a constrained to
invariance kernel [Coh21].

The general theory of Gauge CNNs encapsulates many CNN architectures discussed in
previous Chapters, as Figure 8.25 shows.

147

CHAPTER 8. GAUGES

Figure 8.25: The power of Gauge CNNs

148

Chapter 9

Category Theory

TODO

149

CHAPTER 9. CATEGORY THEORY

150

Chapter 10

Sequences & Time-Warping

So far, we assumed some sort of spatial geometry (e.g. grids, graphs,. . .), but what about
a sequential geometry? Video, audio, text and speech are cases of interest for Machine
Learning.

In previous Chapters, we explained how from the GDL Blueprint of Definition 3.64
it is possible to derive several architectures. Though conceptually more complicated,
sequential data obeys the same rules.

In this Chapter we will deal with the problem of processing data as sequences, where the
concept of time warping leads naturally to Recurrent Neural Networks (RNNs). We will
show that in this fashion, a popular class of RNNs arises from invariance.

10.1 Sequential Problem Setup

For the purpose of formalizing, we will assume that now information comes as a time
governed sequence where signals belong to time dependent sets X(t) ∈ X (Ω(t)) on a
discrete input space. By construction, time t only goes in one direction, and seems
inherently asymmetric for this reason. The aim is identifying symmetries (if any) without
counting those arising at a fixed t (i.e. symmetries of snapshots of signals). As to lighten
up the discussion, one important assumption will be made throughout the analysis.

Assumption 10.1 (Fixed Domain). The domain of signals is static over time.

Ω(t) = Ω ∀t (10.1)

While Assumption 10.1 might seem to imply an inductive bias, it is worth noticing that
for most problems it is an almost perfect approximation, which loses power only as the
time scale gets significantly big. For a treatment of fully dynamic problems, the field of
Temporal Graph Networks is exciting and promising [Ros+20].

Example 10.2 (Road traffic Domain). For the problem of road traffic estimation, it is
fairly reasonable to consider Ω(t) = Ω over time, even though it is necessarily true that
roads are built every day. In the event in which the time window was enormous, such
an assumption would be flawed by inconsistency of the domain and the data observed
many years apart(e.g. roads in 1000 AD and in 2022).

The need to abstract away snapshot symmetries on Ω is satisfied thanks to the distinction
of learning at fixed time and learning over time functions.

151

CHAPTER 10. SEQUENCES & TIME-WARPING

Figure 10.1: Sequential inputs, traffic data

Definition 10.3 (Sequential result z(t)). For a sequential task, learn an encoder function
over signals:

f : X (Ω)→ Rk (10.2)

Which, depending on Ω is in line with the invariance & equivariance requirements of the
Blueprint of Definition 3.64. In particular, it outputs k dimensional vectors:

z(t) = f(X(t)) (10.3)

Instead, if f represents an intermediate or non purposely invariant layer, the output will
be a matrix Z(t), where f is only equivariant (i.e. not aggregated).

Given z(t) from Definition 10.3, the domain of interest is clearly a 1D (oriented) grid,
which tracks the evolution of the response z(t) over the arrow of time. Equivariance is
thus interpreted as translation equivariance. Being a vector, it can be processed by
any of the previously introduced architectures on Grids such as CNNs.

However, the objective to mimic the arrow of time, online and efficiently, is not achieved
by such architectures. We will resort to another technique!

Definition 10.4 (RNN Architecture). Consider an update function R where:

R : Rk × Rm → Rm (10.4)

Which computes summaries h(t) ∈ Rm as:

h(t) = R(z(t),h(t−1)) (10.5)

Where the standard starting point is h(0) = 0.
Update sequentially layers with R taking inputs over time, and learn its coefficients.

Example 10.5 (Road Traffic RNN). Consider a sequential set of inputs as in Figure
10.1. Apply a function f to obtain sequential results {z(t)}t as in Figure 10.2. For each
t iteration, build the next summary sequentially by feeding an update function R with
inputs z(t),h(t−1) as in Figure 10.3.

A special choice of h(0) can impact considerably RNNs. Nevertheless, it is not sufficient
to guarantee translation equivariance.

Proposition 10.6 (RNNs are not translation equivariant). Consider a sequential result
z(t) and a left shift transformation z′(t). Then:

z(t+1) = z′(t) 6=⇒ h(t+1) = h′(t) (10.6)

At least in a feasible manner.

152

10.1. Sequential Problem Setup

Figure 10.2: Sequential results {z(t)}t computation

Figure 10.3: Summaries {h(t)}t computation

153

CHAPTER 10. SEQUENCES & TIME-WARPING

Proof. We have that for t = 1:

h′(1) = R(z′(1),h′(0)) = R(z′(1),h(0))

h(2) = R(z(2),h(1))

Imposing equivariance h(t+1) = h′(t) and using z(t+1) = z′(t):

h′(1) = h(2) ⇐⇒ R(z′(1),h′(0)) = R(z(2),h(1)) = R(z′(1),h(1))

⇐⇒ h′(0) = h(0) = h(1) = R(z(1),h(0))

Where the second implication is by setting the second arguments of the R function equal.
We conclude that the requirement is:

h(0) = R(z(1),h(0)) (10.7)

Which is not feasible as it is a quantity decided a priori and not determined by z(1),
which gets deleted by the left shift (condition z(t+1) = z′(t)). Another option is defining
a left padded sequence by t′ steps:

z(t) =

{
0 t ≤ t′

z(t−t′) t > t′
(10.8)

It is possible to shift z(t) by at most t′ without losing its values. Yet by imposing the
same condition:

h′(1) = R(z′(1)
,h′(0)) = R(z(2),h(0)) = R

(
z(2), R(z(1),h(0))

)
= R(z(2),h(1)) = h(2)

Which looking at the central equations (second arguments, in red) implies that:

⇐⇒ h(0) = R(z(1),h(0)) (10.9)

Which for t′ > 1 reads:
⇐⇒ h(0) = R(0,h(0)) (10.10)

Implying that the R function must return the second input conditioned on having a 0 in
the first input.
Again, while it might be sufficient for t = 0, it is not a valid trick when t > t′ and
information starts to get lost, provided that the memory size of such array is not infinite.

Time sequences do not make RNNs equivariant to translations as naturally as CNNs.
The question moves to understanding the strengths of such method apart from its online
capabilities.

If setup properly, RNNs support a useful kind of symmetry. Data as a series can be in-
terpreted as a sample from a continuous signal. While in some cases the rate is fixed, this
is not guaranteed in general. Controlling the sampling rate dynamically and analyzing
how the model reacts is crucial to understand the hidden strengths of RNNs.

The action of changing the sampling rate is basically a change of units of measurement.
The concept of time warping formalizes such idea.

Definition 10.7 (Time warping function τ(·)). Let time t be a continuous variable. A
time warping function is amonotically increasing and differentiable transformation
of the form:

τ : R+ → R+ (10.11)

It can also be seen as an automorphism (Definition 3.26).

154

10.1. Sequential Problem Setup

Figure 10.4: Time scales, original (red), warped (blue)

Figure 10.5: CNN with 4 layers

Example 10.8 (Easiest possible time warping: Time rescaling). Consider τ(t) = 7
10 t as

a function. In Figure 10.4 the original function is in red and the warped wave is in blue.

What we ultimately wish is finding an invariant to time warping class of functions, such
that a change of unit of measurements does not impact the output of a sequence.

Observation 10.9 (CNNs are not warping invariant!). Consider a CNN with kernel size
3, T = 16 steps and 4 layers. The output at O16 sees inputs {I12, . . . , I16}, as Figure 10.5
shows. With time warping, such discretization is destroyed by the zeros added between
inputs (e.g. imagine dilating time intervals).

An option to solve such issue is Dilated CNNs, where as layers group kernels are made
more far apart (see Figure 10.6). Such a trick allows O16 to have access to the whole
sequence of inputs. However, this exponentially increasing receptive field is still fixed, and
thus not immune to a very big dilation, that would completely break the input sequence
apart.

While we have shown that CNNs do not offer the right tools, it is still practically possible
to use a Transformer. Yet, it comes with no theoretical guarantees. A transformer

Figure 10.6: Dilated CNN

155

CHAPTER 10. SEQUENCES & TIME-WARPING

operates as a fully connected graph, with no order, where implicit features are added to
cope with this deficiency. Also, the arising symmetry is permutation, not translation. It
is easy to notice that this is not the framework we wish to work on, and even though
results can be good, they are not justified by theory.

10.2 Neural Networks & Time Warping

The basis of this section is a paper which shed a light on the necessary pieces of archi-
tecture for a Neural Network to behave well in presence of time warping [TO18]. As a
matter of fact, under certain constraints, invariance to time warping is achieved.

Since warping is well defined for continuous data and more convoluted for discrete data,
we start from the easy case, and imagine that also our RNN is somewhat adapted to
continuity.

Lemma 10.10 (Continuous RNN warp invariance Condition). For z(t), h(t) continuous,
a continuous RNN is invariant if and only if (consider dimension 1 for simplicity):

dh(τ(t))

dt
=
dτ(t)

dt
R

[
z

(
τ(t+ 1)

)
, h

(
τ(t)

)]
− dτ(t)

dt
h(τ(t)) (10.12)

Proof. Consider the summary function h(t) and its Taylor expansion:

h(t+ δ) ≈ h(t) + δ
dh(t)

dt
(10.13)

If we set δ = 1 we obtain the 1 step approximation between h(t) and h(t+ 1) which will
be useful for the discrete case. Moreover, it is coincident to the argument-result distance
for the R function where h(t+ 1) = R[z(t+ 1), h(t)].
Ignoring the approximation term we get an ODE that must be satisfied for the RNN:

h(t+ 1) = h(t) +
dh(t)

dt
= R[z(t+ 1), h(t)] =⇒ dh(t)

dt
= R[z(t+ 1), h(t)]− h(t) (10.14)

If time is warped by τ(t) the ODE becomes:

dh(τ(t))

dτ(t)
= R

[
z

(
τ(t+ 1)

)
, h

(
τ(t)

)]
− h
(
τ(t)

)
(10.15)

Which imposes the condition h
(
τ(t + 1)

)
= R

[
z

(
τ(t + 1)

)
, h

(
τ(t)

)]
. Applying the

chain rule on the warped ODE it is possible to express the condition in terms of the
original time scale:

dh(τ(t))

dt
=
dh(τ(t))

dτ(t)

dτ(t)

dt
(10.16)

Substituting into Equation 10.15 we get:

dh(τ(t))

dt
=
dτ(t)

dt
R

[
z

(
τ(t+ 1)

)
, h

(
τ(t)

)]
− dτ(t)

dt
h

(
τ(t)

)
(10.17)

Which is the result of the claim.

Having an idea of what the continuous version could be, a similar approach is used to
derive the result for a discretized RNN.

156

10.2. Neural Networks & Time Warping

Theorem 10.11 (Discrete RNN warp invariance Condition). The necessary update for
a time warping invariant RNN is:

h(t+1) =
dτ(t)

dt
R

(
z(t+1),h(t)

)
+

(
1− dτ(t)

dt

)
h(t) (10.18)

Proof. Consider the Taylor expansion of the warped summary where we let δ = 1:

h(τ(t+ δ)) ≈ h(τ(t)) + δ
dτ(t)

dt
) ≈ h(τ(t)) + δ

dτ(t)

dt

dhτ(t)

dτ(t)
= h(τ(t)) + δ

dh(τ(t))

dt

(10.19)

δ=1
=⇒ h(τ(t+ 1)) ≈ h(τ(t)) +

dh(τ(t))

dt
(10.20)

Notice that a discrete RNN is such that z(t) = z(τ(t)) and h(t) = h(τ(t)). Then invariance
is guaranteed by

h(t+1) = h(τ(t+ 1)) = R

(
z(τ(t+ 1)), h(τ(t))

)
= R

(
z(t+1),h(t)

)

Consider the two central results. Substituting h
(
τ(t + 1)

)
with the result of Equation

10.19 we get that:

h

(
τ(t+ 1)

)
= h

(
τ(t)

)
+
dh(τ(t))

dt
(10.21)

= h

(
τ(t)

)
+
dτ(t)

dt
R

[
z

(
τ(t+ 1)

)
, h

(
τ(t)

)]
− dτ(t)

dt
h

(
τ(t)

)
Lemma 10.10

(10.22)

=
dτ(t)

dt
R

[
z

(
τ(t+ 1)

)
, h

(
τ(t)

)]
+

(
1− dτ(t)

dt
)h

(
τ(t)

)
reordering

(10.23)

h(t+1) =
dτ(t)

dt
R

(
z(t+1),h(t)

)
+

(
1− dτ(t)

dt

)
h(t) bold version

(10.24)

And the claim is proved.

A possible interpretation of such result is that the warping derivative with respect to

time
dτ(t)

dt
bounds how much of h(t) is rewritten at each step.

The result of Theorem 10.11 is helpful to discern between theoretically justified models
and those that are not.

Simple RNNs [Jor97; Elm90] implement an MLP to estimate summaries. Let U,W,b
be learnable parameters and σ an activation function:

h(t+1) = σ

(
Wz(t+1) + Uh(t) + b

)
(10.25)

Where no explicit coefficient bounds possible warpings affecting h(t). Thus, the model

implicitly assumes
dτ(t)

dt
= 1 and is not warping invariant.

Starting from this result, since the warping derivative
dτ(t)

dt
is unknown a priori, it is

possible to attach to the architecture of Simple RNNs a function approximating the
warping derivative. The result is a Gated RNN [Chu+15].

157

CHAPTER 10. SEQUENCES & TIME-WARPING

Definition 10.12 (Gated RNN). Consider a derivative estimator matrix:

Γ : Rk × Rm → R Γ(z(t+1),h(t)) (10.26)

Where the inputs are z(t+1),h(t), basically all the knowledge available at time t to es-
timate t + 1. Define a time warping invariant CNN as one that builds new summaries
following:

h(t+1) = Γ(z(t+1),h(t))R(z(t+1),h(t)) + (1− Γ(z(t+1),h(t)))h(t) (10.27)

Where the Γ function is constrained such that:
dτ(t)

dt
� 1 as to have a not so big Taylor

approximation error and avoid overcontractions of time. By the monotonically increasing
assumption of Definition 10.7, the final constraint on Γ is:

0 < Γ(z(t+1),h(t)) < 1 (10.28)

Which is equivalent to the requirements of a gating mechanism! Those are usually
estimated as:

Γ(z(t+1),h(t)) = logit

(
WΓz(t+1),UΓh(t) + bΓ

)
(10.29)

Where WΓ,UΓ,bΓ are learnable parameters.

Observation 10.13 (On the Γ of Definition 10.12). It is also possible to make Γ out-
put a vector by a multinomial logistic function and updating different entries of h(t+1)

separately! This increases expressivity by separate dimension updates.

Gated RNNs are widely used, and dominant in the subfield of RNNs. Models following
this fashion include:

• Long Short Term Memory (LSTM) [HS97]
• Gated Recurrent Unit (GRU) [Cho+14]

In this Chapter, we will brielfy overview LSTM. Such model is the oldest and most
popular. It was originally proposed to fix the vaninshing gradient problem of many
activation functions in Machine Learning. It decides how much to forget based on data
(it is a data driven method). It uses a persistent memory cell c(t), and implements1
gating to make the following update choices:

• how much of the new candidate to transfer to the cell i(t)

• how much of the previous to forget f(t)

• how much of the output to allow out o(t)

The memory cell has a state c(t) and the workflow on its updates is as follows:

1. Compute candidate features vector for the cell:

c̃(t) = tanh(Wcz(t) + Uch(t−1) + bc) (10.30)

2. Compute the input/output/forget gates:

i(t) = logit(Wiz(t) + Uih(t−1) + bi) (10.31)

f(t) = logit(Wfz(t) + Ufh(t−1) + bf) (10.32)

o(t) = logit(Woz(t) + Uoh(t−1) + bo) (10.33)

3. Derive the new cell state and update the summary:

c(t) = i(t)
⊙

c̃(t) + f(t)
⊙

c(t−1) (10.34)

h(t) = o(t)
⊙

tanh(c(t)) (10.35)

158

10.2. Neural Networks & Time Warping

Figure 10.7: LSTM Architecture

An example of such architecture is found in Figure 10.7

While LSTM is a special case of a the wider set of Gated RNNs, we have justified what the
gating mechanism theoretically guarantees: invariance to non contractive time warpings.
Specifically, the aim of a gating mechanism is mimicking the condition of Theorem 10.11,
as to guarantee this symmetry property for sequential data.

This set of results implies a slightly different kind of invariance: class invariance. We are
indeed showing that if an RNN produces h(t) from z(t) then another one, with possibly
different coefficients, but the same architecture, will be able to produce h(τ(t)) from
z(τ(t)) for any τ .

More interestingly, a case of zero shot transfer is when an easy rescaling as in Example
10.8 from τ1 to τ2 is implemented. In this context, it is possible to assert that:

τ1(t) = ατ2(t) =⇒ Γ2(z(t+1),h(t)) = αΓ1(z(t+1),h(t)) (10.36)

To match the derivative change!

Thus, gated RNNs support translation equivariance by setting invariance to time warp-
ing. Now that we have covered the most important architectures arising from GDL, we
can eventually say that we checked all the cells in Table 1.1!

The next Chapter will present applications and possible developments of GDL.

159

CHAPTER 10. SEQUENCES & TIME-WARPING

160

Chapter 11

Applications & Conclusions

In this set of lectures, we saw how the key concept unifying deep learning is symmetry.
We have seen instances on the 5Gs (Figure 11.1) and derived popular architectures from
first principles. A summary of the Neural Networks encountered is Figure 11.2.

A good question could be:

What is next?

Indeed, the quality of a theory can only be judged by its predictive power. This Chapter
is roughly based on a blog post by the main author of the course [Bro20]. We will
explore potential advancements in the field and applications where GNNs proved to
be well versed. Most of the content will just redirect to current research without much
narrative. It should rather be taken as an inspiration on where to look for new/interesting
content.

Figure 11.1: Five Gs of Geometric Deep Learning

161

CHAPTER 11. APPLICATIONS & CONCLUSIONS

Figure 11.2: GDL architectures and symmetry groups

11.1 Advancing GDL

2020 saw the field of Graph ML come to terms
with the fundamental limitations of the
message-passing paradigm.

Will Hamilton, Mila

This quote by a great researcher highlights an intrinsic problem in both the world of
Graph Machine Learning and message-passing. There are several papers that propose
Weisfeler Lehman like (Algorithm 4.2.3) schemes for simplicial complexes, which them-
selves generalize meshes, implementing a discrete topology with many interesting theo-
retical results, including strict overperformance of MPNNS1 [Bod+21].

Another interesting direction is Explainable GNNs. Instead of a generic function, a
symbolic function regressed on the results of a small MLP as message passing can be
used [Cra+20].

Such context is also deeply related with Algorithmic Reasoning. The idea is the following:
we have a very established way to work with graphs through algorithmic procedure (e.g.
Djikstra’s for Shortest paths). Algorithms are explainable but not generalize. On the
contrary, Neural Networks are not always explainable and often generalize well across
tasks. What algorithmic reasoning aims at doing is to take the advantages of both worlds.
For further discussion, refer to [VB21].

Causal Inference is another field of interest. Causal graphs such as gene regulatory net-
works (Figure 11.3) can be learnt by a Neural Network [Bel+21].
On a similar note, knowledge graphs (e.g. Figure 11.4), as heterogeneous graphs high-
lighting relations between objects could be a hot topic.

Another great example of theoretical development is Graph Rewiring. Essentially, a
graph is embedded with a diffusion model and rewired guaranteeing better performance
[GWG22]. Figure 11.5 is an outline of the procedure.

1Message-Passing Neural Networks

162

11.1. Advancing GDL

Figure 11.3: A Gene Regulatory Network

Figure 11.4: Two Knowledge Graphs

Figure 11.5: Graph Rewiring

163

CHAPTER 11. APPLICATIONS & CONCLUSIONS

Figure 11.6: Network Geometry

Figure 11.7: GANs Improvement over time

Considering graph as discretizations of a continous space is the basis of Network Ge-
ometry (a visual example is Figure 11.6), which joins Differential Geometry and Graph
Theory. There are available reviews of research directions in the field [Bog+21].

Coming back to diffusion, Neural Networks are often seen as discretizations of diffusion
equations (Neural PDEs). A Network eventually becomes a specific step of Euler solvers,
where layers are discretizations of the diffusion time. Nice questions could be under-
standing how to discretize a diffusion derivative and determining which graph would
arise [Cha+21].

Linked to problems and Assumptions made in Chapter 10, what if the domain Ω(t) is
not fixed over time? In such a context, it is possible to study dynamic graphs, which are
non static and have different change frequencies [Ros+22].

Very famous recently, generative models such as GANS have experienced a steep improve-
ment in their results. Figure 11.7 is a proof of this claim. Despite promising performance
for images, they are still very imprecise with graphs. The issue is believed to be the ab-
sence of a canonical order of nodes and features, which is inherent in the definition of
a graphical object. This leads to having a not well defined loss (by the absence of a
well defined similarity measure). Some attempts are already present in research, with
promising outputs for molecular graphs [JBJ19].

Lastly, pivotal for the understanding of methods, standardized benchmarks drive research
forward. While there are already available sources such as the Open Graph Benchmark
(OGB), more data would help having a more refined idea of the potential of a method.

164

11.2. Applications

Figure 11.8: 3D Geometric Data Models

11.2 Applications

There are multiple industrial applications worth mentioning. In this section, we will
briefly present some of them, attempting to cover most of the fields where Graph Neural
Networks have been proposed.

Semiconductors Google optimized semiconductors chips design, a known combina-
torially exploding in size issue. The method proposed is a combination of GNNs and
Reinforcement Learning, which is known to be pretty efficient when dealing with NP-
Hard problems.

Hardware The success of CNNs was also driven by the appearence of GPUs, which
are well versed for their computations. Some companies are researching how to build a
processing unit that is graph friendly. GraphCore (UK) has recently proposed their IPU
architecture.

Social Networks Recommender systems are crucial for Companies’ profits. Correctly
identifying what a user would like makes a difference between revenue and no revenue.
Pinterest implemented GraphSage for its platform, and built PinSage. UberEats is no-
tably using GNNs to recommend food delivery options for customers. Aligraph, by
Alibaba, performs edge prediction to determine the likelihood of a certain action of reg-
istered users.
Also malicious content detection is a possibly expanding field. It was noticed that fake
news spread differently. Thus, a Neural Network that learns the pattern could definitely
be useful for such a task. Fabula.AI, acquired by Twitter in 2019, had this mission.

3D Vision & Graphics A model for a solid object can be of many types. Some are
shown in Figure 11.8. For example cars’ sensors build point cloud representations of
reality. Uber used GNNs to predict other cars’ directions in the context of self driving
[Cui+21]. Apple’s products come with motion capture applications. A nice evolving field
is that of 3D avatars design. Some examples include

• Humans’ mesh models with Variational Auto Encoders for shape completion [Lit+18]
• face modeling [Bah+21]
• 2D to 3D hand estimation [Kul+20]

165

CHAPTER 11. APPLICATIONS & CONCLUSIONS

In the industry, Ariel.AI, acquired by Snapchat, developed a Neural Network that
enhances AR effects with efficient hand recognition. Ultimately, face reconstruction
from DNA, currently explored by Peter Claes at KU Leuven, could support forensic
investigations and many other fields in the future.

Physics

It has been amazing to see how in the last two
years Graph ML has become very popular in
the field of physics.

Kyle Cranmer, NYU

Large and expensive equipment is necessary for particle accelerators. In this context,
graphs naturally represent collisions. Readings from detectors and graphs combined
proved to be able to reconstruct the origin of the particle [Ser+20]. Also recent research
for the IceCube detector improved the exploration of links of neutrinos and astronomic
events [Cho+18], where a GNN was exploited for classification. In addition to this, GNNs
are also implemented for fluid dynamics simulation [Pfa+21].

Biology

In 2020, exciting progress has been made in
protein structure prediction, a key problem in
bioinformatics. Yet, ultimately the chemical
and geometric pattern displayed at the surface
of these molecules are critical for protein
function.

Bruno Correira, EPFL

Proteins are important since there is no knowlege of life not based on proteins. These
biological structures are made of long sequences of nucleotides of DNA. Each nucleotide
tuplet is an encoding of an amminoacid, where only 20 combinations make proteins that
can be synthetized. These long biological molecules fold depending on forces in act.
The protein folding problem is that of determining the structure of a given sequence.
Christian Anfinsen, 1972 Nobel Laureate in Chemistry, conjectured that their structure
is solely determined by the aminoacids. It was not until 50 years later, when AlphaFold
came into play, that it became possible to correctly predict proteins’ 3D appearence
[Jum+21]. This was a major breakthrough, which makes uses of many adjustments,
including historical knowledge of precedent proteins and invariant points attention, a
special structure [Jum+21]. The field is fast moving. Recently, Recurrent Geometric
Networks, which underperformed AlphaFold, were improved. The authors claim to have
single sequence prediction with no evolution knowledge.
Protein functions are everywhere in nature, some examples are shown in Figure 11.9.
The majority of drugs make use of proteins in their interactions. In simple terms, they
are molecules that disable protein interactions causing diseases. The Immunotheraphy
2018 Nobel prize is an example of such methods: cancer cells would be killed by T-cells,
but they produce proteins that inhibit the immunitary system. The idea is blocking these
proteins through a protein that acts on those that are produced by cancer cells with the
right shape. This problem can be seen as an inverse folding problem. Given a shape,
we wish to determine the sequence that generates it. Ignoring edge cases, a sequence
defines a strucutre that has a specific function. Knowledge of this process is crucial to

166

11.2. Applications

Figure 11.9: Some Protein Functions

tackle diseases at a microscopic level. On similar grounds, MaSIF is a protein function
prediction network that aims at determining particular binding properties of proteins De
Novo [Gai+20].

Chemistry, Drug Design Drug discovery is yet another exciting subject, where long
test times suggest exploring the space of available molecules (1060 vs 103 laboratory ca-
pacity) using GNNs. These networks are indeed good for property prediction. It was
recently found out that the daunting problem of antibiotic bacterias’ resistance may be
solved by custom designed drugs. A GNN was able to produce an instance of antibiotic
with these characteristics [Sto+20].
Also drug repositioning and combinatorial therapy are being studied. Often the simul-
taneous combination of treatments can avoid side effects while guaranteeing a non linear
effect of the therapy. Drug to protein (& mixed) levels of interactions rangining from
binding effects to molecular can be predicted by a GNN [ZAL18].
A last exotic research direction is Food Chemistry studies. Understanding the benefits
of foods and how their combinations interact is crucial to design thoughtful compounds.
Hyperfoods is one of the first examples of the field, vastly using GNNs for its purposes
[Ves+19].

167

CHAPTER 11. APPLICATIONS & CONCLUSIONS

168

Bibliography

[Vel21] Petar Veličković. Geometric Deep Learning - Grids, Groups, Graphs, Geodesics, and Gauges.
2021. url: https://geometricdeeplearning.com/geometricdeeplearning.com/ (visited on
07/12/2022).

[Bro+21] Michael M. Bronstein et al. Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and
Gauges. Number: arXiv:2104.13478. May 2, 2021. arXiv: 2104.13478[cs,stat]. url: http:
//arxiv.org/abs/2104.13478 (visited on 07/11/2022).

[Par22] Maurizio Parton. First Italian School in Geometric Deep Learning. First Italian Schoo in Ge-
ometric Deep Learning. 2022. url: https://www.sci.unich.it/geodeep2022/#schedule
(visited on 09/19/2022).

[Ros57] F. Rosenblatt. The Perceptron: A Probabilistic Model for Information Storage and Organization.
1957.

[MP69] Marvin Minsky and Seymour Papert. Perceptrons. Perceptrons. Oxford, England: M.I.T. Press,
1969.

[Lig72] James Lighthill. “The Lighthill Report, A general survey by Sir James Lighthill FRS Lucasian
Professor of Applied Mathematics”. In: (July 1972). url: https://www.aiai.ed.ac.uk/
events/lighthill1973/lighthill.pdf (visited on 09/19/2022).

[Fuk80] Kunihiko Fukushima. “Neocognitron: A self-organizing neural network model for a mechanism
of pattern recognition unaffected by shift in position”. In: Biological Cybernetics 36.4 (Apr.
1980), pp. 193–202. issn: 0340-1200, 1432-0770. doi: 10.1007/BF00344251. url: http://link.
springer.com/10.1007/BF00344251 (visited on 09/19/2022).

[IL66] A G Ivakhnenko and V G Lapa. “Cybernetic Predicting Devices”. In: (1966), p. 264.

[Lin70] Seppo Linnainmaa. “Taylor expansion of the accumulated rounding error”. In: BIT Numerical
Mathematics 16.2 (1970), pp. 146–160. issn: 1572-9125. doi: 10.1007/BF01931367. url: https:
//doi.org/10.1007/BF01931367 (visited on 09/19/2022).

[Wer82] Paul J. Werbos. “Applications of advances in nonlinear sensitivity analysis”. In: System Modeling
and Optimization. Ed. by R. F. Drenick and F. Kozin. Lecture Notes in Control and Information
Sciences. Berlin, Heidelberg: Springer, 1982, pp. 762–770. isbn: 978-3-540-39459-4. doi: 10.
1007/BFb0006203.

[RHW86] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learning representations
by back-propagating errors”. In: Nature 323.6088 (Oct. 1986). Number: 6088 Publisher: Nature
Publishing Group, pp. 533–536. issn: 1476-4687. doi: 10.1038/323533a0. url: https://www.
nature.com/articles/323533a0 (visited on 09/19/2022).

169

https://geometricdeeplearning.com/geometricdeeplearning.com/
https://arxiv.org/abs/2104.13478 [cs, stat]
http://arxiv.org/abs/2104.13478
http://arxiv.org/abs/2104.13478
https://www.sci.unich.it/geodeep2022/#schedule
https://www.aiai.ed.ac.uk/events/lighthill1973/lighthill.pdf
https://www.aiai.ed.ac.uk/events/lighthill1973/lighthill.pdf
https://doi.org/10.1007/BF00344251
http://link.springer.com/10.1007/BF00344251
http://link.springer.com/10.1007/BF00344251
https://doi.org/10.1007/BF01931367
https://doi.org/10.1007/BF01931367
https://doi.org/10.1007/BF01931367
https://doi.org/10.1007/BFb0006203
https://doi.org/10.1007/BFb0006203
https://doi.org/10.1038/323533a0
https://www.nature.com/articles/323533a0
https://www.nature.com/articles/323533a0

BIBLIOGRAPHY

[LeC+89] Y. LeCun et al. “Backpropagation Applied to Handwritten Zip Code Recognition”. In: Neural
Computation 1.4 (Dec. 1989), pp. 541–551. issn: 0899-7667, 1530-888X. doi: 10.1162/neco.
1989.1.4.541. url: https://direct.mit.edu/neco/article/1/4/541-551/5515 (visited on
07/11/2022).

[SZ03] Sivic and Zisserman. “Video Google: a text retrieval approach to object matching in videos”.
In: Proceedings Ninth IEEE International Conference on Computer Vision. ICCV 2003: 9th
International Conference on Computer Vision. Nice, France: IEEE, 2003, 1470–1477 vol.2. isbn:
978-0-7695-1950-0. doi: 10.1109/ICCV.2003.1238663. url: http://ieeexplore.ieee.org/
document/1238663/ (visited on 09/19/2022).

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classification with Deep
Convolutional Neural Networks”. In: Advances in Neural Information Processing Systems. Vol. 25.
Curran Associates, Inc., 2012. url: https://proceedings.neurips.cc/paper/2012/hash/
c399862d3b9d6b76c8436e924a68c45b-Abstract.html (visited on 09/20/2022).

[SS95] Alessandro Sperduti and Antonina Starita. “Modular Labeling RAAM”. In: Artificial Neural
Nets and Genetic Algorithms. Ed. by David W. Pearson, Nigel C. Steele, and Rudolf F. Albrecht.
Vienna: Springer, 1995, pp. 368–371. isbn: 978-3-7091-7535-4. doi: 10.1007/978-3-7091-7535-
4_96.

[GK96] C. Goller and A. Kuchler. “Learning task-dependent distributed representations by backprop-
agation through structure”. In: Proceedings of International Conference on Neural Networks
(ICNN’96). Proceedings of International Conference on Neural Networks (ICNN’96). Vol. 1.
June 1996, 347–352 vol.1. doi: 10.1109/ICNN.1996.548916.

[Li+17] Yujia Li et al. Gated Graph Sequence Neural Networks. Sept. 22, 2017. arXiv: 1511.05493[cs,
stat]. url: http://arxiv.org/abs/1511.05493 (visited on 09/19/2022).

[Duv+15] David Duvenaud et al. Convolutional Networks on Graphs for Learning Molecular Fingerprints.
Nov. 3, 2015. arXiv: 1509.09292[cs,stat]. url: http://arxiv.org/abs/1509.09292 (visited
on 09/20/2022).

[Gil+17] Justin Gilmer et al. Neural Message Passing for Quantum Chemistry. Number: arXiv:1704.01212.
June 12, 2017. arXiv: 1704.01212[cs]. url: http://arxiv.org/abs/1704.01212 (visited on
07/11/2022).

[Bro+17] Michael M. Bronstein et al. “Geometric deep learning: going beyond Euclidean data”. In: IEEE
Signal Processing Magazine 34.4 (July 2017), pp. 18–42. issn: 1053-5888, 1558-0792. doi: 10.
1109/MSP.2017.2693418. arXiv: 1611.08097[cs]. url: http://arxiv.org/abs/1611.08097
(visited on 07/11/2022).

[Wei+21] Maurice Weiler et al. Coordinate Independent Convolutional Networks – Isometry and Gauge
Equivariant Convolutions on Riemannian Manifolds. Number: arXiv:2106.06020. June 10, 2021.
arXiv: 2106.06020[cs,stat]. url: http://arxiv.org/abs/2106.06020 (visited on 07/11/2022).

[BB07] Léon Bottou and Olivier Bousquet. “The Tradeoffs of Large Scale Learning”. In: Advances in
Neural Information Processing Systems. Vol. 20. Curran Associates, Inc., 2007. url: https:
//papers.nips.cc/paper/2007/hash/0d3180d672e08b4c5312dcdafdf6ef36-Abstract.html
(visited on 07/11/2022).

[HSW89] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedforward networks are
universal approximators”. In: Neural Networks 2.5 (Jan. 1989), pp. 359–366. issn: 08936080. doi:
10.1016/0893-6080(89)90020-8. url: https://linkinghub.elsevier.com/retrieve/pii/
0893608089900208 (visited on 07/11/2022).

170

https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1162/neco.1989.1.4.541
https://direct.mit.edu/neco/article/1/4/541-551/5515
https://doi.org/10.1109/ICCV.2003.1238663
http://ieeexplore.ieee.org/document/1238663/
http://ieeexplore.ieee.org/document/1238663/
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://doi.org/10.1007/978-3-7091-7535-4_96
https://doi.org/10.1007/978-3-7091-7535-4_96
https://doi.org/10.1109/ICNN.1996.548916
https://arxiv.org/abs/1511.05493 [cs, stat]
https://arxiv.org/abs/1511.05493 [cs, stat]
http://arxiv.org/abs/1511.05493
https://arxiv.org/abs/1509.09292 [cs, stat]
http://arxiv.org/abs/1509.09292
https://arxiv.org/abs/1704.01212 [cs]
http://arxiv.org/abs/1704.01212
https://doi.org/10.1109/MSP.2017.2693418
https://doi.org/10.1109/MSP.2017.2693418
https://arxiv.org/abs/1611.08097 [cs]
http://arxiv.org/abs/1611.08097
https://arxiv.org/abs/2106.06020 [cs, stat]
http://arxiv.org/abs/2106.06020
https://papers.nips.cc/paper/2007/hash/0d3180d672e08b4c5312dcdafdf6ef36-Abstract.html
https://papers.nips.cc/paper/2007/hash/0d3180d672e08b4c5312dcdafdf6ef36-Abstract.html
https://doi.org/10.1016/0893-6080(89)90020-8
https://linkinghub.elsevier.com/retrieve/pii/0893608089900208
https://linkinghub.elsevier.com/retrieve/pii/0893608089900208

Bibliography

[Pin99] Allan Pinkus. “Approximation theory of the MLP model in neural networks”. In: Acta Numerica
8 (Jan. 1999), pp. 143–195. issn: 0962-4929, 1474-0508. doi: 10.1017/S0962492900002919.
url: https://www.cambridge.org/core/product/identifier/S0962492900002919/type/
journal_article (visited on 07/11/2022).

[Cyb89] G Cybenkot. “Approximation by superpositions of a sigmoidal function”. In: (1989), p. 12.

[Bar93] A.R. Barron. “Universal approximation bounds for superpositions of a sigmoidal function”. In:
IEEE Transactions on Information Theory 39.3 (May 1993), pp. 930–945. issn: 0018-9448, 1557-
9654. doi: 10.1109/18.256500. url: https://ieeexplore.ieee.org/document/256500/
(visited on 07/11/2022).

[Mai99] V. E Maiorov. “On Best Approximation by Ridge Functions”. In: Journal of Approximation
Theory 99.1 (July 1, 1999), pp. 68–94. issn: 0021-9045. doi: 10.1006/jath.1998.3304. url:
https://www.sciencedirect.com/science/article/pii/S0021904598933044 (visited on
07/11/2022).

[Bar94] Andrew R. Barron. “Approximation and estimation bounds for artificial neural networks”. In:
Machine Learning 14.1 (Jan. 1, 1994), pp. 115–133. issn: 1573-0565. doi: 10.1007/BF00993164.
url: https://doi.org/10.1007/BF00993164 (visited on 07/11/2022).

[JNJ17] Chi Jin, Praneeth Netrapalli, and Michael I. Jordan. Accelerated Gradient Descent Escapes Sad-
dle Points Faster than Gradient Descent. Number: arXiv:1711.10456. Nov. 28, 2017. arXiv: 1711.
10456[cs,math,stat]. url: http://arxiv.org/abs/1711.10456 (visited on 07/11/2022).

[LV15] Karel Lenc and Andrea Vedaldi. Understanding image representations by measuring their equiv-
ariance and equivalence. Number: arXiv:1411.5908. June 20, 2015. arXiv: 1411.5908[cs]. url:
http://arxiv.org/abs/1411.5908 (visited on 07/11/2022).

[MMM21] Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Learning with invariances in random
features and kernel models. Number: arXiv:2102.13219. Feb. 25, 2021. arXiv: 2102.13219[cs,
math,stat]. url: http://arxiv.org/abs/2102.13219 (visited on 07/11/2022).

[BVB21] Alberto Bietti, Luca Venturi, and Joan Bruna. On the Sample Complexity of Learning under
Invariance and Geometric Stability. Number: arXiv:2106.07148. Nov. 4, 2021. arXiv: 2106 .
07148[cs,stat]. url: http://arxiv.org/abs/2106.07148 (visited on 07/11/2022).

[LB03] Ulrike von Luxburg and Olivier Bousquet. “Distance-Based Classification with Lipschitz Func-
tions”. In: Learning Theory and Kernel Machines. Ed. by Bernhard Schölkopf and Manfred K.
Warmuth. Red. by Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen. Vol. 2777. Series
Title: Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003,
pp. 314–328. isbn: 978-3-540-40720-1 978-3-540-45167-9. doi: 10.1007/978-3-540-45167-9_24.
url: http://link.springer.com/10.1007/978-3-540-45167-9_24 (visited on 07/11/2022).

[FCW21] Alessandro Favero, Francesco Cagnetta, and Matthieu Wyart. Locality defeats the curse of di-
mensionality in convolutional teacher-student scenarios. Number: arXiv:2106.08619. Nov. 12,
2021. arXiv: 2106.08619[cond-mat,stat]. url: http://arxiv.org/abs/2106.08619 (visited
on 07/11/2022).

[Zah+18] Manzil Zaheer et al.Deep Sets. Number: arXiv:1703.06114. Apr. 14, 2018. arXiv: 1703.06114[cs,
stat]. url: http://arxiv.org/abs/1703.06114 (visited on 07/11/2022).

[DBV17] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional Neural Networks
on Graphs with Fast Localized Spectral Filtering. Number: arXiv:1606.09375. Feb. 5, 2017. arXiv:
1606.09375[cs,stat]. url: http://arxiv.org/abs/1606.09375 (visited on 07/11/2022).

171

https://doi.org/10.1017/S0962492900002919
https://www.cambridge.org/core/product/identifier/S0962492900002919/type/journal_article
https://www.cambridge.org/core/product/identifier/S0962492900002919/type/journal_article
https://doi.org/10.1109/18.256500
https://ieeexplore.ieee.org/document/256500/
https://doi.org/10.1006/jath.1998.3304
https://www.sciencedirect.com/science/article/pii/S0021904598933044
https://doi.org/10.1007/BF00993164
https://doi.org/10.1007/BF00993164
https://arxiv.org/abs/1711.10456 [cs, math, stat]
https://arxiv.org/abs/1711.10456 [cs, math, stat]
http://arxiv.org/abs/1711.10456
https://arxiv.org/abs/1411.5908 [cs]
http://arxiv.org/abs/1411.5908
https://arxiv.org/abs/2102.13219 [cs, math, stat]
https://arxiv.org/abs/2102.13219 [cs, math, stat]
http://arxiv.org/abs/2102.13219
https://arxiv.org/abs/2106.07148 [cs, stat]
https://arxiv.org/abs/2106.07148 [cs, stat]
http://arxiv.org/abs/2106.07148
https://doi.org/10.1007/978-3-540-45167-9_24
http://link.springer.com/10.1007/978-3-540-45167-9_24
https://arxiv.org/abs/2106.08619 [cond-mat, stat]
http://arxiv.org/abs/2106.08619
https://arxiv.org/abs/1703.06114 [cs, stat]
https://arxiv.org/abs/1703.06114 [cs, stat]
http://arxiv.org/abs/1703.06114
https://arxiv.org/abs/1606.09375 [cs, stat]
http://arxiv.org/abs/1606.09375

BIBLIOGRAPHY

[KW17] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional
Networks. Number: arXiv:1609.02907. Feb. 22, 2017. arXiv: 1609.02907[cs,stat]. url: http:
//arxiv.org/abs/1609.02907 (visited on 07/11/2022).

[Wu+19] Felix Wu et al. Simplifying Graph Convolutional Networks. Number: arXiv:1902.07153. June 20,
2019. arXiv: 1902.07153[cs,stat]. url: http://arxiv.org/abs/1902.07153 (visited on
07/11/2022).

[Mon+17] Federico Monti et al. “Geometric Deep Learning on Graphs and Manifolds Using Mixture Model
CNNs”. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI: IEEE,
July 2017, pp. 5425–5434. isbn: 978-1-5386-0457-1. doi: 10.1109/CVPR.2017.576. url: http:
//ieeexplore.ieee.org/document/8100059/ (visited on 07/11/2022).

[Vel+18] Petar Veličković et al. Graph Attention Networks. Number: arXiv:1710.10903. Feb. 4, 2018. arXiv:
1710.10903[cs,stat]. url: http://arxiv.org/abs/1710.10903 (visited on 07/11/2022).

[BAY22] Shaked Brody, Uri Alon, and Eran Yahav. How Attentive are Graph Attention Networks? Num-
ber: arXiv:2105.14491. Jan. 31, 2022. arXiv: 2105.14491[cs]. url: http://arxiv.org/abs/
2105.14491 (visited on 07/11/2022).

[Bat+16] Peter W. Battaglia et al. Interaction Networks for Learning about Objects, Relations and Physics.
Number: arXiv:1612.00222. Dec. 1, 2016. arXiv: 1612.00222[cs]. url: http://arxiv.org/
abs/1612.00222 (visited on 07/11/2022).

[Bat+18] Peter W. Battaglia et al. Relational inductive biases, deep learning, and graph networks. Number:
arXiv:1806.01261. Oct. 17, 2018. arXiv: 1806.01261[cs,stat]. url: http://arxiv.org/abs/
1806.01261 (visited on 07/11/2022).

[Jos20] Chaytania Joshi. Transformers are Graph Neural Networks. The Gradient. Sept. 12, 2020. url:
https : / / thegradient . pub / transformers - are - graph - neural - networks/ (visited on
07/11/2022).

[Kip+18] Thomas Kipf et al. Neural Relational Inference for Interacting Systems. Number: arXiv:1802.04687.
June 6, 2018. arXiv: 1802.04687[cs,stat]. url: http://arxiv.org/abs/1802.04687 (visited
on 07/11/2022).

[Ada13] Ryan Adams. The Gumbel-Max Trick for Discrete Distributions | Laboratory for Intelligent Prob-
abilistic Systems. 2013. url: https://lips.cs.princeton.edu/the-gumbel-max-trick-for-
discrete-distributions/ (visited on 07/12/2022).

[Wan+19] Yue Wang et al. Dynamic Graph CNN for Learning on Point Clouds. Number: arXiv:1801.07829.
June 11, 2019. arXiv: 1801.07829[cs]. url: http://arxiv.org/abs/1801.07829 (visited on
07/11/2022).

[Kaz+22] Anees Kazi et al. “Differentiable Graph Module (DGM) for Graph Convolutional Networks”. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence (2022), pp. 1–1. issn: 0162-
8828, 2160-9292, 1939-3539. doi: 10.1109/TPAMI.2022.3170249. arXiv: 2002.04999[cs,stat].
url: http://arxiv.org/abs/2002.04999 (visited on 07/11/2022).

[Vel+20] Petar Veličković et al. Pointer Graph Networks. Number: arXiv:2006.06380. Oct. 18, 2020. arXiv:
2006.06380[cs,stat]. url: http://arxiv.org/abs/2006.06380 (visited on 07/11/2022).

[SYK21] Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random Features Strengthen Graph Neural
Networks. Number: arXiv:2002.03155. Jan. 18, 2021. arXiv: 2002.03155[cs,stat]. url: http:
//arxiv.org/abs/2002.03155 (visited on 07/11/2022).

172

https://arxiv.org/abs/1609.02907 [cs, stat]
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1902.07153 [cs, stat]
http://arxiv.org/abs/1902.07153
https://doi.org/10.1109/CVPR.2017.576
http://ieeexplore.ieee.org/document/8100059/
http://ieeexplore.ieee.org/document/8100059/
https://arxiv.org/abs/1710.10903 [cs, stat]
http://arxiv.org/abs/1710.10903
https://arxiv.org/abs/2105.14491 [cs]
http://arxiv.org/abs/2105.14491
http://arxiv.org/abs/2105.14491
https://arxiv.org/abs/1612.00222 [cs]
http://arxiv.org/abs/1612.00222
http://arxiv.org/abs/1612.00222
https://arxiv.org/abs/1806.01261 [cs, stat]
http://arxiv.org/abs/1806.01261
http://arxiv.org/abs/1806.01261
https://thegradient.pub/transformers-are-graph-neural-networks/
https://arxiv.org/abs/1802.04687 [cs, stat]
http://arxiv.org/abs/1802.04687
https://lips.cs.princeton.edu/the-gumbel-max-trick-for-discrete-distributions/
https://lips.cs.princeton.edu/the-gumbel-max-trick-for-discrete-distributions/
https://arxiv.org/abs/1801.07829 [cs]
http://arxiv.org/abs/1801.07829
https://doi.org/10.1109/TPAMI.2022.3170249
https://arxiv.org/abs/2002.04999 [cs, stat]
http://arxiv.org/abs/2002.04999
https://arxiv.org/abs/2006.06380 [cs, stat]
http://arxiv.org/abs/2006.06380
https://arxiv.org/abs/2002.03155 [cs, stat]
http://arxiv.org/abs/2002.03155
http://arxiv.org/abs/2002.03155

Bibliography

[Cor+20] Gabriele Corso et al. Principal Neighbourhood Aggregation for Graph Nets. Number: arXiv:2004.05718.
Dec. 31, 2020. arXiv: 2004.05718[cs,stat]. url: http://arxiv.org/abs/2004.05718 (visited
on 07/11/2022).

[Bou+21] Giorgos Bouritsas et al. Improving Graph Neural Network Expressivity via Subgraph Isomorphism
Counting. July 5, 2021. doi: 10.48550/arXiv.2006.09252. arXiv: 2006.09252[cs,stat]. url:
http://arxiv.org/abs/2006.09252 (visited on 09/25/2022).

[HYL18] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive Representation Learning on Large
Graphs. Sept. 10, 2018. arXiv: 1706.02216[cs,stat]. url: http://arxiv.org/abs/1706.
02216 (visited on 09/25/2022).

[GWG22] Johannes Gasteiger, Stefan Weißenberger, and Stephan Günnemann. Diffusion Improves Graph
Learning. Number: arXiv:1911.05485. Apr. 5, 2022. arXiv: 1911.05485[cs,stat]. url: http:
//arxiv.org/abs/1911.05485 (visited on 07/11/2022).

[AY21] Uri Alon and Eran Yahav. On the Bottleneck of Graph Neural Networks and its Practical Impli-
cations. Mar. 9, 2021. arXiv: 2006.05205[cs,stat]. url: http://arxiv.org/abs/2006.05205
(visited on 09/25/2022).

[Fra+20a] Fabrizio Frasca et al. SIGN: Scalable Inception Graph Neural Networks. Nov. 3, 2020. arXiv:
2004.11198[cs,stat]. url: http://arxiv.org/abs/2004.11198 (visited on 09/25/2022).

[Fra+20b] Luca Franceschi et al. Learning Discrete Structures for Graph Neural Networks. June 19, 2020.
arXiv: 1903.11960[cs,stat]. url: http://arxiv.org/abs/1903.11960 (visited on 09/25/2022).

[Cra+20] Miles Cranmer et al. Discovering Symbolic Models from Deep Learning with Inductive Biases.
Number: arXiv:2006.11287. Nov. 17, 2020. arXiv: 2006.11287[astro-ph,physics:physics,
stat]. url: http://arxiv.org/abs/2006.11287 (visited on 07/11/2022).

[Mar+20] Haggai Maron et al. Provably Powerful Graph Networks. June 9, 2020. arXiv: 1905.11136[cs,
stat]. url: http://arxiv.org/abs/1905.11136 (visited on 09/25/2022).

[Mor+21] Christopher Morris et al.Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks.
Nov. 30, 2021. arXiv: 1810.02244[cs,stat]. url: http://arxiv.org/abs/1810.02244 (visited
on 09/25/2022).

[MOB18] Federico Monti, Karl Otness, and Michael M. Bronstein. MotifNet: a motif-based Graph Convo-
lutional Network for directed graphs. Feb. 3, 2018. arXiv: 1802.01572[cs]. url: http://arxiv.
org/abs/1802.01572 (visited on 09/25/2022).

[Dwi+22] Vijay Prakash Dwivedi et al. Benchmarking Graph Neural Networks. May 11, 2022. arXiv: 2003.
00982[cs,stat]. url: http://arxiv.org/abs/2003.00982 (visited on 09/25/2022).

[PW22] Pál András Papp and Roger Wattenhofer. “A Theoretical Comparison of Graph Neural Network
Extensions”. In: Proceedings of the 39th International Conference on Machine Learning. Inter-
national Conference on Machine Learning. ISSN: 2640-3498. PMLR, June 28, 2022, pp. 17323–
17345. url: https://proceedings.mlr.press/v162/papp22a.html (visited on 09/25/2022).

[CMR21] Leonardo Cotta, Christopher Morris, and Bruno Ribeiro. “Reconstruction for Powerful Graph
Representations”. In: Advances in Neural Information Processing Systems. Vol. 34. Curran Asso-
ciates, Inc., 2021, pp. 1713–1726. url: https://proceedings.neurips.cc/paper/2021/hash/
0d8080853a54f8985276b0130266a657-Abstract.html (visited on 09/25/2022).

[Zha+20] Tong Zhao et al. Data Augmentation for Graph Neural Networks. Dec. 2, 2020. arXiv: 2006.
06830[cs,stat]. url: http://arxiv.org/abs/2006.06830 (visited on 09/25/2022).

173

https://arxiv.org/abs/2004.05718 [cs, stat]
http://arxiv.org/abs/2004.05718
https://doi.org/10.48550/arXiv.2006.09252
https://arxiv.org/abs/2006.09252 [cs, stat]
http://arxiv.org/abs/2006.09252
https://arxiv.org/abs/1706.02216 [cs, stat]
http://arxiv.org/abs/1706.02216
http://arxiv.org/abs/1706.02216
https://arxiv.org/abs/1911.05485 [cs, stat]
http://arxiv.org/abs/1911.05485
http://arxiv.org/abs/1911.05485
https://arxiv.org/abs/2006.05205 [cs, stat]
http://arxiv.org/abs/2006.05205
https://arxiv.org/abs/2004.11198 [cs, stat]
http://arxiv.org/abs/2004.11198
https://arxiv.org/abs/1903.11960 [cs, stat]
http://arxiv.org/abs/1903.11960
https://arxiv.org/abs/2006.11287 [astro-ph, physics:physics, stat]
https://arxiv.org/abs/2006.11287 [astro-ph, physics:physics, stat]
http://arxiv.org/abs/2006.11287
https://arxiv.org/abs/1905.11136 [cs, stat]
https://arxiv.org/abs/1905.11136 [cs, stat]
http://arxiv.org/abs/1905.11136
https://arxiv.org/abs/1810.02244 [cs, stat]
http://arxiv.org/abs/1810.02244
https://arxiv.org/abs/1802.01572 [cs]
http://arxiv.org/abs/1802.01572
http://arxiv.org/abs/1802.01572
https://arxiv.org/abs/2003.00982 [cs, stat]
https://arxiv.org/abs/2003.00982 [cs, stat]
http://arxiv.org/abs/2003.00982
https://proceedings.mlr.press/v162/papp22a.html
https://proceedings.neurips.cc/paper/2021/hash/0d8080853a54f8985276b0130266a657-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/0d8080853a54f8985276b0130266a657-Abstract.html
https://arxiv.org/abs/2006.06830 [cs, stat]
https://arxiv.org/abs/2006.06830 [cs, stat]
http://arxiv.org/abs/2006.06830

BIBLIOGRAPHY

[Bev+22] Beatrice Bevilacqua et al. Equivariant Subgraph Aggregation Networks. Mar. 16, 2022. doi: 10.
48550/arXiv.2110.02910. arXiv: 2110.02910[cs,stat]. url: http://arxiv.org/abs/2110.
02910 (visited on 09/25/2022).

[Bod+21] Cristian Bodnar et al. Weisfeiler and Lehman Go Topological: Message Passing Simplicial Net-
works. Number: arXiv:2103.03212. June 14, 2021. arXiv: 2103.03212[cs]. url: http://arxiv.
org/abs/2103.03212 (visited on 07/11/2022).

[CT65] James W. Cooley and John W. Tukey. “An algorithm for the machine calculation of complex
Fourier series”. In:Mathematics of Computation 19.90 (1965), pp. 297–301. issn: 0025-5718, 1088-
6842. doi: 10.1090/S0025-5718-1965-0178586-1. url: https://www.ams.org/mcom/1965-
19-090/S0025-5718-1965-0178586-1/ (visited on 10/21/2022).

[Mal09] Stephane Mallat. A Wavelet Tour of Signal Processing. Elsevier, 2009. isbn: 978-0-12-374370-1.
doi: 10.1016/B978-0-12-374370-1.X0001-8. url: https://linkinghub.elsevier.com/
retrieve/pii/B9780123743701X00018 (visited on 07/12/2022).

[Mal12] Stéphane Mallat. Group Invariant Scattering. Number: arXiv:1101.2286. Apr. 15, 2012. arXiv:
1101.2286[cs,math]. url: http://arxiv.org/abs/1101.2286 (visited on 07/11/2022).

[Wal17] Irene Waldspurger. “Phase retrieval for wavelet transforms”. In: IEEE Transactions on Infor-
mation Theory (2017), pp. 1–1. issn: 0018-9448, 1557-9654. doi: 10.1109/TIT.2017.2672727.
url: http://ieeexplore.ieee.org/document/7862873/ (visited on 07/11/2022).

[Oya+19] Edouard Oyallon et al. “Scattering Networks for Hybrid Representation Learning”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 41.9 (Sept. 1, 2019), pp. 2208–2221.
issn: 0162-8828, 2160-9292, 1939-3539. doi: 10.1109/TPAMI.2018.2855738. arXiv: 1809.
06367[cs,stat]. url: http://arxiv.org/abs/1809.06367 (visited on 07/11/2022).

[Zar+20] John Zarka et al. Deep Network Classification by Scattering and Homotopy Dictionary Learning.
Number: arXiv:1910.03561. Feb. 20, 2020. arXiv: 1910.03561[cs,stat]. url: http://arxiv.
org/abs/1910.03561 (visited on 07/11/2022).

[BM19] Joan Bruna and Stephane Mallat.Multiscale Sparse Microcanonical Models. Number: arXiv:1801.02013.
May 9, 2019. arXiv: 1801.02013[math-ph,stat]. url: http://arxiv.org/abs/1801.02013
(visited on 07/11/2022).

[Che+20] Sihao Cheng et al. “A new approach to observational cosmology using the scattering transform”.
In: Monthly Notices of the Royal Astronomical Society 499.4 (Nov. 7, 2020), pp. 5902–5914.
issn: 0035-8711, 1365-2966. doi: 10.1093/mnras/staa3165. arXiv: 2006.08561[astro-ph].
url: http://arxiv.org/abs/2006.08561 (visited on 07/11/2022).

[Eic+18] Michael Eickenberg et al. “Solid harmonic wavelet scattering for predictions of molecule proper-
ties”. In: The Journal of Chemical Physics 148.24 (June 28, 2018), p. 241732. issn: 0021-9606,
1089-7690. doi: 10.1063/1.5023798. url: http://aip.scitation.org/doi/10.1063/1.
5023798 (visited on 07/11/2022).

[KT18] Risi Kondor and Shubhendu Trivedi. On the Generalization of Equivariance and Convolution
in Neural Networks to the Action of Compact Groups. Number: arXiv:1802.03690. Nov. 10,
2018. arXiv: 1802.03690[cs,stat]. url: http://arxiv.org/abs/1802.03690 (visited on
07/11/2022).

[CGW19] Taco S Cohen, Mario Geiger, and Maurice Weiler. “A General Theory of Equivariant CNNs on
Homogeneous Spaces”. In: Advances in Neural Information Processing Systems. Vol. 32. Curran
Associates, Inc., 2019. url: https://papers.nips.cc/paper/2019/hash/b9cfe8b6042cf759dc4c0cccb27a6737-
Abstract.html (visited on 07/11/2022).

174

https://doi.org/10.48550/arXiv.2110.02910
https://doi.org/10.48550/arXiv.2110.02910
https://arxiv.org/abs/2110.02910 [cs, stat]
http://arxiv.org/abs/2110.02910
http://arxiv.org/abs/2110.02910
https://arxiv.org/abs/2103.03212 [cs]
http://arxiv.org/abs/2103.03212
http://arxiv.org/abs/2103.03212
https://doi.org/10.1090/S0025-5718-1965-0178586-1
https://www.ams.org/mcom/1965-19-090/S0025-5718-1965-0178586-1/
https://www.ams.org/mcom/1965-19-090/S0025-5718-1965-0178586-1/
https://doi.org/10.1016/B978-0-12-374370-1.X0001-8
https://linkinghub.elsevier.com/retrieve/pii/B9780123743701X00018
https://linkinghub.elsevier.com/retrieve/pii/B9780123743701X00018
https://arxiv.org/abs/1101.2286 [cs, math]
http://arxiv.org/abs/1101.2286
https://doi.org/10.1109/TIT.2017.2672727
http://ieeexplore.ieee.org/document/7862873/
https://doi.org/10.1109/TPAMI.2018.2855738
https://arxiv.org/abs/1809.06367 [cs, stat]
https://arxiv.org/abs/1809.06367 [cs, stat]
http://arxiv.org/abs/1809.06367
https://arxiv.org/abs/1910.03561 [cs, stat]
http://arxiv.org/abs/1910.03561
http://arxiv.org/abs/1910.03561
https://arxiv.org/abs/1801.02013 [math-ph, stat]
http://arxiv.org/abs/1801.02013
https://doi.org/10.1093/mnras/staa3165
https://arxiv.org/abs/2006.08561 [astro-ph]
http://arxiv.org/abs/2006.08561
https://doi.org/10.1063/1.5023798
http://aip.scitation.org/doi/10.1063/1.5023798
http://aip.scitation.org/doi/10.1063/1.5023798
https://arxiv.org/abs/1802.03690 [cs, stat]
http://arxiv.org/abs/1802.03690
https://papers.nips.cc/paper/2019/hash/b9cfe8b6042cf759dc4c0cccb27a6737-Abstract.html
https://papers.nips.cc/paper/2019/hash/b9cfe8b6042cf759dc4c0cccb27a6737-Abstract.html

Bibliography

[Coh21] Taco S Cohen. “Equivariant Convolutional Networks”. In: Thesis, Chapter 9. 2021. url: https:
//pure.uva.nl/ws/files/60770359/Thesis.pdf (visited on 07/11/2022).

[Aro21] Jimmy Aronsson. Homogeneous vector bundles and G-equivariant convolutional neural net-
works. Number: arXiv:2105.05400. May 11, 2021. arXiv: 2105.05400[cs, math, stat]. url:
http://arxiv.org/abs/2105.05400 (visited on 07/11/2022).

[CW16] Taco S. Cohen and Max Welling. Steerable CNNs. Number: arXiv:1612.08498 version: 1. Dec. 26,
2016. arXiv: 1612.08498[cs,stat]. url: http://arxiv.org/abs/1612.08498 (visited on
07/11/2022).

[Wei+18] Maurice Weiler et al. “3D Steerable CNNs: Learning Rotationally Equivariant Features in Vol-
umetric Data”. In: Advances in Neural Information Processing Systems. Vol. 31. Curran Asso-
ciates, Inc., 2018. url: https://proceedings.neurips.cc/paper/2018/hash/488e4104520c6aab692863cc1dba45af-
Abstract.html (visited on 07/11/2022).

[WC21] Maurice Weiler and Gabriele Cesa.General $E(2)$-Equivariant Steerable CNNs. Number: arXiv:1911.08251.
Apr. 6, 2021. arXiv: 1911.08251[cs,eess]. url: http://arxiv.org/abs/1911.08251 (visited
on 07/11/2022).

[Bek21] Erik J. Bekkers. B-Spline CNNs on Lie Groups. Number: arXiv:1909.12057. Mar. 22, 2021. arXiv:
1909.12057[cs,stat]. url: http://arxiv.org/abs/1909.12057 (visited on 07/11/2022).

[Fin+20] Marc Finzi et al. Generalizing Convolutional Neural Networks for Equivariance to Lie Groups on
Arbitrary Continuous Data. Number: arXiv:2002.12880. Sept. 24, 2020. arXiv: 2002.12880[cs,
stat]. url: http://arxiv.org/abs/2002.12880 (visited on 07/11/2022).

[Est+18] Carlos Esteves et al. Learning SO(3) Equivariant Representations with Spherical CNNs. Number:
arXiv:1711.06721. Sept. 27, 2018. doi: 10.48550/arXiv.1711.06721. arXiv: 1711.06721[cs].
url: http://arxiv.org/abs/1711.06721 (visited on 07/11/2022).

[Per+19] N. Perraudin et al. “DeepSphere: Efficient spherical convolutional neural network with HEALPix
sampling for cosmological applications”. In: Astronomy and Computing 27 (Apr. 1, 2019), pp. 130–
146. issn: 2213-1337. doi: 10.1016/j.ascom.2019.03.004. url: https://www.sciencedirect.
com/science/article/pii/S2213133718301392 (visited on 07/11/2022).

[KLT18] Risi Kondor, Zhen Lin, and Shubhendu Trivedi. Clebsch-Gordan Nets: a Fully Fourier Space
Spherical Convolutional Neural Network. Number: arXiv:1806.09231. Nov. 10, 2018. arXiv: 1806.
09231[cs,stat]. url: http://arxiv.org/abs/1806.09231 (visited on 07/11/2022).

[Wor+17] Daniel E. Worrall et al. Harmonic Networks: Deep Translation and Rotation Equivariance. Num-
ber: arXiv:1612.04642. Apr. 11, 2017. arXiv: 1612.04642[cs,stat]. url: http://arxiv.org/
abs/1612.04642 (visited on 07/11/2022).

[Tho+18] Nathaniel Thomas et al. Tensor field networks: Rotation- and translation-equivariant neural
networks for 3D point clouds. Number: arXiv:1802.08219. May 18, 2018. arXiv: 1802.08219[cs].
url: http://arxiv.org/abs/1802.08219 (visited on 07/11/2022).

[Kon18] Risi Kondor. N-body Networks: a Covariant Hierarchical Neural Network Architecture for Learn-
ing Atomic Potentials. Number: arXiv:1803.01588. Mar. 5, 2018. arXiv: 1803.01588[cs]. url:
http://arxiv.org/abs/1803.01588 (visited on 07/11/2022).

[Hy+18] Truong Son Hy et al. “Predicting molecular properties with covariant compositional networks”.
In: The Journal of Chemical Physics 148.24 (June 27, 2018). Publisher: AIP Publishing LL-
CAIP Publishing, p. 241745. issn: 0021-9606. doi: 10.1063/1.5024797. url: https://aip.
scitation.org/doi/abs/10.1063/1.5024797 (visited on 07/11/2022).

175

https://pure.uva.nl/ws/files/60770359/Thesis.pdf
https://pure.uva.nl/ws/files/60770359/Thesis.pdf
https://arxiv.org/abs/2105.05400 [cs, math, stat]
http://arxiv.org/abs/2105.05400
https://arxiv.org/abs/1612.08498 [cs, stat]
http://arxiv.org/abs/1612.08498
https://proceedings.neurips.cc/paper/2018/hash/488e4104520c6aab692863cc1dba45af-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/488e4104520c6aab692863cc1dba45af-Abstract.html
https://arxiv.org/abs/1911.08251 [cs, eess]
http://arxiv.org/abs/1911.08251
https://arxiv.org/abs/1909.12057 [cs, stat]
http://arxiv.org/abs/1909.12057
https://arxiv.org/abs/2002.12880 [cs, stat]
https://arxiv.org/abs/2002.12880 [cs, stat]
http://arxiv.org/abs/2002.12880
https://doi.org/10.48550/arXiv.1711.06721
https://arxiv.org/abs/1711.06721 [cs]
http://arxiv.org/abs/1711.06721
https://doi.org/10.1016/j.ascom.2019.03.004
https://www.sciencedirect.com/science/article/pii/S2213133718301392
https://www.sciencedirect.com/science/article/pii/S2213133718301392
https://arxiv.org/abs/1806.09231 [cs, stat]
https://arxiv.org/abs/1806.09231 [cs, stat]
http://arxiv.org/abs/1806.09231
https://arxiv.org/abs/1612.04642 [cs, stat]
http://arxiv.org/abs/1612.04642
http://arxiv.org/abs/1612.04642
https://arxiv.org/abs/1802.08219 [cs]
http://arxiv.org/abs/1802.08219
https://arxiv.org/abs/1803.01588 [cs]
http://arxiv.org/abs/1803.01588
https://doi.org/10.1063/1.5024797
https://aip.scitation.org/doi/abs/10.1063/1.5024797
https://aip.scitation.org/doi/abs/10.1063/1.5024797

BIBLIOGRAPHY

[Mel+19] Simone Melzi et al. “GFrames: Gradient-Based Local Reference Frame for 3D Shape Matching”.
In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach,
CA, USA: IEEE, June 2019, pp. 4624–4633. isbn: 978-1-72813-293-8. doi: 10.1109/CVPR.2019.
00476. url: https://ieeexplore.ieee.org/document/8953995/ (visited on 07/11/2022).

[Mas+18] Jonathan Masci et al. Geodesic convolutional neural networks on Riemannian manifolds. Num-
ber: arXiv:1501.06297. June 8, 2018. arXiv: 1501.06297[cs]. url: http://arxiv.org/abs/
1501.06297 (visited on 07/11/2022).

[PP93] Ulrich Pinkall and Konrad Polthier. “Computing Discrete Minimal Surfaces and Their Conju-
gates”. In: Experimental Mathematics 2.1 (Jan. 1993), pp. 15–36. issn: 1058-6458, 1944-950X.
doi: 10.1080/10586458.1993.10504266. url: http://www.tandfonline.com/doi/abs/10.
1080/10586458.1993.10504266 (visited on 07/11/2022).

[War+08] Max Wardetzky et al. “Discrete Laplace operators: no free lunch”. In: ACM SIGGRAPH ASIA
2008 courses on - SIGGRAPH Asia ’08. ACM SIGGRAPH ASIA 2008 courses. Singapore:
ACM Press, 2008, pp. 1–5. doi: 10.1145/1508044.1508063. url: http://portal.acm.org/
citation.cfm?doid=1508044.1508063 (visited on 07/11/2022).

[Mey+03] Mark Meyer et al. “Discrete Differential-Geometry Operators for Triangulated 2-Manifolds”. In:
Visualization and Mathematics III. Ed. by Hans-Christian Hege and Konrad Polthier. Red. by
Gerald Farin et al. Series Title: Mathematics and Visualization. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2003, pp. 35–57. isbn: 978-3-642-05682-6 978-3-662-05105-4. doi: 10.1007/
978-3-662-05105-4_2. url: http://link.springer.com/10.1007/978-3-662-05105-4_2
(visited on 07/11/2022).

[Mac04] Richard H. MacNeal. “The solution of partial differential equations by means of electrical net-
works”. Medium: PDF Version Number: Final. PhD thesis. California Institute of Technology,
Apr. 29, 2004. doi: 10.7907/PZ04-5290. url: https://resolver.caltech.edu/CaltechETD:
etd-04282004-143609 (visited on 07/12/2022).

[SM13] Aliaksei Sandryhaila and Jose M. F. Moura. Discrete Signal Processing on Graphs: Frequency
Analysis. Number: arXiv:1307.0468. Nov. 18, 2013. arXiv: 1307.0468[cs,math]. url: http:
//arxiv.org/abs/1307.0468 (visited on 07/11/2022).

[Hoo+18] Emiel Hoogeboom et al. HexaConv. Number: arXiv:1803.02108. Mar. 6, 2018. arXiv: 1803.
02108[cs,stat]. url: http://arxiv.org/abs/1803.02108 (visited on 07/11/2022).

[Haa+21] Pim de Haan et al. Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric
graphs. Number: arXiv:2003.05425. Nov. 19, 2021. arXiv: 2003.05425[cs,stat]. url: http:
//arxiv.org/abs/2003.05425 (visited on 07/11/2022).

[Ger+21] Jan E. Gerken et al. Geometric Deep Learning and Equivariant Neural Networks. Number:
arXiv:2105.13926. May 28, 2021. arXiv: 2105 . 13926[hep - th]. url: http : / / arxiv . org /
abs/2105.13926 (visited on 07/11/2022).

[Ros+20] Emanuele Rossi et al. Temporal Graph Networks for Deep Learning on Dynamic Graphs. Number:
arXiv:2006.10637. Oct. 9, 2020. arXiv: 2006.10637[cs,stat]. url: http://arxiv.org/abs/
2006.10637 (visited on 07/12/2022).

[TO18] Corentin Tallec and Yann Ollivier. Can recurrent neural networks warp time? Number: arXiv:1804.11188.
Mar. 23, 2018. arXiv: 1804.11188[cs,stat]. url: http://arxiv.org/abs/1804.11188 (visited
on 07/12/2022).

176

https://doi.org/10.1109/CVPR.2019.00476
https://doi.org/10.1109/CVPR.2019.00476
https://ieeexplore.ieee.org/document/8953995/
https://arxiv.org/abs/1501.06297 [cs]
http://arxiv.org/abs/1501.06297
http://arxiv.org/abs/1501.06297
https://doi.org/10.1080/10586458.1993.10504266
http://www.tandfonline.com/doi/abs/10.1080/10586458.1993.10504266
http://www.tandfonline.com/doi/abs/10.1080/10586458.1993.10504266
https://doi.org/10.1145/1508044.1508063
http://portal.acm.org/citation.cfm?doid=1508044.1508063
http://portal.acm.org/citation.cfm?doid=1508044.1508063
https://doi.org/10.1007/978-3-662-05105-4_2
https://doi.org/10.1007/978-3-662-05105-4_2
http://link.springer.com/10.1007/978-3-662-05105-4_2
https://doi.org/10.7907/PZ04-5290
https://resolver.caltech.edu/CaltechETD:etd-04282004-143609
https://resolver.caltech.edu/CaltechETD:etd-04282004-143609
https://arxiv.org/abs/1307.0468 [cs, math]
http://arxiv.org/abs/1307.0468
http://arxiv.org/abs/1307.0468
https://arxiv.org/abs/1803.02108 [cs, stat]
https://arxiv.org/abs/1803.02108 [cs, stat]
http://arxiv.org/abs/1803.02108
https://arxiv.org/abs/2003.05425 [cs, stat]
http://arxiv.org/abs/2003.05425
http://arxiv.org/abs/2003.05425
https://arxiv.org/abs/2105.13926 [hep-th]
http://arxiv.org/abs/2105.13926
http://arxiv.org/abs/2105.13926
https://arxiv.org/abs/2006.10637 [cs, stat]
http://arxiv.org/abs/2006.10637
http://arxiv.org/abs/2006.10637
https://arxiv.org/abs/1804.11188 [cs, stat]
http://arxiv.org/abs/1804.11188

Bibliography

[Jor97] Michael I. Jordan. “Chapter 25 - Serial Order: A Parallel Distributed Processing Approach”.
In: Advances in Psychology. Ed. by John W. Donahoe and Vivian Packard Dorsel. Vol. 121.
Neural-Network Models of Cognition. North-Holland, Jan. 1, 1997, pp. 471–495. doi: 10.1016/
S0166-4115(97)80111-2. url: https://www.sciencedirect.com/science/article/pii/
S0166411597801112 (visited on 07/12/2022).

[Elm90] Jeffrey L. Elman. “Finding structure in time”. In: Cognitive Science 14.2 (Apr. 1, 1990), pp. 179–
211. issn: 0364-0213. doi: 10.1016/0364-0213(90)90002-E. url: https://www.sciencedirect.
com/science/article/pii/036402139090002E (visited on 07/12/2022).

[Chu+15] Junyoung Chung et al. Gated Feedback Recurrent Neural Networks. June 17, 2015. arXiv: 1502.
02367[cs,stat]. url: http://arxiv.org/abs/1502.02367 (visited on 09/25/2022).

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In: Neural Computation
9.8 (Nov. 1, 1997), pp. 1735–1780. issn: 0899-7667, 1530-888X. doi: 10.1162/neco.1997.9.
8.1735. url: https://direct.mit.edu/neco/article/9/8/1735-1780/6109 (visited on
07/11/2022).

[Cho+14] Kyunghyun Cho et al. On the Properties of Neural Machine Translation: Encoder-Decoder Ap-
proaches. Number: arXiv:1409.1259. Oct. 7, 2014. arXiv: 1409.1259[cs, stat]. url: http:
//arxiv.org/abs/1409.1259 (visited on 07/11/2022).

[Bro20] M. M. Bronstein.What does 2021 hold for Graph ML? 2020. url: https://towardsdatascience.
com/predictions-and-hopes-for-graph-ml-in-2021-6af2121c3e3d (visited on 07/11/2022).

[VB21] Petar Veličković and Charles Blundell. “Neural Algorithmic Reasoning”. In: Patterns 2.7 (July
2021), p. 100273. issn: 26663899. doi: 10 . 1016 / j . patter . 2021 . 100273. arXiv: 2105 .
02761[cs,math,stat]. url: http://arxiv.org/abs/2105.02761 (visited on 07/11/2022).

[Bel+21] Anastasiya Belyaeva et al. “Causal network models of SARS-CoV-2 expression and aging to
identify candidates for drug repurposing”. In: Nature Communications 12.1 (Dec. 2021), p. 1024.
issn: 2041-1723. doi: 10 . 1038 / s41467 - 021 - 21056 - z. url: http : / / www . nature . com /
articles/s41467-021-21056-z (visited on 07/11/2022).

[Bog+21] Marian Boguna et al. “Network Geometry”. In: Nature Reviews Physics 3.2 (Feb. 2021), pp. 114–
135. issn: 2522-5820. doi: 10.1038/s42254-020-00264-4. arXiv: 2001.03241[cond-mat,
physics:physics]. url: http://arxiv.org/abs/2001.03241 (visited on 07/11/2022).

[Cha+21] Ben Chamberlain et al. “GRAND: Graph Neural Diffusion”. In: Proceedings of the 38th Interna-
tional Conference on Machine Learning. International Conference on Machine Learning. ISSN:
2640-3498. PMLR, July 1, 2021, pp. 1407–1418. url: https://proceedings.mlr.press/v139/
chamberlain21a.html (visited on 07/11/2022).

[Ros+22] Emanuele Rossi et al. On the Unreasonable Effectiveness of Feature propagation in Learning on
Graphs with Missing Node Features. Number: arXiv:2111.12128. May 23, 2022. arXiv: 2111.
12128[cs]. url: http://arxiv.org/abs/2111.12128 (visited on 07/11/2022).

[JBJ19] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction Tree Variational Autoencoder for
Molecular Graph Generation. Number: arXiv:1802.04364. Mar. 29, 2019. arXiv: 1802.04364[cs,
stat]. url: http://arxiv.org/abs/1802.04364 (visited on 07/11/2022).

[Cui+21] Alexander Cui et al. LookOut: Diverse Multi-Future Prediction and Planning for Self-Driving.
Number: arXiv:2101.06547. May 7, 2021. arXiv: 2101.06547[cs]. url: http://arxiv.org/
abs/2101.06547 (visited on 07/11/2022).

[Lit+18] Or Litany et al. Deformable Shape Completion with Graph Convolutional Autoencoders. Number:
arXiv:1712.00268. Apr. 3, 2018. arXiv: 1712.00268[cs]. url: http://arxiv.org/abs/1712.
00268 (visited on 07/11/2022).

177

https://doi.org/10.1016/S0166-4115(97)80111-2
https://doi.org/10.1016/S0166-4115(97)80111-2
https://www.sciencedirect.com/science/article/pii/S0166411597801112
https://www.sciencedirect.com/science/article/pii/S0166411597801112
https://doi.org/10.1016/0364-0213(90)90002-E
https://www.sciencedirect.com/science/article/pii/036402139090002E
https://www.sciencedirect.com/science/article/pii/036402139090002E
https://arxiv.org/abs/1502.02367 [cs, stat]
https://arxiv.org/abs/1502.02367 [cs, stat]
http://arxiv.org/abs/1502.02367
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://direct.mit.edu/neco/article/9/8/1735-1780/6109
https://arxiv.org/abs/1409.1259 [cs, stat]
http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1409.1259
https://towardsdatascience.com/predictions-and-hopes-for-graph-ml-in-2021-6af2121c3e3d
https://towardsdatascience.com/predictions-and-hopes-for-graph-ml-in-2021-6af2121c3e3d
https://doi.org/10.1016/j.patter.2021.100273
https://arxiv.org/abs/2105.02761 [cs, math, stat]
https://arxiv.org/abs/2105.02761 [cs, math, stat]
http://arxiv.org/abs/2105.02761
https://doi.org/10.1038/s41467-021-21056-z
http://www.nature.com/articles/s41467-021-21056-z
http://www.nature.com/articles/s41467-021-21056-z
https://doi.org/10.1038/s42254-020-00264-4
https://arxiv.org/abs/2001.03241 [cond-mat, physics:physics]
https://arxiv.org/abs/2001.03241 [cond-mat, physics:physics]
http://arxiv.org/abs/2001.03241
https://proceedings.mlr.press/v139/chamberlain21a.html
https://proceedings.mlr.press/v139/chamberlain21a.html
https://arxiv.org/abs/2111.12128 [cs]
https://arxiv.org/abs/2111.12128 [cs]
http://arxiv.org/abs/2111.12128
https://arxiv.org/abs/1802.04364 [cs, stat]
https://arxiv.org/abs/1802.04364 [cs, stat]
http://arxiv.org/abs/1802.04364
https://arxiv.org/abs/2101.06547 [cs]
http://arxiv.org/abs/2101.06547
http://arxiv.org/abs/2101.06547
https://arxiv.org/abs/1712.00268 [cs]
http://arxiv.org/abs/1712.00268
http://arxiv.org/abs/1712.00268

BIBLIOGRAPHY

[Bah+21] Mehdi Bahri et al. Shape My Face: Registering 3D Face Scans by Surface-to-Surface Translation.
Number: arXiv:2012.09235. Mar. 10, 2021. arXiv: 2012.09235[cs]. url: http://arxiv.org/
abs/2012.09235 (visited on 07/11/2022).

[Kul+20] Dominik Kulon et al. Weakly-Supervised Mesh-Convolutional Hand Reconstruction in the Wild.
Number: arXiv:2004.01946. Apr. 4, 2020. arXiv: 2004.01946[cs]. url: http://arxiv.org/
abs/2004.01946 (visited on 07/11/2022).

[Ser+20] Hadar Serviansky et al. “Set2Graph: Learning Graphs From Sets”. In: Advances in Neural In-
formation Processing Systems. Vol. 33. Curran Associates, Inc., 2020, pp. 22080–22091. url:
https://proceedings.neurips.cc/paper/2020/hash/fb4ab556bc42d6f0ee0f9e24ec4d1af0-
Abstract.html (visited on 07/11/2022).

[Cho+18] Nicholas Choma et al.Graph Neural Networks for IceCube Signal Classification. Number: arXiv:1809.06166.
Sept. 17, 2018. arXiv: 1809.06166[astro-ph,stat]. url: http://arxiv.org/abs/1809.06166
(visited on 07/11/2022).

[Pfa+21] Tobias Pfaff et al. Learning Mesh-Based Simulation with Graph Networks. Number: arXiv:2010.03409.
June 18, 2021. arXiv: 2010.03409[cs]. url: http://arxiv.org/abs/2010.03409 (visited on
07/11/2022).

[Jum+21] John Jumper et al. “Highly accurate protein structure prediction with AlphaFold”. In: Nature
596.7873 (Aug. 2021). Number: 7873 Publisher: Nature Publishing Group, pp. 583–589. issn:
1476-4687. doi: 10.1038/s41586-021-03819-2. url: https://www.nature.com/articles/
s41586-021-03819-2 (visited on 07/11/2022).

[Gai+20] P. Gainza et al. “Deciphering interaction fingerprints from protein molecular surfaces using
geometric deep learning”. In: Nature Methods 17.2 (Feb. 2020). Number: 2 Publisher: Nature
Publishing Group, pp. 184–192. issn: 1548-7105. doi: 10.1038/s41592- 019- 0666- 6. url:
https://www.nature.com/articles/s41592-019-0666-6 (visited on 07/11/2022).

[Sto+20] Jonathan M. Stokes et al. “A Deep Learning Approach to Antibiotic Discovery”. In: Cell 180.4
(Feb. 2020), 688–702.e13. issn: 00928674. doi: 10.1016/j.cell.2020.01.021. url: https:
//linkinghub.elsevier.com/retrieve/pii/S0092867420301021 (visited on 07/11/2022).

[ZAL18] Marinka Zitnik, Monica Agrawal, and Jure Leskovec. “Modeling polypharmacy side effects with
graph convolutional networks”. In: Bioinformatics 34.13 (July 1, 2018), pp. i457–i466. issn: 1367-
4803, 1460-2059. doi: 10.1093/bioinformatics/bty294. arXiv: 1802.00543[cs,q-bio,stat].
url: http://arxiv.org/abs/1802.00543 (visited on 07/11/2022).

[Ves+19] Kirill Veselkov et al. “HyperFoods: Machine intelligent mapping of cancer-beating molecules in
foods”. In: Scientific Reports 9.1 (July 3, 2019). Number: 1 Publisher: Nature Publishing Group,
p. 9237. issn: 2045-2322. doi: 10.1038/s41598-019-45349-y. url: https://www.nature.com/
articles/s41598-019-45349-y (visited on 07/11/2022).

178

https://arxiv.org/abs/2012.09235 [cs]
http://arxiv.org/abs/2012.09235
http://arxiv.org/abs/2012.09235
https://arxiv.org/abs/2004.01946 [cs]
http://arxiv.org/abs/2004.01946
http://arxiv.org/abs/2004.01946
https://proceedings.neurips.cc/paper/2020/hash/fb4ab556bc42d6f0ee0f9e24ec4d1af0-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/fb4ab556bc42d6f0ee0f9e24ec4d1af0-Abstract.html
https://arxiv.org/abs/1809.06166 [astro-ph, stat]
http://arxiv.org/abs/1809.06166
https://arxiv.org/abs/2010.03409 [cs]
http://arxiv.org/abs/2010.03409
https://doi.org/10.1038/s41586-021-03819-2
https://www.nature.com/articles/s41586-021-03819-2
https://www.nature.com/articles/s41586-021-03819-2
https://doi.org/10.1038/s41592-019-0666-6
https://www.nature.com/articles/s41592-019-0666-6
https://doi.org/10.1016/j.cell.2020.01.021
https://linkinghub.elsevier.com/retrieve/pii/S0092867420301021
https://linkinghub.elsevier.com/retrieve/pii/S0092867420301021
https://doi.org/10.1093/bioinformatics/bty294
https://arxiv.org/abs/1802.00543 [cs, q-bio, stat]
http://arxiv.org/abs/1802.00543
https://doi.org/10.1038/s41598-019-45349-y
https://www.nature.com/articles/s41598-019-45349-y
https://www.nature.com/articles/s41598-019-45349-y

	List of Symbols
	Introduction
	Geometry and Symmetry: a long history
	Artificial Intelligence: a recent breakthrough
	Chemistry: a friendly companion
	The meeting point
	Document Structure

	High-Dimensional Learning
	Data and Error Decomposition
	The Curse of Dimensionality

	Geometric Priors
	Domains & Signals
	Symmetries
	Invariance and Equivariance
	Scale Separation
	The Blueprint of Geometric Deep Learning

	Graphs & Sets
	Foundational Bricks
	Sets
	Graphs
	The blueprint on graphs

	Graph Neural Networks (GNNs)
	Maximally Potent GNNs Specifications
	Latent Graph Inference
	GNN Power Assessment through Graph Isomorphism Tests

	Grids
	Translation Group and Fourier Transform
	The Fast Fourier Transform Algorithm
	Limitations

	Wavelet Scattering Representations
	Convolutional Neural Networks

	Groups
	Group Convolution
	A taste of the problem
	Formal approach for tackling it
	Spherical CNNs

	General Theory of Homogeneous Group-CNNs
	Steerable CNNs

	Geodesics & Manifolds
	A primer on Manifolds
	Deformation Invariance
	Manifold Fourier Transform
	Laplacians 101
	Laplacians analog for manifolds

	Discretization

	Gauges
	Why Gauges?
	General Theory of Equivariant CNNs Sketch

	Category Theory
	Sequences & Time-Warping
	Sequential Problem Setup
	Neural Networks & Time Warping

	Applications & Conclusions
	Advancing GDL
	Applications

