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Abstract

In a scenario of tasks and agents that could perform them at a specified cost, the Assignment Problem aims to
find the best pairs that attain an optimal cost. Such a question is very common across industries, especially
with scarcity of resources, and an efficient solution is of paramount importance. It is also theoretically linked
with its unweighted version, commonly referred to as Bipartite Matching, thanks to which the conditions for
a solution can be identified.
First, the problem is presented from a mathematical perspective. In the second chapter, properties from the
graph theory and linear algebra spectrum are proposed, highlighting a meeting point of the two subjects.
Lastly, a solution through the Hungarian Algorithm by Kuhn [1] is analyzed and justified using prior results.
The whole reasoning process is backed by formal justification, with proofs and a clear set of defined objects.
Two additional chapters provide extensions in the direction of different optimization processes and magnitude
of the solutions in the problem space. The former is a generalization of the proposed framework. The latter
is an overview on the number of such feasible solutions in the unweighted case for a quite general type of
graph.
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Chapter 1

Introduction

The best theory is inspired by practice. The
best practice is inspired by theory.

Donald Knuth, 1974 Turing Award

We begin the analysis with a motivating real life example.

Example 1.1 (Resource allocation problem). An employer is looking simultaneously
for a President, a CEO and a COO. Having found 3 potential employees, the aim is
minimizing the total cost. The cost allocation options can be seen through a matrix:

President CEO CFO
George 40 2 45
Paul 1 20 30

Kristine 50 62 3

Table 1.1: Problem representation

A quick look is sufficient to notice that the optimal allocation has cost C = 6 where:

• Paul is hired as President
• George is hired as CEO
• Kristine is hired as CFO

While the above scenario returns an easy configuration, this is not always the case.
In a general setting, this is referred to as the famous balanced assignment problem, or
LSAP1 in some references such as [2]. A characterization is proposed below.

Definition 1.2 (Balanced Assignment Problem P). Given a set of agents A a set of
tasks T such that2 |A | = |T | < ∞ and a cost function C : A × T → Z+ assign one
task per agent and one agent per task such that the total cost is minimized. Namely
find:

π∗ ∈ Π := {self bijections} : π∗ : A → T : π∗ = argminπ∈Π

{∑
a∈A

C(a, π(a))

}
(1.1)

An instance of P is denoted as P .
1Linear Sum Assignment Problem
2Later in the text it will be formally shown why any instance reduces to the equal size case.

1



1.1. A FIRST STRATEGY 2

The interest in studying solving methods for P ∈ P arises from its nature. Indeed, it
falls into the the broader set of combinatorial optimization problems.

Definition 1.3 (Combinatorial Optimization Problem C). A combinatorial optimization

problem is a quadruplet

(
P,Φ, C,M

)
where:

• P is a family of problem instances
• Φ is a function Φ : P → S which returns feasible solutions

– Where, more specifically |S | <∞
• C is a function C : S → Z+ returning the cost of a feasible solution
• M is a function M : S → S either min or max

Where for P ∈ P the task is to find:

C(S∗) = M

[
C(H) | H ∈ Φ(PP )

]
(1.2)

In other words, the objective is to find the feasible solution S∗ of the problem instance
P that attains minimum or maximum cost.
Intuitively, for each combinatorial optimization problem there is a paired Decision
Problem which explores the existance of a feasible solution. The possibility of hav-
ing an instance P with no solutions will be dealt with in the following pages.

Observation 1.4. It is easy to see that P can be represented as in C. We have a cost
function C to minimize in a finite landscape P"="{A ,T } of configurations combined
in a feasible way forming:

S ⊆ (A ×T )n =⇒ |S | < (|A | × |T |)n = n2n <∞

1.1 A first Strategy

While someone might claim that there are easy problems with a representation C or easy
instances, this is not a general rule. For the Assignment problem the aim is to find a
method to solve any P ∈ P.

Fact 1.5 (First Strategy: Enumeration). Not to be considered as a real algorithm. We
take into account just plain enumeration and evaluation of feasible options.

Assuming that the cost evaluation takes time O(1) for simplicity, attemping to assign
the agents a ∈ A to tasks t ∈ T without repetition gives the following recursion:

• For the first agent a1 there are |T | = n choices
• For the second agent a2 there are n− 1 task choices as one was taken
• . . .

• For the nth agent an there is only one choice as all were taken

This reduces to having |S | = n! possible arrangements, which would require as a com-
putational time with respect to size T (n) ∈ O(n!) operations.

Hence, P is a combinatorially exploding in size problem at first sight. While there might
be easy instances, not all of them are straightforward.

The n! result is actually the effect of constraining π to be part of the space of bijections
Π. It can be noticed though that this is not advantageous for enumeration.



1.2. REPRESENTATIONS OF THE ASSIGNMENT PROBLEM 3

Observation 1.6 (Constraints effect on size). Using Stirling’s approximation n! ∼
√
2πn

(
n

e

)n

we also have that the ratio of feasible solutions with respect to the ratio

of the possible solutions is around:

|S |
|(A ×T |)n

=
n!

n2n
≃
√
2πn(ne )

n

n2n
=
√
2πn

1

(en)n
n→∞→ 0 (1.3)

And yet this decrease is not enough to render the set of feasible solutions S tractable.
This means that even by setting rules and strongly restricting the possible configurations,
time efficiency is not guaranteed.

Example 1.7 (An enumeration attempt). A set of n = 30 tasks and agents with a
clear cost function is given. Assume we have at disposal a computer that does 2.59 · 109
operations per second (just to simplify things). Usually, we are around hundreds of
millions per seconds, so consider it to be very powerful.
Let n = 30 tasks, then:

n! = n(n− 1)(n− 2) . . . (n− (n− 2))(n− (n− 1)) =
n∏

i=0

(n− i) = 30! ≈ 2.65 · 1032 (1.4)

This is clearly a large number of possible options to evaluate. Still, someone might say
that a good procedure would be enumerating all of them and evaluating the cost for each.
Assuming that the calculation is done efficiently in negligible time, we would still have
30! enumerations to perform. The time3 required for this strategy is:

30!

2.65 · 109
sec = 1023sec ≡ 31709791983764584 years (1.5)

≈ 3 · 1016 years ≈ 2× 106 stories of the universe (1.6)

Clearly this is not the most efficient way to tackle the problem!

1.2 Representations of the Assignment problem

It is often the case that problems such as that of Definition 1.2 are solved through specific
mathematical representations that give rise to "nice" properties. In this section, the main
ones will be outlined.

Definition 1.8 (Permutation π). A function returning a permutation of indices.

π : {1, . . . , n} → {1, . . . , n}, π ∈ Π

Clearly a permutation is a self bijection and viceversa.

Definition 1.9 (Matrix Form of P). Given P ∈ P, the function π(a) of Definition 1.2
can be interpreted as a permutation. Imagine assigning a number i ∈ {1, . . . , n}∀ai ∈
A and doing the same for elements of T . Clearly, for each item there is a unique
corresponding number. Moreover, the cost function C can be interpreted as a matrix
where Cij = C(ai, tj) ∈ Mn,n. Considering a permutation as in Definition 1.8, where
π : A → T with the elements indexed by integers and

π(ai) = tj : ∀i, j ai ∈ A , tj ∈ T

3Assuming the universe is about 13.8 Billion years old, first google suggestion
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It is possible to build a matrix:

X =

eπ(a1). . .

eπ(an)

 ∈ X ⊆Mn,n (1.7)

Where ei is the elementary unit vector with 1 in the ith entry, and X is the space of
permutation matrices. This space is naively composed of matrices where there are n non
zero entries made of 1s, placed such that there is only one per row and one per column4.
Having this permutation matrix model, problem P can be interpreted as finding the
optimal X ∈ X for the cost matrix C such that the trace of the result is minimized.
Namely, find:

X∗ ∈ X : X∗ = argmin
X∈X

{
trace(XC)

}
(1.8)

Where the trace is used to easily select one element per row and one per column

Definition 1.10 (Integer Programming form of P). From definition 1.9 it is possible to
formulate the problem as a linear 0, 1 programming instance such that:

find X∗ ∈ X : X∗ = argmin
X∈X

{ n∑
i=1

n∑
j=1

Cijxij

}
(1.9)

Where we define X as a permutation matrix such that:

X :=

{
xij = 1 if π(ai) = tj ai ∈ A , tj ∈ T

xij = 0 otherwise
(1.10)

Subject to the constraints: {∑n
i=1 xij = 1∑n
j=1 xij = 1

(1.11)

It is also possible to view P as a graph problem.

Definition 1.11 (Bipartite Graphs B). Assuming G is the space of undirected graphs,
Bipartite Graphs in B present two disjoint sets of vertices that do not have any inner
edge.

B :=

{
B ∈ G | B = {(V ∪W ),E } : ∄e ∈ E e = (v1, v2) e = (w1, w2) v1, v2 ∈ V , w1, w2 ∈ W

}
(1.12)

Definition 1.12 (Complete Bipartite Graphs K n,m). Complete Bipartite graphs are
Bipartite graphs with all the possible edges connecting the two disjoint sets. In standard
notation, n is the size of the first set, and m is the size of the second set.

Kn,m :=

{
K ∈ B | K = {(V ∪W ),E } : ∀v ∈ V , ∀w ∈ W ∃e ∈ E : e = (v, w) |V | = n, |W | = m

}
(1.13)

4Notice that the number of such matrices is |X | = n! as in all the possible configurations of Fact 1.5.
Where | · | means number of distinct and not dimension
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Definition 1.13 (Matching M ). Given G = (V ,E ) ∈ G a matching is a collection of
edges such that all the vertices are reached at most once:

M ⊆ E : ∀v ∈ V ∃!(or less) e ∈M , v ∈ e (1.14)

A vertex v ∈ V is said to be exposed if no edge in M is incident to it.
A matching has maximum cardinality if it contains the maximum possible number of
edges in E . Its size is denoted as ν(G)

A matching is perfect if it assigns an edge to each vertex in V . It is trivially also of
maximum cardinality, and no vertex in G is exposed.

Definition 1.14 (Graph form of P). Given a Bipartite graph B ∈ B where B =

{(A ∪T ), C} find the minimum weight perfect matching.
Following the notation of vertices and edges it is possible to infer that:

• We require B ∈ B (bipartite) as we are interested in assigning agents a ∈ A to
tasks t ∈ T and not within the two.

• We wish to find a matching of maximum cardinality as among the possible connec-
tions from Definition 1.2 we have that a feasible solution of P finds a one to one
agent-task assignment F

• The minimum weight feature is equivalent to minimum cost as C is the set of edges
but also the possible cost pairings.

Definition 1.15 (Neighbors set generator δ(·)). Given a graph G = {V ,E } ∈ G for
each vertex we define its neighbors set generator as:

δ(·) : ∀v ∈ V δ(v) = {ev} : ev = (v, v′) for some v′ ∈ V (1.15)

It is a function that given a vertex returns its neighbors.

Definition 1.16 (Incidence Matrices A). An incidence matrix is a representation of
the connections inside a graph, for each vertex in the rows a 1 is placed whenever it is
connected with another through the corresponding edge in the columns.
Thus, for a graph G = {V ,E } ∈ G the incidence matrix A ∈M|V |,|E | is:

A :=

{
aij = 1 if ej ∈ E : ej = (vi, v), vi, v ∈ V

aij = 0 otherwise
(1.16)

The graph perspective, together with the just introduced objects, allows for a final for-
mulation of the assignment problem.

Definition 1.17 (Graph inspired matrix form of P). For a given Bipartite graph B ∈ B

where B = {(V ∪W ),E } solve the following integer program:
x∗ = argmin

x∈R|E |

{∑
e=(vi,wj)∈E xeCij

}
∑

e∈δ(v) xe = 1∀e
xe ∈ {0, 1}∀e

(1.17)

Where x∗ is a vector with {0, 1} entries and x∗e = 1 ⇐⇒ e ∈M ⊆ E is selected in the
perfect matching. In matrix form, it is possible to recognize the incidence matrix A in
the second constraint: 

x∗ = argmin
x∈R|E |

{
x · c

}
Ax = 1

xe ∈ {0, 1}∀e

(1.18)
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Where c is a cost vector identifying the cost of each edge, and 1 = [1, . . . , 1]T ∈ Rn.
The second constraint ensures that for each vertex only one edge is chosen.
The third constraint ensures that for each edge it is either included or not in the matching
M .

The proposed frameworks can generalize any instance of P, provided that some assump-
tions are made.

Assumption 1.18 (Vertices of the Graph). Throughout the document, to simplify re-
sults the graphs do not present isolated vertices with no incident edges.

Assumption 1.19 (Size of the sets). We will only consider the balanced case, implied
by the condition |A | = |T |. Throughout the document it will be assumed that |A | =
|T | = n

Observation 1.20 (About Assumption 1.19). It is possible the equal size requirement
with the following two arguments:

• If the Cost function is not defined for some pair ∄C(ai, tj) we have a Bipartite
graph but not a complete Bipartite graph. However, we can assign infinite cost to
the missing edges:

C(ai, tj) =∞

• If the number of agents and tasks is different |A | ≠ |T |, take the least one of the
two and adjust the formulation adding infinite costs for any pair involving it. If
for example the set of tasks is bigger, we enlarge agents adding dummy elements a∗

where:
C(a∗, tj) =∞∀tj ∈ T

Thanks to these two adjustments we have that:

B ∈ B ⇝ B ∈ Kn,m ⇝ B ∈ Kn,n

The last form of the problem presents nicer properties, which will be outlined in the
next section. Given that throughout the document it will be assumed that the graph is
bipartitely full a notation assumption on the number of edges is added.

Assumption 1.21 (Number of edges E). Given a complete bipartite graph Kn,n the
number of edges is denoted as E = n2. The result number is obtained with a simple
combinatoric argument.

Example 1.1 can be viewed in the three proposed perspectives.

Example 1.22 (Resource Allocation mathematical forms). The Cost matrix C, common
to all problems, and is built assuming rows are agents and columns are tasks as:

C =

40 2 45

1 20 30

50 62 3


In matrix form from Definition 1.9:

X∗ = argmin
X∈X

{
trace(XC)

}
=⇒ X∗ =

0 1 0

1 0 0

0 0 1


In integer programming form
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X∗ = argmin
X∈X

{ n∑
i=1

n∑
j=1

Cijxij

}
s.t.



∑n
i=1 xij = 1∑n
j=1 xij = 1

xij = 1 if π(ai) = tj ai ∈ A , tj ∈ T

xij = 0 otherwise

=⇒ X∗ =

0 1 0

1 0 0

0 0 1


As a Bipartite Matching Problem, it can be represented as shown in Figure 1.1

Pres CEO CFO

Kristine Paul George

3

1

62

20

30

2

45

40 50

Figure 1.1: Resource Allocation Bipartite Graph

Where the minimum weight matching of maximal cardinality is M ∗, shown in Figure 1.2.
Lastly, in a graph inspired matrix form as in Definition 1.17 we introduce the incidence

Pres CEO CFO

GeorgePaulKristine

3 21

Figure 1.2: Resource Allocation solution

matrix A and the cost vector c. To do so, a reference order is chosen, such as reading
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Table 1.1 in the classical way: left right, up down. Given this convention, the following
objects arise:

A =

G,Pr G,C G,CF P, Pr P,C P,CF K,Pr K,C K,CF



1 1 1 0 0 0 0 0 0 Geo

0 0 0 1 1 1 0 0 0 Pau

0 0 0 0 0 0 1 1 1 Kris

1 0 0 1 0 0 1 0 0 Pres

0 1 0 0 1 0 0 1 0 CEO

0 0 1 0 0 1 0 0 1 CFO

(1.19)

c =



40

2

45

1

20

30

50

62

3


(1.20)

And the optimization problem becomes:
x∗ = argmin

x∈R|E |

{
x · c

}
Ax = 1

xe ∈ {0, 1}

(1.21)

With solution: 

0

1

0

1

0

0

0

0

1


(1.22)



Chapter 2

Properties of P

Perhaps even more than to the interaction
between mankind and nature, graph theory is
based on the interaction of human beings
with each other.

Dénes Kőnig

The advantage of using these three representations is both in terms of visualization of
operations made on an instance of P and to exploit features of the object.

2.1 Linear Algebra and Graph Theory facts

Some questions concerning the problem could be: :

• Ignoring costs, what are the properties of an instance of P with a maximum cardi-
nality matching?

• What are the links between the graph theoretic formulation and the integer pro-
gramming formulation?

• Is there any theoretical framework that can govern such complex problem in a con-
trolled manner?

Given the double nature of P some facts will be outlined from a matrix perspective and
others will be outlined from a graph theoretical perspective.

Definition 2.1 (Doubly Stochastic Matrices X ). Doubly stochastic matrices have non
negative entries and unitary row column sum.

X :=

{
X ∈Mn,n | xij ≥ 0,

∑
i

xij = 1,
∑
j

xij = 1

}
(2.1)

Definition 2.2 (Linear Programming relaxation of P). From definition 2.1 it is possible
to relax the problem as:

find X∗ ∈X : X∗ = argminX∈X

{ n∑
i=1

n∑
j=1

Cijxij

}
(2.2)

9
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Subject to the constraints: 
∑n

i=1 xij = 1∑n
j=1 xij = 1

xij ≥ 0

(2.3)

Similarly the other integer program seen in Definition 1.17 will be relaxed as:
x∗ = argminx∈R|E |

{
x · c

}
Ax ≤ 1

xe ≥ 0∀e

(2.4)

It might seem that this relaxation is useless. However, in the next steps will be clarified
why this is not the case. Introducing inequality constraints, a more formal geometric
framework allows the exploitance of more general results.
As a first step it can be noticed that:

Observation 2.3 (Relaxed solutions dominate Problem solutions). For a given linear
relaxation of P, since the space of possible arrangements includes the original space of
feasible solutions (e.g. X ⊂ X ), the solution of the relaxed form will be such that the
cost is at worst equal to the original optimal.

∀P ∈ P C(S∗
rel) ≤ C(S∗) (2.5)

A very important object in linear optimization is the polytope. Following the approach
outlined in [3] the concept and main properties will be outlined, avoding the common
appropriation of the e to different items in geometry.

Definition 2.4 (Hyperplane Ha,c). A hyperplane Ha,c or simply H in an affine space Rn,
n ∈ N is a "flat object" of dimension n − 1 which is the inner product with an element
a ∈ Rn to which the "intercept" b ∈ R is added.

Ha,c =

{
x ∈ Rn : ⟨x, a⟩+ b = 0

}
(2.6)

Definition 2.5 (Half-spaces of a point H±). Given a hyperplane in an affine space two
half spaces are created, as the object splits it into two. We denote them with signs plus
and minus.

H+
a,c :=

{
x ∈ Rn : ⟨x, a⟩+ c ≥ 0

}
(2.7)

H−
a,c :=

{
x ∈ Rn : ⟨x, a⟩+ c < 0

}
(2.8)

Definition 2.6 (Convex Hull of a Set CS). Given a set S ⊂ Rn its convex hull is the
intersection of all convex supersets of S.

This definition is cumbersome. However, given a finite number of constraints as in our
problem for the case of equation 1.11, a convex hull ends up being the convex combination
of the intersection of specific points.

Theorem 2.7 (Convex Hull of a set is a convex combination). Given a finite dimensional
set S ⊂ Rn its convex hull is made of any element resulting from the convex 1-sum
combination of n points belonging to S

CS =

{ n∑
j=1

λjsj : ∀j λj ≥ 0
n∑

j=1

λj = 1, sj ∈ S

}
(2.9)
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Proof. Denote the convex combination of n points as R. To show equality it suffices to
show that CS ⊇ R and CS ⊆ R.
⊇ Direction.
A convex superset S′ : S′ ⊇ S trivially contains convex combinations of points inside S.
⊆ Direction.
It trivially holds also that R ⊇ S, as it is possible to assign weight λj = 1 for each sj ∈ S

and null weight to the other elements, thus obtaining at least all the elements inside S.
The missing requirement is proving that R is convex indeed. For this purpose two
elements in R are considered:

r(1) =
n∑

j=1

λjrj r(2) =
n∑

j=1

νjrj (2.10)

Then, considering a convex combination of them with coefficient µ ∈ [0, 1], and applying
basic algebra:

r =µr(1) + (1− µ)r(2) by definition (2.11)

=

n∑
j=1

µλjrj + (1− µ)νjrj where coefficients are positive ∀j (2.12)

=
n∑

j=1

[µλj + (1− µ)νj ]rj collecting the coefficients (2.13)

=
n∑

j=1

µjrj in short form (2.14)

Inspecting the sum of the chosen coefficients:

n∑
j=1

µλj + (1− µ)νj = µ
n∑

j=1

λj + (1− µ)
n∑

j=1

νj = µ+ 1− µ = 1 (2.15)

Thus:

r = µr(1) + (1− µ)r(2) =
n∑

j=1

µjrj (2.16)

where
n∑

j=1

µj = 1 (2.17)

=⇒ r ∈ R =⇒ R convex =⇒ R ⊆ CS (2.18)

As a consequence of bidirectional inclusion, the two sets are equivalent.

While this result already reduces the amount of elements to combine from potentially
infinite to a finite number n, it is not yet clear which elements should be taken in consid-
eration to obtain the Convex Hull of a set. The next theorem provides more information
about a potential characterization, which will also be crucial for the development of
further properties.

Definition 2.8 (Polyhedron ZA,b). In this document, we refer to a polyhedron as the
set of solutions to a linear inequality. Given a matrix A ∈Mn,E and a vector b ∈ RE :

ZA,b :=

{
x ∈ RE : Ax ≤ b

}
∈ Z (2.19)

Where Z is the space of polyhedrons, or linearly constrained regions.
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Definition 2.9 (Polytope PA,b). A polytope is a bounded polyhedron.

PA,b ∈ Z : PA,b bounded (2.20)

If such an object arises from the convex hull of a finite set of points s ∈ S ⊂ RE it is
referred to as Convex Polytope.

PS := CS′ (2.21)

Here, it is not clear whether S ≡ S′ or not.

Definition 2.10 (Vertices of a Convex Polytope Ext(PS)). Given a convex polytope of
a set of points , any element belonging to it and not belonging to the convex hull of all
its points but itself is a vertex.

s ∈ S : s ∈ Ext(PS) ⇐⇒ s /∈ PS\{s} (2.22)

Thanks to the next theorem we justify the above definition and characterize a convex
polytope in terms of its vertices inequivocably.

Theorem 2.11 (Points form a Polytope). A convex polytope is the convex hull of its
vertices.

PS ≡ C(Ext(PS)) = CS′ : S′ = Ext(PS) (2.23)

Proof. Consider S, where |S| ≥ n and such that Ext(PS) = {s1, . . . , sn} = S′ ⊆ S are
its vertices. Proving that CS ⊆ CS′ is sufficient for the claim. The proof is carried out
by induction. Base Case: For |S| = n this is trivially verified as the sets coincide.
Induction Hypothesis: assume the size of S is now strictly greater than n. Namely,
|S| > n = |S′|
Conclusion: having that |S| > |S′| then at least one element s∗ is not in S′. By not
being a vertex, it can be expressed as a linear combination of the remaining terms:

s∗ =
∑

si∈S,si ̸=s∗

ξisi :
∑
i

ξi = 1 (2.24)

By theorem 2.7 we then know that any point in the convex polytope x ∈ PS can be
expressed as a linear combination of its members as:

x =
∑

si∈S,si ̸=s∗

λisi + λ∗s∗ (2.25)

=
∑

si∈S,si ̸=s∗

λisi + λ∗
∑

si∈S,si ̸=s∗

ξisi (2.26)

=
∑

si∈S,si ̸=s∗

(λi + λ∗ξi)si (2.27)

Where the sum of the weights is unitary as it is a convex combination. Given that the sum
is of n - 1 elements it means that the size - 1 convex hull is included in the n size convex
hull, this can be done for any size > n, exploiting the fact that:

∑
si∈S,si ̸=s∗(λi+λ∗ξi) =

1

Definition 2.12 (Totally Unimodular Matrices A). Totally unimodular matrices have
each square submatrix with determinant either 0, 1,−1.

A :=

{
A ∈Mn,E | ∀q < n, q < E, det(A[r1, . . . , rq, c1, . . . cq]) ∈ {0, 1,−1}

}
(2.28)

Where by A[. . . , . . .] we denote a square submatrix with some columns and some rows.
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Total unimodularity is the matrix counterpart of bipartite graphs, thus characterizing
disjoint sets when represented as linear maps.

Theorem 2.13 (Total Unimodularity of Bipartite Graphs). The incidence matrix of a
bipartite graph is Totally Unimodular.

B ∈ B : A incidence ⇐⇒ A ∈ A (2.29)

Proof. ( =⇒ direction) Since edges are in the columns, and each edge joins two vertices,
each column has either two ones or all zeros.
By induction on a general graph B ∈ B, consider all its square submatrices A′ of size k.
Base case: for k = 1 the determinant is trivially either 0 or 1.
Induction Hypothesis: Assume it is true ∀A′ : A′ ∈Mk−1,k−1

Conclusion: let A′ ∈ Mk,k be a submatrix of A. Since it is a submatrix, then it must
be the case that for each column j′ there are either all zeros, a single non zero entry, or
two non zero entries. The middle case happens if we select in the rows only one of the
two vertices joined by an edge in the columns. The cases are analyzed below.
If A′ has a column with all zeros (i.e. we are considering an edge that is not incident to
any of the vertices in the rows), then the determinant is zero.

if ∃j′ :
∑
j′

ai′j′ = 0 =⇒ det(A′) = 0 (2.30)

If A′ has a column with one non zero entry at coordinates i′j′, then det(A′) = ±det(A′′)

where A′′ is the submatrix obtained removing row i′ and column j′. By A′′ ∈Mk−1,k−1,
the induction hypothesis holds.

if ∃j′ :
∑
j′

ai′j′ = 1 =⇒ det(A′) = ±det(A′′) : A′′ ∈Mk−1,k−1 =⇒ det(A′) ∈ {0, 1,−1}

(2.31)

Lastly, if A′ has all entries with two ones in the columns, we have a sub bipartite graph
originated from B. Thanks to its properties, we consider a partition of the rows of A′ into
the two disjoint vertex sets. This division guarantees that the two have column sum equal
to one, as any edge joins vertices of the two sets. Remembering that the determinant of
a matrix is zero if and only if the rows are linearly dependent, by summing up all the
rows in one vertex set and subtracting those of the other we get zero, thus det(A′′) = 0.

A′ incidence B′ = {(V ′ ∪W ′),E ′} (2.32)

=⇒ A′ =

[
A′

V ′ | A′
W ′

]
(2.33)

=⇒
∑
i′∈V ′

ai′j′ −
∑
i′∈W ′

ai′j′ = 0 =⇒ det(A′) = 0 (2.34)

( ⇐= direction) Let A ∈ A, suppose A generates a graph G ∈ G. By contradiction
assume that G is not bipartite, i.e. G /∈ B.
G must contain a cycle of odd length1 k. Taking the submatrix A′ of this path indexed
by {v1, . . . vk} × {e1, . . . , ek}, assuming that column transformations lead to the ordered

1Clearly this is the case as there is at least one edge violating the inside disjoint vertex sets assumption
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path from the first to the penultimate vertex, it will be that:

A′ =



1 1 0 . . . . . . 0 0

0 1 1 . . . . . . 0 0

0 0 1 . . . . . . 0 0

· · · · · · · · · . . . · · · · · ·

· · · · · · · · · . . . · · · · · ·
0 0 0 . . . . . . 1 1

1 0 0 . . . . . . 0 1


(2.35)

Intuitively, first and last connect, but also first and second, and so on.
It can be shown that det(A′) = 2 =⇒ A /∈ A, which contradicts the assumption.

The fact that bipartite incidence matrices are Totally Unimodular is of crucial impor-
tance. Indeed, in Definition 1.17 the incidence matrix came up in a formulation of P.
The following Corollary lays the ground for what will be used in the next chapters.

Theorem 2.14 (Solutions are integers). The solution to a feasible linear system Ax = b

where A is Totally Unimodular is such that x is integral.

A ∈ A : det(A) ̸= 0, Ax = b =⇒ x ∈ {0, 1}d (2.36)

Proof. Feasibility is ensured by det(A) ̸= 0 and using Cramer’s rule:

Ax = b ⇐⇒ x = A−1b ⇐⇒ xi =
det(Ai)

det(A)
∀i ∈ {1, . . . , d} (2.37)

Where Ai is used to denote the matrix with the ith column replaced by b.
By A being Totally Unimodular all numerators are either integer or null, and all denom-
inators are integers. The solution is integral.

=⇒ xi ∈ {0, 1}d∀i (2.38)

In the event that the reader wanted to solve the exact problem, Theorem 2.14 guarantees
that a valid candidate would be found. However, in practice, this is not the case as the
exact solution is intractable, while the relaxed solution is tractable. For the purpose of
this task, a famous theorem by Hoffman and Kruskal [4] provides a formal solution, of
which the easier proof by Veinott and Dantzig [5] is proposed. This result is carried out
in two steps, the former is a theorem, which has as a corollary Hoffman and Kruskal’s
result.

Theorem 2.15 (Equivalent Properties of Integer Matrices). If a matrix A is integral2

and has linearly independent rows, then the following are equivalent:

1. The determinant of every basis is either +1 or −1
2. The extreme points of the system {x : Ax = b, x ≥ 0} are integral for all integral

b

3. Every basis has an integral inverse
2meaning that its entries are only integers



2.1. LINEAR ALGEBRA AND GRAPH THEORY FACTS 15

Proof. (1 =⇒ 2) Apply Theorem 2.14
(2 =⇒ 3) Let B be a basis, and y ∈ Nn be such that:

z = y +B−11i ≥ 0 =⇒ Bz = By + 1i = b

Which is integral by assuming point 2. For this reason, being B a basis of the space, z
is itself integral. We then have that:

z− y = B−11i ∈ Nn ∀i

Being that every index i is integral, the matrix B−1 is integral.
(3 =⇒ 1) Let B be an integral basis and B−1 its integral inverse. Then both their
determinants are integral and non zero.

=⇒ det(B) ∈ N det(B−1) ∈ N (2.39)

By basic linear algebra it holds that:

det(B)det(B−1) = 1 =⇒ det(B) = det(B−1) = ±1

Having proved a cycle of implications claims 1, 2 & 3 are equivalent.

Corollary 2.16 (Hoffman and Kruskal’s Theorem). If A is an integral matrix, the fol-
lowing are equivalent:

1. A is totally unimodular, A ∈ A
2. If b is integral the extreme points of {x : Ax ≤ b, x ≥ 0} are integral

b ∈ Nn =⇒ s ∈ Ext

{
ZA,b

⋂
{x ≥ 0}

}
: s ∈ Nn (2.40)

Proof. Let A′ =

[
In | A

]
be so that the identity matrix is stacked with A. Then A′ is

integral and the rows are linearly independent thanks to the addition of I. It is possible
to apply Theorem 2.15 as underlying properties and recreate a cycle.
(1, thm2.15 ⇐⇒ 1) Let A ∈ A be such that every basis has determinant ∈ {±1}. Take
a submatrix of A denoted as Asub of rank n − k and build by permuting the rows the
following basis:

B =

[
Asub 0n−k,n−k

D Ik

]
Then A ∈ A =⇒ det(Asub) ∈ {0,±1} ⇐⇒ det(B) ∈ {0,±1}. Thus condition 1 of
Theorem 2.15 is equivalent to the first condition.
(2 =⇒ 1) Let ZA,b ∩ {x ≥ 0} have integral extreme points. Consider A′, b ∈ Rn and
the polyhedron:

Q = {z|z ≥ 0 A′z = b} (2.41)

It has integer extreme points by Theorem 2.15. Noticing that z =

[
x

x′

]
where x ∈ RE

and x′ ∈ Rn. Thus
b = Ax+ x′ =⇒ x′ = b−Ax (2.42)
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(Subproof of extremeness) Then, x is an extreme point of ZA,b
⋂
{x ≥

0} = {x|x ≥ 0 Ax ≤ b}. Otherwise, by contradiction assume that x =
1
2(v + w) where v, w ∈ ZA,b. Then it holds that:

x′ = b−Ax = b− 1

2
A(v + w) =

1

2
(b−Av) +

1

2
(b−Aw) (2.43)

=⇒ z =

[
x

x′

]
=

1

2

[
b−Av

v

]
+

1

2

[
b−Aw

w

]
(2.44)

=⇒ z /∈ Ext(Q) (2.45)

Reaching a contradiction as z would not be a vertex of Q.

Thus, x is a vertex of {x|x ≥ 0, Ax ≤ b} which by assumption is integer. Then x′ = b−Ax

is integer as well. By Theorem 2.15 the matrix A′ =

[
In | A

]
is totally unimodular, which

implies that A is totally unimodular as well.

2.2 Duality: some equivalent results

It is also useful to introduce a different view on the problem, which arises from its double
face. For this purpose, we introduce the objects that follow.

Definition 2.17 (Cover C ). Given G = (V ,E ) ∈ G, a cover C is a set of vertices such
that each edge has one endpoint included in it.

C ⊆ V : ∀e = (v, w) v ∈ C ∨ w ∈ C (2.46)

In literature and standard notation, its minimum size is denoted as τ(G). A cover of
minimum size is said to be perfect.

Definition 2.18 (Fractional Cover). Given G = {V ,E } ∈ G and a weight function
C : E → Z+ a fractional vertex cover is a function κ(·) where:

κ : V → Z+ (2.47)

∀e ∈ E κ(v) + κ(w) ≤ C(v, w) (2.48)

K(G) =
∑
v∈V

κ(v) is the weight (2.49)

Definition 2.19 (Minimum size maximum fraction Vertex Cover problem D). Given
a graph G = (V ,E ) ∈ G, with cost function C representing vertex weights, find its
minimum size maximum fraction perfect cover. With uniform costs, this is equivalent to
finding the minimum size perfect cover.

It can be shown that finding the minimum vertex cover is NP − complete for a general
graph G ∈ G. For a bipartite graph instead, many equivalent and important results
guarantee its existance and link D with P. The nature of this link arises from duality
theory in linear programming.
Before doing so, we introduce some results from [6], which proposes a nice framework to
deal with this topic. First of all, the easy direction of the inequality that is to be proved
is proposed. Then, the most difficult direction is derived from the famous work of Kőnig
and Egerváry.
This allows to enter the realm of a set of equivalent results which characterize a Bipartite
Graph and its geometry.
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name symbol items requirement best size
matching M edges at most one edge per vertex ν(G)

edge cover M edges at least one edge per vertex ρ(G)

vertex cover C vertices at least one vertex per edge τ(G)

stable set C vertices at most one vertex per edge α(G)

Table 2.1: Edge-Vertex definitions for a graph G

Definition 2.20 (Stable Set C). Given a graph G = {V ,E } ∈ G, a stable set is a subset
of non adjacent vertices:

C ⊆ V : e ⊈ C∀e ∈ E (2.50)

Its maximum size is denoted as α(G)

Lemma 2.21 (Stable sets and vertex covers). Let G = {V ,E } ∈ G then:

C stable ⇐⇒ V \ C vertex cover (2.51)

Proof. ( =⇒ direction) From C stable there are no adjacent vertices in C. Thus, not
all edges are necessarily "touched", and anyway if they are "touched" this happens once.
Taking all those elements that are not in C a cover C will be obtained as all edges will
be "touched" by a vertex in V \ C.
( ⇐= direction) If C is a cover, consider V \ C . This set is a set of vertices that
necessarily does not include "joined" vertices, as in C at least one vertex was selected
for each edge, so in V \ C we have that:

• If two vertices v, w ∈ C : e = (v, w) =⇒ none selected in V \ C

• If one vertex v ∈ C : w /∈ C ∀e ∈ E : e = (v, w) =⇒ w ∈ V \ C , w /∈ V \ C 3

Definition 2.22 (Edge Cover M). Given a graph G = {V ,E } ∈ G an edge cover is a
collection of edges such that for each vertex there is at least one edge containing it.

M⊆ E : ∀v ∈ V ∃e ∈M : v ∈ e (2.52)

Its minimum size is denoted as ρ(G)

For the sake of completeness, Table 2.1 summarizes the features of the objects in Defini-
tions 1.13, 2.17, 2.20, 2.22.

Lemma 2.23 (Easy Cover and Matching inequalities, weak duality). Given a graph
G = {V ,E } ∈ G it holds that:

α(G) ≤ ρ(G) (2.53)

ν(G) ≤ τ(G) (2.54)

Proof. Fix a graph G. For simplicity let E ̸= ∅.
(max stable set vs min edge cover) Consider the maximum size stable set, assume
its size is α(G). This is the maximum number of not adjacent vertices. Clearly then
α(G) < |V | as at least one vertex has to be ignored. Whatever the graph, the max
stable set size indicates the maximum number of vertices not joined by an edge.
Consider a stable set C of maximum size |C| = α(G) = k. Then, α(G) ≤ n as it cannot

3This is not complete as a mathematical explanation as we could have loopy joins of three vertices
in a triangle, but it works nevertheless by reasoning. The vertices NOT in a cover form a stable set.
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contain all vertices. Any edge coverM, having at least one edge per vertex, has at least
|M| = ρ(G) ≥ n elements. Thus ρ(B) ≥ α(G)

(max matching vs min vertex cover) Consider the optimal size matching M such
that ν(G) = |M | = k. Then, the 2k vertices in pairs are distinct, and any cover C must
contain at least one node for each pair. Thus |C | ≥ k = |M |.

Theorem 2.24 (Gallai’s Theorem). Let G = {V ,E } ∈ G then:

α(G) + τ(G) = |V | = ρ(G) + ν(G) (2.55)

Proof. The LHS and |V | are equal by Theorem 2.21.
For the LHS let M : |M | = ν(G). Then, the number of vertices that were not included
is |V | − 2|M |. For each of these, add to M an incident edge e. The final size of the set
is

sizeold + sizenew = |M |+ (|V | − 2|M |) = |V | − |M |

Now the set covers all edges, and it holds that:

ρ(G) ≤ |V | − ν(G)

To prove the opposite direction, consider an edge covering C : |C| = ρ(G). For each
vertex v ∈ V delete delete all but one edges incident to v and inside C, namely those
that satisfy the double condition:

δC(v) :=

{
(v, w) : w ∈ δ(v) ∧ (v, w) ∈ C

}
Until only one edge per vertex is left. Doing so, a matching M is obtained, with size:

|M | =|C| −
∑
v∈V

δC − 1 starting size minus deletion

=|C| −
∑
v∈V

δC(v) +
∑
v∈V

1 where
∑
v∈V

1 = |V |

=|C| −
∑
v∈V

δC(v) + |V | where
∑
v∈V

δC(v) ≤ 2|C|

≥|C| − 2|C|+ |V |
=|V | − |C|

Which eventually proves the opposite direction of the inequality, resulting in:{
ρ(G) ≤ |V | − ν(G)

ν(G) ≥ |V | − ρ(G)
=⇒ ρ(G) + ν(G) = |V | = α(G) + τ(G)

Lemma 2.25 (Relaxed minimization program is integer). Let A ∈ A, b ∈ Rn, c ∈ RE.
Then:

min{yTb|y ≥ 0, yTA ≥ cT } ∈ Zn (2.56)

Proof. It is sufficient to notice that:

A ∈ A ⇐⇒

 −IAT

−AT

 ∈ A (2.57)



2.2. DUALITY: SOME EQUIVALENT RESULTS 19

So that it is possible to rearrange the integer (NOT relaxed) minimization problem as −IAT

−AT

 y ≤

 0

+c
−c

 (2.58)

Using Theorem 2.15 and Corollary 2.16 the optimums of the relaxed formulation are
integers.

Theorem 2.26 (Kőnig Theorem). Given a Bipartite graph B the size of its maximum
matching ν(B) is equal to the size of its minimum cover τ(B).

B = {(V ∪W ),E } ∈ B =⇒ ν(B) = τ(B) (2.59)

Proof. For a short proof it is worth mentioning [7].
From Lemma 2.23 Equation 2.54 one direction was already proved. It suffices to show
that:

B ∈ B =⇒ ν(B) ≥ τ(B) (2.60)

Nevertheless, reasoning in equality terms is slightly easier. In matrix form the equality
translates to:

max{1Tx|x = 0 Ax ≤ 1} = min{yT1|y ≥ 0 yTA ≥ 1} (2.61)

Where the RHS is an expression of the vertex cover problem in its linearly relaxed form.
By Corollary 2.16 and Lemma 2.25 the solutions to these optimization problems are
integers. The constraints also induce them in the {0, 1} space element-wise4.

x∗ ∈ {0, 1}E y∗ ∈ {0, 1}n (2.62)

Considering M = {e|x∗e = 1} ⊆ E it holds that:

1. It is a matching (at most one edge per vertex)

∀v ∈ V ∄e1, e2 ∈ E : v ∈ e1 ∧ v ∈ e2 ∧ e1, e2 ∈M (2.63)

2. It has cardinality equal to the objective function evaluated at the solution, which
is maximal

|M | = 1Tx∗ = ν(G) (2.64)

Considering C = {v|y∗v = 1} ⊆ V it holds that:

1. It is a vertex cover (at least one vertex per edge)

∀e ∈ E ∃v ∈ C : v ∈ e (2.65)

2. It has cardinality equal to the objective function evaluated at the solution, which
is minimal

|C | = y∗T1 = τ(B) (2.66)

In the above numbered lists points 2 guarantee that the values considered are both
optimal , while points 1 imply that the matching has at most one edge per vertex, and
the cover has at least one vertex per edge. This logically implies that:

ν(B) = τ(B) (2.67)

4For the vertex cover, suppose a component is integer but not in {0, 1}. Then, by decreasing it to
1, the two constraints are anyway satisfied and the solution is lower in value, thus it can never happen
that there are values other than {0, 1} for the latter problem.



2.2. DUALITY: SOME EQUIVALENT RESULTS 20

Kőnig’s Theorem is an antecedent of Duality, and is indeed a specific case of this great
result in Polyhedral Combinatorics. Having had lectures on the topic, the reader is
rerouted to another source [6] [8], . What follows is a collection of results specifically
needed for the aims of the document, which presume basic knowledge of duality.

This Theorem relates non weighted versions of the two problems, but is crucial to observe
the easy case. Indeed, further advancements thanks to Jenő Egerváry lead to the more
general statement for weighted instances reported below as a corollary. It is notably
presented in its max match min cover version, but this can be flipped easily to find the
minim cost matching.

Corollary 2.27 (Kőnig-Egerváry theorem, strong duality). Let B = {(V ,W ),E } ∈ B

and consider an edge cost function C : V × V = E → Z+. Then: the maximum weight
of a matching is equivalent to the minimum value of

max{
∑

e∈Mxece

} = min{
∑
v

f(v)} : f ∈ {g : V → Z+ g(u) + g(v) ≥ cuv ∀(u, v) ∈ E }

(2.68)

Proof. Using the linear programming formulation it is possible to obtain Statement 2.69

max{cTx|x ≥ 0 Ax ≤ 1} = min{yT1|y ≥ 0 yTA ≥ c} (2.69)

By the graph being bipartite, Theorem 2.13 ensures that the incidence matrix is totally
unimodular. Then, Corollary 2.16 and Lemma 2.25 ensure that the solutions of such
linear programs are integers. The former is a matching, the latter is a cover, on the same
graph B, represented through the matrix A ∈ A by Theorem 2.13. Thus, by Kőnig’s
Theorem it is possible to assert that ν(B) = τ(B) and this concludes the proof. Namely:


Cor2.16
=⇒

Lem2.25
x ∈ ZE , y ∈ Zn

A ∈ A Thm2.13⇐⇒ B ∈ B
Thm2.26
=⇒ ν(B) = τ(B)

=⇒ max{cTx|Ax ≤ 1} = min{yT1|y ≥ 0, yTA ≥ cT }

(2.70)

Observation 2.28 (On P and D). Using primal-dual transformations, it is clear that
an instance of the assignment problem P is a primal linear program with respect to its
dual vertex cover problem in D ∈ D.

Assumption 2.29 (Duality Notation). The purpose of using P and D was to exactly
match the usual notation.
To align with the usual approach, the primal is a maximization problem, in our case, it
would be nice to minimize the cost instead. For this reason, when showing fundamental
properties, the notation will be kept as in other sources, while when dealing with the
specific minimum cost bipartite matching, the extremals will be flipped. It is known that
up to a polynomially bounded number of operations, the forms are equivalent.
In linear programming form an instance P is expressed through the following optimization
problem:

max{cTx} (2.71)

subject to: (2.72)

(P ) Ax ≤ b where b = 1 x ≥ 0 (2.73)
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In linear programming form an instance D is expressed through the following optimization
problem:

min{bT y} where b = 1 (2.74)

subject to: (2.75)

(D) AT y ≥ c (2.76)

y ≥ 0 (2.77)

For the purpose of proposing a solution to the assignment problems P, an important
concept is complementary slackness.

Theorem 2.30 (Complementary Slackness). Let M be feasible for P ∈ P, and C be
feasible for its dual D ∈ D. The graph is the same B ∈ B. Then:

|M | = ν(B) ∧ |C | = τ(B) ⇐⇒

{
yv = 0 ∨

∑
e∈E Avexe = bv ∀v ∈ {1, . . . , n}

xe = 0 ∨
∑

v∈V AT
evyv = ce ∀e ∈ {1, . . . , E}

(2.78)

Which is equivalent to asserting:

yv(bv −
∑
e∈E

Avexe) = 0 ∀v ∈ V (2.79)

xe(ce −
∑
v∈V

AT
evyv) = 0 ∀e ∈ E (2.80)

Proof. If the primal and the dual program have feasible solutions at M and C this is
equivalent to saying that the following conditions hold altoghether:{

Ax ≤ b x ≥ 0

AT y ≥ c y ≥ 0
(2.81)

By crossing the conditions the requirements can be expressed as:

=⇒

{
x · c = xT c ≤ xTAT y

y · b = yTb ≥ yTAx
(2.82)

Where x ∈ RE , A ∈Mn,E , y ∈ Rn, which implies that:

=⇒ xTAT y = yTAx =⇒ x · c ≤ xTAT y = yTAx ≤ y · b (2.83)

To prove sufficiency and necessity, it is possible to prove a chain of ⇐⇒ statements,
which is as follows:

max{P} = min{D} strong duality holds (2.84)

⇐⇒ x · c = y · b by equality in optimal sizes (2.85)

⇐⇒ xT c = xTAT y = yTAx = yTb by Equation 2.83 (2.86)

⇐⇒

{
x · (AT y − c) = 0

y · (Ax− b) = 0
rearranging (2.87)

Elaborating on the first equality result (the second follows with the same arguments), it
can be added that:

⇐⇒


x · (AT y − c) = 0 ⇐⇒

∑
e

(
xe(
∑

v A
T
evyv − ce)

)
= 0

xe ≥ 0∀e
AT y − c ≥ 0 ⇐⇒

∑
v A

T
evyv − ce ≥ 0

(2.88)
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And by element wise positivity (an implication of the feasibility assumption, third con-
dition in the system), this implies that the equality is zero element wise ∀e, as the es in
the sum cannot cancel each other out by being non negative. Hence:

⇐⇒ yv = 0 ∨
∑
e∈E

Avexe = bv ∀v ∈ {1, . . . , n} (2.89)

Again, the proof for the second result follows by the same arguments on the other two
feasibility conditions.

These results, embedded in the framework of the matching problem, lead to graph specific
interpretations of this duality, as shown in the next arguments.

Definition 2.31 (Saturating Matching in a bipartite graph). Given B = {(V ,W ),E } ∈
B a V -saturating matching is a matching M such that all the all the vertices of V are
covered.

Theorem 2.32 (Hall’s Marriage Theorem). Given B = {(V ,W ),E } ∈ B there is a V

saturating matching if and only if:

|δ(V )| ≥ |V |∀V ⊆ V (2.90)

Where by δ(·) the neighbors of all the elements of the set V are considered.

Proof. There are independent proofs, but one exploiting previous results is proposed.
Assume B has no matching saturating V . By Theorem 2.26 There is a cover C such
that |C | < |V |.
Consider V = V

⋂
C and W = W

⋂
C , the disjoint sets of vertices making the cover. It

trivially holds that:

V
⋃

W = C =⇒ |V |+ |W | = |C | < |V | (2.91)

=⇒ |W | < |V | − |V | = |V \ V | (2.92)

Moreover, by C being a cover, it is also the case that there are no edges between V \ V
and W \W . This is given by the fact that a cover must include at least a vertex per
each edge. Thus, while in general for bipartite graphs it holds that:

|δ(V \ V ) ≤ |W | (2.93)

The condition that there is not saturating matching is updated, resulting in:

|δ(V \ V )| ≤ |W | < |V \ V | (2.94)

By choosing as set V \ V Hall’s condition is not satisfied.

Thanks to this theorem, any instance of the problem P can be solved, once transformed
in its Kn,n form.

Corollary 2.33 (Existance of solutions of P). For any instance of the bipartite matching
problem there is a solution.

∀P ∈ P∃M ∗ optimal (2.95)
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Proof. Consider the formulation of P in graph form as in Definition 1.14, where B de-
notes its bipartite graph representation. Build its complete bipartite graph Kn,n. By
construction it holds that:

|V | = |W | = n (2.96)

|δ(v)| = n∀v ∈ V (2.97)

|δ(w)| = n∀w ∈ W (2.98)

Clearly, any subset of m vertices has more neighbors than elements for each of the two
vertex sets. It holds bidirectionally that there exists a V -saturating matching and a
W -saturating matching, which coincide as all the elements are considered and the size is
n for both.

Observation 2.34 (Φ can be ignored). This last result allows to ignore the Φ feasibility
function of the Combinatorial Optimization Problem formulation of Definition 1.3. In-
deed, any permutation does not need to be checked and is trivially a valid matching, as
long as the permutation is a shuffle of indices of A agents and T tasks.

Going back to Double stochasticity, Polytopes and the equivalence between linear and
integer programming, these last results allow us to strentghten even more the results of
Kőnig’s theorem.

Lemma 2.35 (Doubly stochastic matrices preserved by convex combination). A convex
combination of doubly stochastic matrices is doubly stochastic.

{X(d)}Dd=1 : X
(d) ∈X ⊂Mn,n {λ(d)}Dd=1 : λ

(d) ∈ R∀d,
∑
d

λ(d) = 1 =⇒
D∑

d=1

λ(d)X(d) ∈X

(2.99)
Where the (d) notation is used to avoid confusing between indices of the entries and
elements of the combination.

Proof. By Definition 2.1 the row and column sum for each matrix is unitary, thus:

∀d, i, j
n∑

i=1

X
(d)
ij = 1

n∑
j=1

X
(d)
ij = 1 (2.100)

Moreover, all the elements are positive. Let X∗ =
∑D

d=1 λ
(d)X(d) and inspect its entries

to check if these conditions hold as well. As a first observation, all the entries are positive
by being a sum of positive entries. Secondly, for the rows:

X∗
k· =

n∑
l=1

X∗
kl (2.101)

=

n∑
l=1

( D∑
d=1

λ(d)X(d)

)
kl

(2.102)

=
D∑

d=1

λ(d)

( n∑
l=1

X
(d)
kl

)
as λ(d) ⊥⊥ l, k (2.103)

=

D∑
d=1

λ(d) · 1 by Equation 2.100 (2.104)

= 1 · 1∀k rows by convex combination (2.105)
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The same can be done for the columns, rearranging indices. Thus:

X∗ =
D∑

d=1

λ(d)X(d) ∈X (2.106)

Theorem 2.36 (Birkhoff Von Veumann Theorem). Every doubly stochastic matrix is
expressible as a convex combination of permutation matrices and viceversa a convex com-
bination of permutation matrices is doubly stochastic.
Equivalently, the polytope of permutation matrices is the convex hull of doubly stochastic
matrices.
In matchings, every linearly relaxed solution is expressible as a combination of perfect
matchings, which are then the vertices of the polytope where optimums are attained.

n ∈ N,X ⊂X ⊂Mn,n =⇒ CX = X (2.107)

Proof. ( =⇒ direction) To prove that a convex combination of permutation matrices
is doubly stochastic it suffices to use Lemma 2.35 and the fact that X ⊂ X . Thus, a
convex combination of permutation matrices is a convex combination of doubly stochastic
matrices which is a doubly stochastic matrix.
( ⇐= direction) The difficult direction is showing that the set of doubly stochastic
matrices can be expressed as the convex hull of permutations. Let X ∈ X . X can be
interpreted as a bipartite graph B = {(V ∪ W ),E } with V representing the rows, W

representing the columns and E formed by the nonzero entries of X, with cost(weight)
Xij > 0.
Consider a v ∈ V and its neighbors δ(v) ⊆ W . Similarly δ(w) ⊆ V ∀w ∈ W . Moreover
by X ∈X :

∀w
∑

w∈δ(v)

Xvw =

n∑
j=1

Xij = 1 (2.108)

∀v
∑

v∈δ(w)

Xvw =

n∑
i=1

Xij = 1 (2.109)

=⇒
∑
w∈W

∑
v∈δ(w)

Xvw =
∑
w∈W

1 = |W | (2.110)

=⇒
∑
v∈V

∑
w∈δ(v)

Xvw =
∑
v∈V

1 = |V | (2.111)

Considering instead δ(V ) it holds that V ⊆ δ(δ(V )) and it is possible to assert:

|δ(V )| =
∑

w∈δ(V )

∑
v∈δ(w)

Xvw ≥
∑

w∈δ(V )

∑
v∈V

Xvw = |V | (2.112)

=⇒ |δ(V )| ≥ |V | (2.113)
Thm2.32
=⇒ ∃M ⊆ E : |M | = n for B (2.114)

Where in the last implication Hall’s Theorem was used to state that a perfect matching
can be found.
Considering the incidence matrix of the matching defined as:

Π :

{
Πij = 1 if e = (i, j) ∈M

Πij = 0 otherwise
(2.115)



2.2. DUALITY: SOME EQUIVALENT RESULTS 25

(Subproof Π is a permutation matrix Π ∈ X ) consider i ∈ {1, . . . , n},
a row ri of Π. Since M is perfect then:

∃e ∈M : e = (ri, cj)∀i, for some j (2.116)

=⇒ Πij = 1 (2.117)

By contradiction, suppose there are j, j′ such that Πij = Πij′ = 1, then:

=⇒ (ri, cj) ∈M (ri, cj′) ∈M (2.118)

=⇒ ri has two incident edges (2.119)

=⇒M not valid (2.120)

Thus for each row and column there is only one positive value, which implies
Π ∈ X .

Define λ = min
i,j∈{1,...,n}

{
Xij |Πij ̸= 0

}
. Clearly:

λ > 0 (2.121)

Πij ̸= 0 =⇒ Xij ̸= 0 (2.122)

λ = Xkl for some (k, l) (2.123)

Consider Y = X − λΠ, then:

Y = 0 =⇒ X = λΠ =⇒ λ = 1 =⇒ X = Π =⇒ X ∈ X =⇒ proved (2.124)

else Y ̸= 0 (2.125)

In the first case, the original matrix X is a permutation matrix itself, in the latter case
it is possible to add that:

∀Xij ̸= 0 λΠij ≤ λ ≤ Xij =⇒ Yij ≥ 0∀(i, j) (2.126)

Ykl = Xkl − λΠkl = λ− λ · 1 = 0 (2.127)

X ∈X Π ∈ X (2.128)

Since every row and column of X and Π sums to one then any row or column of Y

sums to 1 − λ. Let X ′ =
1

1− λ
Y , then its rows and columns sum to one and X ′ ∈ X .

Rearranging the elements:

Y = X − λΠ =⇒ X = Y + λΠ = (1− λ)X ′ + λΠ : X ′ ∈X ,Π ∈ X (2.129)

So X is expressed as the convex combination of a doubly stochastic matrix and a per-
mutation matrix. Moreover, the it holds that:

Xij = 0 =⇒ Πij = 0 =⇒ X ′
ij = 0 =⇒ |{(i, j) : X ′

ij = 0}| ≥ |{(i, j) : Xij = 0}|

(2.130)

Xkl > 0 (2.131)

X ′
kl =

1

1− λ
Ykl =

1

1− λ
(Xkl − λΠkl) = 0 (2.132)

Namely, the zeros of the custom doubly stochastic matrix are strictly higher in number
than the original matrix. The same can be done decomposing X ′

ij , obtaining another
permutation matrix and another doubly stochastic matrix, with more null entries. Con-
sidering that the maximum number of null entries is n2, X will eventually be expressed
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as a convex combination of at most n2 permutation matrices, as the last element will
necessarily be a permutation matrix, given that the minimum of only one entry is the
entry itself.
It is eventually possible to confirm that:

CX = X (2.133)

It can be proved ([9] for an incomplete but interesting reference) that Theorems 2.26,
2.27, 2.32 and 2.36 by Kőnig, Kőnig-Egerváry, Hall, and Birkhoff-Von Neumann, are all
equivalent combinatorics statements, as well as some others not included in this document
such as:

• Menger’s Theorem
• Dilworth’s Theorem
• The Max-flow Min-cut Theorem

This last result was actually part of the lectures in the Algorithms’ graduate course
offered at Bocconi University.



Chapter 3

The Hungarian Algorithm

We see the world in terms of our theories.

Thomas Kuhn

The original modern formulation of the Hungarian method was published by Harold Kuhn
in 1955 [1]. It was not until 2016 that it was found that also Jacobi had proposed an
equivalent method[10]. The term Hungarian is a reference to the research contributions
of Kőnig and Egerváry . A nice overview of the history of such method is given in [10].

While Kuhn’s formulation seems to exploit an intuitive observation with seemingly no
formal meaning, all of his contribution can be encapsulated in a the framework of primal-
dual algorithms. To introduce the procedure, the classic a black box formulation of the
algorithm is proposed. Before doing so, the intuition and a couple assumptions are
presented.

If done correctly, decreasing the cost of a row or a column does not contaminate the
optimal arrangement.

Assumption 3.1 (On Observation 2.34). As previously proved in Theorem 2.32, there
is no need to include Φ in instances of P, as well as M which is always min. For this
reason, an instance of the problem will be referred to as:

P =

(
P = {A ,T }, C

)
∈ P (3.1)

Moreover, also the specific form of C, thanks to Observation 1.20 is assumed to be that
of a complete graph, already with modified edges and added vertices. Namely the cost
function C is such that a complete bipartite graph Kn,n is induced, as well as a square
matrix.

C : A ×T → Z+ : |A | = |T | = n (3.2)

Without loss of generality, agents a will be on the rows, and tasks t on the columns.

Remark (What is a line in a matrix?). Given a matrix C by selecting or drawing a line
the operation of highlighting a whole row or column is intended.

Thanks to the above adjustments, the operational formulation of Algorithm 1 is proposed.
In Example 3.2 Algorithm 1 is applied to another instance, as the one proposed in Chapter
1 is algorithmically easy.

27
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Algorithm 1 Black Box Hungarian Algorithm
Input: P = (P, C)

1: row update: for each agent, find the lowest cost task and remove its value from the
whole row

2: column update: for each task, findt the lowest cost agent and remove its value from
the whole column

3: count and draw lines across columns or rows that include the fewest possible zeros.
4: if the number of lines is n then

optimal assignment ← tuples (ai, tj) where one zero per row and per column
return optimal assignment

5: else
find lowest cost entry of the not selected cmin

6: for each not selected row Ci· do
Ci· ← Ci· − cmin

7: end for
8: for each selected n entry Cij do

C·j ← C·j + cmin

9: end for
10: end if
11: Go back to step 4

Example 3.2 (Algorithm 1 in action). Assume that for a problem P ∈ P the cost
matrix is of the form:

C =

108 125 150

150 135 175

122 148 250

 (3.3)

So iterations go as follows:
Step 1

C ⇝

 0 17 42

150 135 175

122 148 250

⇝
 0 17 42

15 0 40

122 148 250

⇝
 0 17 42

15 0 40

0 26 128

 (3.4)

Step 2  0 17 42

15 0 40

0 26 128

⇝
 0 17 42

15 0 40

0 26 128

⇝
 0 17 2

15 0 0

0 26 88

 (3.5)

Step 3  0 17 2

15 0 0

0 26 88

⇝
 0 17 2

15 0 0

0 26 88

 =⇒ two lines (3.6)

Step 4 There are 2 < n lines
Step 5 cmin = 2

Step 6  0 17 2

15 0 0

0 26 88

⇝
−2 15 0

15 0 0

−2 24 86

 (3.7)

Step 8 −2 15 0

15 0 0

−2 24 86

⇝
 0 15 0

17 0 0

0 24 86

 (3.8)
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Back to Step 3  0 15 0

17 0 0

0 24 86

⇝
 0 15 0

17 0 0

0 24 86

 =⇒ three lines (3.9)

Step 4 There are 3 = n lines. 0 15 0

17 0 0

0 24 86

⇝
 0 15 0

17 0 0

0 24 86

⇝ ⋆ = {(a3, t1), (a2, t2), (a1, t3)} (3.10)

At the advantage of not requiring any theoretical knowledge, the impression is that
Algorithm 1 is an inexplicable black box. Yet, tricks always have a reason, and the next
sections will justify convergence, efficiency and where properties are applied with a flow
perspective, following the approach of [11].

3.1 Unravelling the procedure

Definition 3.3 (Symmetric difference operation ∆). Given two sets A, B the symmetric
difference of them returns elements that are in A but not in B or in B but not in A. It
is a logical equivalent to the XOR ⊕ operation.

A∆B := (A \B) ∪ (B \A) = {x : (x ∈ A)⊕ (x ∈ B)} (3.11)

Lemma 3.4 (Properties of ∆). The symmetric difference operation has the following
useful properties:

1. A∆B = B∆A

2. A∆B = (A ∪B) \ (A ∩B)

3. A∆B = (A ∩BC) ∪ (B ∩AC)

Definition 3.5 (Alternating Path or Route RM ). Given a graph G ∈ G and a matching
M ⊆ E an alternating path of vertices is a path that indeed alternates between edges
e ∈M and edges e ∈ V \M .

Definition 3.6 (Augmenting Path or Route). An augmenting path is an alternating
path where the first and the last vertices are exposed, so no edges in M are incident to
the endpoints of the path.

Lemma 3.7 (General properties of an alternating path in a bipartite graph). Given a
bipartite graph B ∈ B, a matching M and an augmenting path RM it holds that:

1. if RM has k edges in M then it has k + 1 edges in V \M

2. the endpoints of RM are on different vertex sets of the bipartite graph
3. The symmetric difference of a matching and its augmenting path is a matching with

+1 size
M∆RM = M ′ where |M ′| = |M |+ 1 (3.12)

Proof. (Claim 1) By induction on k, given a bipartite graph B and a matching M .
Base case: for k = 0 there are no edges in M , an augmenting path must have at least
two vertices (otherwise it is not a path), and contain one vertex from V and one from
W as the edges are present only across the disjoint sets. If there are no edges from the
matching, then a valid augmenting path has only one edge from the unmatched ones,
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joining two vertices which are not incident to any of the edges of M .
Inductive hypothesis: assume it is true for a general k number of edges from M .
Conclusion: Given k+1 edges from M the aim is to show that for a valid augmenting
path there are k + 2 edges not from M . Any augmenting path must start and end with
vertices which are not incident to any edge in M . Fixing the endpoints, for each RM

the last and the first edge will necessarily not come from M . This proves the claim, as
for k + 1 edges, augmenting, there will be exactly k edges not from M augmenting those
k + 1 inside, plus 2 to make the endpoints valid for an augmenting path outside.
(Claim 2) if one endpoint v is in V and by Claim one there are 2k + 1 edges in the
augmenting path, then the number of jumps is odd. Given that the Bipartite graph B

has only edges connecting vertices of V to vertices of W the second endpoints must be
in W .
(Claim 3) Taking the definition of symmetric difference:

M∆RM = (M \ RM ) ∪ (RM \M ) (3.13)

It is worth noticing that the two resulting sets are disjoint. The former contains edges
of the matching which were not selected. The latter contains the edges which are not in
M from the augmenting path.
Without loss of generality, let |M | = L, where k < L edges1 where included in RM .
First from Claim 1 it holds that:

|M ′| = |M \ RM |+ |RM \M | = (L− k) + (k + 1) = L+ 1 > |M | (3.14)

So the size increases. Secondly, consider the union of these two sets is composed of those
edges that were forming a matching and were not included in the path, and those edges
from the path not included in the matching. Clearly they are disjoint. Moreover, if some
edge e was matching a vertex v, and was included in the path, this is not part of the
new set, i.e. e /∈M∆RM , thus the edge is not matched thanks to e. Nevertheless, it is
matched by the adjacent edge e′ ∈ RM which satisfies the augmenting requirement and
is clearly not part of M , namely:

∀v matched by some e ∈M =⇒ ∃e′ ∈ RM , e′ /∈M incident to v =⇒ e′ ∈M ′

(3.15)
Thus, M ′ is a matching.

The importance of such a result is that provided with an augmenting path, it is possible to
improve the size of a given matching. When such an operation is done, it will be denoted
as augmenting M along RM . It also turns out that augmenting paths inequivocably
characterize the validity of a perfect matching, as the Theorem by Berge [12] below
shows.

Theorem 3.8 (Berge’s Theorem). For a bipartite graph B ∈ B a matching M is of
maximum cardinality if and only if there are no augmenting paths with respect to it.

M : |M | = ν(B) ⇐⇒ ∄RM augmenting (3.16)

Proof. ( =⇒ direction) By contradiction assume M is of maximum cardinality but
there is an augmenting path. By Lemma 3.7, there is a matching M ′ = M∆RM which
is of higher cardinality. This contradicts the fact that M itself is of maximum cardinality.
(⇐= direction) By contradiction on ≠⇒ , assume M is not of maximum cardinality,

1The corner case where L = k will be treated separately in Theorem 3.8 below.
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and that there are no alternating paths. Consider M ∗ to be of maximum cardinality.
Let L = M∆M ∗. Then,

|L | = |M \M ∗|+ |M ∗ \M | (3.17)

Where |M ∗ \ M | > |M \M ∗| as |M ∗| > |M | by the optimal being greater in size.
Moreover, the symmetric difference creates alternations of edges of M and M ∗ as in the
proof of Claim 3 of Lemma 3.7. Thus, L is made of paths and cycles that alternate edges
of the two sets. Cycles will have even length, not breaking the advantage in size of M ∗.
Instead, cycles have the peculiarity that there are more elements from the maximum
cardinality matching. Therefore, there is at least one augmenting path, contradicting
the inexistance assumption.

The process of finding subsequent RM can be formalized in by introducing Directed
Graphs and building a custom directed Graph, as follows.

Definition 3.9 (Directed Graphs Q). Directed graphs are objects composed of edges
and vertices where edges join vertices and have a direction. According to some rule, the
direction will be expressed as positivity or negativity of the edge.

Q :=

{
Q = {V ,E } : e ∈ E paired with ±

}
(3.18)

If a weight function is provided, the convention follows the same approach.

Definition 3.10 (Directed Bipartite Graphs Q). A directed bipartite graph is a bipartite
graph with disjoint sets and directed edges. Weighted versions follow the same fashion.

Q ⊆ Q Q :=

{
Q = {(V ,W ),E } : e ∈ E paired with ±

}
(3.19)

For the purpose of finding an augmenting path, a custom directed graph will be exploited.
Given a matching M it is build as follows:

• If the edge is in the matching e ∈M , then it goes from W −→ V

• If the edge is not in the matching e /∈M , then it goes from V −→ W

By convention edges going from V to W are assumed to be positive, while on the opposite
direction they are negative. As in Definition 3.10, weights are set according to positivity
or negativity.

The advantage of using such a tool arises thanks to the Theorem below, which charac-
terizes augmenting paths.

Theorem 3.11 (Augmenting path and directed graphs). Given a graph G ∈ G and a
matching M an augmenting path RM for the matching exists if and only if there is a
directed path going from one exposed vertex in W to another one in V .

Proof. ( =⇒ direction) Consider an augmenting path RM , and the subsets of vertices:

V = V \ VM W = W \WM (3.20)

Where the subscripts indicate the vertices exposed by edges in the matching.
By definition, RM has the endpoints in V and W . Similarly, a directed graph built as
above can start from a vertex in W which is not exposed and end up in another not
exposed vertex in V .
( ⇐= direction) If there is a directed graph going from an exposed vertex w ∈ W to
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an exposed vertex v ∈ V , then there are two edges not in the matching that join the
endpoints of the path to exposed vertices. From these exposed vertices, the matching
edges can be alternated to unmatched edges to form an alternating path.

At the cost of finding augmenting paths, the unweighted assignment problem can be
solved, by just iteratively using the subroutine presented in Algorithm 2

Algorithm 2 Max Cardinality Matching subroutine
Input: P = (P) with equal negligible costs C, and a matching M

Output: |M ′| = |M |+ 1

1: Build Q ∈ Q assigning: {
e+ if e ∈M

e− if e /∈M
(3.21)

2: Find an augmenting path (a directed path) RM between:

V = V \ VM W = W \WM (3.22)

3: M ′ ←M∆RM

4: return M ′

With this procedure, it is possible to find efficiently a matching of maximum cardinality
for an unweighted bipartite graph. The running time for a final solution can be bounded
in terms of the size of the problem, and turns out being polynomial.

Theorem 3.12 (Bipartite Matching computational complexity). Given a bipartite graph
B ∈ B, running iteratively Algorithm 2 as a subroutine is bounded in terms of the size
of the problem as:

T (n) ∈ O(|V ||E |) = O(n3) (3.23)

Proof. Finiteness of the procedure is ensured by the fact that:

• If the matching is not of maximum cardinality, there will always be exposed vertices
from definition 1.13

• If there are exposed vertices, there is an augmenting path from Theorem 3.8
• The increase in size for each iteration is guaranteed to be 1 from Lemma 3.7

For these reasons, the subroutine will be called O(|V |) = O(n) times.
The running time of the subroutine is O(|E |) since to build a directed path it is required
to scan all the edges checking if they belong to M . Having formed the directed graph,
finding an augmenting path takes time O(E ) as well. Moreover, by assumption 1.19 and
1.21 it holds that for any bipartite graph, whether complete or not |E | ≤ n2. Thus:

T (n) ∈ O(|V ||E |) = O(n3) (3.24)

In terms of the mirror dual problem, once no augmenting path is found, it is also possible
to build the minimum vertex cover.

Definition 3.13 (Labeling set LM ). Given a bipartite graph B = {(V ,W ),E } ∈ B

with matching M , build its directed graph Q ∈ Q. A labeling set is the set of vertices
which can be reached with a directed path from an exposed vertex v ∈ V \ VM . By
convention, it is the set of reachable vertices from one side of the graph through paths
in the matching-induced directed graph.
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Theorem 3.14 (Induced minimum size vertex cover). For a bipartite graph B ∈ B, using
the subroutine of Algorithm 2 until convergence returns a matching M . Considering its
linked labeling set LM it holds that:

1. C = (V \ LM ) ∪ (W ∩ LM ) is a cover
2. |C | = |M | Kőnig ’s Theorem

Proof. (Claim 1) By contradiction, let C not be a cover. Then, by definition, there is
less than a vertex per edge. This in turn implies that there is an edge in the vertices not
included in the cover. This set is the complement of the cover denoted as C = (C )C . By
using the definition of set difference A \B := A ∩B it is possible to derive:

C =

(
(V \ LM ) ∪ (W ∩ LM )

)C

(3.25)

=

(
(V ∩ LM ) ∪ (W ∩ LM )

)C

(3.26)

= (V ∩ LM ) ∪ (W ∩ LM ) (3.27)

=⇒ ∃e = (v, w) /∈M : v ∈ (V ∩ LM ) w ∈ (W ∩ LM ) (3.28)

Where statement 3.28 follows from the edge existance (as C is not a cover and there is
an edge in the complementary set), and the fact that the two sets are disjoint. Thus,
in a bipartite graph, there must exist an edge connecting an element from the labelled
subset of V and an element from the unlabelled subset of W which is NOT part of the
matching.

(Subproof: wts e /∈M ) By contradiction, this very last fact is guaranteed
since:

assume e ∈M =⇒ w ∈ LM necessary for v ∈ LM (3.29)

=⇒ contradiction with w ∈ (W ∩ LM ) (3.30)

=⇒ e /∈M (3.31)

Namely, if one can be reached from the directed path, then also should the
other to be part of the matching.

Thus, by construction (see Algorithm 2), Q is such that:

e ∈ (E \M ) =⇒ e+ = (v, w) : v → w (3.32)

Following the notation introduced before. This also implies that w ∈ W can be reached
from the exposed vertex v ∈ V , through the edge e = (v, w), which contradicts the fact
that w ∈ (W ∩ LM ) =⇒ w /∈ LM . Therefore a contradiction is reached.
(Claim 2) It suffices to prove |C | ≤ |M | as the other direction was proved in Lemma
2.23. The same result was also proved in Theorem 2.26 but a different way of proving it
is proposed in [11] and reported below.
Observing the following facts:

• No vertex in W ∩LM is exposed, as otherwise there would be an augmenting path
and no maximum cardinality matching by Theorem 3.8

• By definition of LM , no vertex in V \ LM is exposed
• No edge is found between them as proved in Claim 1 above.
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Therefore, every vertex in C is matched, with distinct edges, thus |C | ≤ |M | resulting
again in the more general result that:

|C | ≤ |M | =⇒ τ(B) = |C | = |M | = ν(B) (3.33)

While this result is of pivotal importance, it is not yet clear how it generalizes to weighted
instances of P.

Recalling Definition 2.18, and Theorem 2.36 a fractional cover can be interpreted as the
counterpart of edge costs in a dual intepretation. From a graph perspective, it is often
referred to as a feasible labeling. By construction, it is clear that for such object and
a perfect matching M it holds that:∑

e∈M

ce =
∑
i,j

cij ≥
∑
i∈V

κ(i) +
∑
j∈W

κ(j) (3.34)

Which is the dual lower bound. If maximized, it would lead to the desired solution,
attained exactly by strong duality. Indeed, considering a linear programming formulation
for an instance P ∈ P as in Definition 2.2:∑

e=(v,w)∈E

cexe =
∑
i,j

cijxij ≥
∑
i∈V

∑
j∈W

(κ(i) + κ(j))xij (3.35)

≥
∑
i∈V

∑
j∈W

κ(i)xij +
∑
i∈V

∑
j∈W

κ(j)xij (3.36)

≥
∑
i∈V

(
κ(i)

∑
j∈W

xij

)
+
∑
j∈W

(
κ(j)

∑
i∈V

xij

)
(3.37)

≥
∑
i∈V

κ(i) +
∑
j∈W

κ(j) (3.38)

Where the last operation can be performed since the constraints of Definition 2.2 make
the xij sum to unity, namely Equation 2.3.

These results can be summarized and extended with the following Theorem.

Theorem 3.15 (Duality, linear and integer programming). Given an instance of P ∈ P,
and its bipartite graph B ∈ B, the decreasingly ordered optimal solutions to the primal
and dual formulation are:

• integer (minimum cost perfect matchings)
• linear (relaxed minimum cost)
• dual (fractional maximal cover).

Namely:

min
M :|M |=ν(B)

{ ∑
e=(i,j)∈M

ce

}
≥ min

xij≥0

{
cijxij

}
≥ max

κ:V or W →Z+

{∑
iV

κ(i)+
∑
j∈W

κ(j)

}
(3.39)

Where the first has integral constraints, xe ∈ {0, 1}∀e, the second uses relaxed constraints
that sum to unity, and the third is the dual representation where κ might map from either
of the two distinct vertex sets to positive integer numbers.

Proof. Though already proved across the document with Theorem 2.36, Equation 3.37
and Observation 2.3. Here, they will be shown in order to orient the reader. Considering
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a solution x∗ ∈ RE to the integer problem of Definition 1.10, a relaxed solution x∗rel ∈ RE

from Definition 2.2 and a dual y∗ ∈ Rn solution of Definition 2.19 we have that the first
represents a valid matching of minimum cost, the second is a solution to the same problem
but relaxed and the third is a solution to the dual problem. Then

Obs 2.3
=⇒ min

M :|M |=ν(B)

{ ∑
e=(i,j)∈M

ce

}
≥ min

xij≥0

{
cijxij

}
(3.40)

Thm 2.36
=⇒

Eqn 3.37
min
xij≥0

{
cijxij

}
≥ max

κ:V or W →Z+

{∑
iV

κ(i) +
∑
j∈W

κ(j)

}
(3.41)

=⇒ min
M :|M |=ν(B)

{ ∑
e=(i,j)∈M

ce

}
≥ min

xij≥0

{
cijxij

}
≥ max

κ:V or W →Z+

{∑
iV

κ(i) +
∑
j∈W

κ(j)

}
(3.42)

In the specific setting of looking for an Algorithm solving weighted instances of P, this
result is crucial. Indeed, provided that a feasible solution to D ∈ D is found, linked to
a perfect matching M would lead to the ≥ signs to become =, a case of complementary
slackness from Theorem 2.30, which using the framework introduced is equivalent to
asserting: 

∑
e∈M ce =

∑
i∈V κ(i) +

∑
j∈W κ(j)

ce = cij ≥ 0

κ(i) ≥ 0

κ(j) ≥ 0

(3.43)

Which by the same element wise positivity arguments implies that:

=⇒ ωij = cij − κ(i)− κ(j) = 0 (3.44)

Whenever a dual solution such that ωij = 0∀(i, j) ∈ M is found, the algorithm can
return with an optimal matching. If this is perfect, iterations to improve the proposed
feasible dual are implemented until the perfect size is reached.

Definition 3.16 (Slack weight function ω(·)). Consider a bipartite graph B ∈ B with
primal P ∈ P and dual D ∈ D both feasible. The slack weight function is a function
checking the complementary slackness condition for a given edge.

ω : E → Z+ ωij = cij − κ(i)− κ(j) ∀e = (i, j) ∈ E (3.45)

Where equivalent notations are ωe = ωij = ω(e) = ω(i, j)

Thanks to the above results, Algorithm 1 can be viewed in terms of easier to understand
graph operations. For any perfect matching found, there will be a dual vertex cover
recovered through a labeling as in Definition 3.13 and guaranteed to be optimal using
Theorem 3.14. Finding an optimal procedure to update feasible dual solutions and reach
a perfect matching is the only missing piece. The next section outlines the order of the
steps, and presents a version in the broader space of primal-dual algorithms.

3.2 Graph Version, Primal-Dual Version

Given the operational nature of the methods, most of the results will be proposed in
plain text.
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The starting point is a dual feasible solution, which counts as a lower bound. It is rather
easy to assert that for a given bipartite graph B ∈ B a trivial feasible solution is:

Dstart =

κ(i) = 0 ∀i ∈ V

κ(j) = min
i∈V
{cij} ∀j ∈ W

(3.46)

Using Theorem 2.30 the Dual, resulting in a cover, is optimal if and only if complementary
slackness conditions hold, i.e. ωij = 0∀(i, j). This is verified where the exact condition
that is wished for the whole graph is verified. Namely given a bipartite graph B ∈ B it
is possible to build a subgraph Bω as follows:

Kω ⊆ B Kω := {(V ∪W ),Eω} where Eω = {e = (i, j) ∈ E : ωij = 0} ⊆ E (3.47)

Through Algorithm 2 a matching M for Kω is recovered. If this matching is not of
maximum cardinality (i.e. |M | = ν(B) = n), then the dual can be updated to get closer
to the primal solution by changing the κ(·) function. Information on how and where to
change is provided thanks to Theorem 3.14.

Considering LM , it holds that:

C = (V \LM )∪ (W ∩LM ) =⇒ ∄e = (i, j) ∈ Eω : i ∈ (V ∩LM ), j ∈ (W \LM ) (3.48)

Since edges not belonging to the cover are necessarily such that ωij > 0 =⇒ xij =

0. For this reason, it is possible to devise a procedure to rebalance the choices of κ

for elements of the two disjoint sets. The minimum weight edge through vertices not
satisfying complementary slackness is:

ω∗ = min
i∈(V ∩LM ) j∈(W \LM )

{ωij} (3.49)

And it is thus possible to move κ(i) away from 0 further and further as:

κ(i)← κ(i) + ω∗ if i ∈ (V ∩ LM ) (3.50)

κ(j)← κ(j)− ω∗ if j ∈ (W ∩ LM ) (3.51)

Assuming that the dual for an iteration is feasible, it is rather straightforward to prove
that such an update is feasible as well. It holds that κ(·) is positive, and the ω∗ updates
change the total cost as:∑
new dual

κ−
∑

old dual

κ =ω∗
(
|V ∩ LM | − |W ∩ LM |

)
weight × added − removed

(3.52)

=ω∗
(
|V ∩ LM |+ |V \ LM | − |V \ LM | − |W ∩ LM |

)
adding and removing

(3.53)

=ω∗
(
|V ∩ LM |+ |V ∩ LM | − |V \ LM | − |W ∩ LM |

)
by def of \

(3.54)

=ω∗(|V | − |C |) by def of LM and C

(3.55)

=ω∗(n− |C |) where |C | < n

(3.56)

Thus, the value of the dual strictly increases for each iteration. To complete the analysis,
it suffices to show that the devised procedure terminates in finite time.
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Theorem 3.17 (Graph Hungarian Finiteness). The graph hungarian version terminates
in finite time.

Proof. Consider a graph B ∈ B with current matching M for a given iteration. If a
vertex v ∈ V is exposed, then no edge in M is incident to it. Thus, there is also a vertex
w ∈ W which is reachable from v, otherwise, the edge joining them would be part of
the matching. Now the cover can be constructed, and ω∗ is necessarily found. This also
implies that an edge between the cover induced sets (3.48, updated as in 3.50) is adjusted
such that ωij = 0 for some e = (i, j) where wij ≡ ω∗. This adds 1 vertex of W to those
reachable from v ∈ V for each iteration. By the finiteness of vertices, the algorithm is
finite, and the algorithm increases the size of M by at least one unit every n iterations.
Thus, the algorithm terminates in finite time.

A preliminary analysis might indicate that the computational complexity of such a pro-
cedure is T (n) ∈ O(n4). In his publication, Kuhn only proved finiteness[1]. Few years
later, Munkres extended previous results asserting that complexity was bounded by a
cube factor of n, through reasonings on elementary matrix operations[13]. While fol-
lowing Munkres’ approach could be instructive in terms of complexity analysis, it relies
mostly on less visualizable considerations.

Instead, in terms of graph operations, it could be argued that:

• in n iterations either
– all of w ∈ W are reachable (update dual condition)
– M increases by 1

– =⇒ O(n2) time in the worst case with 1 increase each n iterations.
• To compute LM it takes O(n2) time as it requires to scan all edges. This happens

for each new M found.

Thus, it could be stated that:
T (n) ∈ O(n4) (3.57)

However, this is not as tight as it can get, as LM updates do not require to scan all
edges again. An update in the matching size is found through an augmenting path
incrementally, which means adding one vertex to the labeling, thus scanning only O(n)

vertices for each update. This ensures that again, as in 3.12 from Algorithm 2 for the
unweighted version, computational time is:

T (n) ∈ O(n3) (3.58)

The adjusted procedure can be broken down into the following nested loops:

• In O(n) outer iterations reach a perfect matching
• for the inner loop either of the two hold:

– matching O(n) to find, O(n) to update
– labeling O(n) to find ω and update dual, at most O(n) times.

• =⇒ O(n2) inner time in the worst case with 1 increase each n iterations.

Lastly, the whole procedure is outlined in Algorithm 3, to store all the steps in one place.

Algorithm 3 can also be viewed from a primal-dual perspective, using the approach of
[14], outlined in Algorithm 4

Example 3.2 can be solved through this procedure.
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Algorithm 3 Graph Hungarian Algorithm Version
Input: Instance P = (P, C) ∈ P

Output: Minimum cost maximum cardinality bipartite matching M

1: Build K ∈ Kn,n from P ▷ If necessary, adjust with Observation 1.20
2: Initialize Dstart ▷ as in Equation 3.46
3: Evaluate wij∀e = (i, j) ∈ E ▷ Complementary slackness, definition 3.16
4: Build the subgraph Kω ▷ as in Equation 3.47
5: M ← max cardinality matching of Kω ▷ Using subroutine Algorithm 2
6: if |M | == n then ▷ Perfect matching found
7: return M

8: end if
9: Build LM

10: Recover C ← (V \ LM ) ∪ (W ∩ LM ) ▷ induced cover, Equation 3.48
11: Find ω∗ ← min

i∈(V ∩LM ) j∈(W \LM )
{ωij} ▷ minimum weight, Equation 3.49

12: Update

κ(i)← κ(i) + ω∗ ∀ i ∈ (V ∩ LM )

κ(j)← κ(j)− ω∗ ∀ j ∈ (W ∩ LM )

▷ update rules, Equations 3.52, 3.53
13: Go back to Step 3

Algorithm 4 Primal - Dual Hungarian Algorithm Version
Input: Instance P = (P, C) ∈ P

Output: Minimum cost maximum cardinality bipartite matching M

Build K ∈ Kn,n from P

Dual initialization of κ ▷ Step 2

Primal initialization of x ▷ Steps 3, 4, 5

while x infeasible do ▷ Step 6 not verified
let RM ← ∅ ▷ here M is used for consistency, but this is x

build LM

while RM == ∅ do
while RM == ∅ ∧ LM ̸= ∅ do

Update labels ▷ Steps 9, 10

end while
if RM == ∅ then

Dual iteration ▷ Steps 11, 12

end if
end while
Primal iteration ▷ Steps 3, 4, 5

end while
return x
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Example 3.18 (Algorithm 3 in action). Assume that the cost function is:

C =

108 125 150

150 135 175

122 148 250

 (3.59)

It is possible to build the bipartite graph of Figure 3.1, where A ≡ V = {α, β, γ}, and
T ≡ W = {A,B,C}.

A B C

α β γ

108

150

125

135

175

148

250

122 150

Figure 3.1: Bipartite graph

The dual is initialized as 
κ(i) = 0 i = α, β, γ

κ(A) = 108

κ(B) = 125

κ(C) = 150

(3.60)

We evaluate ωij for all edges to check complementary slackness and find that it is null
for e ∈ {(α,A), (α,B), (α,C)}. Indeed, considering agents in the rows and tasks in the
columns Tables 3.1, 3.2 are obtained.

108 125 150
0 108 125 150
0 150 135 175
0 122 148 250

Table 3.1: Complementary slackness, T = 1

108 125 150
0 0 0 0
0 42 10 25
0 14 23 100

Table 3.2: Complementary slackness weights T = 1

The subgraph Kω is found on Figure 3.2.

A maximum cardinality matching M = {(α,C)} is of size |M | = 1 < n = 3. It is found
using the subroutine of Algorithm 2 and is that of Figure 3.3:
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A B C

α β γ

108

125

150

Figure 3.2: Subgraph T = 1

A B C

α β γ

150

Figure 3.3: Max card T = 1

Then, its directed path is created in Figure 3.4

A B C

α β γ

108

150
125

135

175
148

250

122

150

Figure 3.4: Directed graph T = 1

For this iteration, exposed vertices in V are {β, γ}. In W the exposed vertices are {A,B}.
Using definition 3.13, the vertices reachable from exposed vertices in Q are

LM = {β, γ} (3.61)

A cover is built as previously explained as:

C = (V \ LM ) ∪ (W ∩ LM ) = {α} ∪ ∅ = {α} (3.62)

The minimum weight is:

ω∗ ← min
i∈(V ∩LM ) j∈(W \LM )

{ωij} = min
i∈{β,γ},j∈{A,B,C}

{ωij} = 10 (3.63)
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And the dual functions get updated as:

κ(α) = 0

κ(β) = 10

κ(γ) = 10

κ(A) = 108

κ(B) = 125

κ(C) = 150

(3.64)

Going back to evaluating complementary slackness, Tables 3.3 and 3.4 return the new
conditions:

108 125 150
0 108 125 150
10 150 135 175
10 122 148 250

Table 3.3: Complementary slackness T = 2

108 125 150
0 0 0 0
10 32 0 15
10 4 13 90

Table 3.4: Complementary slackness weights T = 2

And we go on, iterating, until the optimal matching of size n = 3 is found.

The subgraph Kω is found on Figure 3.5.

A B C

α β γ

135108

125

150

Figure 3.5: Subgraph T = 2

A maximum cardinality matching M = {(α,C), (β,B)} is of size |M | = 2 < n = 3. It
is found using the subroutine of Algorithm 2 and is that of Figure 3.6:

A B C

α β γ

150
135

Figure 3.6: Max card T = 2
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A B C

α β γ

108

150
125

135

175
148

250

122

150

Figure 3.7: Directed graph T = 2

Then, its directed path is created in Figure 3.7

Using definition 3.13, the vertices reachable from exposed vertices in Q are

LM = {β, γ,B} (3.65)

A cover is built as previously explained as:

C = (V \ LM ) ∪ (W ∩ LM ) = {α} ∪ {B} = {α,B} (3.66)

The minimum weight is:

ω∗ ← min
i∈(V ∩LM ) j∈(W \LM )

{ωij} = min
i∈{α,γ},j∈{A,C,}

{ωij} = 4 (3.67)

And the dual functions get updated as:

κ(α) = 0

κ(β) = 14

κ(γ) = 14

κ(A) = 108

κ(B) = 121

κ(C) = 150

(3.68)

Going back to evaluating complementary slackness, Table 3.5 returns the new conditions:

108 121 150
0 108 125 150
14 150 135 175
14 122 148 250

Table 3.5: Complementary slackness T = 3

108 121 150
0 0 4 0
14 28 0 11
14 0 13 86

Table 3.6: Complementary slackness weights T = 3

Going back to step 3, it now holds that there is an optimal matching in Kω, shown on
Figure 3.8.
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A B C

α β γ

135108

125

150

122

Figure 3.8: Subgraph T = 3

A maximum cardinality matching M = {(α,C), (β,B), (γ,A)} is of size |M | = 3 = n.
It is found using the subroutine of Algorithm 2 and is that of Figure 3.9. The procedure
has identified an optimal solution.

A B C

α β γ

150
135

122

Figure 3.9: Max card T = 3, Solution

Building up on relaxations of an integer problem with integral optimality results, a flow
fashioned approach guarantees an efficient solution for fairly general problems.

The importance of such method is provided by the omnipresence of the assignment
problem in the industrial sector, where scarcity of resources is a constant threat.

The formulation of Definition 1.2 has been largely studied in other settings and contexts.
In section 4.1 a generalization is proposed, following the approach of [15]. In section 4.2
the problem of counting the number of matchings in a general graph is considered. The
latter is mostly inspired by the work of Moore and some lecture notes by Goemans[16],
[17].





Chapter 4

Extensions

4.1 Generalizations of P

The unique end of science is the honor of the
human mind.

Carl Gustav Jacob Jacobi

Without going much into the detail, some elements from group theory will be introduced,
to later present important statements.

Definition 4.1 (Total order ⪯). A total order is an order (binary) relation ⪯ on a set
C satisfying ∀a, b, c ∈ H :

• Reflexivity
a ⪯ a (4.1)

• transitivity
a ⪯ b, b ⪯ c =⇒ a ⪯ c (4.2)

• antisymmetry
a ⪯ b, b ⪯ a =⇒ a = b (4.3)

• totality
a ⪯ b ∨ b ⪯ a (4.4)

Definition 4.2 (Totally ordered commutative semigroup S). A totally ordered com-
mutative semigroup is an algebraic structure (H,⊛) consisting of a set and a binary
operation (a semigroup) endowed with a total order ⪯.

S := (H,⊛,⪯) (4.5)

Assumption 4.3 (S is a d-monoid). It is further added that S must be such that
∀a, b, c ∈ H:

• binary operation does not impact order

a ⪯ b =⇒ a⊛ c ⪯ b⊛ c (4.6)

• there is a gap-filling element

a ⪯ b =⇒ ∃c : a⊛ c = b (4.7)

A semigroup with this axiomatic requirements is sometimes called a d-monoid [15].

45
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Definition 4.4 (Generalized Assignment Problem Pgen). Given a cost function C two
sets, a totally ordered commutative semigroup S fullfilling Assumption 4.3, a feasible set
S ⊂P = (A ×T )n as in Definition 1.3, find the minimum cost feasible solution.
Equivalently in permutation terms:

π∗ = argmin
π∈Π

{
C(π)

}
C(π) =

n

⊛
i=1

Cπ(i) = Cπ(1) ⊛ Cπ(2) ⊛ . . .⊛ Cπ(n) (4.8)

Which in matching terms1 given M = {e1, . . . en} has cost:

C(M ) = Ce1 ⊛ Ce2 ⊛ . . .⊛ Cen (4.9)

Both will be used equivalently, as in the end they are the same.

Example 4.5 (d-monoids). The easiest cases are:

• H = R,⊛ = + and usual order leads a sum assignment problem of finding the
extremals of an objective function

• H = R,⊛ = max{} and usual order leads to bottleneck assignment problems,
aiming to minimize the latest completion time of agents-tasks assignment.

minπ∈Π

{
maxi∈{1,...,n}{Ci,π(i)}

}
(4.10)

The importance of such an approach is encapsulated in the extension of the intuition
behind the hungarian algorithm. The idea is to transform the cost matrix through steps
that guarantee that the optimal solution will be found.

Definition 4.6 (Admissible transformation ζ, ζ(T )). An admissible transformation is an
operation on the costs that does not impact the relative ordering of feasible solution in
S .
A transformation T of the cost C into a new cost C is admissible with index ζ(T ) if:

C(M ) = ζ(T )⊛ C(M ) ∀M ∈ S (4.11)

Where a composition of transformations T, S satisfies the trivial identity:

C(M ) = ζ(S)⊛ ζ(T )⊛ C(M ) ∀M ∈ S (4.12)

Lemma 4.7 (Admissible transformations and optimality). Let T be admissible with index
ζ(T ), and such that there exists a feasible solution M ∗ satisfying:

1. C(M )⊛ ζ(T ) ⪯ ζ(T ) ∀M ∈ S

2. C(M ∗)⊛ ζ(T ) = ζ(T )

Then M ∗ is an optimal solution to the problem:

min
M

{
⊛
e∈M

Ce

}
(4.13)

With value ζ(T )

Proof. Let M ∈ S be arbitrarily feasible. Using the feasible transformation and the
above stated properties:

C(M ) = ζ(T )⊛ C(M ) By Definition 4.6 (4.14)

⪰ ζ(T ) by property 1 (4.15)

= ζ(T )⊛ C(M ∗) by property 2 (4.16)

= C(M ∗) cancelling out ζ(T ) (4.17)

=⇒ C(M ∗) = ζ(T ) optimal (4.18)
1The notation for a matching is used to avoid confusion, but is to be counted as a feasible solution

M ∈ S
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If such a solution does not exist, then it is possible to perform admissible transformations
to get closer and closer to an optimal solution, while keeping the cost valid. This is
a generalization of the dual update of Chapter 3: once a feasible solution does not
satisfy the optimality requirement, it is transformed as to get closer to the boundary.
The following theorem generalizes in a broader sense the update equations approach
of Equations 3.52 and 3.53, used in Algorithm 3. An easier case proof for the linear
assignment is reported in [15], and then stated as a proposition for the general setting.
Below the universal case is prosed.

Theorem 4.8 (Admissible transformations for linear assignment problems with general
objective). Express Pgen as a permutation search. Let I, J ⊆ {1, . . . , n}, such that m =

|I|+ |J | − n ≥ 0 and let:
c∗ = min{Cij |i ∈ I, j ∈ J} (4.19)

Then, the transformation T defined as:

Cij ⊛ c∗ = Cij i ∈ I, j ∈ J (4.20)

Cij =

{
Cij ⊛ c∗ i /∈ I, j /∈ J

Cij otherwise
(4.21)

Is admissible with ζ(T ) = (c)⊛m, which is c star operated by itself m times.

Proof. Let π ∈ Π be a permutation of {1, . . . , n}. Moreover define:

• n0 as the number of (i, π(i)) pairs where i ∈ I, π(i) ∈ J

• n1 as the number of (i, π(i)) pairs where (i ∈ I, π(i) /∈ J) ∧ (i /∈ I, π(i) /∈ J)

• n2 as the number of (i, π(i)) pairs where i /∈ I, π(i) /∈ J

It is clear that n0 + n1 + n2 = n. Moreover:

|I|+ |J | − n = 2n0 + n1 − n (4.22)

= 2n0 + n1 − n0 − n1 − n2 (4.23)

= n0 − n2 (4.24)

= m (4.25)

Where equality between Equations 4.22, 4.25 (assumed) and 4.24 will be used.
Considering Equation 4.25, being independent of the choice of π, it holds ∀π ∈ Π [15].
Let C[i ∈ I] :=⊛i∈I Ci,π(i). Then from Equation 4.20:

C(π) = C[i ∈ I] + C[i /∈ I] I ⊆ {1, . . . , n} is contained in all the indices
(4.26)

= n0 ⋄ c∗ ⊛ C[i ∈ I]⊛ C[i /∈ I] where ⋄ is the ⊛ multiplication (4.27)

While from Equation 4.21:

n2 ⋄ c∗ ⊛ C[i /∈ I] = C[i /∈ I] =⇒ C[i /∈ I] = C[i /∈ I] = C[i /∈ I]⊛ (−n2 ⋄ c∗) (4.28)

Thus for an arbitrary permutation π ∈ Π it holds that:

C(π) = n0 ⋄ c∗ ⊛ C[i ∈ I]⊛ C[i /∈ I]⊛ (−n2 ⋄ c∗) (4.29)

= (n0 − n2) ⋄ c∗ ⊛ C(π) (4.30)

= m ⋄ c∗ ⊛ C(π) (4.31)

= (c∗)⊛m ⊛ C(π) (4.32)
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Which implies that:

C(π) = ζ(T )⊛ C(π) : ζ(T ) = (c)⊛m ∀π ∈ Π (4.33)

Drawing from [2], a simplified procedure with these results in hand is outlined in Algo-
rithm 5.

Algorithm 5 Generalized Assignment through admissible transformations
Input: P ∈ Pgen as in Definition 4.4
Output: minimum objective function assignment
1: Perform admissible transformations in Steps 2-5: ▷ Dual initialization
2: for i ∈ {1, . . . , n} do ▷ row reductions

let I = {i}, J = {1, . . . , n}, ζ = ζ(T ) the index
update ζ = ζ ⊛ ζ(T ) ▷ Now ∀jCij ⊛ ζ ⪰ ζ

3: end for
4: for j ∈ {1, . . . , n} do ▷ column reductions

let J = {j}, I = {1, . . . , n}, ζ = ζ(T ) the index
update ζ = ζ ⊛ ζ(T ) ▷ Now ∃i : ζ ⊛ Cij = ζ

5: end for ▷ Now ∀ row, col ∃ζ ⊛ Cij = ζ generalized zero element
6: Build the subgraph Bω ▷ made of generalized zero elements
7: Determine a maximum matching M in Bω ▷ as before in the optimal edges only
8: if |M | == n then

return M optimal, ζ optimal cost
9: end if

10: determine the cover C rebuilding I, J as the uncovered rows and columns
11: ζ(T )← admissible transformation on I, J ▷ using Lemma 4.7
12: update ζ = ζ ⊛ ζ(T ) ▷ Dual update
13: Go back to Step 6

A couple remarks on Algorithm 5:

• The dual construction is slightly different, and more similar to finding the minimum
for each row or column and subtracting it from the whole row or column. This dual
initialization is suggested in many online resources. It is rather straightforward to
prove for instances of P.

• Generalized zero elements are the zeros in the tables of previous examples, obtained
by enforcing feasible transformations that find the minimum weight element and
subtract its value.

• The subgraph matching-finding and cover-finding steps are generalized equivalents
of the previous processes, as they are unweighted

• The admissible transformation is found again using Lemma 4.7 on Step 12

Observation 4.9 (On the number of admissible transformations). The times ζ(T ) is
applied to find an optimal solution to the algebraic assignment problem are bounded by
n2 − 2n− 3, as by [2].

In [2],[18] it is also claimed that, adding a weak cancellation rule of the form:

a⊛ c = b⊛ c =⇒
(
a = b

)
∨
(
a⊛ c = b

)
(4.34)

The complexity of such procedure is potentially improved to:

T (n) ∈ O(n3) (4.35)



4.2. COUNTING HARDNESS 49

4.2 Counting Hardness

As for everything else, so for a mathematical
theory: beauty can be perceived but not
explained.

Arthur Cayley

Motivated by the interesting question of counting the number of perfect matchings for a
graph B ∈ B, what follows is the result of a study on Chapters 13-14 of [17], enlarged by
some lecture notes [16], which propose a framework for both bipartite graphs and general
graphs with specific properties.

Definition 4.10 (Symmetric Group Sn). Given a set {1, . . . , n} and an operation ◦ of
function composition, a symmetric group is the set of all bijections of the set {1, . . . , n}.

Sn :=

{
π : {1, . . . , n} → {1, . . . , n}, ◦

}
(4.36)

Definition 4.11 (Permanent per(·)). Given a matrix R, its permanent is defined as:

per(R) :=
∑
π∈Sn

n∏
i=1

Ri,π(i) (4.37)

The permanent is a cousin of the determinant, which looks similar but has different
properties and meaning. Below an example shows how to calculate it for square 2 × 2

matrices.

Example 4.12 (Permanent of 2× 2 matrix). Given a matrix R =

[
r11 r12
r21 r22

]
∈M2,2 we

have trivially n = 2, thus the group is composed of permutations of the set {1, 2} giving:

S2 =

{
{1, 2}, {2, 1}, ◦

}
Where there are two permutations π1, π2. The first is the identity, the second just inverts
the the numbers π2(1) = 2, π2(2) = 1. The indices are i = 1, i = 2, this means that:

per(R) = (r11 · r22) + (r12 · r21)

Which looks like a 2× 2 determinant ignoring the sign in the second term.

Valiant [19] proposed a characterization of counting problems into a new complexity
class.

Definition 4.13 (#P complexity class). #P comprises all counting problems with a
polynomial time output verifier. Any problem asking the number of solutions of a specific
instance can be included in this class.

Assumption 4.14 (Counting problems notation). For a counting problem of evaluating
the number of optimal (max or min size solutions) the notation will be:

#problem

Example 4.15 (A problem in #P ). Counting the number of permutations of a set
{1, . . . , n} which start with number n is a #P problem. The question indeed is finding
how many satisfactory solutions exist given an instance (a set in this case).
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Following the classic computational complexity framework, also #P -complete and #P -
hard classes can be considered. Indeed, the first problem added to the #P -complete

class is that of computing the permanent of a {0, 1} matrix.

Theorem 4.16 (Valiant Theorem). Given a {0, 1} matrix R computing its permanent
is #P -complete.

Sketch from [17]. It can be argued that:

#3-SAT ≤ permanent ≤ positive permanent ≤ 0-1 permanent (4.38)

The above result is crucial to understand the underlying complexity of such problem.
Using an adjacency matrix, it is possible to represent available connections in any instance
of G. Having this intuitive result in mind, one could conclude that computing the
permanent of a graph G is somewhat expensive computationally. However, there is more
to this, as the permanent of a graph is exactly the number of perfect matchings in a
graph G ∈ G.

Theorem 4.17 (Number of perfect matchings and permanent). Given a bipartite graph
B ∈ B with equal weights, there exists a {0, 1} matrix R such that its permanent is equal
to the number of perfect matchings of B. Namely:

=⇒ ∃R ∈Mn,n[0, 1] : |{M1 . . . , }| = per(R) : ∀M |M | = ν(B) (4.39)

Proof. Define R as:

R :=

{
Rij = 1 if ∃e = (vi, wj) ∈ E

Rij = 0 otherwise
(4.40)

R is the square root of an adjacency matrix2 A, as by the graph being bipartite it holds
that:

A =

[
0n,n R

RT 0n,n

]
∈M2n,2n R ∈Mn,n (4.41)

For a matching Mq we have that it consists of a permutation πq where vi is matched to
wj . Thus πq ∈ Sn is a permutation where in per(R) the term is:

n∏
i=1

Ri,πq(i) = 1 (4.42)

On the other side of the equivalence, considering the set of permutations πq ∈ Sn such
that

∏n
i=1Ri,πq(i) = 1, each of them corresponds to a unique perfect matching identified

by πq.
Since R is a {0, 1} matrix, each term in the sum of all π ∈ Sn is:

• 0 if ∃vi ∈ V : π(i) = j where ∄e = (vi, wj) ∈ E

• 1 otherwise as it is a valid perfect matching with all existing edges.

Thus each term in the outer sum is either 0 or 1 and when it is one it corresponds
uniquely to a perfect matching.

2This is NOT the totally unimodular matrix. To avoid sloppy notation the A symbol is used again.
The topics do not relate in this report.
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Corollary 4.18 (Number of solutions and permanent with weights). Given a bipartite
graph B ∈ B with weighted edges, assuming the weight of a matching M is the product
of the weights of its edges and is denoted as C(M ), the permanent is the sum of the
weights of all perfect matchings.

if C(M ) =
∏

ei∈M

ei∀M =⇒ per(R) =
∑
M

C(M ) (4.43)

Proof. Everything follows Theorem 4.17, apart from the product, which now is the prod-
uct of the weights of the edges.

From the results of Theorem 4.16 and 4.17 it can be argued that #M is #P -complete.

Remark. Recalling Equation 4.41 it is worth noticing that:

per(A) = perm(R)2 (4.44)

In some cases, it might be easier to work with the adjacency matrix.

This fact strengthens even more the innate challenge that solving P is. While finding
one solution might in some bipartite instances be feasible, as will be shown in the next
sections, this is not an easy to answer question in general. Nevertheless, for what concerns
finding one optimal solution, the hungarian algorithm of section 3 is a viable option.

Remark (On multiple vs a single optimal). The hardness of counting the number of
perfect matchings does not influence the hardness of finding only one. Viceversa, if a
method to identify an extremal can be formulated, this does not in turn mean that
counting is not #P -complete.

A useful example of efficiently solvable problem is brought to the attention of the reader.

As a first step, the easy determinant & spanning trees problem is presented, for a more
formal treatment, it is again possible to consult [17].

Definition 4.19 (Determinant det(·)). Given a matrix M ∈ Mn,n its determinant is
defined as:

det(M) :=
∑
π∈Sn

(−1)sgn(π)
n∏

i=1

Mi,π(i) (4.45)

It differs from the permanent of Definition 4.11 only by (−1)sgn(π) where sgn counts the
number of transpositions of two elements in the given permutation (the parity) to get
the identity permutation.

Definition 4.20 (Spanning Tree T ). Given a graph G ∈ G : |V | = n a spanning tree T
is a connected acyclyc subgraph T ⊆ G containing all of the vertices in V .

Definition 4.21 (Laplacian L). Given a graph G ∈ G : |V | = n its Laplacian is defined
as:

L ∈Mn,n Lij =


di if i = j

−1 if∃e = (i, j) ∈ E

0 otherwise

(4.46)

A famous result by Kirchhoff links the above Definitions from a computational perspec-
tive.
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Theorem 4.22 (Kirchhoff’s Matrix-Tree Theorem). Given a graph G ∈ G denote by
#T the number of spanning trees. Then:

#T = det(L(−ii)) (4.47)

Where L(−ii) is the matrix L with row i and column i removed.

Proof. Found in [17].

Theorem 4.22 shows that counting spanning trees and computing the determinant are
related. The Laplacian L can be computed in polynomial time from the adjacency matrix,
and the determinant of a matrix is also polynomially computable using the method of
Gaussian Elimination.

Proposition 4.23 (Determinant is in #P ). Computing the determinant of a matrix,
and thus counting the number of spanning trees T for a graph G ∈ G is in #P .

In some special cases, efficiently computing the determinant could be helpful to calculate
the permanent. In practical terms per(·) and det(·) differ only by the (−1)sgn(π) term.
For a bipartite graph, thanks to some adjustments, the aim is to show that:

∃R⋆ : per(R) = det(R⋆) (4.48)

For the purpose of showing where this condition can be proved, it is first of all worth
stating that a balanced (not necessarily complete) bipartite graph B = {(V ∪W ),E } ∈
B : |V | = |W | = n} will be considered.

A perfect matching in B can be expressed as a permutation π, and the permanent of the
root adjacency matrix R, by Theorem 4.17 counts how many of these are possible, while
the determinant is of the form:

det(R) =
∑

π perfect

(−1)sgn(π) (4.49)

The computational trick avoids the considering the (−1) power by adding weights that
align the orientation of the permutations.

Consider a graph B as before where R is consequently:

R =

{
Rij = 1 if ∃e = (i, j) ∈ E , i ∈ V , j ∈ W

0 otherwise
(4.50)

Then, adding weights wij = ±1 let R⋆
ij := Rijwij . It holds that each matching in the

determinant matrix computation has weight:

w(π) =
n∏

i=1

wi,π(i) (4.51)

=⇒ det(R⋆) =
∑

π perfect

(−1)sgn(π)w(π) (4.52)

If it were possible to devise a procedure such that the weights return the same sign for
each permutation, then it would be the case that:

|det(R⋆)| = per(R) = #T = #M (4.53)
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Or, in adjacency matrix terms:

A⋆ =

[
0 R⋆

R⋆T 0

]
=

[
R⋆ 0

0 R⋆T

] [
0 In
In 0

]
(4.54)

=⇒ det(A⋆) = det(R⋆)det(R⋆T )det

([
0 In
In 0

])
(4.55)

Where the determinant of the antidiagonal identity matrix can be evaluated using the
definition of determinant, and noting that it depends only on the parity of the permuta-
tion.

Informal
If there are n even elements, then sgn(π) = +1, else if n is odd, then sgn(π) =

−1. As a matter of fact, the antidiagonal identity matrix swaps the elements
in reversed order. To bring the matrix to the identity, the number of moves
needed is

n− 1 + n− 2 + . . . =
n−1∑
k=1

=
n(n− 1)

2
=⇒ (−1)

(n−1)(n−2)
2 = (−1)n

Which implies that:

det

([
0 In
In 0

])
= (−1)ndet(I2n) = (−1)n (4.56)

Coming back to the calculation:

=⇒ det(A⋆) = det(R⋆)2(−1)n (4.57)

=⇒ |det(A⋆)| = per(R⋆)2 = (#M )2 (4.58)

The peculiarity of matchings in bipartite graphs can be extended to general graphs after
introducing cycle covers. This is a pivotal step that allows to link the determinant and
the adjacency matrix in specific cases.

Definition 4.24 (Cycle Cover C⟲). Given a graph G ∈ G a cycle cover is a set of disjoint
directed paths that span V .

Example 4.25 (Cycle cover for simple graph). A cycle cover for a three node graph is
shown in Figure 4.1.

Lemma 4.26 (Permanent and counting cycle covers). Given a graph G ∈ G with adja-
cency matrix A it holds that:

per(A) = #C⟲ (4.59)

Proof. Consider a cycle cover. It can be interpreted as a permutation where the arrows
in the cycle indicate where the element maps from and where it maps to.
Consider a permutation, it maps uniquely vertices to other vertices without repetition,
it is thus a cycle cover.
Recalling Definition 4.11, it holds that the permanent of the adjacency matrix is such
that each term is a vertex cover.

per(A) = #C⟲ (4.60)
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A

BC

Figure 4.1: Cycle cover (full) simple graph (dashed)

For bipartite graphs, an easy statement is the following.

Theorem 4.27 (Bipartite cycle cover and matchings). For a bipartite graph B ∈ B it
holds that:

#C⟲ = (#M )2 (4.61)

Proof. The convention presented to support this proof is the following:
For the graph B, distinguish elements from the two vertex sets by setting v ∈ V black
and w ∈ W white. Given two matchings M1,M2, obtain a cycle cover as:

C⟲ = π :

{
i→ π(i), from M1 =⇒ i black

i→ π(i), from M2 =⇒ i white
(4.62)

Now it is possible to prove the claim.
(from matchings) Given two matchings, consider their symmetric difference M1∆M2,
it holds that edges appear in one of the two but not in both. For all of those, orient them
as the convention suggests. For all shared edges in M1 ∩M2 instead, add edges going
back and forth from i→ π(i), π(i)→ i as it is the case that i = π(i).
The result is a cycle cover. If #M = k then the elements can be combined in k2 pairs
(a table), and the number of cycle covers is k2.
(from covers) Conversely, consider a set of k even cycles, with isolated edges potentially,
covering a graph B ∈ B. Denote it as σ. Each cycle has a clockwise and a counterclock-
wise direction. Thus there are 2k cycle covers, where the orientation identifies a direction
(either V → W or the opposite), and thus a positioning in either of the two matchings.
Therefore, there are 2k pairs M1,M2 such that M1∆M2 = π. If there are 2k pairs, then
the number of matchings is necessarily k2, by a simple combinatoric argument.

Counting cycle covers and matchings is hard, but there are problems which are not hard
at all. In some instances, it will be possible to state whether they provide an exact
solution to the harder ones. What follows is a path towards this result.
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4.2.1 Pfaffian Orientations

In some cases, specific properties of the graph chosen allow to simplify the calculation of
the permanent.

A modification of the adjacency matrix A denoted as A⋆, crafted as to make odd length
cycles null, would suffice to make the determinant of A⋆ count only useful covers. Let
A⋆ be antisymmetric (such that A⋆ = −A⋆T ).

Following the path proposed in [16] consider a general graph G = {V ,E } ∈ G where
|V | = n. The custom matrix A⋆ is built as:

A⋆ =

{
A⋆

ij = −A⋆
ij if e = (i, j) ∈ E⃗

A⋆
ij = 0 otherwise

(4.63)

Where the sign of the edges is determined by a custom direction assigned. The graph
induced by A⋆ is oriented by the edges E⃗ .

Observation 4.28 (On the custom matrix A⋆). A⋆ is antisymmetric, and is such that:

det(A⋆) = det(−A⋆T ) = (−1)ndet(A⋆)

=⇒ if n odd =⇒ det(A⋆) = −det(A⋆) =⇒ det(A⋆) = 0

Definition 4.29 (Odd and even cycles). A cycle is even if it is of even length. A cycle
cover is odd if it contains at least one cycle of odd length.

Considering a permutation on Sn : n even it is possible to identify the perfect matching
represented as:

M = {(π(2i− 1), π(2i)) : 1 ≤ i ≤ n

2
} (4.64)

Some useful facts will be reported in the next Lemma.

Lemma 4.30 (Some identities in permutations, cycles, covers). The following facts will
be used later in the section:

• π = M1∆M2 =⇒ π is a cycle

• M identifies a permutation π ∈ Sn as in Equation 4.64
• The number of cycle covers is even, and arises from cycles c = M∆M ′. Then, the

number of elements in such cycle is even
• c = M∆M ′ =⇒ π′ = π ◦ c ∧ sgn(π′) = −sgn(π)

For a given matching, many permutations correspond to it. To find a useful orientation,
the weight of a matching is defined below:

Definition 4.31 (Matching weight w(M )). Consider π ∈ Sn with associated M and
A⋆ antisymmetric. The weight of a matching is defined as:

w(M ) = sgn(π)

n
2∏

i=1

A⋆
π(2i−1),π(2i) (4.65)

The surjectivity of the π →M map does not impact w(M ). Indeed, the object is well
defined. To prove this consider π2 and π1 where both map to M . Through a sequence
of elementary moves chosen from the below list one will be reduced to the other without
changing the weight of the matching.
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1. change the order of an edge: switch π(2k − 1) and π(2k) for some k

2. exchange two edges: switch π(2k − 1), π(2k) with π(2j − 1), π(2j) for some j, k

For item 1, the sign of the permutation changes, but the Aij change as well, leaving
w(M ) unchanged.
For item 2 there is no parity change as the edges just switch completely.

While in a bipartite graph cycle covers have always odd length, this does not hold in
general for any graph G ∈ G. Indeed, the following Lemma generalizes the result of
Theorem 4.27.

Lemma 4.32 (Even cycle covers and perfect matchings). For a graph G ∈ G there exists
a bijection between cycle covers with only even cycles and perfect matchings. Thus the
number of perfect matchings squared is equal to the number of even cycle covers. Namely:

∃F : ξn → {M } × {M } : F bijective where ξn = {π ∈ Sn : only even cycles}
(4.66)

=⇒ #C⟲all even cycles = (#M )2 (4.67)

Proof. Apply the reasoning of Theorem 4.27, considering that a cycle of odd length does
not identify a matching as it does not relate to specific edges.
For each π ∈ ξn consider the smallest index u and let (u, π(u)) ∈M , similarly (π(u), π(π(u))) ∈
M ′. This can be done in alternation as every cycle is even, and the split does not have
any element of the permutations left out.
Consider the union of two matchings M ∪M ′. This is a set of cycles. For each cycle,
orient it such that the lowest index u has an outgoing connection. This procedure repro-
duces the permutation π.
Then, the map F (π) = (M ,M ′) is a bijection, and it is possible to state that:

#C⟲all even cycles = |ξn| = (|{M }|)2 = (#M )2 (4.68)

Lemma 4.32 is then used to prove a famous result by Cayley.

Definition 4.33 (Pfaffian Pf(·)). Given A⋆ ∈ Mn,n antisymmetric with n even, the
Pfaffian of A⋆ is the sum of the weights of perfect matchings:

Pf(A⋆) :=
∑

M perfect

w(M ) (4.69)

Theorem 4.34 (Cayley’s Theorem). Let A⋆ ∈Mn,n be antisymmetric, where n is even.
Then:

det(A⋆) = Pf(A⋆)2 (4.70)

Proof. From Definition 4.19:

det(A⋆) =
∑
π∈Sn

(−1)sgn(π)
n∏

i=1

A⋆
i,π(i) (4.71)

The following are two useful observations:

1. By the fact that A⋆ is antisymmetric the diagonal elements are null A⋆
ii = 0∀i.

Then, permutations mapping vertices to the same vertex cancel out in the sum:

∀π ∈ Sn|∃i∗ : i∗ → π(i∗) = i∗ =⇒
n∏

i=1

A⋆
i,π(i) = 0 (4.72)
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2. Considering π ∈ Sn \ ξn there is always at least one odd cycle in π. Consider the
odd cycle C∗ containing the smallest index. Reverse C∗. A new permutation is
obtained, where:

πnew = π ∧ sgn(πnew) = sgn(π) (4.73)

However, by the antisymmetry of A⋆, and the oddness of the cycle, the entries
invert their sign, but the number inverted of signs is odd, and the result of the
multiplication of entries is inverted in sign in the new permutation:

=⇒
∏
i∈C∗

A⋆
i,π(i) = −

∏
i∈C∗

A⋆
i,πnew(i) (4.74)

Thus, for each permutation with an odd cycle inside, the determinant gets canceled
out by another permutation.

From point 1 permutations with even cycles that map vertices to themselves are ignored,
from point 2 permutations with odd cycles are ignored. Then, the determinant is a sum
over permutations with only even cycles π = (c1) ◦ (c2) ◦ . . . ◦ (ck) : k even.

=⇒ det(A⋆) =
∑
π∈Sn

(−1)sgn(π)
n∏

i=1

A⋆
i,π(i) (4.75)

For the Pfaffian, it holds that:

Pf(A⋆)2 =
∑

M perfect

w(M )
∑

M ′ perfect

w(M ′) (4.76)

=
∑

M×M ′ perfect

w(M )w(M ′) (4.77)

Which is a sum of multiplications. Using Lemma 4.32, the map F (π) = (M ,M ′) is a
bijection, with π ∈ ξn made of k even cycles. To generate the weight of the matching M

from π, use Definition 4.31, recording elements of each cycle starting from their lowest
index. It holds that it is represented through a permutation α where:

w(M ) = sgn(α)

n
2∏

i=1

A⋆
α(2i−1),α(2i) (4.78)

And similarly for M ′ there will be an α′ representation, obtained by composing with
each cycle of π. Namely:

α′ ◦ ci∀i ∈ {1, . . . , k} : π = (c1) ◦ (c2) . . . ◦ (ck) (4.79)
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Therefore, sgn(α′) = sgn(α)(−1)k : k even where k is the number of cycles in α. Calcu-
lating the product of the two weights:

w(M )w(M ′) = sgn(α)

n
2∏

i=1

A⋆
α(2i−1),α(2i)sgn(α

′)

n
2∏

i=1

A⋆
α′(2i−1),α′(2i) By Equation 4.78

(4.80)

= sgn(α)sgn(α′)

n
2∏

i=1

A⋆
α(2i−1),α(2i)A

⋆
α′(2i−1),α′(2i) collect same index

(4.81)

= sgn(α)2(−1)k
n
2∏

i=1

A⋆
α(2i−1),α(2i)A

⋆
α′(2i−1),α′(2i) by the identity above

(4.82)

= (−1)k
n
2∏

i=1

A⋆
α(2i−1),α(2i)A

⋆
α′(2i−1),α′(2i) by sgn(α)2 = 1

(4.83)

= (−1)k
n∏

i=1

A⋆
i,π(i) By Lemma 4.32

(4.84)

Using the fact that k is even in π, it is the case that sgn(π) = (−1)k. Together with
this, using Equations 4.75, 4.77 and 4.84 altogether:

Pf(A⋆)2 =
∑

M×M ′ perfect

w(M )w(M ′) Eq. 4.77 (4.85)

=
∑
π∈Sn

(−1)k
n∏

i=1

A⋆
i,π(i) Eq. 4.84 (4.86)

=
∑
π∈Sn

sgn(π)

n∏
i=1

A⋆
i,π(i) identity above paragraph (4.87)

= det(A⋆) Eq. 4.75 (4.88)

And the claim is proved.

This result holds for general antisymmetric matrices, but considering a unitary entry A⋆,
something can be added in this direction. If A⋆ is as:

A⋆ :=


A⋆

ij = +1 if i→ j

A⋆
ij = −1 if j → i

A⋆
ij = 0 otherwise

(4.89)

Then, for each matching w(M ) = ±1, and making all weights positive (or negative), it
could be possible to evaluate the determinant through the Pfaffian as:

Pf(A⋆)2 = det(A⋆) = #C⟲all even = (#M )2 (4.90)

This is the only requirement of a Pfaffian orientation:

Definition 4.35 (Pfaffian orientation). Given G ∈ G a Pfaffian orientation E⃗ is such
that for all perfect matchings the weight is the same.

E⃗ : ∀M ,M ′ perfect w(M ) = w(M ′) (4.91)
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Corollary 4.36 (Pfaffian orientation and determinant). Let G ∈ G. Assume G admits
a Pfaffian orientation E⃗ . Build A⋆ as in Equation 4.89. Then A⋆ is antisymmetric and:

#M =
√
det(A⋆) (4.92)

Proof. A⋆ as in Equation 4.89 is necessarily antisymmetric. A⋆ is also of even size:
A⋆ ∈ Mn,n, where n

2 is the size of V . Using Theorem 4.34, the Pfaffian orientation
property, unitary weights, and Lemma 4.32 it is possible to state that:

=⇒
√

det(A⋆) = Pf(A⋆) Theorem 4.34 (4.93)

=
√

#C⟲all even Pfaffian orientation Def. 4.35, unitary weights (4.94)

= (#M ) Lemma 4.32 (4.95)

Having as a purpose that of finding a graph which admits a Pfaffian orientation, it is
worth stressing again that this does not imply that #-P complete problems such as
computing the permanent are made efficient. As a matter of fact, not all graphs in
G admit a Pfaffian orientation. One condition, which will be useful to prove the next
Theorem, is presented in the following Lemma3.

Lemma 4.37 (Cycles, perfect matchings, backward oddness). Let G ∈ G. An orienta-
tion E⃗ is Pfaffian if for every cycle c such that the remaining vertices admit a perfect
matching has a number of backward j → i edges which is odd. Denoting V [c] as the
vertices encountered along c:

E⃗ where∀c cycles|∃M perfect in V \ V [c] : |j → i| in c is odd =⇒ E⃗ Pfaffian

(4.96)

Proof. Perfect matchings in the Pfaffian orientation are such that :

M∆M ′ = c (4.97)

Where c is a cycle such that:

1. it has even size by Lemma 4.32
2. G admits a perfect matching in V \ V [c] [16]

Thus, a Pfaffian orientation admits a cycle of this form.
Any cycle satisfying points 1 and 2 is the result of the symmetric difference of two perfect
matchings. Using A⋆ we have that w(M )w(M ′) = ±1 and that for the orientation to
be Pfaffian it must additionally hold that w(M )w(M ′) = 1. Thus, the difference in sign
between w(M ) and w(M ′) can be evaluated considering their generators α and α′ where
α′ = α ◦ c. Indeed:

=⇒ sgn(α′) = −sgn(α) =⇒ w(M )w(M ′) = sgn(α)sgn(α′)(−1)k (4.98)

= sgn(α)2(−1)(−1)k (4.99)

= (−1)(−1)k (4.100)

Where k is the number of backward edges in c. For the orientation to be pfaffian, it is
necessary that:

w(M )w(M ′) = 1 =⇒ (−1)(−1)k = 1 =⇒ k odd (4.101)

3With a very bad title!
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Observation 4.38 (An easy implication of Lemma 4.37). All cycles must be of even
length. If the number of backward cycles is odd, then the number of forward cycles is odd
as well.

The result just proved holds for planar graphs, defined below, as shown through a stronger
statement.

Definition 4.39 (Planar Graph). A planar graph is a graph G ∈ G that can be embedded
in an R2 space with no crossing edges. By construction, it divides the space into regions,
which are called faces. Also the region outside the graph is an external face.

A famous result by Kasteleyn states that planar graphs always admit a Pfaffian orienta-
tion. To prove this, a peculiarity of planar graphs will be used.

Lemma 4.40 (Forward clockwise edges and internal vertices oddness). Let G ∈ G be
planar. Then, for any cycle c the sum of the number of forward clockwise edges f +

number of vertices k internal to c is odd

(f + k)(mod2) = 1 (4.102)

Proof. By induction on k, considering a cycle c.
Base case: for k = 0 it holds by assumption. In the above theorem it is assumed that
f is odd.

(f)(mod2) = 1 (4.103)

Induction Hypothesis: assume k > 0 so that c is a cycle around more than one face.
Conclusion: Consider a cycle c enclosing two faces, where (f1 + k1)(mod2) = 1 and
(f2 + k2)(mod2) = 1 by assumption. The faces that c cycles around of partition the
space, and c is basically the union of the two cycles c = c1 ∪ c2 ignoring its interior.
Taking into account the path shared between c1 and c2, denote the number of internal
vertices of the path as b.
It can be noticed that:

k = k1 + k2 + b internal + internal + internal shared (4.104)

f = f1 + f2 − (b− 1) edges + edges - directions invert (4.105)

Where in the second equality the subtraction is to avoid inserting edges of the internal
shared path.
Then, the number of internal vertices plus the number of forward clockwise edges is:

k + f = k1 + k2 + b+ f1 + f2 − b+ 1 (4.106)

=⇒ (k + f)(mod2) = (k1 + f1 + k2 + f2 + 1)(mod2) = 1 (4.107)

If it holds for two faces, it trivially holds for any number of faces.

Theorem 4.41 (Kasteleyn’s Theorem). Let G ∈ G. Assume G admits an orientation
E⃗ such that for each internal face the number of forward clockwise edges is odd. Then,
E⃗ is Pfaffian.

Proof. To show that E⃗ is Pfaffian, consider an even cycle c such that G \ V [c] has a
perfect matching. By the graph being planar, the number of vertices inside c is even.
Indeed, even cycles enclose even cycles [17] and this requirement is strict as they must be
perfectly matchable [16]. By Lemma 4.40, the number of forward edges is odd. Then, by
Lemma 4.37, since the number of backward edges is odd, the orientation E is Pfaffian.
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Figure 4.2: G full lines, G dotted, credits: Zarko StackLatex
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This result logically implies that computing the number of perfect matchings for a planar
graph is not #P -complete. Indeed, it suffices to build efficiently a Pfaffian Orientation,
determine its custom adjacency matrix A⋆ as in 4.89, and evaluate det(A⋆). This proce-
dure is encapsulated in the Fisher Kastelyn Temperley Algorithm.

Before introducing the precise steps, some definitions and facts are necessary.

Definition 4.42 (Faces of a planar graph F ). Given a planar graph G denote the set
of its faces as F . A planar graph can indeed be seen as a mesh of F . Faces are adjacent
if they share an edge.

Definition 4.43 (Dual of a planar graph G). Given a planar graph G its dual graph
G = {F ,E ′} is a graph that has a vertex for each face of G, and an edge for each adjacent
face.

Example 4.44 (A graph and its dual). A graph and its dual can be found in Figure 4.2.

A nice approach to the dual property that will be exploited is found in [20].

Observation 4.45 (Acyclic subgraphs and dual). An acyclic subgraph of G planar does
not disconnect G. Any acyclic subgraph is necessarily a forest (an ensemble of T s). Thus
any face is reachable by avoiding the forest, which cannot form a cycle. Then G has a
spanning tree, and the dual property of connectedness is acyclicity.

Theorem 4.46 (Euler’s Theorem). For a planar graph G it holds that:

|E | = |V | − |F | − 2 (4.108)

Proof. Let T be a spanning tree in G. By Definition 4.20 it is a connected acyclyc
subgraph, and it has |V |−1 edges. Consider its complement G\T . Its dual is connected
and acyclic by Observation 4.45. Thus, its dual is a spanning tree as well, and has |F |−1
edges. The two spanning trees together have all the edges in G. Thus:

|E | = |V | − |F | − 2 (4.109)

https://tex.stackexchange.com/questions/373861/tikz-drawing-dual-graph
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Thanks to Theorem 4.46, a combination of a spanning tree and a spanning tree of the
dual necessarily considers all edges. By Theorem 4.41, in order to find a Pfaffian Orien-
tation, all faces must present an odd number of forward clockwise edges. The procedure
implemented to satisfy these conditions is outlined in Algorithm 6, known as the FKT
Algorithm.

Algorithm 6 FKT Algorithm
Input: G planar
Output: #M for G

1: Compute the planar embedding of G
2: T1 ← spanning tree of G
3: for e ∈ T1 do

orient e arbitrarily
4: end for
5: G ← dual(G)

6: T2 ← spanning tree of G
7: for v ∈ leaves(T2) where v /∈ root(T2 do ▷ for root(T2) it is satisfied by the previous

let e be the edge in F ≡ v not oriented
orient e such that #clockwise is odd
remove e from T2

8: end for
9: Build A⋆ ▷ as in Equation 4.89

10: evaluate det(A⋆)

11: return
√
det(A⋆) = Pf(A⋆) = #M ▷ by Corollary 4.36

Informally, starting from leaves of the dual spanning tree, there will be only one edge
in the remaining face. Similarly, as the dual tree gets climbed bottom-up, there will
always be one edge missing to orient. This leaves a trivial choice to the algorithm: if the
clockwise edges are odd, orient the edge anticlockwise, else do the opposite.

The edge orientations now are a valid Pfaffian orientation, and the matrix A⋆ will identify
the number of matches.

Since building spanning trees is of polynomial complexity, as well as reorienting edges,
building a Pfaffian orientation for a planar graph with Algorithm 6 is computationally
efficient. Given a Pfaffian orientation, the determinant, which is efficient to compute as
well by Gaussian elimination, will return the desired result.

Kasteleyn’s approach can be implemented to determine the phase transition of the Ising
Model, as explained in [17]. For length and time constraints, it will not be shown in this
document.



Bibliography

[1] H. W. Kuhn. “The Hungarian method for the assignment problem”. In: Naval Research Logistics Quar-
terly 2.1 (Mar. 1955), pp. 83–97. issn: 00281441, 19319193. doi: 10.1002/nav.3800020109. url:
https://onlinelibrary.wiley.com/doi/10.1002/nav.3800020109 (visited on 06/06/2022).

[2] Rainer E. Burkard and Eranda Çela. “Linear Assignment Problems and Extensions”. In: Handbook of
Combinatorial Optimization. Ed. by Ding-Zhu Du and Panos M. Pardalos. Boston, MA: Springer US,
1999, pp. 75–149. isbn: 978-1-4419-4813-7 978-1-4757-3023-4. doi: 10.1007/978-1-4757-3023-4_2.
url: http://link.springer.com/10.1007/978-1-4757-3023-4_2 (visited on 06/06/2022).

[3] Bernd Gartner and Michael Hoffman. Computational Geometry Course. url: https://ti.inf.ethz.
ch/ew/courses/CG13/lecture/Chapter%203.pdf (visited on 06/06/2022).

[4] Alan J. Hoffman and Joseph B. Kruskal. “Integral Boundary Points of Convex Polyhedra”. In: 50 Years
of Integer Programming 1958-2008: From the Early Years to the State-of-the-Art. Ed. by Michael Jünger
et al. Berlin, Heidelberg: Springer, 2010, pp. 49–76. isbn: 978-3-540-68279-0. doi: 10.1007/978-3-
540-68279-0_3. url: https://doi.org/10.1007/978-3-540-68279-0_3 (visited on 06/06/2022).

[5] Arthur F. Veinott Jr. and George B. Dantzig. “Integral Extreme Points”. In: SIAM Review 10.3 (July
1968), pp. 371–372. issn: 0036-1445, 1095-7200. doi: 10.1137/1010063. url: http://epubs.siam.
org/doi/10.1137/1010063 (visited on 06/06/2022).

[6] Alexander Schrijver. “A Course in Combinatorial Optimization”. In: (), p. 221.

[7] Romeo Rizzi. “A short proof of König’s matching theorem”. In: Journal of Graph Theory 33.3 (2000).
_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/%28SICI%291097-0118%28200003%2933%3A3%3C138%3A%3AAID-
JGT2%3E3.0.CO%3B2-K, pp. 138–139. issn: 1097-0118. doi: 10.1002/(SICI)1097-0118(200003)33:
3<138::AID-JGT2>3.0.CO;2-K. url: https://onlinelibrary.wiley.com/doi/abs/10.1002/
%28SICI%291097-0118%28200003%2933%3A3%3C138%3A%3AAID-JGT2%3E3.0.CO%3B2-K (visited on
06/06/2022).

[8] Michel Goemans. Combinatorial Optimization Lecture Notes, polyhedral combinatorics. url: https:
//math.mit.edu/~goemans/18433S13/polyhedral.pdf (visited on 06/06/2022).

[9] Robert D Borgersen. “Equivalence of seven major theorems in combinatorics”. In: (), p. 18.

[10] Harold W. Kuhn. “A tale of three eras: The discovery and rediscovery of the Hungarian Method”. In: Eu-
ropean Journal of Operational Research 219.3 (June 2012), pp. 641–651. issn: 03772217. doi: 10.1016/
j.ejor.2011.11.008. url: https://linkinghub.elsevier.com/retrieve/pii/S0377221711009957
(visited on 06/06/2022).

[11] Michel Goemans. Combinatorial Optimization Lecture Notes, matching. url: https://math.mit.edu/
~goemans/18433S13/matching-notes.pdf (visited on 06/06/2022).

63

https://doi.org/10.1002/nav.3800020109
https://onlinelibrary.wiley.com/doi/10.1002/nav.3800020109
https://doi.org/10.1007/978-1-4757-3023-4_2
http://link.springer.com/10.1007/978-1-4757-3023-4_2
https://ti.inf.ethz.ch/ew/courses/CG13/lecture/Chapter%203.pdf
https://ti.inf.ethz.ch/ew/courses/CG13/lecture/Chapter%203.pdf
https://doi.org/10.1007/978-3-540-68279-0_3
https://doi.org/10.1007/978-3-540-68279-0_3
https://doi.org/10.1007/978-3-540-68279-0_3
https://doi.org/10.1137/1010063
http://epubs.siam.org/doi/10.1137/1010063
http://epubs.siam.org/doi/10.1137/1010063
https://doi.org/10.1002/(SICI)1097-0118(200003)33:3<138::AID-JGT2>3.0.CO;2-K
https://doi.org/10.1002/(SICI)1097-0118(200003)33:3<138::AID-JGT2>3.0.CO;2-K
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0118%28200003%2933%3A3%3C138%3A%3AAID-JGT2%3E3.0.CO%3B2-K
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0118%28200003%2933%3A3%3C138%3A%3AAID-JGT2%3E3.0.CO%3B2-K
https://math.mit.edu/~goemans/18433S13/polyhedral.pdf
https://math.mit.edu/~goemans/18433S13/polyhedral.pdf
https://doi.org/10.1016/j.ejor.2011.11.008
https://doi.org/10.1016/j.ejor.2011.11.008
https://linkinghub.elsevier.com/retrieve/pii/S0377221711009957
https://math.mit.edu/~goemans/18433S13/matching-notes.pdf
https://math.mit.edu/~goemans/18433S13/matching-notes.pdf


BIBLIOGRAPHY 64

[12] Claude Berge. “Two theorems in graph theory”. In: Proceedings of the National Academy of Sciences
43.9 (Sept. 15, 1957). Publisher: Proceedings of the National Academy of Sciences, pp. 842–844. doi:
10.1073/pnas.43.9.842. url: https://www.pnas.org/doi/10.1073/pnas.43.9.842 (visited on
06/06/2022).

[13] James Munkres. “Algorithms for the Assignment and Transportation Problems”. In: Journal of the
Society for Industrial and Applied Mathematics 5.1 (1957). Publisher: Society for Industrial and Applied
Mathematics, pp. 32–38. issn: 0368-4245. url: https://www.jstor.org/stable/2098689 (visited on
06/06/2022).

[14] Giovanni Righini. “Complements of Operations Research”. Type: presentation. Aug. 2, 2018. doi:
10.1287/fa0f35b9-6bcb-4f07-ab71-78a7c9014fb2. url: http://pubsonline.informs.org/do/
10.1287/fa0f35b9-6bcb-4f07-ab71-78a7c9014fb2/full/ (visited on 06/06/2022).

[15] Rainer E Burkard. “Admissible transformations and assignment problems”. In: (), p. 15.

[16] Michel Goemans. Advanced Combinatorial Optimization Lecture Notes. url: https://math.mit.edu/
~goemans/18438S14/lec4-algmat.pdf (visited on 06/12/2022).

[17] Cristopher Moore and Stephan Mertens. The Nature of Computation. Oxford University Press, Aug. 11,
2011. isbn: 978-0-19-923321-2. doi: 10.1093/acprof:oso/9780199233212.001.0001. url: https:
//oxford.universitypressscholarship.com/view/10.1093/acprof:oso/9780199233212.001.
0001/acprof-9780199233212 (visited on 06/07/2022).

[18] R. E. Burkard and U. Zimmermann. “Weakly admissible transformations for solving algebraic assign-
ment and transportation problems”. In: Combinatorial Optimization. Ed. by M. W. Padberg. Mathe-
matical Programming Studies. Berlin, Heidelberg: Springer, 1980, pp. 1–18. isbn: 978-3-642-00802-3.
doi: 10.1007/BFb0120884. url: https://doi.org/10.1007/BFb0120884 (visited on 06/08/2022).

[19] L. G. Valiant. “The complexity of computing the permanent”. In: Theoretical Computer Science 8.2
(Jan. 1, 1979), pp. 189–201. issn: 0304-3975. doi: 10.1016/0304-3975(79)90044-6. url: https:
//www.sciencedirect.com/science/article/pii/0304397579900446 (visited on 06/06/2022).

[20] David Eppstein. Euler’s Formula. url: https://www.ics.uci.edu/~eppstein/junkyard/euler/
interdig.html (visited on 06/12/2022).

https://doi.org/10.1073/pnas.43.9.842
https://www.pnas.org/doi/10.1073/pnas.43.9.842
https://www.jstor.org/stable/2098689
https://doi.org/10.1287/fa0f35b9-6bcb-4f07-ab71-78a7c9014fb2
http://pubsonline.informs.org/do/10.1287/fa0f35b9-6bcb-4f07-ab71-78a7c9014fb2/full/
http://pubsonline.informs.org/do/10.1287/fa0f35b9-6bcb-4f07-ab71-78a7c9014fb2/full/
https://math.mit.edu/~goemans/18438S14/lec4-algmat.pdf
https://math.mit.edu/~goemans/18438S14/lec4-algmat.pdf
https://doi.org/10.1093/acprof:oso/9780199233212.001.0001
https://oxford.universitypressscholarship.com/view/10.1093/acprof:oso/9780199233212.001.0001/acprof-9780199233212
https://oxford.universitypressscholarship.com/view/10.1093/acprof:oso/9780199233212.001.0001/acprof-9780199233212
https://oxford.universitypressscholarship.com/view/10.1093/acprof:oso/9780199233212.001.0001/acprof-9780199233212
https://doi.org/10.1007/BFb0120884
https://doi.org/10.1007/BFb0120884
https://doi.org/10.1016/0304-3975(79)90044-6
https://www.sciencedirect.com/science/article/pii/0304397579900446
https://www.sciencedirect.com/science/article/pii/0304397579900446
https://www.ics.uci.edu/~eppstein/junkyard/euler/interdig.html
https://www.ics.uci.edu/~eppstein/junkyard/euler/interdig.html

	List of Symbols
	Introduction
	A first Strategy
	Representations of the Assignment problem

	Properties of P
	Linear Algebra and Graph Theory facts
	Duality: some equivalent results

	The Hungarian Algorithm
	Unravelling the procedure
	Graph Version, Primal-Dual Version

	Extensions
	Generalizations of P
	Counting Hardness
	Pfaffian Orientations



